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Abstract. In this paper, we study the Hausdorff dimension of fractal interpolation sur-
faces (FISs) over a triangular domain. These FISs are known as ‘wedding cake surfaces’.
These surfaces are the attractor of some deterministic self-affine iterated function systems
(IFS) on R3 generated by a fractal interpolation algorithm. Due to the recent seminal re-
sult of Rapaport (Adv. Math. 449 (2024) 109734), the dimension theory of self-affine IFS
on R3 is known whenever the IFS is strongly irreducible and proximal. However, the self-
affine IFSs associated with FIS are not strongly irreducible. We prove that the Hausdorff
dimension of the self-affine set (or FIS) is the same as the affinity dimension outside a set
of scaling parameters with zero Lebesgue measure. Lastly, by computing the overlapping
number for the associated Furstenberg IFS, we determine the Hausdorff dimension for
every type of scaling parameter in a certain range of parameters.

1. Introduction and Statements

1.1. Historical background. For n ≥ 2, the system I =
{
f1, f2, . . . , fn

}
is called an

iterated function system (IFS) on Rd, if the map fi is a contraction map on Rd for
each i ∈ {1, 2, . . . , n}. Hutchinson [11] proved that there exists a unique non-empty com-
pact set K ⊂ Rd such that K =

⋃n
i=1 fi(K). Let p = (p1, p2, . . . , pn) be a probability

vector. Hutchinson [11] also proved that there exists a unique Borel probability measure µ
supported on K such that µ(B) =

∑n
i=1 piµ(f

−1
i (B)) for all Borel sets B ⊂ Rd. The set K

is called the attractor of IFS I and the measure µ is known as the stationary measure

corresponding to IFS I with the probability vector p. The map f : Rd → Rd such that
f(x) = Ax + a is called a self-affine map, where a ∈ Rd and A ∈ GL(d,R) with ∥A∥ < 1.
The IFS I =

{
f1, f2, . . . , fn

}
is called a self-affine IFS, if each fi is a self-affine map on

Rd for each i ∈ {1, 2, . . . , n}. The attractor of the self-affine IFS is known as self-affine
set, and the stationary measure corresponding to the self-affine IFS I and probability
vector p is known as self-affine measure.

In this paper, our focus is on the Hausdorff dimension of the self-affine IFS on R3,
which are generated by the fractal interpolation algorithm on the triangular domain of
R2. In 1986, Barnsley [4] introduced the concept of fractal interpolation functions (FIFs)
on R. The FIF is a function which interpolates the given data set, and the graph of this
function is the attractor of some iterated function system (IFS). In [4], Barnsley provided
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an algorithm to construct an IFS corresponding to the given data set. Barnsley, Elton and
Hardin [5] determined the box dimension of the graph of the FIF for a given data set.
Later, Bárány, Simon and Rams [2] determined the Hausdorff dimension of the graph of
the FIF by studying the dimension theory of the associated self-affine IFS on R2 for a given
data set on R.
In 1990, Massopust [12] extended Barnsley’s FIF theory on the plane and defined the

notion of the fractal interpolation surfaces (FISs) and also provided an algorithm to con-
struct a self-affine IFS on R3 corresponding to a given finite data sets over the triangular
domain, where the data points on the boundary of the triangular domain are required to be
coplanar. Barnsley called these surfaces “wedding cake” surfaces. Under the consideration
of uniform triangulation of the equilateral triangle and the linear part of the self-affine IFS
does not contain the rotation matrix, Massopust [12] determined the box dimension of the
graph of corresponding FISs. Geronimo and Hardin [8] provided another construction of
the FISs over the triangular domain and polygonal domain by considering uniform scaling
parameters without assuming the coplanarity condition as in [12], and also determined the
box dimension of the FISs under some condition. We note that the construction of the
FISs on the rectangular domain was found in [6, 15].

According to our knowledge, the Hausdorff dimension of the FISs has not yet been
studied in these cases. The dimension theory of the FISs is equivalent to the dimension
theory of the attractor of the corresponding self-affine IFS on R3. In 1988, Falconer [7]
introduced a natural upper bound for the Hausdorff dimension of the self-affine sets in Rd,
which is known as the affinity dimension. Falconer [7] proved that if the self-affine IFS
I = {fi(x) = Aix+ ai}ni=1 with attractor K satisfies ∥Ai∥ < 1

3
∀ i ∈ {1, 2, . . . , n}, then for

almost all a = (a1, . . . , an) ∈ Rnd

dimH(K) = min{d, t}, (1.1)

where t is the affinity dimension of the self-affine IFS I (see precise definition later in
Section 2). After that, Solomyak [16] showed that the Falconer’s formula (1.1) is also valid
whenever ∥Ai∥ < 1

2
∀ i ∈ {1, 2, . . . , n} and the bound 1

2
is strict. In the planar case, Bárány,

Hochman and Rapaport [1] proved that if the self-affine IFS I is strongly irreducible and
proximal, and satisfies the strong open set condition (SOSC), i.e. there exists an open and
bounded set U such that

fi(U) ⊆ U, fi(U) ∩ fj(U) = ∅ for i ̸= j and U ∩K ̸= ∅,

then (1.1) holds. Later, Hochman and Rapaport [10] determined the more general result
in the planar case when the maps in the self-affine I do not have a common fixed point,
I is strongly irreducible and proximal, and satisfies the exponential separation condition.
In the case d = 3, Rapaport [14] proved recently that (1.1) holds if the self-affine IFS I is
strongly irreducible and proximal, and satisfies the SOSC.

Note that the self-affine IFS on R3 generated by the fractal interpolation algorithm for a
given data set is not strongly irreducible; it is actually reducible. Thus, [14] is not applicable
for studying the Hausdorff dimension of the FISs on R3.

1.2. Massopust’s Fractal Interpolation Surfaces. First, we take the construction of
the FISs given by Massopust [12]. For determining the Hausdorff dimension, we consider
the same assumption as taken by Massopust [12] for the box dimension. We consider the

equilateral triangle ∆ with vertices {(0, 0), (1, 0), (1
2
,
√
3
2
)} and an integer N ≥ 3. Then we

divide each side into N equal parts, we get a uniform triangulation {∆i}N
2

i=1 (see Figure 1
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Figure 1. Triangularization of the equilateral triangle for N = 3. To vi-
sualise the sign of the change of the data set on each horizontal edge, we
coloured it blue where the data set decreases from left to right, and other-
wise, we coloured it red.

for N = 3). Without loss of generality, we index the triangles ∆i, which are pointing up, by

indices i = 1, . . . , N(N+1)
2

, and the triangles which pointing down by i = N(N+1)
2

+1, . . . , N2.

Let us denote the vertices of this triangularization on the plane by {qi}L(N)
i=1 , where

L(N) = (N+1)(N+2)
2

for N ≥ 3. We will use the convention that q1, q2 and q3 denote the
vertices of the original equilateral triangle counted from the bottom left corner in anti-

clockwise direction. We consider a data set {(qk, ak)}L(N)
k=1 associated with the triangula-

tion {∆i}N
2

i=1. We assume that the data points on the boundary of the equilateral triangle
∆ are coplanar. Without loss of generality, we assume that ak = 0 for all k such that
the corresponding qk is on the boundary of the triangle ∆. In particular, the data set is
{(qi, 0)}9i=1 ∪ {(q10, a)}, for the case N = 3, where a ̸= 0 is a real number. We define the

map f ∗ : {qi}L(N)
i=1 → {ai}L(N)

i=1 as follows f ∗(qk) = ak for k = 1, . . . , L(N).
For each i ∈ {1, 2, . . . , N2}, we denote the value of f ∗ at the left vertex of the horizontal

edge of ∆i by ai1, value of f ∗ at the right vertex of the horizontal edge by ai2 and value at

the other vertex by ai3 of ∆i, where ai1, a
i
2, a

i
3 ∈ {ak}L(N)

k=1 . For each i ∈ {1, 2, . . . , N2}, we
define a similarity map Ui : ∆ → ∆i such that

Ui(x, y) =


(

x
N
, y
N

)
+ (ei, fi) if ai1 ≥ ai2 and 1 ≤ i ≤ N(N+1)

2
,(

x
N
,− y

N

)
+ (ei, fi) if ai1 ≥ ai2 and N(N+1)

2
+ 1 ≤ i ≤ N2,(

− x
N
, y
N

)
+ (gi, fi) if ai1 < ai2 and 1 ≤ i ≤ N(N+1)

2
,(

− x
N
,− y

N

)
+ (gi, fi) if ai1 < ai2 and N(N+1)

2
+ 1 ≤ i ≤ N2,

(1.2)

where (ei, fi) and (gi, fi) are the left and right vertices of the horizontal line of ∆i. Fur-
thermore, we define for each i ∈ {1, 2, . . . , N2}, the hight function as

Vi(x, y, z) = aix+ biy + siz + ci, (1.3)

where si ∈ (0, 1) and constants {ai, bi, ci} are uniquely determined by the join-up condition
i.e.

Vi(q1, 0) = f ∗(Ui(q1)), Vi(q2, 0) = f ∗(Ui(q2)) and Vi(q3, 0) = f ∗(Ui(q3)) (1.4)

for every i ∈ {1, 2, . . . , N2}.
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We define the affine IFS I := {Wi, i ∈ {1, 2, . . . , N2}} on R3 such that the maps Wi :
R3 → R3 are defined as

Wi(x, y, z) = (Ui(x, y), Vi(x, y, z)). (1.5)

By [12], the map f ∗ defined only on the date set can be uniquely extended to a continuous
function f ∗ : ∆ → R such that f ∗(qi) = ai for all i ∈ {1, 2 . . . , L(N)} and the graph G(f ∗)
of the function f ∗ is the attractor of the affine IFS I. In particular, it satisfies the equation:

f ∗(Ui(x, y)) = Vi(x, y, f
∗(x, y)) for every i ∈ {1, . . . , L(N)}.

The surfaces G(f ∗) are known as fractal interpolation surfaces. The maps of the IFS I in
the case N = 3 are precisely as follows:

W1(x, y, z) =

(
x

3
,
y

3
, s1z

)
, W4(x, y, z) =

(
−x

3
+

1

2
,
y

3
+

1

2
√
3
,−ax− a√

3
y + s4z + a

)
W2(x, y, z) =

(
x+ 1

3
,
y

3
,
2a√
3
y + s2z

)
, W9(x, y, z) =

(
x

3
+

1

2
,
−y

3
+

1

2
√
3
,
2a√
3
y + s9z

)
W6(x, y, z) =

(
x+ 1

3
,
y + 1

3
, s6z

)
W8(x, y, z) =

(
x

3
+

1

2
,
−y

3
+

1

2
√
3
,−ax− a√

3
y + s8z + a

)
,

W3(x, y, z) =

(
x+ 2

3
,
y

3
, s3z

)
, W7(x, yz) =

(
−x

3
+

1

2
,
−y

3
+

1

2
√
3
,−ax− a√

3
y + s7z + a

)
W5(x, y, z) =

(
x

3
+

1

2
,
y

3
+

1

2
√
3
,−ax− a√

3
y + s5z + a

)
.

