HAUSDORFF DIMENSION OF THE WEDDING CAKE TYPE
SURFACES
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ABSTRACT. In this paper, we study the Hausdorff dimension of fractal interpolation sur-
faces (FISs) over a triangular domain. These FISs are known as ‘wedding cake surfaces’.
These surfaces are the attractor of some deterministic self-affine iterated function systems
(IFS) on R3 generated by a fractal interpolation algorithm. Due to the recent seminal re-
sult of Rapaport (Adv. Math. 449 (2024) 109734), the dimension theory of self-affine IF'S
on R? is known whenever the IFS is strongly irreducible and proximal. However, the self-
affine IF'Ss associated with FIS are not strongly irreducible. We prove that the Hausdorff
dimension of the self-affine set (or FIS) is the same as the affinity dimension outside a set
of scaling parameters with zero Lebesgue measure. Lastly, by computing the overlapping
number for the associated Furstenberg IFS, we determine the Hausdorff dimension for
every type of scaling parameter in a certain range of parameters.

1. INTRODUCTION AND STATEMENTS

1.1. Historical background. For n > 2, the system Z = {fl,fz, . .,fn} is called an
iterated function system (IFS) on R if the map f; is a contraction map on R? for
each i € {1,2,...,n}. Hutchinson [11] proved that there exists a unique non-empty com-
pact set K C R? such that K = |J;_, f;(K). Let p = (p1,pa,...,pn) be a probability
vector. Hutchinson [11] also proved that there exists a unique Borel probability measure
supported on K such that u(B) = Y piu(f ' (B)) for all Borel sets B C R%. The set K
is called the attractor of IFS Z and the measure p is known as the stationary measure
corresponding to IFS Z with the probability vector p. The map f : R? — R? such that
f(x) = Az + a is called a self-affine map, where a € R? and A € GL(d,R) with ||A]] < 1.
The IFS 7 = {fl, foy oot fn} is called a self-affine IFS, if each f; is a self-affine map on
R? for each i € {1,2,...,n}. The attractor of the self-affine IFS is known as self-affine
set, and the stationary measure corresponding to the self-affine IFS Z and probability
vector p is known as self-affine measure.

In this paper, our focus is on the Hausdorff dimension of the self-affine IFS on R3,
which are generated by the fractal interpolation algorithm on the triangular domain of
R% In 1986, Barnsley [4] introduced the concept of fractal interpolation functions (FIFs)
on R. The FIF is a function which interpolates the given data set, and the graph of this
function is the attractor of some iterated function system (IFS). In [4], Barnsley provided
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an algorithm to construct an IF'S corresponding to the given data set. Barnsley, Elton and
Hardin [5] determined the box dimension of the graph of the FIF for a given data set.
Later, Bérdny, Simon and Rams [2] determined the Hausdorff dimension of the graph of
the FIF by studying the dimension theory of the associated self-affine IFS on R? for a given
data set on R.

In 1990, Massopust [12] extended Barnsley’s FIF theory on the plane and defined the
notion of the fractal interpolation surfaces (FISs) and also provided an algorithm to con-
struct a self-affine IFS on R? corresponding to a given finite data sets over the triangular
domain, where the data points on the boundary of the triangular domain are required to be
coplanar. Barnsley called these surfaces “wedding cake” surfaces. Under the consideration
of uniform triangulation of the equilateral triangle and the linear part of the self-affine IF'S
does not contain the rotation matrix, Massopust [12] determined the box dimension of the
graph of corresponding FISs. Geronimo and Hardin [8] provided another construction of
the FISs over the triangular domain and polygonal domain by considering uniform scaling
parameters without assuming the coplanarity condition as in [12], and also determined the
box dimension of the FISs under some condition. We note that the construction of the
FISs on the rectangular domain was found in [6, [15].

According to our knowledge, the Hausdorff dimension of the FISs has not yet been
studied in these cases. The dimension theory of the FISs is equivalent to the dimension
theory of the attractor of the corresponding self-affine IFS on R3. In 1988, Falconer [7]
introduced a natural upper bound for the Hausdorff dimension of the self-affine sets in R,
which is known as the affinity dimension. Falconer [7] proved that if the self-affine IFS
T ={fi(z) = Az + a;}}_, with attractor K satisfies ||4;|| < 3 Vi € {1,2,...,n}, then for
almost all a = (ay,...,a,) € R™

dimg (K) = min{d, t}, (1.1)

where ¢ is the affinity dimension of the self-affine IFS 7 (see precise definition later in
Section [2)). After that, Solomyak [16] showed that the Falconer’s formula is also valid
whenever [|4;| < 3 Vi€ {1,2,...,n} and the bound £ is strict. In the planar case, Bérény,
Hochman and Rapaport [1] proved that if the self-affine IFS 7 is strongly irreducible and
proximal, and satisfies the strong open set condition (SOSC), i.e. there exists an open and
bounded set U such that

fi(U) CU, f;(U)N f;(U) =0 for i # jand UN K # 0,

then holds. Later, Hochman and Rapaport [I0] determined the more general result
in the planar case when the maps in the self-affine Z do not have a common fixed point,
7 is strongly irreducible and proximal, and satisfies the exponential separation condition.
In the case d = 3, Rapaport [14] proved recently that holds if the self-affine IFS Z is
strongly irreducible and proximal, and satisfies the SOSC.

Note that the self-affine IFS on R? generated by the fractal interpolation algorithm for a
given data set is not strongly irreducible; it is actually reducible. Thus, [14] is not applicable
for studying the Hausdorff dimension of the FISs on R3.

1.2. Massopust’s Fractal Interpolation Surfaces. First, we take the construction of
the FISs given by Massopust [12]. For determining the Hausdorff dimension, we consider
the same assumption as taken by Massopust [12] for the box dimension. We consider the

equilateral triangle A with vertices {(0,0), (1,0), (3, \/75)} and an integer N > 3. Then we

divide each side into N equal parts, we get a uniform triangulation {A; 1Y (see Figure
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FiGUurE 1. Triangularization of the equilateral triangle for N = 3. To vi-
sualise the sign of the change of the data set on each horizontal edge, we
coloured it blue where the data set decreases from left to right, and other-
wise, we coloured it red.

for N = 3). Without loss of generality, we index the triangles A;, which are pointing up, by
N(N+1 , and the triangles which pointing down by i = N(NH) +1,..., N2
Let us denote the vertices of this triangularization on the plane by {qz}i:]lv , where

L(N) = %ZM for N > 3. We will use the convention that ¢, ¢ and ¢3 denote the
vertices of the original equilateral triangle counted from the bottom left corner in anti-
clockwise direction. We consider a data set {(gx, ak)}igf) associated with the triangula-
tion {Ai}i’\fl. We assume that the data points on the boundary of the equilateral triangle
A are coplanar. Without loss of generality, we assume that a, = 0 for all £ such that

the corresponding ¢; is on the boundary of the triangle A. In particular, the data set is
{(4;,0)}_; U{(q10,a)}, for the case N = 3, where a # 0 is a real number. We define the
map f*: {qz}lL:(]lv) — {ai}f:(]lv) as follows f*(qx) = ay for k =1,..., L(N).

For each i € {1,2,..., N?}, we denote the value of f* at the left vertex of the horizontal
edge of A; by a, value of f* at the right vertex of the horizontal edge by a} and value at

the other vertex by a} of A;, where al,ab,ay € {ak}igp. For each i € {1,2,..., N?}, we
define a similarity map U; : A — A; such that
(£,4) + (e, fi) ifa’iZaé and1<i<N(N+1)7
i 1 if af > d YD 11 < < N2,
Ui(z,y) = ( " ) (e, /2 1 a; 2 a an ! (N+1§ (1.2)
( Nﬁ) (9i, f2) 1fa1<a2and1<z< 7
( N )+(g,~,f,~) if at < ab and N+1)+1<2<N2
where (e;, f;) and (g;, f;) are the left and right vertices of the horizontal line of A;. Fur-
thermore, we define for each i € {1,2,..., N}, the hight function as
Vi(z,y,2) = ayx + by + ;2 + ¢, (1.3)

where s; € (0,1) and constants {a;, b;, ¢;} are uniquely determined by the join-up condition
ie.

indices? =1, ..

2|E~2 2=
ZI@

Vi(q1,0) = f*(Ui(q1)), Vi(ge, 0) = f*(Ui(ge)) and Vi(gs, 0) = f*(Ui(gs)) (1.4)
for every i € {1,2,..., N?}.