Figure 2. Graph of the fractal interpolation surface (top & side view) with
parameters N = 3, si = s = 0.75 and a = 1.

Define

A1 := {i ∈ {1, 2, . . . , N2} : ai1 = ai2}, A2 := {i ∈ {1, 2, . . . , N2} : ai1 > ai2}

A3 := {i ∈ {1, 2, . . . , N2} : ai1 < ai2}.
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Moreover, set

D = min
k,i∈A3

{|a
k
1 − ak2|

|ai1 − ai2|
} and B =

1

1 + maxi∈A2{Bi}
, where Bi = max

k∈A3

{ |a
i
1 − ai2|

|ak1 − ak2|
}

for all i ∈ A2. Our result on the dimension of the graph f ∗ is as follows:

Theorem 1.1. Let I := {Wi, i ∈ {1, 2, . . . , N2}} be a self-affine IFS on R3 defined as
above. Let G(f ∗) be the attractor of the IFS I. For each i ∈ {1, 2, . . . , N2}, we consider
ai1 ̸= ai2 if ai1 and ai2 both are not on the boundary of original triangle ∆. Then,

dimH(G(f ∗)) = dimB(G(f ∗)) = 1 +
log(

∑N2

i=1 si)

logN

for Lebesgue all most every scaling parameters s ∈ ( 1
N
, 1)#A1 × ( 1

NB
, 1)#A2 × ( 1

ND
, 1)#A3.

In the case of N = 3, one can see that #A1 = 5,#A2 = 2,#A3 = 2 and B = 1
2
and

D = 1. Thus, we have the following Corollary for the typical type results for the FISs.

Corollary 1.2. For Lebesgue almost every s = (s1, s2, s3, s4, s5, s6, s7, s8, s9) such that
s1, s2, s3, s4, s6, s7, s9 ∈ (1

3
, 1) and s5, s8 ∈ (2

3
, 1), we have

dimH(G(f ∗)) = dimB(G(f ∗)) = 1 +
log(

∑9
i=1 si)

log(3)
.

Our second main result gives the Hausdorff dimension of the FIS in the case of N = 3
for every parameter in a certain region.

Theorem 1.3. Let si ∈ (2
3
, 1) for every i ∈ {1, 2, . . . , 9}. If max{s5, s8} ≤ min{s4, s7} and

s2 ≤ s9, then

dimH(G(f ∗)) = dimB(G(f ∗)) = 1 +
log(

∑9
i=1 si)

log(3)
.

1.3. Geronimo-Hardin FISs. Next, we consider the construction of the FISs given by
Geronimo and Hardin [8]. In this construction, the data points on the boundary of the
triangle ∆ do not need to be coplanar but need to take uniform scaling parameters. Consider

the equilateral triangle ∆ with vertices {q1 = (0, 0), q2 = (1, 0), q3 = (1
2
,
√
3
2
)}. We take the

triangulation {∆i}4i=1 as shown Figure 3.

q1 q2

q3

q4

q5

1

4

2

3

q6

(1) (2)(3)

(2) (1)

(3)

Figure 3. Triangularization in the Geronimo-Hardin construction.

We consider a data set as follows

{(q1, 0), (q2, 0), (q3, 0), (q4, a), (q5, a), (q6, a)},
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where a ̸= 0 is a real number, and the basic data function f ∗(qi) = 0 if i = 1, 2, 3 and
f ∗(qi) = a if i = 4, 5, 6. The chromatic number for this graph is 3. We can label the vertices
with three colours (blue, green, violet). For each i ∈ {1, 2, 3, 4}, the similarity map Ui : ∆ →
∆i is defined such that the map Ui maps the vertex of ∆ of a color (blue or green or violet)
to the vertex of same color (blue or green or violet) of ∆i. And, for each i ∈ {1, 2, 3, 4},
the hight function Vi : ∆ × R → R is defined by Vi(x, y, z) = aix + biy + sz + ci, where
s ∈ (0, 1) and constants {ai, bi, ci} are uniquely determined by the join-up condition i.e.
Vi(q1, 0) = f ∗(Ui(q1)), Vi(q2, 0) = f ∗(Ui(q2)) and Vi(q3, 0) = f ∗(Ui(q3)) ∀ i ∈ {1, 2, . . . , 4}.
We define the self-affine IFS I := {Wi, i ∈ {1, 2, . . . , 4}}, where the map Wi : R3 → R3 is
defined as

Wi(x, y, z) = (Ui(x, y), Vi(x, y, z)).

By [8], there exists a unique continuous function f ∗ : ∆ → R such that the function f ∗

interpolates the data sets and the graph (G(f ∗)) of the function f ∗ is the attractor of the
affine IFS I. Precisely, the maps in the IFS I are as follows:

W1(x, y, z) =

 1
4

√
3
4

0√
3
4

−1
4

0

a a√
3

s


x

y

z,

 , W2(x, y, z) =

 1
4

−
√
3

4
0

−
√
3

4
−1
4

0

−a a√
3

s


x

y

z

+

 3
4√
3
4

a

 ,

W3(x, y, z) =

−1
2

0 0

0 1
2

0

0 −2a√
3

s

x

y

z

+

 3
4√
3
4

a

 , W4(x, y, z) =

−1
2

0 0

0 −1
2

0

0 0 s

x

y

z

+

 3
4√
3
4

a

 .

Figure 4. Graph of the fractal surfaces (top & aerial view) with parameters
s = 0.82 and a = 1

First, by computing the overlapping number, we determine the dimension for every type
of scaling parameter as follows:

Theorem 1.4. If s ∈
[
1+

√
5

4
, 1

)
, then

dimH(G(f ∗)) = dimB(G(f ∗)) = 3 +
log(s)

log(2)
.
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In this case, we also determine the dimension for typical scaling parameters as follows:

Theorem 1.5. There exists a set E ⊂ (1
2
, 1) with dimH(E) = 0 such that

dimH(G(f ∗)) = dimB(G(f ∗)) = 3 +
log(s)

log(2)
∀ s ∈

(
1

2
, 1

)
\ E .

2. Preliminaries

First, we go through some basic definitions and tools we intend to use.

2.1. Dimension concepts.

Definition 2.1. Let F ⊆ Rd. We say that {Ui} is a δ-cover of F if F ⊂
∞⋃
i=1

Ui and

0 < |Ui| ≤ δ for each i, where |Ui| denotes the diameter of the set Ui. For each δ > 0 and
s ≥ 0, we define

Hs
δ (F ) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F
}

and Hs(F ) = lim
δ→0+

Hs
δ (F ).

We call Hs(F ) the s-dimensional Hausdorff measure of the set F . Using this, the
Hausdorff dimension of the set F is defined by

dimH(F ) = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞}.

Definition 2.2. The box dimension of a non-empty bounded subset F of (X, d) is defined
as

dimB F = lim
δ→0

logNδ(F )

− log δ
,

where Nδ(F ) denotes the smallest number of sets of diameter at most δ that can cover
F, provided the limit exists. If this limit does not exist, then the upper and lower box
dimensions, respectively, are defined as

dimBF = lim sup
δ→0

logNδ(F )

− log δ
and dimBF = lim inf

δ→0

logNδ(F )

− log δ
.

2.2. Symbolic space. Let I =
{
f1, f2, . . . , fn

}
be an IFS on Rd such that ∥fi(x)−fi(y)∥ ≤

ri∥x − y∥ with ri ∈ (0, 1) for all i ∈ {1, 2, . . . , n}. Let Σ := {1, 2, . . . , n}N be the set of
all infinite sequences with symbols from {1, 2, . . . , n}. The set Σ is the symbolic space
corresponding to the IFS I = {f1, . . . , fn}. Let i = i1i2 · · · ∈ Σ. We define i|m := i1i2 . . . im
for all m ∈ N. We denote the set of all finite sequences of length m with symbols from
{1, 2, . . . , n} by Σm. Set Σ

∗ :=
⋃∞

m=1Σm. The notation |i| denotes the length of the finite
sequence i ∈ Σ∗. The symbolic space Σ equipped with metric ρ is a compact metric space,
where the metric ρ is defined as follows

ρ(i, j) = 2−|i∧j|

for i, j ∈ Σ, where i ∧ j denotes the initial largest common segment of i and j.
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2.3. Affinity dimension and Furstenberg measure. Let A be a d×d real matrix. For
t ≥ 0, the singular value function Φt(A) of A is defined by

Φt(A) =

{
α1 . . . α⌊t⌋α⌈t⌉

t−⌊t⌋ if 0 ≤ t ≤ d

|det(A)|t/d if t > d,

where α1 ≥ α2 ≥ · · · ≥ αd are the singular values of A.
The affinity dimension of the self-affine IFS I = {fi(x) = Aix+ ai}ni=1 is defined by

t0 := inf

{
t > 0 :

∞∑
m=1

∑
i1...im∈Σm

Φt(Ai1 · · ·Aim) < ∞
}
.

If the matrices Ai have the block triangular form

Ai =

[
λiUi 0

aTi si

]
for every i, (2.1)

where Ui are 2×2 orthogonal matrices, 0 < λi < |si| < 1, ai ∈ R2, and I satisfies the SOSC
then by [2, Remark 2.6], the affinity dimension t0 satisfies the equation t0 = min{r1, r2},
where

n∑
i=1

|si|r1 = 1 and
n∑

i=1

|si|λr2−1
i = 1. (2.2)

In particular, when
∑n

i=1 λ
2
i = 1, then t0 = r2 ∈ [2, 3].

Following the lines [2, Section 2.4], we define the corresponding Furstenberg IFS induced
by the IFS I with matrices of the form (2.1) as follows:

J =

{
hi(x) =

λi

si
UT
i x− 1

si
ai

}n

i=1

. (2.3)

The result of Rapaport [13, Section 1.2] gives a sufficient condition to calculate the dimen-
sion of the attractor of I, see [2, Section 2.4]. We state it in the special case we require
throughout this paper.

Theorem 2.3 (Rapaport). Let

I =

{
fi(x) =

[
λiUi 0

aTi si

]
x+ ai

}n

i=1

be a self-affine IFS in R3 with attractor K such that it satisfies the SOSC, Ui are 2 × 2
orthogonal matrices,

∑n
i=1 λ

2
i = 1 and 0 < λi < |si| < 1. Let µF =

∑n
i=1 |si|λ

t0−1
i (hi)∗µF

be the Furstenberg measure corresponding to the IFS in (2.3). If dimH µF > 3 − t0 then
dimH K = t0.

Finally, we state a simple proposition to estimate the dimension of self-similar measures
from below.

Proposition 2.4. Let J = {hi(x) = λiUix + ti}Ni=1 be a self-similar IFS on Rd with at-

tractor K and let (pi)
N
i=1 be a non-degenerate probability vector and let µ =

∑N
i=1 pi(hi)∗µ.

If minx∈K #{i ∈ {1, . . . , N} : x /∈ hi(K)} ≥ Q then

dimH µ ≥ log(1−Qpmin)

log λmax

,

where λmax = maxi=1,...,N |λi| and pmin = mini=1,...,N pi.
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Proof. Let r ≪ 1. Denote B(x, r) the closed ball of radius r with center x. Let Cx := {i :
x /∈ hi(K)}. We have

max
x∈K

µ(B(x, r)) = max
x∈K

N∑
i=1

piµ(h
−1
i (B(x, r) ∩K))

≤ max
x∈K

∑
i∈Cc

x

piµ(B(h−1
i (x), λ−1

i r))

≤ max
x∈K

µ(B(x, λ−1
maxr))max

x∈K

(
1−

∑
i∈Cx

pi

)
≤ max

x∈K
µ(B(x, λ−1

maxr))max
x∈K

(
1−Qpmin

)
.

This implies by induction

max
x∈K

µ(B(x, λn
max)) ≤ (1−Qpmin)

n for every n ∈ N,

and so,

lim inf
r→0

log µ(B(x, r))

log r
= lim inf

n→∞

log µ(B(x, (λmax)
n))

n log λmax

≥ log(1−Qpmin)

log λmax

.

This completes the proof. □

3. Dimension theory of some self-similar IFS having a common fixed points
structure and some negative contraction parameters on line

First, we provide techniques to estimate the dimension of the Furstenberg measure from
below. Let us now consider a self-similar IFS as follows

G = {fi(x) = λix}N1
i=1 ∪ {fi(x) = λix+ γiλi}N2

i=N1+1 ∪ {fi(x) = −λix+ γiλi}N3
i=N2+1,

where λi ∈ (0, 1) for every i ∈ {1, 2, . . . , N1}, γi > 0 for every i ∈ {N1 + 1, . . . , N3}. The
IFS considered above has a common fixed point structure. The maps fi with i ≤ N1 share
the same fixed point 0. The authors [3] considered recently such systems. Let us recall some
corresponding definitions we need for further analysis.

We denote I0 := {1, 2, . . . , N1}, I1 := {N1 + 1, . . . , N2} and I2 := {N2 + 1, . . . , N3}. Set

D = min
k,i∈I2

{
γk
γi

}
and B =

1

1 + maxi∈I1{Bi}
, where Bi = max

k∈I2

{
γi
γk

}
for all i ∈ I1.

Let Σ be the symbolic space corresponding to IFS G. For a symbol i ∈ I0 ∪ I1 ∪ I2 and
a finite sequence i ∈ Σ∗, let #ii be the number of the appearances of the symbol i in the
sequence i. For i ∈ Σ ∪ Σ∗, we define the “first block” bi1 of i as follows: if i1 ≥ N1 + 1
then bi1 = i||bi1|

where |bi1| = min{k ≥ 1 : ik ̸= i1} − 1. Otherwise, bi1 := i||bi1|
where

|bi1| := min{k ≥ 1 : ik ≥ N1 +1}− 1. Then we define by induction. Suppose that bi1, . . . , b
i
n

are defined and finite. Then let

|bin+1| :=


max

{
k ≥ 1 : i|bi1|+···+|bin|+1 = i|bi1|+···+|bin|+ℓ ∀ 1 ≤ ℓ ≤ k

}
if i|bi1|+···+|bin|+1 > N1

max
{
k ≥ 1 : i|bi1|+···+|bin|+ℓ ≤ N1 for all 1 ≤ ℓ ≤ k

}
if i|bi1|+···+|bin|+1 ≤ N1
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If |bin+1| =
∣∣∣σ|bi1|+···+|bin|i

∣∣∣ then let bin+1 := σ|bi1|+···+|bin|i, and so, i = bi1 . . . b
i
nb

i
n+1. Otherwise,

let bin+1 := (σ|bi1|+···+|bin|i)||bin+1|
. For each i ∈ Σ have the following unique block representa-

tion

i = i1i2i3 . . . il︸ ︷︷ ︸
bi1

il+1 . . . im︸ ︷︷ ︸
bi2

im+1 . . . in︸ ︷︷ ︸
bi3

in+1 . . . (3.1)

We say that for i, j ∈ Σ, the first blocks are disjoint if the sets formed by the symbols
in the first blocks bi1 and bj1 are disjoint. We denote it by bi1 ∩ bj1 = ∅. In other words,

min{#ib
i
1,#ib

j
1} = 0 for every 1 ≤ i ≤ N3. Let Π be the natural projection corresponding

to IFS G.

Definition 3.1. We say that IFS G satisfies the Exponential Separation Condition

for the Common Fixed Point System (ESC for CFS), if there exist N ∈ N and b > 1
such that for every n ≥ N and every i, j ∈ Σn with λi = λj, we have the following:

either i, j have the same block structure or |Π(i)− Π(j)| > 2−bn. (3.2)

This section aims to show that the IFS G satisfies the ESC for CFS for typical contraction
ratio parameters. The proof follows the lines of [3, Section 4] with only minor changes. We
will only give the essential steps and highlight the differences, but we leave the details for
the reader.

Proposition 3.2. There exists a set E ⊂ (0, 1)N1 × (0, B)N2−N1 × (0, D)N3−N2 such that
dimH E ≤ N3 − 1 such that the IFS G satisfies ESC for CFS for every parameters λ ∈
(0, 1)N1 × (0, B)N2−N1 × (0, D)N3−N2 \ E .

We begin the discussion with the following, which makes the structure of the IFS slightly
less complicated. Still, studying the dimension theory of wedding cake-type surfaces, par-
ticularly to estimate the dimension of the corresponding Furstenberg measure, is sufficient.

Lemma 3.3. Let G be the self-similar defined as above. If the parameters λi ∈ (0, 1) ∀ i ∈
I0, λi ∈ (0, B) ∀ i ∈ I1 and λi ∈ (0, D) ∀ i ∈ I2, then there exists an A > 0 and an ϵ̃ > 0
such that

fi[0, A] ⊂ (0, A] ∀ i ∈ I1 ∪ I2.

Proof. First, we show that there exists a constant A > 0 such that fi[0, A] ⊂ (0, A] for
every i ∈ I1 ∪ I2.
Let us denote the fixed point of the map fi by Fix(fi). One can see that Fix(fi) = 0

for every i ∈ I0, Fix(fi) =
γiλi

1−λi
for every i ∈ I1 and Fix(fi) =

γiλi

1+λi
for every i ∈ I2. Since

fi(0) = γiλi for every i ∈ I1 ∪ I2, we have

A = max

{
max
i∈I2

γiλi,max
i∈I1

γiλi

1− λi

}
.

First, we consider A = γi0λi0 for some i0 ∈ I2. Then A = γi0λi0 ≥ γkλk

1−λk
for every k ∈ I1.

This implies that fk[0, A] = [γkλk, λkγi0λi0 + γkλk] ⊆ (0, A] for all k ∈ I1. For k ̸= i0 ∈ I2,
we have

fk(γi0λi0) > 0 ⇐ −λkγi0λi0 + γkλk > 0 ⇐ λk(−γi0λi0 + γk) > 0 ⇐ λi0 <
γk
γi0

.

This implies that for the parameters λi ∈ (0, 1) for all i ∈ I0 ∪ I1 and λi ∈ (0, D) for every
i ∈ I2, then fi[0, A] ⊂ (0, A] for every i ∈ I1 ∪ I2.
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On the other hand, if A =
γi0λi0

1−λi0
for some i0 ∈ I1. Then, we have

γi0λi0

1−λi0
≥ γkλk

1−λk
for all

k ∈ I1 and γkλk ≤
γi0λi0

1−λi0
for every k ∈ I2. This implies that fk[0, A] ⊆ (0, A] for all k ∈ I1.

For k ∈ I2, we have

fk(A) > 0 ⇐ −λk
γi0λi0

1− λi0

+ γkλk > 0 ⇐ λi0 <
1

1 +
γi0
γk

.

Thus, for the parameters λi ∈ (0, 1) for every i ∈ I0 ∪ I2 and λi ∈ (0, B) for all i ∈ I1 then
fi[0, A] ⊂ (0, A] for all i ∈ I1 ∪ I2. □

For every 0 < ϵ ≤ min{mini∈I0{λi, 1 − λi},mini∈I1{λi, B − λi},mini∈I2{λi, D − λi}, ϵ̃},
then by Lemma 3.3,

fi[0, A] ⊂ [ϵ, A] ∀ i ∈ I1 ∪ I2.

For i, j ∈ Σ, we define ∆i,j(λ) = Π(i)−Π(j) for every vector λ ∈ (0, 1)N1 × (0, B)N2−N1 ×
(0, D)N3−N2 . Let us define the following set of pairs:

L :=

{
(i, j) ∈ Σ× Σ : bi1 ∩ bj1 = ∅ & bi1 ̸= i & bj1 ̸= j

}
. (3.3)

We divide the set L further:

L1 := {(i, j) ∈ L : i1 ̸= j1, i1 ∈ I0∪I1∪I2, j1 ∈ I1∪I2},L2 := L\L1 = {(i, j) ∈ L : i1 ̸= j1 ∈ I0} .
(3.4)

Now, set Ñ0 := ⌈ (1−ϵ)(2+ϵ)
ϵ3

⌉+ 1, and divide L2 further:

L3 =

{
(i, j) ∈ L2 : max

k∈I0

{
max

{
#kb

i
1,#kb

j
1

}}
≤ Ñ0

}
and L4 = L2 \ L3. (3.5)

One can see that L1 and L3 are compact subsets of Σ× Σ.

Lemma 3.4. Let ϵ > 0 be arbitrary as defined above. Then there exists a constant C > 0
such that for every λ ∈ [ϵ, 1−ϵ]N1× [ϵ, B−ϵ]N2−N1× [ϵ,D−ϵ]N3−N2 and for every (i, j) ∈ L4

min

{
|∆i,j(λ)|,

∣∣∣∣∂∆i,j

∂λk

(λ)

∣∣∣∣} ≥ Cϵ2max{|bi1|,|b
j
1|},

where k is such that max{#kb
i
1,#kb

j
1} > Ñ0.

Proof. By Lemma 3.3, the self-similar IFS G satisfies all the assumptions of the self-similar
IFS F defined in [3] with ci = γiλi for all i ∈ {N1+1, . . . , N3}. Thus by [3, Lemma 3.2], we

get the claim of our result. Let (i, j) ∈ L4. This implies that bi1 ∩ bj1 = ∅ and i1 ̸= j1 ∈ I0.

First, we assume that
λ
bi1

λ
b
j
1

/∈
(
ϵ

2
,
2

ϵ

)
. Then, by [3, Lemma 4.1], we get the

|∆i,j(λ)| ≥ ϵ2max{|bi1|,|b
j
1|}.

Lastly, we suppose that
λ
bi1

λ
b
j
1

∈
(
ϵ

2
,
2

ϵ

)
. Then by [3, Lemma 4.2], we get that∣∣∣∣∂∆i,j

∂λk

(λ)

∣∣∣∣ ≥ Cϵmax{|bi1|,|b
j
1|}

for some uniform constant C > 0. □
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Lemma 3.5. Let ϵ > 0 be arbitrary as defined above. Then there exist p ≥ 0 and C̃ > 0
such that for every (i, j) ∈ L3 and for all λ ∈ [ϵ, 1− ϵ]N1 × [ϵ, B− ϵ]N2−N1 × [ϵ,D− ϵ]N3−N2,
there exists (mi,j)(i,j)∈I ∈ NN3 such that m =

∑
(i,j)∈I mi,j ≤ p and∣∣∣∣∣ ∂m∆i,j∏

(i,j)∈I ∂
mi,jλi,j

(λ)

∣∣∣∣∣ > C̃.