We define the affine IFS Z := {W;,i € {1,2,..., N?}} on R? such that the maps W; :
R3 — R3 are defined as

By [12], the map f* defined only on the date set can be uniquely extended to a continuous

function f*: A — R such that f*(¢;) = a; for all i € {1,2...,L(N)} and the graph G(f*)
of the function f* is the attractor of the affine IFS Z. In particular, it satisfies the equation:

[ (Ui(z,y)) = Vi(x,y, f*(x,y)) for every i € {1,..., L(N)}.

The surfaces G(f*) are known as fractal interpolation surfaces. The maps of the IFS Z in
the case N = 3 are precisely as follows:

x -z 1 a
Wl(xvyaz) = <§7 %7 312>; W4(a:,y,2’) = (? + 57 % + %7 —ar — %y + 542 + CL)
1

Y f“SQZ)

Y 1
,——I——,—aa:—— +sgz+a |,
3 s T )

W2(:c,y,z):<
(5
Ws(x,y, 2) r¥2 Y s3z |, Wiz, yz) —a:+1 A ar — ——y + 572 +a
T = = = | — - 2 - -
3\T, Y, 537 3 ) 7\T, Y 27 \/g?/ 7

3 '3'V3

FIGURE 2. Graph of the fractal interpolation surface (top & side view) with
parameters N =3, s; =s =0.75 and a = 1.

Define
Avi={ie{l,2,....N*} :a) = a5}, Ar:={ie{1,2,...,N?} :q) > a3}
={ie{1,2,...,N*}:d} <di}.



Moreover, set
k_ ok
1
{lal—2|} and B = where B; = maX{ lo; - a2|}
a 1 + max;eq,{Bi}’ keds |ak¥ — ak|
for all © € As. Our result on the dimension of the graph f* is as follows:
Theorem 1.1. Let T := {W;,i € {1,2,...,N?}} be a self-affine IFS on R? defined as
above. Let G(f*) be the attractor of the IFS I. For each i € {1,2,..., N?}, we consider
at # a if ab and ab both are not on the boundary of original triangle A. Then,

N2
log(3_i—y i)
log N
for Lebesgue all most every scaling parameters s € (1, 1)#4 x (5, 1)#42 x (55, 1)#4.

In the case of N = 3, one can see that #A4; = 5, # A, = 2,#A3 =2 and B = % and
D = 1. Thus, we have the following Corollary for the typical type results for the FISs.

D = min
k IEAS |(l1

dimp (G(f7)) = dimp(G(f7)) = 1+

Corollary 1.2. For Lebesgue almost every s = (s, S2, S3, S4, S5, S6, S7, Ss, Sg) such that
1 2
81,82, 83, 84, 56, 57, 89 € (3,1) and s5, 558 € (5,1), we have

10g(2?:1 Si)
log(3)
Our second main result gives the Hausdorff dimension of the FIS in the case of N = 3

for every parameter in a certain region.

Theorem 1.3. Let s; € (3,1) for every i € {1,2,...,9}. If max{ss, ss} < min{sy,s7} and

s9 < 89, then
log(Y_i, 1)
log(3)
1.3. Geronimo-Hardin FISs. Next, we consider the construction of the FISs given by

Geronimo and Hardin [§]. In this construction, the data points on the boundary of the
triangle A do not need to be coplanar but need to take uniform scaling parameters Consider

the equilateral triangle A with vertices {¢1 = (0,0),¢2 = (1,0),¢3 = (5, % ¥3)1 We take the
triangulation {A;}1_; as shown Figure

dimg(G(f*)) = dimp(G(f*)) =1+

dimp (G(f7)) = dimp(G(f*)) = 1 +

FiGUuRrE 3. Triangularization in the Geronimo-Hardin construction.

We consider a data set as follows

{(Qh O)? (QQv 0)7 <Q37 0)7 (q47 CL), (Q57 CL), (QG, CL)},
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where a # 0 is a real number, and the basic data function f*(¢;) = 0 if i = 1,2,3 and
f*(q:) = aifi=4,5,6. The chromatic number for this graph is 3. We can label the vertices
with three colours (blue, green, violet). For each i € {1,2,3,4}, the similarity map U; : A —
A; is defined such that the map U; maps the vertex of A of a color (blue or green or violet)
to the vertex of same color (blue or green or violet) of A;. And, for each i € {1,2,3,4},
the hight function V; : A x R — R is defined by V;(z,y,2) = a;z + bjy + sz + ¢;, where
s € (0,1) and constants {a;, b;, ¢;} are uniquely determined by the join-up condition i.e.
Vilg1,0) = F*(U(a), Vi(2,0) = F*(Uslge) and Vi(gs,0) = f*(U(as)) ¥ i € {1,2,...., 4},
We define the self-affine IFS Z := {W;,i € {1,2,...,4}}, where the map W; : R® — R3 is
defined as
VV@({E, Y, Z) = (Ul(x7 y)? ‘/l(xv Y, Z))

By [8], there exists a unique continuous function f* : A — R such that the function f*
interpolates the data sets and the graph (G(f*)) of the function f* is the attractor of the
affine IFS Z. Precisely, the maps in the IFS Z are as follows:

P 0] (e 0] e i
Wl(x’y’z) - @ _Tl 0 N WQ(x7y> Z) = _T\/g _Tl 0 y |+ % )
a % s| \%, —a % s| \z a
= 0 0] [z g =20 0] [z 2
Wi(z,y,2) =10 5 0f [y]+ % , Wa(z,y,2)= |0 F 0| [y]|+ %
| 0 _72; s z a 0 0 s z a

FIGURE 4. Graph of the fractal surfaces (top & aerial view) with parameters
s=0.82anda=1

First, by computing the overlapping number, we determine the dimension for every type
of scaling parameter as follows:

Theorem 1.4. Ifs ¢ {1"’4\/5, 1>, then

dimp (G(f*)) = dimp(G(f7)) =3+
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In this case, we also determine the dimension for typical scaling parameters as follows:

Theorem 1.5. There ezists a set £ C (3,1) with dimy (€) =0 such that

. . : . log(s) 1
dimg (G(f*)) = dimp(G(f*)) =3+ og(2) Vse (5, 1) \ E.

2. PRELIMINARIES

First, we go through some basic definitions and tools we intend to use.

2.1. Dimension concepts.

Definition 2.1. Let F C R% We say that {U;} is a d-cover of F if F C |JU; and
i=1

0 < |U;| < 6 for each i, where |U;| denotes the diameter of the set U;. For each 6 > 0 and

s > 0, we define

H§(F):inf{Z\Ui\5:{Ui} is a d-cover ofF} and H°(F)= lim Hj(F).
i=1

0—0+

We call H*(F') the s-dimensional Hausdorff measure of the set F. Using this, the
Hausdorff dimension of the set F' is defined by

dimp(F) =inf{s > 0: H*(F) =0} =sup{s > 0: H*(F) = oo}.

Definition 2.2. The box dimension of a non-empty bounded subset F' of (X, d) is defined
as

log Ns(F
dimg F' = lim 08V 5(F)
§—0 —logd

Y

where Ns(F) denotes the smallest number of sets of diameter at most ¢ that can cover
F, provided the limit exists. If this limit does not exist, then the upper and lower box
dimensions, respectively, are defined as

dimpF = limsup M and dimz /' = lim inf M.

50  —logd =0  —logd
2.2. Symbolic space. Let Z = { fi, fo,..., f,} be an IFS on R? such that || fi(z)— fi(y)|| <
rillz — y|| with 7, € (0,1) for all i € {1,2,...,n}. Let ¥ := {1,2,...,n}" be the set of
all infinite sequences with symbols from {1,2,...,n}. The set ¥ is the symbolic space
corresponding to the IFS Z = {f1,..., f,}. Let i = dyiy--- € ¥. We define i, :=i1dp... 1,
for all m € N. We denote the set of all finite sequences of length m with symbols from
{1,2,...,n} by X,,. Set ¥* := |J,-_, ¥,,. The notation |i| denotes the length of the finite
sequence i € X*. The symbolic space X equipped with metric p is a compact metric space,
where the metric p is defined as follows

p(i,j) =271

for i,j € X, where i A j denotes the initial largest common segment of i and j.
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2.3. Affinity dimension and Furstenberg measure. Let A be a d x d real matrix. For
t > 0, the singular value function ®'(A) of A is defined by

@t( ) = al...aLtJamt_LtJ if0<t<d
) |det(A) Y4 if t > d,

where ay > ap > -+ > aq4 are the singular values of A.
The affinity dimension of the self-affine IFS 7 = {f;(x) = A;xz + a;}_, is defined by

to := inf{t>0:i Z (I)t(Ail"‘Aim> < oo}

m=141...imEXm

If the matrices A; have the block triangular form

A = [Algz Q} for every i, (2.1)

a

a; Si

where U; are 2 x 2 orthogonal matrices, 0 < \; < |s;| < 1, g¢; € R?, and Z satisfies the SOSC
then by [2, Remark 2.6], the affinity dimension ¢, satisfies the equation ¢y = min{ry,r},

where
D s =1and > |s;[AP =1, (2.2)
=1 =1

In particular, when Y1 A? = 1, then ¢y =5 € [2,3].
Following the lines [2], Section 2.4], we define the corresponding Furstenberg IFS induced
by the IFS Z with matrices of the form (2.1]) as follows:

J = {hi(@ = ﬁUiTz— i@}n : (2.3)

Si Si )iz

The result of Rapaport [13, Section 1.2] gives a sufficient condition to calculate the dimen-
sion of the attractor of Z, see [2, Section 2.4]. We state it in the special case we require
throughout this paper.