Proof. The lemma can be proven along the same lines as the proof of [3, Lemma 4.5]. We
omit the details. □

Lemma 3.6. Let ϵ > 0 be arbitrary as defined above. Then there exist p ≥ 0 and C̃ > 0
such that for every (i, j) ∈ L1 and for all λ ∈ [ϵ, 1− ϵ]N1 × [ϵ, B− ϵ]N2−N1 × [ϵ,D− ϵ]N3−N2,
there exists (mi,j)(i,j)∈I ∈ NN3 such that m =

∑
(i,j)∈I mi,j ≤ p and∣∣∣∣∣ ∂m∆i,j∏

(i,j)∈I ∂
mi,jλi,j

(λ)

∣∣∣∣∣ > C̃.

Proof. The lemma can be proven along the same lines as the proof of [3, Lemma 4.6]. We
leave the details in this case again for the reader. □

Proof of Proposition 3.2. First, we define a set as follows

Ln :=

{
(i, j) ∈ Σn × Σn : bi1 ∩ bj1 = ∅ & bi1 ̸= i & bj1 ̸= j

}
.

Then for every ϵ > 0, let

Eϵ =
⋂
η>0

⋂
Ñ≥1

⋃
n≥Ñ

⋃
(i,j)∈L(n)

{
λ ∈ [ϵ, 1−ϵ]N1×[ϵ, B−ϵ]N2−N1×[ϵ,D−ϵ]N3−N2 : |∆i,j(λ)| < ηn

}
.

(3.6)
Using Lemma 3.4, Lemma 3.5 and Lemma 3.6, and applying the same technique as in [3,
Proposition 4.7], we get that dimH(Eϵ) ≤ N3 − 1, and for all λ ∈ [ϵ, 1 − ϵ]N1 × [ϵ, B −
ϵ]N2−N1 × [ϵ,D − ϵ]N3−N2 \ Eϵ, ∃ η > 0,∃ Ñ ∈ N, ∀ n ≥ Ñ , ∀ (i, j) ∈ (Σn × Σn) ∩ Ln such
that

|∆i,j(λ)| > ηn.

We define another set as follows:

Gϵ =
∞⋃
n=1

⋃
(i,j)∈Σn×Σn

i∩j=∅

{λ ∈ [ϵ, 1− ϵ]N1 × [ϵ, B − ϵ]N2−N1 × [ϵ,D − ϵ]N3−N2 : λi = λj}

One can show along the lines of [3, Lemma 4.8] that dimH(Gϵ) ≤ N3 − 1. We define the
exceptional set E by E := E ∪ G, where E = ∪n≥1E1/n and G = ∪n≥1G1/n. Then one can
finish the proof by applying the techniques in [3, Proposition 4.9]. □

4. Hausdorff dimension of Massopust’s surfaces

This section is devoted to proving Theorem 1.1 and Theorem 1.3. Let us recall some defi-

nitions from Section 1.2. Consider the equilateral triangle ∆ with vertices {(0, 0), (1, 0), (1
2
,
√
3
2
)},

and let {∆i}N
2

i=1 be the uniform triangulation for N ≥ 3. Consider a data set {(qk, ak)}L(N)
k=1

associated with the triangulation {∆i}N
2

i=1, where L(N) = (N+1)(N+2)
2

. We assume that
ak = 0 for all k such that the corresponding qk is on the boundary of the triangle ∆. For
each i ∈ {1, 2, . . . , N2}, we denote the value at the left vertex of the horizontal line of ∆i
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by ai1, value at the right vertex of the horizontal line of ∆i by ai2 and value at the other
vertex by ai3. For each i ∈ {1, 2, . . . , N2}, define the similarity map Ui : ∆ → ∆i as in (1.2),
the map

Vi(x, y, z) = aix+ biy + siz + ci

as in (1.3) such that it satisfies the boundary condition (1.4). Clearly, by using the above
conditions, we get

ai = −|ai1 − ai2| and bi =
2√
3

(
−(ai1 + ai2)

2
+ ai3

)
Now, we define an affine IFS I := {Wi, i ∈ {1, 2, . . . , N2}} on R3, where the map Wi :
R3 → R3 is defined as

Wi(x, y, z) = (Ui(x, y), Vi(x, y, z)).

Denote f ∗ : ∆ → R the unique fractal interpolation function of which graph G(f ∗) is the
attractor of the affine IFS I.

Note 4.1. One can also see that the subspace generated by the vector (0, 0, 1) is invariant
under the linear parts of the IFS I. Thus, the IFS I is not strongly irreducible. So, the
dimension theory of self-affine IFS presented in [14] is not applicable here.

We assume throughout the paper that si ∈ ( 1
N
, 1). Thus, by (2.2) the affinity dimension

t0 corresponding to the self-affine IFS I is the unique solution of the following equation

N2∑
i=1

si

(
1

N

)t0−1

= 1.

By [7], the affinity dimension t is a natural upper bound for the box dimension of the
self-affine set, and we have

dimH(G(f ∗)) ≤ dimB(G(f ∗)) ≤ t0 = 1 +
log(

∑N2

i=1 si)

logN
(4.1)

for all parameters.

4.1. The Furstenberg measure and a sufficient condition. Let ∆̃ be the interior of
the original equilateral triangle ∆. Then, one can see that

Wi(∆̃× R) ⊂ ∆̃× R, Wi(∆̃× R) ∩Wj(∆̃× R) = ∅

for all i ̸= j ∈ {1, 2, . . . , N2}. This implies the IFS I satisfies the SOSC.

Let p = (p1, p2, . . . , pN2) be a probability vector, where pi = si
(

1
N

)t0−1
for every i ∈

{1, 2, . . . , N2}.
Define

A1 := {i ∈ {1, 2, . . . , N2} : ai1 = ai2}, A2 := {i ∈ {1, 2, . . . , N2} : ai1 > ai2}

A3 := {i ∈ {1, 2, . . . , N2} : ai1 < ai2}.

Let p = (p1, p2, . . . , pN2) be a probability vector, where pi = si
(

1
N

)t0−1
for every i ∈

{1, 2, . . . , N2}. By applying (2.3), we construct an Furstenberg IFS J = {h1, h2, . . . , hN2}
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on R2 by the self-affine IFS I as follows

hi(x, y) =



1

Nsi

[
1 0

0 1

][
x

y

]
− 1

si

[
ai

bi

]
if ai1 ≥ ai2 and 1 ≤ i ≤ N(N + 1)

2
,

1

Nsi

[
1 0

0 −1

][
x

y

]
− 1

si

[
ai

bi

]
if ai1 ≥ ai2 and

N(N + 1)

2
+ 1 ≤ i ≤ N2,

1

Nsi

[
−1 0

0 1

][
x

y

]
− 1

si

[
ai

bi

]
if ai1 < ai2 and 1 ≤ i ≤ N(N + 1)

2
,

1

Nsi

[
−1 0

0 −1

][
x

y

]
− 1

si

[
ai

bi

]
if ai1 < ai2 and

N(N + 1)

2
+ 1 ≤ i ≤ N2,

The Furstenberg measure µF =
∑N2

i=1 pi(hi)∗µF is the unique invariant Borel probability
measure corresponding to the IFS J with probability vector p. Since the self-affine IFS I
satisfies the SOSC and si ∈ ( 1

N
, 1) ∀ i ∈ {1, 2, . . . , N2}, to verify the equality in (4.1), we

only need to show that
dimH(µF ) > 3− t0

by Theorem 2.3. In particular, to show Theorem 1.1 and Theorem 1.3, we will prove the
following:

Proposition 4.2. For each i ∈ {1, 2, . . . , N2}, let ai1 ̸= ai2 if a
i
1 and ai2 both are not on the

boundary of original triangle ∆. Then,

dimH(µF ) > 3− t0

for Lebesgue all most every scaling parameters s ∈ ( 1
N
, 1)#A1 × ( 1

NB
, 1)#A2 × ( 1

ND
, 1)#A3 .

Proposition 4.3. Let si ∈
(

2
3
, 1

)
∀ i ∈ {1, 2, . . . , 9}. Suppose that max{s5, s8} ≤

min{s4, s7} and s2 ≤ s9. Then,

dimH(µF ) > 3− t0,

where t0 is the affinity dimension of the IFS I in (4.1).

Proof of Theorem 1.1. The claim follows by (4.1), and the combination of Theorem 2.3
and Proposition 4.2. □

Proof of Theorem 1.3. The claim follows by (4.1), and the combination of Theorem 2.3
and Proposition 4.3. □

Remark 4.4. We note that the method is not applicable in every configuration. In the
above construction, if we consider si = s for every i ∈ {1, 2, . . . , N2} and ak = a for all
k ∈ {1, 2, . . . , L(N)}, then for the large value of N ,

dimH(µF ) ̸> 3− t0 =
− log s

logN
∀ s ∈

(
1

N
, 1

)
. (4.2)

In this consideration, there are 9 different mapping in Furstenberg IFS J with multiplicity
(N−3)(N−2)

2
+3, (N−4)(N−3)

2
, (N−2), (N−2), (N−2), (N−2), (N−3), (N−2), 1, respectively.

Examples: For N = 100, dimH(µF ) <
− log s
logN

for s ∈ (0.042, 0.237).

For N = 1000, dimH(µF ) <
− log s
logN

for s ∈ (0.001, 0.430).

For N = 10000, dimH(µF ) <
− log s
logN

for s ∈ (0.0001, 0.461).
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Although, if we consider some si ̸= sj for some i, j ∈ {1, 2, . . . , N2} and ak = a for all
k ∈ {1, 2, . . . , L(N)}, then for the large value of N , the same situation as in (4.2) occurs.

For example, we consider (N−3)(N−2)
2

+ 3 many mappings with si = s + 0.001, (N−4)(N−3)
2

many mappings with si = s+0.002, 5(N − 2) many mappings with si = s+0.003, (N − 3)
many mappings with si = s+ 0.004 and 1 map with si = s+ 0.002. In this consideration,
we have the followings:

For N = 100, dimH(µF ) < 2− log
∑N2

i=1 si
logN

for s ∈ (0.035, 0.279).

For N = 100000, dimH(µF ) < 2− log
∑N2

i=1 si
logN

for s ∈ (0.00001, 0.463).

Remark 4.5. Let us also note that our method might be applied to other data sets when
some of the data values over the horizontal edges of the triangles coincide. Still, there
are enough maps where there are no coincidences, and in particular, there are enough
maps that do not share the same fixed point, which ensures that the lower bound for the
dimension of the Furstenberg measure might hold.

4.2. Dimension for almost every parameter. Let fi be the projection of hi on the
X-axis. Let JX = {f1, f2, . . . , fN2} be the projection of the IFS J on the X-axis. Then,
for i ∈ {1, 2, . . . , N2} the map fi is as follows

fi(x) =


x

Nsi
if ai1 = ai2

x
Nsi

− ai

si
if ai1 ≥ ai2

−x
Nsi

− ai

si
if ai1 < ai2.