Theorem 2.3 (Rapaport). Let

\U; 0 "
1= {o =" Yeval
& ‘ i=1
be a self-affine IFS in R® with attractor K such that it satisfies the SOSC, U; are 2 x 2
orthogonal matrices, S r_ A2 =1 and 0 < \; < |si| < 1. Let pp = S0 |8 N0 (Ri)apire
be the Furstenberg measure corresponding to the IFS in (2.3). If dimg pup > 3 — to then
dlIIlH K= to.

Finally, we state a simple proposition to estimate the dimension of self-similar measures
from below.

Proposition 2.4. Let J = {h;(z) = Uiz + t;}, be a self-similar IFS on R? with at-
tractor K and let (p;), be a non-degenerate probability vector and let = SN | pi(hy)upt.
If mingeg #{i € {1,...,N}: = ¢ hi(K)} > Q then

log(1 — @pmin)
lOg )‘max

dimpg p >

Y

where \hax — max;—;



Proof. Let r < 1. Denote B(x,r) the closed ball of radius r with center z. Let C,, := {i :
x ¢ h;(K)}. We have

max (B (x, 1)) = gle%zpz B(z,r) N K))
<
_r&@gc;pz ), A ')

< max p(B(z, \-L 7)) max (1 -y pi>

zeK zeK -
1€Cy

< m B 1 m — Op...: .
= J:Ealz( /’L( (l’, )\max )) xea[’? (1 pm1n>
This implies by induction

max pu(B(z, Al..)) < (1 — Qpmin)" for every n € N,

zeK
and so,
1 B 1 B n log(1 — ~
i inf 2EHB@ ) e 108 B Amax)™)) o 1081 =~ QPrmin)
r—0 log r n—00 n log )\max log )\max
This completes the proof. ([l

3. DIMENSION THEORY OF SOME SELF-SIMILAR IFS HAVING A COMMON FIXED POINTS
STRUCTURE AND SOME NEGATIVE CONTRACTION PARAMETERS ON LINE

First, we provide techniques to estimate the dimension of the Furstenberg measure from
below. Let us now consider a self-similar IFS as follows

G = {fi(z) = Mz} U{fi(x) = Az + pidi i N U Si(@) = = Aiw + ik ok —Not 15

where \; € (0,1) for every i € {1,2,..., N1}, 75 > 0 for every i € {N; +1,..., N3}. The
IF'S considered above has a common fixed point structure. The maps f; with ¢ < N; share
the same fixed point 0. The authors [3] considered recently such systems. Let us recall some
corresponding definitions we need for further analysis.

We denote [0 = {1, 2, ceey N1}7 [1 = {Nl + 1, c. ,NQ} and [2 = {N2 + 1, ey Ng} Set

1
D=mind®V and B = , where B; = max Tl for all i e 1.
kiclr | 7, 1 + max;er, {B;} kely | Vg

Let ¥ be the symbolic space corresponding to IFS G. For a symbol ¢ € Iy U I; U I, and
a finite sequence i € X*, let #;i be the number of the appearances of the symbol ¢ in the
sequence i. For i € ¥ U X*, we define the “first block” bi1 of 1 as follows: if i1 > Ny + 1
then b = i||bi1‘ where [bi| = min{k > 1 : iy # i1} — 1. Otherwise, b} := i'\bill where

|bi| := min{k >1:4, > Ny + 1} — 1. Then we define by induction. Suppose that bi, ... b},
are defined and finite. Then let

max {k 2> 1 b 1 = G g e V1S t< k} if U |t 11 > N1
|b +1‘ =
max {k >1: /L.‘bi1|+..,+|b3ﬂ|+£ < Nyforalll </¢< k} if i|bi1‘+.,,+‘bin|+1 <N
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If b, | = (o—\bw'“ﬂbz'i( then let b, | := oM H-+Phli and so, i = b} ... B bi . Otherwise,
let b}, = (a'b'l|+"'+|bl"|i)“bi - For each i € ¥ have the following unique block representa-
n+1
tion
§ = a0 G b (3.1)
b M M

We say that for i,j € 3, the first blocks are disjoint if the sets formed by the symbols
in the first blocks b and b are disjoint. We denote it by b} N'¥} = 0. In other words,

min{#;b%, #11711} = 0 for every 1 < i < Nj. Let II be the natural projection corresponding
to IFS G.

Definition 3.1. We say that IFS G satisfies the Exponential Separation Condition
for the Common Fixed Point System (ESC for CFS), if there exist N € N and b > 1
such that for every n > N and every i,j € X, with A; = );, we have the following:

either i, j have the same block structure or [II(i) — II(j)| > 27" (3.2)

This section aims to show that the IF'S G satisfies the ESC for CF'S for typical contraction
ratio parameters. The proof follows the lines of [3 Section 4] with only minor changes. We
will only give the essential steps and highlight the differences, but we leave the details for
the reader.

Proposition 3.2. There exists a set £ C (0,1)™ x (0, B)N2"N x (0, D)Ns=2 such that
dimyg & < N3 — 1 such that the IFS G satisfies ESC for CFS for every parameters A €
(0, 1)N x (0, B)N2=N1 % (0, D)Ns=PNz2 \ €,

We begin the discussion with the following, which makes the structure of the IFS slightly
less complicated. Still, studying the dimension theory of wedding cake-type surfaces, par-
ticularly to estimate the dimension of the corresponding Furstenberg measure, is sufficient.

Lemma 3.3. Let G be the self-similar defined as above. If the parameters \; € (0,1) Vi €
I, \i € (0,B) Vi€l and \; € (0,D) V i € I, then there exists an A > 0 and an € > 0
such that

fil0, A C (0,A] Vie L UlL.

Proof. First, we show that there exists a constant A > 0 such that f;[0, A] C (0, A] for
every ¢ € Iy U Is.

Let us denote the fixed point of the map f; by Fiz(f;). One can see that Fiz(f;) =0
for every i € Iy, Fix(f;) = 171_/}1 for every i € I and Fiz(f;) = ;’jr—’t\z for every i € I,. Since
fi(0) = v \; for every i € I} U I, we have

Vii
A - i)\ia .
A
First, we consider A = v;,\;, for some iy € Io. Then A = 7;,\;, > % for every k € I.
This implies that f[0, A] = [y e, AeYig iy + VeAk] € (0, A] for all k € I,. For k # iy € I,
we have

Fr(igAig) > 0 4= =A¥igAig + 1Ak > 0 = A(—YigAip + %) > 0 = Ay < %

io
This implies that for the parameters \; € (0,1) for all i € Iy U I; and \; € (0, D) for every
i € Iy, then f;[0, A] C (0, A] for every i € I; U I5.
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On the other hand, if A = % for some iy € I;. Then, we have % > % for all
20 20
k € I; and A\, < % for every k € I,. This implies that f;[0, A] C (0, 4] for all k € I;.
io
For k € I, we have

ig i 1

fr(A) >0« —)\kM + A > 0= Ny < ———.

1= N 1+ 2o

Thus, for the parameters \; € (0, 1) for every i € Iy U I, and \; € (0, B) for all ¢ € I; then

7,10, 4] € (0, A] for all i € I, U I, 0

For every 0 < € < min{min;e;,{\;, 1 — A\;}, minger, {N\;, B — A}, minge, {\i;, D — \; }, €},

then by Lemma [3.3]
fl[O,A] C [G,A] V 1€ Il U IQ.

For i,j € &, we define A;5()) = II(i) — II(j) for every vector A € (0,1)M x (0, B)N2~M x

(0, D)Ns=N2_ TLet us define the following set of pairs:

E::{(i,j)eExE:bilﬂbil:(Z)&bil#i&bil#j}. (3.3)

We divide the set £ further:
Ly:={(1,J) € L:i1 # ji,in € [LlULUL, g1 € hULY, Lo = L\Ly = {(1,§) € L i1 # 51 € Lo}

(3.4)
Now, set Ny := ((1_2#} + 1, and divide Ly further:
Ly = {(i,j) € £+ max {max {#0}, #td | | < No} and £y = Lo\ L. (3.5)

One can see that £; and L3 are compact subsets of ¥ x 3.

Lemma 3.4. Let € > 0 be arbitrary as defined above. Then there exists a constant C' > 0
such that for every A € [e,1—¢€]™ x [e, B—e]N>™™ x [e, D — €]~ and for every (i,j) € L4

| 0A,
min {\Ai,j (Al 5 A,:

where k is such that max{#bi, %0} > Ny.

(A)‘} > Ce2max{iLl}

Proof. By Lemma [3.3] the self-similar IFS G satisfies all the assumptions of the self-similar
IFS F defined in [3] with ¢; = y;A; for all i € {N1+1,..., N3}. Thus by [3, Lemma 3.2}, we
get the claim of our result. Let (i,j) € £4. This implies that bi N, = 0 and i, # j; € I.
A 2
First, we assume that Al ¢ (%, —). Then, by [3, Lemma 4.1], we get the
j €

bl
A5 ()] > e2maxBLgD

Ai 2
Lastly, we suppose that % € <§, —). Then by [3, Lemma 4.2], we get that
2] €

8Ai,j
Ok

for some uniform constant C > 0. O

(A)‘ > Cemax{ b
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Lemma 3.5. Let € > 0 be arbitrary as defined above. Then there exist p > 0 and C' > 0
such that for every (i,j) € L3 and for all A € [e,1 — €] x [e, B — €] x [e, D — ]V~ 1V2,
there exists (m; ;) jyer € N2 such that m = Z (ijyer Mij <P and

> (.

(A)

‘sz)el Z]

Proof. The lemma can be proven along the same lines as the proof of [3, Lemma 4.5]. We
omit the details. 0

Lemma 3.6. Let ¢ > 0 be arbitrary as defined above. Then there exist p > 0 and C > 0
such that for every (i,j) € L1 and for all A € [e,1 —€]™ x [e, B—€]N>™M x [, D — ¢]Ns7 N2,
there exists (m; ;) jyer € N2 such that m = Z (ijyer Mij <P and

)| >C.

‘H’L])EI Z]

Proof. The lemma can be proven along the same lines as the proof of [3, Lemma 4.6]. We
leave the details in this case again for the reader. 0

Proof of Proposition[3.3. First, we define a set as follows
L= {(i,j)eEann:bilﬂbil:@&bil#i&b{;éj}.
Then for every € > 0, let

E=NNU U {Ae e, 1— €)M x[e, B—e]N> M x[e, D— V™2 - | A5 (V)] <nn}.
>0 N>1n>N (i,j)eL

(3.6)
Using Lemma Lemma and Lemma [3.6] and applying the same technique as in [3),
Proposition 4.7], we get that dimpy(E.) < N3 — 1, and for all A € [e,1 — ¢]™ X [¢, B —
V2N (e, D — M N2\ B, 37 >0,3NeNVYn>NVY(ij e (S, xZ,)NL such
that

A (A)] > 0"
We deﬁne another set as follows:

G, = U U Qele1—dV x[eB—g™ ™M x[e,D— ™M) =)}

n=1 (i,j)eT, xXp
inj=0

One can show along the lines of [3| Lemma 4.8] that dimpy(G.) < N3 — 1. We define the
exceptional set & by £ := F' UG, where F = U,>1 I/, and G = U,>1G1/,. Then one can
finish the proof by applying the techniques in [3, Proposition 4.9]. U

4. HAUSDORFF DIMENSION OF MASSOPUST’S SURFACES

This section is devoted to proving Theorem [I.1and Theorem [I.3] Let us recall some defi-
nitions from Section . Consider the equilateral triangle A with vertices {(0, 0), (1,0), (%, %2

27 2
and let {A;}Y, be the uniform triangulation for N > 3. Consider a data set {(qx, ak)}égf)
associated with the triangulation {A;}Y’, where L(N) = w We assume that

ay = 0 for all k such that the corresponding ¢ is on the boundary of the triangle A. For
each i € {1,2,..., N?}, we denote the value at the left vertex of the horizontal line of A;
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by a', value at the right vertex of the horizontal line of A; by a’ and value at the other
vertex by ab. For each i € {1,2,..., N?}, define the similarity map U; : A — A; as in ((1.2)),
the map

Vi(z,y,z) = ayx + by + s;z + ¢

as in ([1.3]) such that it satisfies the boundary condition (1.4]). Clearly, by using the above
conditions, we get

- 2 (~(a} +a3) )
a; = —|a} — a4l and b = — ————== +
i — aj (T

Now, we define an affine IFS Z := {W;,i € {1,2,...,N?}} on R3 where the map W; :
R3 — R3? is defined as

Wi(l‘, Y, Z) = (Ul<x7 ?J)7 ‘/7,(‘737 Y, Z))
Denote f*: A — R the unique fractal interpolation function of which graph G(f*) is the
attractor of the affine IFS Z.

Note 4.1. One can also see that the subspace generated by the vector (0,0, 1) is invariant
under the linear parts of the IFS Z. Thus, the IFS Z is not strongly irreducible. So, the
dimension theory of self-affine IF'S presented in [14] is not applicable here.

We assume throughout the paper that s; € (%, 1). Thus, by (2.2)) the affinity dimension
to corresponding to the self-affine IFS 7 is the unique solution of the following equation

> o(5)”
Zsi - =1.
i=1 N

By [7], the affinity dimension ¢ is a natural upper bound for the box dimension of the
self-affine set, and we have

dmmmf»sﬁ@wumsm=1+@%%§ﬁ (4.1)

for all parameters.

4.1. The Furstenberg measure and a sufficient condition. Let A be the interior of
the original equilateral triangle A. Then, one can see that

Wi(AxR)CAxR, Wi(AxR)NW;(AxR)=10

for all i # j € {1,2,..., N?}. This implies the IFS Z satisfies the SOSC.

Let p = (p1,p2,...,pn2) be a probability vector, where p; = si(i)to_l for every i €

N
{1,2,...,N?}.
Define

A ={ic{l,2,...,N*}:al =ab}, Ay:={iec{l,2,...,N*}:d' >dal}

Az ={i€{1,2,...,N?} :d} < db}.

Let p = (p1,pe,...,pn2) be a probability vector, where p; = si(%)to_l for every i €

{1,2,...,N?}. By applying (2.3]), we construct an Furstenberg IFS 7 = {hy, ha, ..., hy2}
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on R? by the self-affine IFS Z as follows

( ! [1 o |+ 1 _ai_ifa’1>a§and1<z<N(N+1),
Ns; |0 L ly]  si |bi] 2
hi(z,y) = - e i
’ lei -_01 2- -z- _sll- -Z- if af <ahand1<i< w,
x]\;&' [_01 —01 z _Sli :Zj:ifa§<aé anderl_iSNa

The Furstenberg measure pup = Zi]\fl pi(hi)«pr is the unique invariant Borel probability
measure corresponding to the IFS J with probability vector p. Since the self-affine IFS 7
satisfies the SOSC and s; € (%, 1) Vie{1,2,...,N?}, to verify the equality in (4.1)), we
only need to show that

dlmH(,uF) >3 —tp
by Theorem In particular, to show Theorem and Theorem [1.3] we will prove the

following;:

Proposition 4.2. For each i € {1,2,..., N?}, let a} # @} if a} and a)) both are not on the
boundary of original triangle A. Then,

dlmH(,uF) >3 —tp

for Lebesgue all most every scaling parameters s € (4, 1)#4 x (55, 1) x (35, 1)%%.

Proposition 4.3. Let s; € (%,1) Vi e {1,2,...,9}. Suppose that max{ss,sg} <
min{sy, s7} and s < s9. Then,
dimg (pur) > 3 — to,
where %, is the affinity dimension of the IFS Z in (4.1)).
Proof of Theorem[I.1. The claim follows by , and the combination of Theorem

and Proposition [4.2 0
Proof of Theorem[I.3 The claim follows by (4.1)), and the combination of Theorem
and Proposition 4.3 0
Remark 4.4. We note that the method is not applicable in every configuration. In the
above construction, if we consider s; = s for every i € {1,2,..., N?} and a, = a for all
ke {1,2,...,L(N)}, then for the large value of N,
—log s 1
di 3—tyg= \ —, 1. 4.2
imp (pur) ¥ 3 — to gy V€ (N, ) (4.2)

In this consideration, there are 9 different mapping in Furstenberg IFS 7 with multiplicity
(N=3IN=2) 4 g WIS (N —92), (N —2), (N —2), (N —2), (N —3), (N —2), 1, respectively.