Set λi =
1

Nsi
and γi = −aiN = |ai1 − ai2|N > 0, one can see that the IFS {fi}N

2

i=1 is of type

considered in Section 3. Since si ∈ ( 1
N
, 1), we have λi ∈ ( 1

N
, 1) for all i ∈ {1, 2, . . . , N2}.

Thus, we have

JX = {fi(x) = λix}i∈A1 ∪ {fi(x) = λix+ γiλi}i∈A2 ∪ {fi(x) = −λix+ γiλi}i∈A3

Proof of Proposition 4.2. Let PX∗µF be the projection of the measure µF on the X-axis.
The measure PX∗µF is the invariant measure corresponding to the IFS JX with probability
vector p. By Proposition 3.2, there exists a set E ⊂ (0, 1)#A1 × (0, B)#A2 × (0, D)#A3 such
that dimH E ≤ #A1+#A2+#A3−1 such that the IFS JX satisfies ESC for CFS for every
parameters λ ∈ (0, 1)#A1 × (0, B)#A2 × (0, D)#A3 \ E . Thus, by [3, Theorem 5.1,Theorem
3.5], we get

dimH(PX∗µF ) = min

{
1,

−
∑N2

i=1 pi log pi + Φ(p)

−
∑N2

i=1 pi log λi

}
for every parameters s ∈ ( 1

N
, 1)#A1 × ( 1

NB
, 1)#A2 × ( 1

ND
, 1)#A3 \ E . Now, by [3, Proposition

2.2], we have

Φ(p) ≥
∑
i∈A1

pi log

(
pi +

∑
j∈A2∪A3

pj

)
.

Given that for each i ∈ {1, 2, . . . , N2}, ai1 ̸= ai2 if ai1 and ai2 both are not on the boundary
of original triangle ∆. Under this consideration, one can see that

#A1 = N + 2 and #A2 +#A3 = N2 −N − 2.

Now, our aim is to show that

−
∑N2

i=1 pi log pi + Φ(p)

−
∑N2

i=1 pi log λi

> 3− t0 = 2− log
∑N2

i=1 si
logN

.
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Since λi =
1

Nsi
and pi = si(

1
N
)t0−1, we have

−
∑N2

i=1 pi log pi + Φ(p)

−
∑N2

i=1 pi log λi

> 2− log
∑N2

i=1 si
logN

⇐
−
∑N2

i=1 pi log pi +
∑

i∈A1
pi log

(
pi +

∑
j∈A2∪A3

pj

)
∑N2

i=1 pi logNsi
> 2− log

∑N2

i=1 si
logN

⇐
−
∑N2

i=1 si log pi +
∑

i∈A1
si log

(
pi +

∑
j∈A2∪A3

pj

)
∑N2

i=1 si logNsi
> 2− log

∑N2

i=1 si
logN

⇐

∑
i∈A1

si log

(
si+

∑
j∈A2∪A3

sj

si

)
+
∑

i∈A2∪A3
si log

(∑N2

i=1 si
si

)
∑N2

i=1 si logNsi
> 2− log

∑N2

i=1 si
logN

⇐
∑
i∈A1

si log

(
si +

∑
j∈A2∪A3

sj

si

)
+

∑
i∈A2∪A3

si log

(∑N2

i=1 si
si

)

>
N2∑
i=1

si log(Nsi)
2 −

N2∑
i=1

si log(Nsi)
log

∑N2

i=1 si
logN

⇐
∑
i∈A1

si log

(
si +

∑
j∈A2∪A3

sj

N2s3i

)
+

∑
i∈A2∪A3

si log

(∑N2

i=1 si
N2s3i

)

> −
N2∑
i=1

si logNsi
log

∑N2

i=1 si
logN

⇐ log(Nsmin)

logN

( ∑
i∈A1

si log

(
si +

∑
j∈A2∪A3

sj

N2s3i

N2∑
i=1

si

)
+

∑
i∈A2∪A3

si log

(
(
∑N2

i=1 si)
2

N2s3i

))
> 0

⇐
∑
i∈A1

si log

(
si +

∑
j∈A2∪A3

sj

N2s3i

N2∑
i=1

si

)
+

∑
i∈A2∪A3

si log

(
(
∑N2

i=1 si)
2

N2s3i

)
> 0.

Clearly
(
∑N2

i=1 si)
2

N2s3i
≥ 1

s3i
> 1. This proves our claim. Since 3− t0 ∈ (0, 1), we have

dimH(µF ) ≥ dimH(PX∗µF ) > 3− t0

for Lebesgue all most every scaling parameters s ∈ ( 1
N
, 1)#A1 × ( 1

NB
, 1)#A2 × ( 1

ND
, 1)#A3 .

The proof is completed by Theorem 2.3. □

4.3. Hausdorff dimension of the FIS in the case of N = 3 for every parameter.
Here, we prove Theorem 1.3 by computing the overlapping number.

Since the upper bound

dimH(G(f ∗)) ≤ dimB(G(f ∗)) ≤ t = 1 +
log(

∑9
i=1 si)

log(3)

holds for every parameter value, it is enough to show the lower bound.



17

For the lower bound, consider the corresponding Furstenberg IFS J = {h1, h2, . . . , h9},
where hi : R2 → R2 are defined as follows:

h1(x, y) =
1

3s1

[
1 0

0 1

] [
x

y

]
− 1

s1

[
0

0

]
, h2(x, y) =

1

3s2

[
1 0

0 1

] [
x

y

]
− 1

s2

[
0
2a√
3

]
,

h3(x, y) =
1

3s3

[
1 0

0 1

] [
x

y

]
− 1

s3

[
0

0

]
, h4(x, y) =

1

3s4

[
−1 0

0 1

] [
x

y

]
− 1

s4

[
−a

− a√
3

]
,

h5(x, y) =
1

3s5

[
1 0

0 1

] [
x

y

]
− 1

s5

[
−a

− a√
3

]
, h6(x, y) =

1

3s6

[
1 0

0 1

] [
x

y

]
− 1

s6

[
0

0

]
,

h7(x, y) =
1

3s7

[
−1 0

0 −1

] [
x

y

]
− 1

s7

[
−a

− a√
3

]
, h8(x, y) =

1

3s8

[
1 0

0 −1

] [
x

y

]
− 1

s8

[
−a

− a√
3

]
,

h9(x, y) =
1

3s9

[
1 0

0 −1

] [
x

y

]
− 1

s9

[
0
2a√
3

]
.

Let µF =
∑9

i=1 si
(
1
3

)t−1
(hi)∗µF be the invariant Borel probability measure for the IFS J

with probabilities pi = si
(
1
3

)t−1
. By Theorem 2.3, to show that

dimH(G(f ∗)) ≥ t = 1 +
log(

∑9
i=1 si)

log(3)
,

it is enough to prove that

dimH(µF ) > 3− t.

Now, we will estimate the Hausdorff dimension of the Furstenberg measure.
Let fi be the projection of hi on the X-axis. Let JX = {f1, f2, . . . , f9} be the projection

of the IFS J on the X-axis. Precisely, the maps f ′
is are as follows:

f1(x) =
x

3s1
, f2(x) =

x

3s2
, f3(x) =

x

3s3
, f6(x) =

x

3s6
, f9(x) =

x

3s9
,

f4(x) = − x

3s4
+

a

s4
, f5(x) =

x

3s5
+

a

s5
, f7(x) = − x

3s7
+

a

s7
, f8(x) =

x

3s8
+

a

s8
.

The fixed point of the map fi is denoted by Fix(fi) for all i ∈ {1, 2, . . . , 9}. Thus, we have

Fix(f1) = Fix(f2) = Fix(f3) = Fix(f6) = Fix(f9) = 0,

Fix(f4) =
3a

3s4 + 1
, Fix(f5) =

3a

3s5 − 1
, Fix(f7) =

3a

3s7 + 1
, Fix(f8) =

3a

3s8 − 1
.

Without loss of generality, we assume that s5 ≤ s8.

Lemma 4.6. Let si ∈
(

2
3
, 1

)
∀ i ∈ {1, 2, . . . , 9}. Let [ã, b̃] be the invariant interval for the

IFS JX . Then, ã = 0 and b̃ = Fix(f5). Moreover, if max{s5, s8} ≤ min{s4, s7}, then

(f4[0, b̃] ∪ f7[0, b̃]) ∩ (f5[0, b̃] ∪ f8[0, b̃]) = ∅. (4.3)

For a visualisation, see Figure 5.
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0
Fix(f5)

f5

f8

f4

f7

Figure 5. Visualisation of the configuration in (4.3).

Proof. The maps f4 and f7 are flipping the orientation and other maps are orientation
preserving maps. Since s5 ≤ s8, the fixed point Fix(f5) is the largest fixed points. Since

si ∈
(

2
3
, 1

)
∀ i ∈ {1, 2, . . . , 9}, we have

f4[0,Fix(f5)] =

[
a(3s5 − 2)

s4(3s5 − 1)
,
a

s4

]
⊂ [0,Fix(f5)],

f7[0,Fix(f5)] =

[
a(3s5 − 2)

s7(3s5 − 1)
,
a

s7

]
⊂ [0,Fix(f5)].

This implies that [0, b̃] is the invariant interval for the IFS JX , where b̃ = Fix(f5). One can
see that

f5[0, b̃] =

[
a

s5
, b̃

]
and f8[0, b̃] =

[
a

s8
,

3s5a

s8(3s5 − 1)

]
.

Now, we assume that max{s5, s8} ≤ min{s4, s7}. Then, we get

(f4[0, b̃] ∪ f7[0, b̃]) ∩ (f5[0, b̃] ∪ f8[0, b̃]) = ∅.
This completes the proof. □

Now, we will see the projection of the Furstenberg IFS J on the Y -axis. Let gi be the
projection of hi on the Y -axis. Let JY = {g1, g2, . . . , g9} be the projection of the IFS J on
the y-axis. Precisely, the maps g′is are as follows:

g1(y) =
y

3s1
, g3(y) =

y

3s3
, g6(y) =

y

3s6
,

g2(y) =
y

3s2
− 2a√

3s2
, g4(y) =

y

3s4
+

a√
3s4

, g5(y) =
y

3s5
+

a√
3s5

,

g7(y) =
−y

3s7
+

a√
3s7

, g8(y) =
−y

3s8
+

a√
3s8

, g9(y) =
−y

3s9
− 2a√

3s9
.

Next, we will examine the invariant interval for the IFS JY = {g1, g2, . . . , g9}. The fixed
points of the maps g′is are as follows:

Fix(g1) = Fix(g3) = Fix(g6) = 0,

Fix(g2) =
−6a√

3(3s2 − 1)
, Fix(g4) =

3a√
3(3s4 − 1)

, Fix(g5) =
3a√

3(3s5 − 1)
,

Fix(g7) =
3a√

3(3s7 + 1)
, Fix(g8) =

3a√
3(3s8 + 1)

, Fix(g9) =
−6a√

3(3s9 + 1)
.

Without loss of generality, we assume that s7 ≤ s8 and s4 ≤ s5.