Examples: For N = 100, dimp (pur) < =25 for s € (0.042,0.237).
log N

For N = 1000, dimp () < 3,252 for s € (0.001,0.430).

For N = 10000, dimp (11p) < 7252 for s € (0.0001, 0.461).
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Although, if we consider some s; # s; for some i,j € {1,2,...,N?} and a; = a for all
ke {1,2,...,L(N)}, then for the large value of N, the same situation as in occurs.
For example, we consider (V=3)(N=2) 4 3 many mappings with s; = s + 0.001, w
many mappings with s; = s 4+ 0.002, 5(N — 2) many mappings with s; = s+ 0.003, (N — 3)
many mappings with s; = s + 0.004 and 1 map with s; = s+ 0.002. In this consideration,
we have the followings:

2
For N = 100, dimy () < 2 — 5250 for s € (0.035,0.279),

2
For N = 100000, dimy (pir) < 2 — 5250 for s € (0.00001,0.463).

Remark 4.5. Let us also note that our method might be applied to other data sets when
some of the data values over the horizontal edges of the triangles coincide. Still, there
are enough maps where there are no coincidences, and in particular, there are enough
maps that do not share the same fixed point, which ensures that the lower bound for the
dimension of the Furstenberg measure might hold.

4.2. Dimension for almost every parameter. Let f; be the projection of h; on the
X-axis. Let Jx = {f1, f2,. .., fn2} be the projection of the IFS J on the X-axis. Then,
for i € {1,2,..., N?} the map f; is as follows

N if i = aj
filz) = NmSi — ?—Z if ai > aj
Ne — o ifa) <aj.
Set \; = x5 and y; = —a;N = |a] — a5|N > 0, one can see that the IFS {f; N* is of type

considered in Section [3| Since s; € (5,1), we have A; € (5,1) for all i € {1,2,..., N?}.
Thus, we have

TIx = {fi(x) = Niz}ica, U{fi(x) = Xz + vi\i tiea, U{fi(x) = =X 4+ 7iXi e,

Proof of Proposition[{.9 Let Px.ur be the projection of the measure pup on the X-axis.
The measure Py, is the invariant measure corresponding to the IFS Jx with probability
vector p. By Proposition [3.2] there exists a set & C (0,1)#41 x (0, B)#42 x (0, D)## such
that dimy & < #A; +#As+#A3—1 such that the IFS Jx satisfies ESC for CFS for every
parameters A € (0,1)#41 x (0, B)#42 x (0, D)#4s \ €. Thus, by [3, Theorem 5.1, Theorem
3.5], we get

— > pilogp; + () }
— > pilog \;
D#A x (5, 1)#42 x ({45, 1)#42 \ €. Now, by [3, Proposition

dimpg (Px.ptr) = min {1,
1
N

®(p) > > pilog (pz- + > pj).

€Ay jEAUA3
Given that for each i € {1,2,..., N?}, a} # a} if a' and a’ both are not on the boundary
of original triangle A. Under this consideration, one can see that
#A1 =N +2 and #A2+#A3:N2—N—2.

Now, our aim is to show that

2 2
— 3N pilogp; + ®(p) 3 L log XN s
= >3 —ty =2 —2Li=lTl
- Zi:1 Di log Yy log N

for every parameters s € (
2.2], we have
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Since A; = = and p; = s;()"*!, we have
2 2
- Zz]\i1 pilogp; + (I)(p) > 9_ log fo\i1 S;
_Zif\fl pilog \i log N
- - Zz 1 Di logpz + ZzeAl Di log <pz + ZJeA2uA3 pj) log Zi]\fl s
Zz‘—l p;log N's; log N
- - Zz 15 long + ZZEAl Si 1Og (p'b + Z]EAQUAg p]) log Zij\ii S;
Zi]\; s;log N's; log N
ZiEAl 55 lOg <s¢+2,76:2u,43 Sj) + ZieAguAg S; IOg ( i=1 S'L) lo N2 |
— g2 i Si
Zl L silog Ns; log N
S; + : S; ].V2 i
= Z s; log ( 2 e daidy ]) + Z s;log (—2121 i )
i€ AL 5i i€ AUA3 5i

il log ZZ | Si
> Z S; log(Nsl ZSZ log(Ns;) —="=—
i=1

log N
Si+ Y s SV
7 i 2 97 .1 S;
o3 wtog () S 0 ()
= N*s; i€ AUA3 N*s;
N2 N2
log 3 s
> —Zsi logNsi%

=1

log (N Smin) Si+2jeA2uAr Sj vazl 2)2
= (v (RS ¢ X s (B)) o

€A =1 1€A2UA3
N2 N2 2
S; + Z Sj . .S
= Z s; log ( ]\][5“432UA3 Z si | + Z s; log —(Zﬁl 31) > 0.
€A Si =1 1€AUA3 Si

N .
Clearly M > % > 1. This proves our claim. Since 3 — ¢, € (0, 1), we have

for Lebesgue all most every scaling parameters s € (x, 1)#4 X (55, 1)#42 x (55, 1)#4.
The proof is completed by Theorem O

4.3. Hausdorff dimension of the FIS in the case of N = 3 for every parameter.
Here, we prove Theorem by computing the overlapping number.
Since the upper bound

IOg(Zz 1 8i)
log(3)

holds for every parameter value, it is enough to show the lower bound.

dimp (G(f7)) < dimp(G(f*)) <t =1+
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For the lower bound, consider the corresponding Furstenberg IFS J = {hy, ha, ..., ho},
where h; : R? — R? are defined as follows:

110z 170 1710l [z] 1[0
h - _ = h _ - _ =
l(l’)y) 331 |:0 1_ |:y:| s |:0:| ; Q(xay) 382 |:0 1_ Y| S5 \2/_%] ;

11 0l[z] 1o 1 [=1 0] [2] 1][-a
h3(x7y)_3_83|:0 1:| -y:| _;3[0:|7 h4($7y)_3_&1|:0 1- -y_ _8_4 _\/Lg],

R [H e R [

e =g fo SJE1- )

Let pp = Z?:l S; (%)til (h;)«pr be the invariant Borel probability measure for the IFS J

with probabilities p; = s; (%)til . By Theorem , to show that

108;(2?:1 Si)

dimp (G(7) 21 =1+ = 20—

it is enough to prove that
dlmH<,U,F> >3 —t.
Now, we will estimate the Hausdorff dimension of the Furstenberg measure.

Let f; be the projection of h; on the X-axis. Let Jx = {f1, f2,-- ., fo} be the projection
of the IFS J on the X-axis. Precisely, the maps f/s are as follows:

@)= gm fl@) =g file) =g, fola) = gm0 fole) = 5
fild) ===+ B@)= g+ o o) =gt A@) = g+

The fixed point of the map f; is denoted by Fix(f;) for all ¢ € {1,2,...,9}. Thus, we have

Fix(f1) = Fix(f2) = Fix(f3) = Fix(fs) = Fix(fy) = 0,

) 3a : 3a . 3a . 3a
Fix(fy) = S 1 Fix(f5) = Erm—T Fix(f;) = 35 11 Fix(fs) = Cy—

Without loss of generality, we assume that s5 < ss.

Lemma 4.6. Let s; € (%, 1) Vie{l,2,...,9}. Let |a, l;] be the invariant interval for the
IFS Jx. Then, a =0 and b = Fiz(fs). Moreover, if max{ss, ss} < min{sy, s7}, then
(£200,8] U £2[0,]) 0 (f5[0, 0] U f[0, B]) = 0. (4.3)

For a visualisation, see Figure [3]
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Ji s
—— , | Fix(f5)

Jr | fs

FIGURE 5. Visualisation of the configuration in (4.3).

Proof. The maps f4 and f; are flipping the orientation and other maps are orientation
preserving maps. Since s; < sg, the fixed point Fix(fs5) is the largest fixed points. Since

s; € (§1> Vie{l,2,...,9}, we have

£a10, Fis(f)] = [% —} c [0, Fix(fs)]
a(3s5 —2) a

210, Fix(f5)] = [M’S_J C [0, Fix(f5)]-

This implies that [0, 8] is the invariant interval for the IFS Jx, where b = Fix(f5). One can

see that
£10,7] = [3,6} and f3[0,7] = {g 3550 }

S5 887 88(385 - ].)

Now, we assume that max{ss, ss} < min{sy, s;}. Then, we get
(£400,0] U £2(0, B]) 0 (5[0, 5] U £s[0,0]) = 0.
This completes the proof. ([l

Now, we will see the projection of the Furstenberg IFS J on the Y-axis. Let g; be the
projection of h; on the Y-axis. Let Jy = {g1, g2, - - -, go} be the projection of the IFS 7 on
the y-axis. Precisely, the maps g}s are as follows:

0 = . 5) = —, gsly) = —

381 383 - 386’
Y 2a Y a Y a
= — — , = — 4 , = - + R
92(y) 355 Vs, 94(y) 351 " V3er 95(y) 355 Ve
—y a —y a —y 2a
= — + s = — + s = — — .
97(9) 357 \/337 98(?/) 3sg \/§Ss gg(y) 359 \/§39

Next, we will examine the invariant interval for the IFS Jy = {g1,92,...,99}. The fixed
points of the maps g.s are as follows:

Fix(g1) = Fix(g3) = Fix(gs) = 0,

(o) — 00 oy 8e384
FIX(QQ) - \/5(382 — 1)7 F (94) \/3(384 . 1)’ F (95) \/5(385 o 1)’
. 3a 3a —b6a
Fix(g7) =

——— Fix(gs) = —=———, Fix(gg) = ————.
V3(3s7 + 1) (95) V3(3ss + 1) (90) V3(3s9 + 1)
Without loss of generality, we assume that s; < sg and s4 < ss.

Lemma 4.7. Let s; € (3,1) V i € {1,2,...,9}. We assume that if max{ss, ss} <
min{ sy, 3~7} and sy < sg. Let I be the invariant interval for the IF'S Jy. Then, the invariant
interval I is either [Fixz(gs), Fiz(gs)] or [Fiz(gs), gs(Fiz(gz))].
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Fix(gs)T T gs(Fix(g2))T T
95 | | 94 gs | | g7
0t 0t
g2 g2
Fix(g) - 1 Fix(g) - 4

FIGURE 6. Visualisation of the configuration in Lemma

For a visualisation, see Figure [0

Proof. The maps ¢», g4 and g5 are preserve the orientation, however the maps ¢gr, gs and
go are flipping the orientation about Y- axis. The Fix(gy) is the lowest fixed point. Since
sg < s7 and s5 < s4, the fixed point Fix(gs) is the largest fixed point. All the fixed points
are always in the invariant interval I. Thus, gs(Fix(g2)) € I. And, we have

—1( —6a )+ a  a <332—|—1)
358 \V/3(3s5 — 1) V3ss  V3sg\3s2—1)"

gﬂﬂﬂmﬁzgdﬁﬂmﬁ(§)<gdﬂﬂmﬂ

Furthermore, gg(gs(Fix(g2))) € I and gs(Fix(gs)) € I. Thus, we have

_ _a (3s3(3sy—1) — (352 + 1) , _a (3552
One can see that

9s(gs(Fix(g2))) > Fix(g2) ,0 < gs(Fix(g5)) < gs(Fix(g2)) and 0 < gg(Fix(g5)) < Fix(gs).
The map gy is also flipping the orientation. So,
. -1 3a 2a —a (685 — 1)
Fix =———) - = ,
9 (Fix(gs) 359 (\/5(385 - 1)) V3sg  V/3sg (355 —1
. —a (382 + 1) + 688(382 — 1))
Fi = )
(o Fix(an)) = = (22

9s(Fix(go)) =

go(Fix(ga)) = —_1( —6a > _2a _ —2a (352 —2>'
359 \V/3(3s5 — 1) V3s9 V389 \3s2 — 1
One can see that
0 > go(Fix(g2)) > Fix(g2).
For sy < s9, we have the following relation for the map go:

0> go(Fix(g5)) > Fix(g2) and 0> go(gs(Fix(g2))) > Fix(g2).

Thus, for s, < sy, the invariant interval I is either [Fix(gs), Fix(gs)] or [Fix(g2), gs(Fix(g2))]
depending on the relation between Fix(gs) and gg(Fix(gs)). This completes the proof. [
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Proposition 4.8. Let s; € (%,1 Vi e {1,2,...,9}. Suppose that max{ss,sg} <

min{sy, s7} and sy < s9. For © € Ap, let d, (v) denotes the lower local dimension of
pur at x. Then,

log(1 — Swmin;)
di > 2 3077
TH pE = 10g(3Smax)

Proof. For each x € Ap, we define C, := {i : © ¢ hi(Ar) and i € {1,2,...,9}}. First, we
show that that #C, > 3 for every z € Ap, where #C, denotes the cardinality of C,.

By Lemma [4.6| and Lemma either the rectangle [0, 5] x [Fix(g), Fix(gs)] or [0, b] x
[Fix(g2), gs(Fix(g2))] mapped into itself by all the maps of the Furstenberg IFS 7.

In the first situation, I = [Fix(g2), Fix(gs)]. In this case, the cylinder corresponding to h
is placed at the bottom of the invariant set (on the Y-axis) and the cylinder corresponding
to hs is placed at the top of the invariant set (on the left side of the Y-axis). Since

1 1
£+£<1ands5§54,wehave

h2<[0,6] x 1) N h5([0,l~)] x I) = 0 and hy(]0, 5] x I)n h4([0,5] x I)=10.
By Equation 4.3] we have

(m([o,é] « 1)U hn([0,7] % f>> " <h5([0,5] % 1)U hs([0,7] % f)) )

Thus, from the above, it is clear that a point can be contained in at most six cylinders,
and so #C, > 3.

In the another situation I = [Fix(g), gs(Fix(g,))], then by using same idea as above,
and using the conditions % + ﬁ < 1 and sg < s7, one can get #C, > 3. The claim then

follows from Proposition [2.4] ([l

Proof of Proposition[{.d Since dimpy(ur) = ess inf(d, (x)) and by Proposition , we
obtain
log(1 — Swmin;)

3t0—2

—1og(3smax)

lOg(lf Smin )

—— 20 = 1og(§;i;j) > 3 —tg. We have

For proving dimgy (ug) > 3 — to, it is enough to show that
log(1 — Zmis )

3t072
—log(3Smax)
log(1 — z-r)

—log(3)

6 3to
=ll1-—) < —
( 3to) 27

<=0 < 3% — 27 x 3 4 162.

>3 —t

>3 —tp

Smin )

log(1—
This implies that if 3" > 18, then the inequality % > 3—tg holds. Since s; € <§, 1)

.
and the affinity dimension tg = 1 + % > 1+ }gig, and so, we have 3% > 18. This

completes the proof. O

Remark 4.9. The method of overlapping numbers might again be applicable for other cases
when N > 4 and for general data sets. However, since there are many maps in very general
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positions, verifying that the overlapping number is sufficiently small would clearly require
tedious calculations.

4.4. Uniform scaling factors. Next, we will consider a uniform scaling factor s = s; Vi €
{1,2,...,9} in the construction of fractal surfaces. For that, we have the following result:

Corollary 4.10. If s € (2,1), then

log(s)
log(3

dimp (G(f*)) = dimp(G(f*)) = 3 +

~—

The proof of this corollary follows from Theorem
Next, we show some dimension results for the typical choice of the uniform scaling factor.

Theorem 4.11. Ifs=s; Vi€ {1,2,...,9}, then
1

., log(s)
log(3)

Proof. 1f s = s; for every ¢ € {1,2,...,9}, then the projected IFS Jx = {f1, f2,..., fo} of
the Furstenberg IF'S is as follows.

dimy (G(f*)) = dimp(G(f*)) =

for a.e. s € (1/3,1).

fix) = fa(x) = fi(z) = fo(x) = fo(z) = %,
fil@) = folw) = ==+ =, filw) = fule) = o= + =

And in this case p; = % for every i € {1,2,...,9}. Thus, the IFS Jx is equivalent to the IF'S
Ix = {fi(z) = %,fz(x) =—3+ %,fg(l’) = £ + 2} with probability vector (3,2, 2). Let
Px.uur be the projection of the measure g on the X-axis. Let € > 0 and M be a sufficiently
large natural number. Now, we define real analytic maps r; : [5 +¢, M] — (=1,1) \ {0}}

and d; : [ + €, M] — R} are as follows:
1 1 a
ri(s) = rs(s) = o5 rals) = —57, dils) =0, dals) = da(s) = .