Lemma 4.7. Let si ∈ (2
3
, 1) ∀ i ∈ {1, 2, . . . , 9}. We assume that if max{s5, s8} ≤

min{s4, s7} and s2 ≤ s9. Let Ĩ be the invariant interval for the IFS JY . Then, the invariant
interval Ĩ is either [Fix(g2),Fix(g5)] or [Fix(g2), g8(Fix(g2))].
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0

Fix(g2)

Fix(g5)

g2

g5 g4
0

Fix(g2)

g8(Fix(g2))

g2

g8 g7

Figure 6. Visualisation of the configuration in Lemma 4.7.

For a visualisation, see Figure 6.

Proof. The maps g2, g4 and g5 are preserve the orientation, however the maps g7, g8 and
g9 are flipping the orientation about Y - axis. The Fix(g2) is the lowest fixed point. Since
s8 ≤ s7 and s5 ≤ s4, the fixed point Fix(g5) is the largest fixed point. All the fixed points
are always in the invariant interval Ĩ . Thus, g8(Fix(g2)) ∈ Ĩ . And, we have

g8(Fix(g2)) =
−1

3s8

(
−6a√

3(3s2 − 1)

)
+

a√
3s8

=
a√
3s8

(
3s2 + 1

3s2 − 1

)
,

g7(Fix(g2)) = g8(Fix(g2))

(
s8
s7

)
< g8(Fix(g2)).

Furthermore, g8(g8(Fix(g2))) ∈ Ĩ and g8(Fix(g5)) ∈ Ĩ . Thus, we have

g8(g8(Fix(g2))) =
a√
3s8

(
3s8(3s2 − 1)− (3s2 + 1)

3s8(3s2 − 1)

)
, g8(Fix(g5)) =

a√
3s8

(
3s5 − 2

3s5 − 1

)
.

One can see that

g8(g8(Fix(g2))) > Fix(g2) , 0 < g8(Fix(g5)) < g8(Fix(g2)) and 0 < g8(Fix(g5)) < Fix(g5).

The map g9 is also flipping the orientation. So,

g9(Fix(g5)) =
−1

3s9

(
3a√

3(3s5 − 1)

)
− 2a√

3s9
=

−a√
3s9

(
6s5 − 1

3s5 − 1

)
,

g9(g8(Fix(g2))) =
−a√
3s9

(
(3s2 + 1) + 6s8(3s2 − 1)

3s8(3s2 − 1)

)
,

g9(Fix(g2)) =
−1

3s9

(
−6a√

3(3s2 − 1)

)
− 2a√

3s9
=

−2a√
3s9

(
3s2 − 2

3s2 − 1

)
.

One can see that

0 > g9(Fix(g2)) > Fix(g2).

For s2 ≤ s9, we have the following relation for the map g9:

0 > g9(Fix(g5)) > Fix(g2) and 0 > g9(g8(Fix(g2))) > Fix(g2).

Thus, for s2 ≤ s9, the invariant interval Ĩ is either [Fix(g2),Fix(g5)] or [Fix(g2), g8(Fix(g2))]
depending on the relation between Fix(g5) and g8(Fix(g2)). This completes the proof. □
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Proposition 4.8. Let si ∈
(

2
3
, 1

)
∀ i ∈ {1, 2, . . . , 9}. Suppose that max{s5, s8} ≤

min{s4, s7} and s2 ≤ s9. For x ∈ AF , let dµF
(x) denotes the lower local dimension of

µF at x. Then,

dimH µF ≥
log(1− smin

3t0−2 )

− log(3smax)
.

Proof. For each x ∈ AF , we define Cx := {i : x /∈ hi(AF ) and i ∈ {1, 2, . . . , 9}}. First, we
show that that #Cx ≥ 3 for every x ∈ AF , where #Cx denotes the cardinality of Cx.
By Lemma 4.6 and Lemma 4.7, either the rectangle [0, b̃] × [Fix(g2),Fix(g5)] or [0, b̃] ×

[Fix(g2), g8(Fix(g2))] mapped into itself by all the maps of the Furstenberg IFS J .
In the first situation, Ĩ = [Fix(g2),Fix(g5)]. In this case, the cylinder corresponding to h2

is placed at the bottom of the invariant set (on the Y -axis) and the cylinder corresponding
to h5 is placed at the top of the invariant set (on the left side of the Y -axis). Since
1

3s2
+ 1

3s5
< 1 and s5 ≤ s4, we have

h2([0, b̃]× Ĩ) ∩ h5([0, b̃]× Ĩ) = ∅ and h2([0, b̃]× Ĩ) ∩ h4([0, b̃]× Ĩ) = ∅.
By Equation 4.3, we have(

h4([0, b̃]× Ĩ) ∪ h7([0, b̃]× Ĩ)

)
∩
(
h5([0, b̃]× Ĩ) ∪ h8([0, b̃]× Ĩ)

)
= ∅.

Thus, from the above, it is clear that a point can be contained in at most six cylinders,
and so #Cx ≥ 3.

In the another situation Ĩ = [Fix(g2), g8(Fix(g2))], then by using same idea as above,
and using the conditions 1

3s2
+ 1

3s8
< 1 and s8 ≤ s7, one can get #Cx ≥ 3. The claim then

follows from Proposition 2.4. □

Proof of Proposition 4.3. Since dimH(µF ) = ess inf(dµF
(x)) and by Proposition 4.8, we

obtain

dimH(µF ) ≥
log(1− smin

3t0−2 )

− log(3smax)
.

For proving dimH(µF ) > 3− t0, it is enough to show that
log(1− smin

3t0−2 )

− log(3smax)
> 3− t0. We have

log(1− smin

3t0−2 )

− log(3smax)
> 3− t0

⇐
log(1− 2

3t0−1 )

− log(3)
> 3− t0

⇐
(
1− 6

3t0

)
<

3t0

27

⇐0 < 32t0 − 27× 3t0 + 162.

This implies that if 3t0 > 18, then the inequality
log(1− smin

3t0−2 )

− log(3smax)
> 3−t0 holds. Since si ∈

(
2
3
, 1

)
and the affinity dimension t0 = 1 +

log(
∑9

i=1 si)

log(3)
> 1 + log 6

log 3
, and so, we have 3t0 > 18. This

completes the proof. □

Remark 4.9. The method of overlapping numbers might again be applicable for other cases
when N ≥ 4 and for general data sets. However, since there are many maps in very general
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positions, verifying that the overlapping number is sufficiently small would clearly require
tedious calculations.

4.4. Uniform scaling factors. Next, we will consider a uniform scaling factor s = si ∀ i ∈
{1, 2, . . . , 9} in the construction of fractal surfaces. For that, we have the following result:

Corollary 4.10. If s ∈ (2
3
, 1), then

dimH(G(f ∗)) = dimB(G(f ∗)) = 3 +
log(s)

log(3)
.

The proof of this corollary follows from Theorem 1.3.
Next, we show some dimension results for the typical choice of the uniform scaling factor.

Theorem 4.11. If s = si ∀ i ∈ {1, 2, . . . , 9}, then

dimH(G(f ∗)) = dimB(G(f ∗)) = 3 +
log(s)

log(3)
for a.e. s ∈ (1/3, 1).

Proof. If s = si for every i ∈ {1, 2, . . . , 9}, then the projected IFS JX = {f1, f2, . . . , f9} of
the Furstenberg IFS is as follows.

f1(x) = f2(x) = f3(x) = f6(x) = f9(x) =
x

3s
,

f4(x) = f7(x) = − x

3s
+

a

s
, f5(x) = f8(x) =

x

3s
+

a

s
.

And in this case pi =
1
9
for every i ∈ {1, 2, . . . , 9}. Thus, the IFS JX is equivalent to the IFS

J̃X = {f̃1(x) = x
3s
, f̃2(x) = − x

3s
+ a

s
, f̃3(x) =

x
3s

+ a
s
} with probability vector (5

9
, 2
9
, 2
9
). Let

PX∗µF be the projection of the measure µF on the X-axis. Let ϵ > 0 andM be a sufficiently
large natural number. Now, we define real analytic maps ri : [

1
3
+ ϵ,M ] → (−1, 1) \ {0}}

and di : [
1
3
+ ϵ,M ] → R} are as follows:

r1(s) = r3(s) =
1

3s
, r2(s) = − 1

3s
, d1(s) = 0, d2(s) = d3(s) =

a

s
.

The IFS J̃X is same as a parametric family of self-similar IFS Is = {ri(s)x+di(s)}3i=1. For
s ∈ (1,M ], the parametric IFS Is satisfies the strong separation condition. Let As be the
attractor of the parametric IFS Is. Let Πs : Σ = {1, 2, 3}N → As be the associated natural
projection. Then,

∀ i, j ∈ Σ, Πs(i) = Πs(j) on

[
1

3
+ ϵ,M

]
⇐⇒ i = j.

Thus by the result of Hochman [9, Theorem 1.10], we get

dimH(PX∗µF ) = min

{
1,

−
∑3

i=1 pi log(pi)

−
∑3

i=1 pi log(|ri|)
=

−5
9
log(5

9
)− 4

9
log(2

9
)

log(3s)

}
for a.e. s ∈

[
1

3
+ϵ,M

]
.

The ϵ is arbitrarily small. Thus, we have

dimH(µF ) ≥ dimH(PX∗µF ) = min

{
1,

−5
9
log(5

9
)− 4

9
log(2

9
)

log(3s)

}
for a.e. s ∈

(
1

3
, 1

)
.

One can easily see that
−5
9

log( 5
9
)− 4

9
log( 2

9
)

log(3s)
> 3− t =

log( 1
s
)

log(3)
and 3− t ∈ (0, 1) for all s ∈ (1

3
, 1).

Thus,

dimH(µF ) > 3− t for a.e. s ∈
(
1

3
, 1

)
.
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Thus, by Theorem 2.3, dimH(µ) = t = 3 + log(s)
log(3)

for a.e. s ∈ (1/3, 1). This completes the

proof. □

5. Geronimo-Hardin surfaces

In this section, we will prove Theorem 1.4 and Theorem 1.5. In these results, the self-
affine IFS is I = {W1,W2,W3,W4}, where the maps Wi are as follows:

W1(x, y, z) =

 1
4

√
3
4

0√
3
4

−1
4

0

a a√
3

s


x

y

z,

 , W2(x, y, z) =

 1
4

−
√
3

4
0

−
√
3

4
−1
4

0

−a a√
3

s


x

y

z

+

 3
4√
3
4

a

 ,

W3(x, y, z) =

−1
2

0 0

0 1
2

0

0 −2a√
3

s

x

y

z

+

 3
4√
3
4

a

 , W4(x, y, z) =

−1
2

0 0

0 −1
2

0

0 0 s

x

y

z

+

 3
4√
3
4

a

 .

Thus, the IFS I is a block triangular self-affine IFS. Let s ∈ (1
2
, 1). Then, the affinity

dimension (t) for the IFS I is uniquely given by the following equation

4∑
i=1

s

(
1

2

)t−1

= 1,

and by [7], we get

dimH(G(f ∗)) ≤ dimB(G(f ∗)) ≤ t = 3 +
log(s)

log(2)
. (5.1)

Since bi-Lipschitz conjugation preserves the fractal dimension, we may assume without
loss of generality that a = 1. For the lower bound, again, we construct the corresponding
Furstenberg IFS J = {h1, h2, h3, h4} by (2.3), where hi : R2 → R2 are defined as follows:

h1(x, y) =
1

2s

[
1
2

√
3
2√

3
2

−1
2

] [
x

y

]
+

[
1
1√
3

]
, h2(x, y) =

1

2s

[
1
2

−
√
3

2
−
√
3

2
−1
2

] [
x

y

]
+

[
−1
1√
3

]
,

h3(x, y) =
1

2s

[
−1 0

0 1

] [
x

y

]
+

[
0
−2√
3

]
, h4(x, y) =

1

2s

[
−1 0

0 −1

] [
x

y

]
.

(5.2)

For s ∈ (1
2
, 1), the Furstenberg IFS J is contractive. Let AF be the attractor of the

Furstenberg IFS J . The Furstenberg measure µF is the invariant Borel probability measure
for the IFS J with the uniform probability vector p = (1

4
, 1
4
, 1
4
, 1
4
). By taking bi-Lipschitz

conjugate of the IFS J with the map g(x, y) = −a
s
(x, y), the resultant IFS is denoted by

J = {h1, h2, h3, h4}, which is as follows.

5.1. Every-type result. We can not proceed with the argument as in the previous section,
because the projection of the Furstenberg IFS J on the X-axis and Y -axis is not an IFS.
In this case, we need to directly determine the invariant set for the IFS J and with the
help of that, we estimate the overlapping number for the IFS J . The fixed points of the
maps hi’s are as follows.

Fix(h1) =

(
4s

4s− 2
,

4s√
3(4s− 2)

)
, Fix(h2) =

(
− 4s

4s− 2
,

4s√
3(4s− 2)

)
,

Fix(h3) =

(
0,− 8s√

3(4s− 2)

)
, Fix(h4) = (0, 0).
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Proposition 5.1. Let s ∈
[
1+

√
5

4
, 1

)
. Then, minx∈K #{i ∈ {1, . . . , N} : x /∈ hi(AF )} ≥ 1.

Proof. Let Fix(h1) = A,Fix(h2) = B and Fix(h3) = C. Let S be the invariant set for
the IFS J . The map h4 flips the orientation about the X-axis. Since A,B,C ∈ S, we

have A′ = h4(A) =

(
− 2

4s−2
,− 2√

3(4s−2)

)
∈ S, B′ = h4(B) =

(
2

4s−2
,− 2√

3(4s−2)

)
∈ S and

C ′ = h4(C) =

(
0, 4√

3(4s−2)

)
∈ S. For s ∈ (1

2
, 1), our claim is that the convex set with

vertices A,B,C,A′, B′ and C ′ is the invariant set for the IFS J . We denote that convex
set by Con(ABCA′B′C ′). One can see that the set Con(ABCA′B′C ′) is symmetric about
Y -axis, see Figure 7.

C ′

AB

A′ B′

C

X

Y

Figure 7. The invariant convex hull of the Furstenberg IFS (5.2).

Now, we prove our claim. We have

h1(A) = A, h1(B) =

(
1,

4s− 6√
3(4s− 2)

)
= B1, h1(C) =

(
4s− 4

4s− 2
,

4s√
3(4s− 2)

)
= C1,

h1(A
′) =

(
−1 + s(4s− 2)

s(4s− 2)
,
−1 + s(4s− 2)

s
√
3(4s− 2)

)
= A′

1, h1(B
′) =

(
1,

2 + s(4s− 2)

s
√
3(4s− 2)

)
= B′

1

h1(C
′) =

(
1 + s(4s− 2)

s(4s− 2)
,
−1 + s(4s− 2)

s
√
3(4s− 2)

)
= C ′

1.

One can see that the points B′
1 and C ′

1 are on the line AC ′ and AB′, respectively. For

s ∈ (1
2
, 1), we get 1 < 2

(4s−2)
. And the point

(
1, (4s−1)(4s−2)−8s√

3(4s−2)

)
is on the line CB′.

Since − 2√
3(4s−2)

> 4s−6√
3(4s−2)

> (4s−1)(4s−2)−8s√
3(4s−2)

, the point B1 is on the above side of line

CB′. For s ∈ (1
2
, 1), we have − 2

4s−2
< 4s−4

4s−2
< 0. Thus the point C1 is in the left
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side of the set Con(ABCA′B′C ′) and on the line joining A and B. This implies that
h1(Con(ABCA′B′C ′)) ⊂ Con(ABCA′B′C ′). For, the mapping h2, we have

h2(B) = B, h2(A) =

(
− 1,

4s− 6√
3(4s− 2)

)
= A2, h2(C) =

(
− 4s− 4

4s− 2
,

4s√
3(4s− 2)

)
= C2,

h2(B
′) =

(
−−1 + s(4s− 2)

s(4s− 2)
,
−1 + s(4s− 2)

s
√
3(4s− 2)

)
= B′

2, h2(A
′) =

(
−1,

2 + s(4s− 2)

s
√
3(4s− 2)

)
= A′

2

h2(C
′) =

(
− 1 + s(4s− 2)

s(4s− 2)
,
−1 + s(4s− 2)

s
√
3(4s− 2)

)
= C ′

2.

Thus, one can see that h2(Con(ABCA′B′C ′)) is the mirror image of h1(Con(ABCA′B′C ′))
with respect to Y -axis. Thus, due to symmetry of the set Con(ABCA′B′C ′) with respect
to the Y -axis, we get h2(Con(ABCA′B′C ′)) ⊂ Con(ABCA′B′C ′). For, the mapping h3,
we have

h3(C) = C, h3(C
′) =

(
0,

2(1− s(4s− 2))√
3s(4s− 2)

)
= C ′

3,

h3(A) =

(
−2

4s− 2
,

6− 8s√
3(4s− 2)

)
= A3, h3(A

′) =

(
1

s(4s− 2)
,
−1− 2s(4s− 2)√

3s(4s− 2)

)
= A′

3,

h3(B) =

(
2

4s− 2
,

6− 8s√
3(4s− 2)

)
= B3, h3(B

′) =

(
−1

s(4s− 2)
,
−1− 2s(4s− 2)√

3s(4s− 2)

)
= B′

3.

One can see that the points A′
3 and B′

3 are on the line CB′ and CA′, respectively. For

s ∈ (1
2
, 1), we have −2√

3(4s−2)
< 6−8s√

3(4s−2)
< −1−2s(4s−2)√

3s(4s−2)
and 6−8s√

3(4s−2)
< −1−2s(4s−2)√

3s(4s−2)
< 4√

3(4s−2)
.

This implies that h3(Con(ABCA′B′C ′)) ⊂ Con(ABCA′B′C ′). For, the mapping h4, we
have

h4(A) = A′, h4(B) = B′, h4(C) = C ′,

h4(A
′) =

(
1

s(4s− 2)
,

1√
3s(4s− 2)

)
= A′

4, h4(B
′) =

(
−1

s(4s− 2)
,

1√
3s(4s− 2)

)
= B′

4,

h4(C
′) =

(
0,

−2√
3s(4s− 2)

)
.

For s ∈ (1
2
, 1), we have −8s√

3(4s−2)
< −2√

3s(4s−2)
< −2√

3(4s−2)
, 0 < 1

s(4s−2)
< 2

4s−2
and 0 <

1√
3s(4s−2)

< 2√
3(4s−2)

. This implies that h4(Con(ABCA′B′C ′)) ⊂ Con(ABCA′B′C ′). Thus

the set Con(ABCA′B′C ′) is an invariant set for the IFS J .

Now, we will estimate the overlapping number. For s = 1+
√
5

4
, one can see that A′

1 =
B′

2 = C ′
3 = (0, 0), h1(Con(ABCA′B′C ′)) is on the right side, h2(Con(ABCA′B′C ′)) is

one the left side (mirror image of h1(Con(ABCA′B′C ′)) with respect to Y -axis) and
h3(Con(ABCA′B′C ′)) is below the X-axis. Thus, only at (0, 0), the overlapping number is
4. This implies that K ≤ 3 a.e. x ∈ AF . For a visulalisation, see Figure 8.

Now, we assume that s ∈ (1+
√
5

4
, 1). In this case, we have s(4s − 2) > 1. Thus, A′

1 and
B′

1 are in the 1st and 2nd quadrant of the set Con(ABCA′B′C ′), respectively. And C ′
3 is

on negative Y -axis. The points C ′
1 and C ′

2 are on the above of the X-axis and on line AB′

and BA′, respectively. Thus, any point of Con(ABCA′B′C ′) can lie atmost two of the sets
h1(Con(ABCA′B′C ′)), h2(Con(ABCA′B′C ′)) and h3(Con(ABCA′B′C ′)). Thus, K ≤ 3.
This completes the proof. □



25

C ′

AB

A′ B′

C

X

Y

B′
1

C1

A′
1

B1

C ′
1

A′
2

C2

B′
2

A2

C ′
2

C ′
3A3 B3

B′
3 A′

3

For s = 1+
√
5

4

C ′

AB

A′ B′

C

X

Y

B′
1

C1

A′
1

B1

C ′
1

A′
2

C2

B′
2

A2

C ′
2

C ′
3A3 B3

B′
3 A′

3

For s > 1+
√
5

4

Figure 8. The first level cylinder sets for the Furstenberg IFS (5.2).

Proof of Theorem 1.4. Combining Proposition 2.4 and Proposition 5.1, we get dimH(µF ) >

3 − t, where t is the affinity dimension of the IFS I for every s ∈
[
1+

√
5

4
, 1

)
.. Then the

claim follows by Theorem 2.3. □

5.2. Almost every-type result. Next, we discuss almost surely results for the above-
constructed fractal surfaces.

Construction of Graph directed IFS associated with the projection of the
Furstenberg IFS. One can see that the group (G) generated by the linear part of the
Furstenberg IFS J = {h1, h2, h3, h4} is a finite group of order 12. Precisely, the group
elements are as follows:

Q1 =

[
1
2

√
3
2√

3
2

−1
2

]
, Q2 =

[
1
2

−
√
3

2
−
√
3

2
−1
2

]
, Q3 =

[
−1 0

0 1

]
, Q4 =

[
−1 0

0 −1

]
,

Q5 =

[
1 0

0 1

]
, Q6 =

[
−1
2

−
√
3

2
−
√
3

2
1
2

]
, Q7 =

[
−1
2

√
3
2√

3
2

1
2

]
, Q8 =

[
−1
2

√
3
2

−
√
3

2
−1
2

]
,

Q9 =

[
−1
2

−
√
3

2√
3
2

−1
2

]
, Q10 =

[
1 0

0 −1

]
, Q11 =

[
1
2

−
√
3

2√
3
2

1
2

]
, Q12 =

[
1
2

√
3
2

−
√
3

2
1
2

]
.