The TFS Jy is same as a parametric family of self-similar TFS Z, = {r;(s)z 4 d;(s)}2_,. For
s € (1, M], the parametric IFS Z; satisfies the strong separation condition. Let A be the
attractor of the parametric IFS Z,. Let II, : ¥ = {1,2,3} — A, be the associated natural
projection. Then,

1
VijeXx, TI,({)=TIL({) on |:§—|-E,M:| — i=]j.
Thus by the result of Hochman [9] Theorem 1.10], we get
3 5 5y _ 4 2
S8 doglp) =2 log(3) — Llog(2 1
Z:f:lp 8p:) =2 °8(s) — g Og(g)}fora.e.s € [——Fe, M}

— > i1 pilog(|ril) log(3s)

The € is arbitrarily small. Thus, we have

dimpy (Px.ptp) = min {1,

=S log(2) — 4og(2
dimpg (pup) > dimy(Px.pir) = min{l, 9 Og(g) 9 Og(Q)} for a.e. s € (%, 1).

=5

5)_410g(2 og(L
One can easily see that -2 1og1((?g)(3§)1 26) 5 3t = lloi((g)) and 3—t € (0,1) for all s € (5,1).
Thus,

1
dimpg(pup) >3 —t for a.e. s € (g, 1).
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Thus, by Theorem , dimy(p) =t =3+ izgggg for a.e. s € (1/3,1). This completes the

proof. O

5. GERONIMO-HARDIN SURFACES

In this section, we will prove Theorem and Theorem [I.5] In these results, the self-
affine IFS is Z = {Wy, Wy, W3, Wy}, where the maps W, are as follows:

1 V3 1 -3 3
Wi(z,y,2)= [ L o [y], Walwy2)=|=2 F ol ly]|+[£],
a \/LE S Z, —a \/Lg S z a
= 0 0] [z 8 =0 0] [ g
Wg(l',y,Z) = O % 0 Yy + \/Tg ) W4(x7y7z) - 0 _71 O ) + \{f
0 _TQ; s z a 0 0 s z a

Thus, the IFS Z is a block triangular self-affine IFS. Let s € (%,1). Then, the affinity
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dimension (t) for the IFS Z is uniquely given by the following equation

and by [7], we get

log(s)
log(2)’

Since bi-Lipschitz conjugation preserves the fractal dimension, we may assume without
loss of generality that a = 1. For the lower bound, again, we construct the corresponding

Furstenberg IFS J = {hy, ho, hs, hy} by (2.3)), where h; : R? — R? are defined as follows:

dimp (G(f*)) < Fmp(G(f) <t =3+ (5.1)

hl(x,y):%lig 2 MJr L holr,y) =5 | 35 24 M+ ek
2 2 2

, . ) (5.2)
- e | R v ]

For s € (3,1), the Furstenberg IFS 7 is contractive. Let Ap be the attractor of the
Furstenberg IFS 7. The Furstenberg measure pp is the invariant Borel probability measure
for the IFS J with the uniform probability vector p = (i, %, }1, %) By taking bi-Lipschitz
conjugate of the IFS J with the map g(x,y) = =*(z,y), the resultant IFS is denoted by
J = {h1, ha, hs, hy}, which is as follows.

5.1. Every-type result. We can not proceed with the argument as in the previous section,
because the projection of the Furstenberg IFS J on the X-axis and Y-axis is not an IFS.
In this case, we need to directly determine the invariant set for the IFS J and with the
help of that, we estimate the overlapping number for the IFS J. The fixed points of the
maps h;’s are as follows.

Fix(hy) = (484i 5 \/g(f:_ 2)>, Fix(ho) = < - 4s4i 2 ﬁ(jss— 2))’

Fix(hg):((),— 55 )), Fix(hy) = (0,0).

V3(4s — 2
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Proposition 5.1. Let s € [1+4‘/5, 1). Then, mingex #{i € {1,...,N}: = ¢ hi(Ar)} > 1.

Proof. Let Fix(hy) = A, Fix(hy) = B and Fix(h3) = C. Let S be the invariant set for
the IFS 7. The map hy flips the orientation about the X-axis. Since A, B,C € S, we

have A" = hy(A) = <_ ot _«/5(4252)) €S,B' = h(B) = (432_27 _\/5(4252)) € & and
C" = h(C) = (0, m> € 8. For s € (1,1), our claim is that the convex set with
vertices A, B,C, A’, B’ and (" is the invariant set for the IFS 7. We denote that convex

set by Con(ABCA'B'C"). One can see that the set Con(ABCA'B’'C") is symmetric about
Y-axis, see Figure [7]

C/

C

FIGURE 7. The invariant convex hull of the Furstenberg IFS (/5.2]).

Now, we prove our claim. We have

Pald) =4, m(B)= <1ﬁ> =5 (€)= (375 e 2)) -

() = (—14—5(45—2)7 —1+s(45—2)) A (B) (1’ 2+S(4s—2)) B
s(4s —2) sv/3(4s — 2) sv/3(4s — 2)
1+ s(4s —2) —1—1—5(43—2))
hy(C") = : =C].
(@) ( s(4s —2) sv/3(4s — 2) !
One can see that the points B} and C7 are on the line AC" and AB’, respectively. For

s € (3,1), we get 1 < (45—2_2). And the point (1,%) is on the line CB'.

Since — \/§(425_2) > \/54(54232) (45_\}%&‘;:;;_88, the point B is on the above side of line
CB'. For s € (%,1), we have —45272 < ii:;‘ < 0. Thus the point C; is in the left
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side of the set Con(ABCA'B'C") and on the line joining A and B. This implies that
hi(Con(ABCA'B'C")) € Con(ABCA'B'C"). For, the mapping hs, we have

4s — 6 4s — 4 4s
—————— | = A, he(C)=| — : = (y,
\/3(45—2)> 2 ha(C) ( 4s — 2 \/5(48—2)> i

, —1+ s(4s — 2) —1+s(4s—2)) , , ( 2+8(4s—2)) ,
ho(B) = ( — : — Bl hy(A) = (=1, 2550y
() ( s(4s — 2) sv/3(4s — 2) 2 ha(A) sv/3(4s — 2) 2

, 1+ s(4s —2) —1+s(4s—2)> ,

hao(C') = | — ) = (Y.

(%) ( s(4ds — 2) sv/3(4s — 2) 2

Thus, one can see that hy(Con(ABCA'B'C")) is the mirror image of hy(Con(ABCA’B'C"))

with respect to Y-axis. Thus, due to symmetry of the set Con(ABCA’'B'C") with respect
to the Y-axis, we get ho(Con(ABCA'B'C")) C Con(ABCA'B'C’). For, the mapping hs,

we have
2(1 —s(45—-2))\
V3s(4s — 2) ) =G

N 6 — 8s B N 1 —1—2s(4s—-2)\
hy(4) = (43 — 2" \/3(4s — 2)) = Asha(4) = (8(45 —2)" /3s(4s —2) ) =4

= 685 \ . -1 —1-2s(4s—2)\
0= (552 v 5) = 200 = (Vi)

One can see that the points A5 and Bj are on the line CB’ and C'A’, respectively. For
L —2 6-8s —1-25(45-2) 6-8s —1-2s(45—2) 4

s € (2’ 1)’ we have V/3(45—2) < V/3(45—-2) < V/3s(45—2) and V3(45—-2) < V/3s(45—2) < V3(45—2)"

This implies that h3(Con(ABCA'B'C")) C Con(ABCA'B'C"). For, the mapping hy, we

have

ha(B) = B, hy(A) = (— 1

ha(C) = C, hy(CY) = (o,

h4<A) = Al, h4(B) - B/, h4(0) - C,,
1 1 , N -1 1 o
(45 —2)" \/3s(4s — 2)) = A halB) = (8(45 —2)" /3s(4s — 2)) =B

@ = (0 )

1 —8s —2 - 1 2
For s € (5,1), we have Ve < Vaaen < ﬂ(45_2),0 < @ < s and 0 <

\/35(111872) < \/5(42572). This implies that hy(Con(ABCA'B'C")) C Con(ABCA’'B'C"). Thus
the set Con(ABCA'B'C") is an invariant set for the IFS J.

Now, we will estimate the overlapping number. For s = %5, one can see that A| =
By = C4 = (0,0), hi(Con(ABCA'B'C")) is on the right side, hao(Con(ABCA'B'C")) is
one the left side (mirror image of hy(Con(ABCA'B'C")) with respect to Y-axis) and
h3(Con(ABCA'B'C")) is below the X-axis. Thus, only at (0,0), the overlapping number is
4. This implies that K < 3 a.e. x € Ap. For a visulalisation, see Figure [§]

Now, we assume that s € (%5, 1). In this case, we have s(4s —2) > 1. Thus, A} and
Bj are in the 1st and 2nd quadrant of the set Con(ABCA'B'C"), respectively. And CY is
on negative Y-axis. The points C] and C} are on the above of the X-axis and on line AB’
and BA’, respectively. Thus, any point of Con(ABCA’'B’C") can lie atmost two of the sets
hi(Con(ABCA'B'C")), ha(Con(ABCA'B'C")) and hg(Con(ABCA'B'C')). Thus, K < 3.
This completes the proof. O

ha(A') = (S
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Y Y
A O B
B A
ol o
& By &
3 3\ B X
A’ B’
A2 Bl
By As
C
Fors:1+45 Fors>%‘?’