First, we consider a direction v = (1, 1) ∈ R2. Now, we construct an graph directed IFS as-
sociated with the Furstenberg IFS J . First, we define a set of vertices V := {v1, v2, . . . , v12}
such that vi = QT

i v. The set El,m denotes the set of all directed edges from vertex vl to vm.
For l,m ∈ V , if these exists k ∈ {1, 2, 3, 4} such that vl = Qkvm, then we define a directed
edge e ∈ El,m. Since #{QlQk : k ∈ 1, 2, 3, 4} = 4 for each l ∈ {1, 2, . . . , 12}, there are only
4 directed edges from the vertex vl and only 4 directed edges toward the vertex vl. The set
of directed edges is defined by E := {El,m : 1 ≤ l,m ≤ 12}. The directed graph is denoted
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by G(V , E). For e ∈ El,m, the associated map fe is defined by

fe(x) =
1

2s
x+ vl · tk,

where k ∈ {1, 2, 3, 4} such that vl = Qkvm and tk is the translation vector corresponding to
the map hk in the the Furstenberg IFS J . Let AF be the attractor of the IFS J . One can
also see that for each l ∈ {1, 2, . . . , 12}, we have vl · tk1 ̸= vl · tk2 for all k1 ̸= k2 ∈ {1, 2, 3, 4}.
The notation Projv(A) denotes the projection of the set A in the direction v. Thus, we
have

Projvl(AF ) = Projvl

( 4⋃
k=1

hk(AF )

)
=

4⋃
k=1

Projvl

(
1

2s
Qk(AF ) + tk

)

=
4⋃

k=1

(
1

2s
ProjQT

k vl
(AF ) + Projvl(tk)

)
=

12⋃
m=1

⋃
e∈El,m

fe(Projvm(AF )).

Thus,
⋃12

l=1 Projvl(AF ) is the attractor of the graph directed IFS {fe : e ∈ E} with directed
graph G(V , E).

Induced Markov chain. Let Xn be a Markov chain on the group G. For each l ∈
{1, 2, . . . , 12}, one can see that #{QlQk : k ∈ 1, 2, 3, 4} = 4. Thus, we define the transi-
tion probability for the Markov chain by

P(Xn+1 = Qm|Xn = Ql) =

{
1
4

if ∃ k ∈ {1, 2, 3, 4} with QlQk = Qm

0 otherwise.

Let P be the transition matrix associated with the Markov chain Xn. Thus, the matrix P
is as follows

[P ]i,j =

{
1
4

if ∃ k ∈ {1, 2, 3, 4} with QiQk = Qj

0 otherwise,

where [P ]i,j is the ijth entry of the matrix P for 1 ≤ i, j ≤ 12.
We have

Q2 ·Q1 = Q8, Q1 ·Q2 = Q9, Q2 ·Q4 = Q7, Q1 ·Q4 = Q6 = Q4 ·Q1,

Q1 ·Q3 = Q8, Q2 ·Q3 = Q9, Q11 ·Q1 = Q7, Q12 ·Q1 = Q10,

Q1·Q1 = Q2·Q2 = Q3·Q3 = Q4·Q4 = Q5 = Id, Q4·Q3 = Q10, Q1·Q10 = Q11, Q2·Q10 = Q12.

Now, we define two sets A = {Q5, Q6, Q7, Q8, Q9, Q10} and B = {Q1, Q2, Q3, Q4, Q11, Q12}.
By the above one can see that for eachQi ∈ A, there exist a k ∈ {1, 2, 3, 4} such thatQiQk ∈
B and vice versa. Thus, the directed graph associated with the transition matrix P is bi-
bipartite graph. So, by considering the arrangement {Q5, Q6, Q7, Q8, Q9, Q10, Q1, Q2, Q3, Q4,
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Q11, Q12}, the transition matrix P can be rewritten in the following form

P =



0 0 0 0 0 0 1/4 1/4 1/4 1/4 0 0

0 0 0 0 0 0 1/4 0 0 1/4 1/4 1/4

0 0 0 0 0 0 0 1/4 0 1/4 1/4 1/4

0 0 0 0 0 0 1/4 1/4 1/4 0 1/4 0

0 0 0 0 0 0 1/4 1/4 1/4 0 0 1/4

0 0 0 0 0 0 0 0 1/4 1/4 1/4 1/4

1/4 1/4 0 1/4 1/4 0 0 0 0 0 0 0

1/4 0 1/4 1/4 1/4 0 0 0 0 0 0 0

1/4 0 0 1/4 1/4 1/4 0 0 0 0 0 0

1/4 1/4 1/4 0 0 1/4 0 0 0 0 0 0

0 1/4 1/4 1/4 0 1/4 0 0 0 0 0 0

0 1/4 1/4 0 1/4 1/4 0 0 0 0 0 0


Since Q5 is identity matrix (Id), we have

P(Xn = Id|X0 = Id) =
[
1 0 · · · 0

]
P n


1

0
...

0

 =
#{τ ∈ {1, 2, 3, 4}n : Qτ = Id}

4n
.

Clearly, P(X2n+1 = Id|X0 = Id) = 0 for n ∈ N ∪ {0} and P(X2 = Id|X0 = Id) = 1
4
. The

period of the directed graph associated with the transition matrix P is defined as follows

period = l.c.d.{n ∈ N : P(Xn = Id|X0 = Id) > 0}.

This implies that period is 2. But, P 2 =

[
R 0

0 S

]
, where R and S are 6× 6 matrices. The

matrix R is as follows

R =



1/4 1/8 1/8 3/16 3/16 1/8

1/8 1/4 3/16 1/8 1/8 3/16

1/8 3/16 1/4 1/8 1/8 3/16

3/16 1/8 1/8 1/4 3/16 1/8

3/16 1/8 1/8 3/16 1/4 1/8

1/8 3/16 3/16 1/8 1/8 1/4


The above matrix R is irreducible and aperiodic (period is 1). Thus by Perron-Frobenius
theorem, we get

Rn →



1

1

1

1

1

1


[
1/6 1/6 1/6 1/6 1/6 1/6

]
as n → ∞.

This implies that

P(X2n = Id|X0 = Id) =
#{τ ∈ {1, 2, 3, 4}2n : Qτ = Id}

42n
→ 1

6
as n → ∞.
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Thus, these exists a N0 ∈ N such that

#{τ ∈ {1, 2, 3, 4}2n : Qτ = Id} ≥ 42n

12
∀ n ≥ N0. (5.3)

Non-degeneracy of constructed GD-IFS. Now, we will show that the constructed
graph directed IFS is non-degenerate, which will be useful for determining almost surely
type results. The set of all infinite-length edges is denoted by E∗. Let e = (e1, e2, . . . ), e

′ =
(e′1, e

′
2, . . . ) ∈ E∗ such that e ̸= e′ and e1 ∈ El,m1 , e

′
1 ∈ El,m2 . Let m ∈ N be smallest number

such that em ̸= e′m. Then, there exist k1 ̸= k2 ∈ {1, 2, . . . , 12} such that em ∈ El1,mk1
and

e′m ∈ El1,mk2
. Let Π be the natural projection corresponding to the constructed graph-

directed IFS. Thus, we have

Π(σm−1e) = fem(Π(σ
me)) =

1

2s
(Π(σme)) + vl1 · tr1

Π(σm−1e′) = fe′m(Π(σ
me′)) =

1

2s
(Π(σme′)) + vl1 · tr2 ,

where r1 ̸= r2. Since vl1 · tr1 ̸= vl1 · tr2 , we have Π(σm−1e) ̸≡ Π(σm−1e′) as analytic functions
of s on (1/2,∞), and in particular, on (1/2, 1/). Thus, we get Π(e) ̸≡ Π(e′). This implies
that the graph-directed IFS is non-degenerate.

Now, by using the above constructed GD-IFS, we will prove typical type results for the
Hausdorff dimension.

Proof of Theorem 1.5. The upper bound follows by (5.1). Now, we show the lower bound.
Set Nn := #{τ ∈ {1, 2, 3, 4}2n : Qτ = Id}. For n ≥ N0, we define an self-affine IFS

Φn := {Wτ : Qτ = Id and τ ∈ {1, 2, 3, 4}2n}.

Let AΦn be the attractor of the IFS Φn. The affinity dimension (tn) of the self-affine IFS
Φn is uniquely determined by following equation∑

τ∈{1,2,3,4}2n
Qτ=Id

s2n
(

1

22n

)tn−1

= 1

Let (pi)
Nn
i=1 be a probability vector such that pi =

1
Nn

for all 1 ≤ i ≤ Nn. Let Fn := {hτ :

Qτ = Id and τ ∈ {1, 2, 3, 4}2n}} be the Furstenberg IFS corresponding to the IFS Φn. Let
µn
F be the invariant measure corresponding to the IFS Fn with probability vector (pi)

Nn
i=1.

Since the graph directed IFS {fe : e ∈ E} with directed graph G(V , E) corresponding
to the Furstenberg IFS J is non-degenerate, the projection of the Fn on the direction
v = (1, 1) ∈ R2 is also non-degenerate. Then, by the result of Hochman [9], there exist a
set En ⊂ (1

2
, 1) with dimH(En) = 0 such that

dimH(µ
n
F) ≥ min

{
1,

−
∑Nn

i=1 pi log pi∑Nn

i=1 pi log(2s)
2n

}
= min

{
1,

logNn

2n log(2s)

}
∀ s ∈

(
1

2
, 1

)
\ En.

Now, by using the estimate (5.3) of Nn, we get

dimH(µ
n
F) ≥ min

{
1,

log 4

log(2s)
− log 12

2n log 2s

}
∀ s ∈

(
1

2
, 1

)
\ En.
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Let t̂n ∈ R be such that∑
τ∈{1,2,3,4}2n

Qτ=Id

s2n
(

1

22n

)t̂n−1

≥ 42n

12
s2n

(
1

22n

)t̂n−1

= 1.

This implies that tn ≥ t̂n and

t̂n = 1 +
log 4s

log 2
− log 12

2n log 2
= 3 +

log s

log 2
− log 12

2n log 2
.

Clearly, t̂n → t as n → ∞. Since log 4
log(2s)

> − log s
log 2

∀ s ∈
(
1
2
, 1
)
, we have

min

{
1,

log 4

log(2s)
− log 12

2n log 2s

}
> 3− t̂n ≥ 3− tn ∀ s ∈

(
1

2
, 1

)
for all n ≥ N1, where N1 ∈ N is some large number. This implies that for n ≥ max{N0, N1}
we get

dimH(µ
n
F) > 3− tn ∀ s ∈

(
1

2
, 1

)
\ En.

Then, by Theorem 2.3, for n ≥ max{N0, N1} we obtain

dimH(AΦn) = tn ≥ t̂n ∀ s ∈
(
1

2
, 1

)
\ En.

Set E :=
⋃

n=max{N0,N1} En. Thus, dimH(E) = 0. This implies that

dimH(G(f ∗)) ≥ dimH(AΦn) ≥ t̂n ∀ s ∈
(
1

2
, 1

)
\ E .

Thus, for all s ∈
(
1
2
, 1
)
\ E , we get

dimH(G(f ∗)) ≥ t ∀ s ∈
(
1

2
, 1

)
\ E .

Since dimH(G(f ∗)) ≤ dimB(G(f ∗)) ≤ t = 3 + log(s)
log(2)

, we have

dimH(G(f ∗)) = dimB(G(f ∗)) = t = 3 +
log(s)

log(2)

for all s ∈
(
1
2
, 1
)
\ E . This completes the proof. □
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