FIGURE 8. The first level cylinder sets for the Furstenberg IFS (/5.2)).

Proof of Theorem[I.j} Combining Proposition [2.4]and Proposition 5.1} we get dimp (pp) >
3 — t, where t is the affinity dimension of the IFS Z for every s € HT*E, 1) .. Then the
claim follows by Theorem [2.3]

5.2. Almost every-type result. Next, we discuss almost surely results for the above-
constructed fractal surfaces.

Construction of Graph directed IFS associated with the projection of the
Furstenberg IFS. One can see that the group (G) generated by the linear part of the
Furstenberg IFS J = {hq, hs, h3, hy} is a finite group of order 12. Precisely, the group
elements are as follows:

1 V3 R ~1 0 1 0
_ 2 2 — 2 2 — _
Ql_ \/7§ _Tl 7@2_ %g _Tl 7@3_|:0 1:|7Q4_|:0 _1:|7
10 -1 =3 (-1 V3 -1 3
-, J,Q(s: 2T e=3 Tle=| 2 2
2 2 |2 2 2 2
=1 1 [ 1 —\f 1 V3
Qo = ig , Q1o :{o },an JBo1 | Q= ig R
2 | 2 2 2

First, we consider a direction v = (1,1) € R?. Now, we construct an graph directed IFS as-
somated with the Furstenberg IFS J. First, we define a set of vertices V := {vy, va, ..., 012}
such that v; = QZT”U. The set &, denotes the set of all directed edges from vertex v; to v,.
For [,m € V, if these exists k € {1,2,3,4} such that v; = Qv,,, then we define a directed
edge e € & . Since #{QQx : k € 1,2,3,4} =4 for each | € {1,2,...,12}, there are only
4 directed edges from the vertex v; and only 4 directed edges toward the vertex v;. The set
of directed edges is defined by € := {&,, : 1 < 1,m < 12}. The directed graph is denoted
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by G(V,€&). For e € &, the associated map f, is defined by

1
e = o 'ta
f(l") 285U+Ul k

where k € {1,2,3,4} such that v; = Qyv,, and tj is the translation vector corresponding to
the map hy in the the Furstenberg IFS J. Let Ar be the attractor of the IFS J. One can
also see that for each [ € {1,2,...,12}, we have v;-ty, # v;-ty, for all ky # ko € {1,2,3,4}.
The notation Proj,(A) denotes the projection of the set A in the direction v. Thus, we
have

4
PI‘Ojvl (AF) = PI‘Ojvl ( U hk(AF ) U PI‘OJW < Qk AF) + tk)
k=1

4 12

= U <%PIOJQ£W(AF) +PI‘Ojvl(tk)) = U U fe(PrOjvm(AF>>'

k=1 m=1e€& m,

Thus, U2, Proj,, (Ar) is the attractor of the graph directed IFS {f. : e € £} with directed
graph G(V, €).

Induced Markov chain. Let X,, be a Markov chain on the group G. For each [ €
{1,2,...,12}, one can see that #{Q,Qr : k € 1,2,3,4} = 4. Thus, we define the transi-
tion probability for the Markov chain by

P(Xpp1 = Qml|X, = Q) = {i if 3ke{1,2,3,4} with QQr = Qn,

0 otherwise.

Let P be the transition matrix associated with the Markov chain X,,. Thus, the matrix P
is as follows

P {i it 3ke{l1,23,4} with QQ, = Q;
i, —

0 otherwise,

where [P]; ; is the ijth entry of the matrix P for 1 <4,j < 12.
We have

Q2 Q1 =Qs, Q1-Q2=0y, Q2-Qs=0Qr, Q1-Qs=Qs= 04 Qr,
Q1 Qs =, Q2 U3 =CQy, Q1 Q1= Q7 Q12 Q1= CQo,

Ql'Ql = QQ'QQ = Q3'Q3 = Q4'Q4 = Q5 = Id, Q4'Q3 = QlOa Ql'QlO = Qlla Q?'Qlo = Q12~

Now, we define two sets A = {Qs, Qs, Q7, Us, Qo, Q10} and B = {Q1, Qa, @3, Qu, Q11, Q12}-
By the above one can see that for each Q; € A, there exist a k € {1,2,3,4} such that Q;Qy. €

B and vice versa. Thus, the directed graph associated with the transition matrix P is bi-
bipartite graph' SO, by ConSidering the arrangement {Q57 Qﬁa Q77 Q87 ng Ql(b le Q27 Q37 Q47
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00 0 0 0 0 1/4 1/4 1/4 1/4 0 07
0 0 0 0 0 0 1/4 0 0 1/4 1/4 1/4
0 0 0 0 0 0 0 1/4 0 1/4 1/4 1/4
0 0 0 0 0 0 1/41/4 1/4 0 1/4 0
0 0 0 0 0 0 1/4 1/41/4 0 0 1/4
0 0 0 0 0 0 0 0 1/4 1/4 1/4 1/4
P =
1/4 1/4 0 1/4 1/4 0 0 0 0 0 0 0
/4 0 1/4 1/4 1/4 0 0 0 0 0 0 0
1/4 0 0 1/4 1/4 1/4 0 0 0 0 0 0
1/4 1/4 1/4 0 0 1/4 0 0 0 0 0 0
0O 1/4 1/4 1/4 0 1/4 0 0 0 0 0 0
0 1/4 1/4 0 1/41/4 0 0 0 0 0 0,
Since Q5 is identity matrix (/d), we have
1
P(X, = Id|Xo=Id) = [1 0 o) pr || = #AreAL23 4" Q= Idy

: 4n

0

Clearly, P(Xo,41 = Id| Xy = Id) = 0 for n € NU {0} and P(X, = Id| X, = Id) = }l. The

period of the directed graph associated with the transition matrix P is defined as follows
period = l.c.d{n € N: P(X,, = Id| X, = Id) > 0}.

R 0

This implies that period is 2. But, P? = {O g

], where R and S are 6 x 6 matrices. The

matrix R is as follows

[1/4 1/8 1/8 3/16 3/16 1/8 ]
1/8 1/4 3/16 1/8 1/8 3/16
R | 1/8 3/16 1/4 1/8 1/8 3/16
- 3/16 1/8 1/8 1/4 3/16 1/8
3/16 1/8 1/8 3/16 1/4 1/8
1/8 3/16 3/16 1/8 1/8 1/4

The above matrix R is irreducible and aperiodic (period is 1). Thus by Perron-Frobenius
theorem, we get

R" — [1/6 1/6 1/6 1/6 1/6 1/6] as n— .

—_ = = = =

This implies that

_ #Hre{1,2,3,4)*: Q, = Id} N

1
P(X,, = Id| Xy = Id) = =

as mn — OoQ.
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Thus, these exists a Ny € N such that

2n

4
#Hre{1L234)":Q, =1d} 2 5 V=N, (5.3)

Non-degeneracy of constructed GD-IFS. Now, we will show that the constructed
graph directed IFS is non-degenerate, which will be useful for determining almost surely
type results. The set of all infinite-length edges is denoted by £*. Let e = (ey,es,...),€ =
(€],€h,...) € £ such that e # € and ey € & ,,,, €] € Em,- Let m € N be smallest number
such that e,, # € . Then, there exist k; # ko € {1,2,...,12} such that e, € &ty my,, and

/

€m € &my,- Let II be the natural projection corresponding to the constructed graph-

directed IFS. Thus, we have

(o™ e) = fo,(T1(0"e)) = 5-(1(0™e)) + v, 1,

H(Um_le/) = fein (H<0me,)) - Q_Z(H(Ume/)) + v s

where ry # ry. Since vy, -t,, # vy, *t.,, we have [I(c™ 'e) # II(c™'e') as analytic functions
of s on (1/2,00), and in particular, on (1/2,1/). Thus, we get II(e) # II(e'). This implies
that the graph-directed IFS is non-degenerate.

Now, by using the above constructed GD-IFS, we will prove typical type results for the
Hausdorff dimension.

Proof of Theorem[1.5. The upper bound follows by (5.1]). Now, we show the lower bound.
Set NV, := #{7 € {1,2,3,4}*" : Q, = Id}. For n > Ny, we define an self-affine IFS

®, :={W,:Q,=1Idand 7 € {1,2,3,4}*"}.

Let Ag, be the attractor of the IFS ®,,. The affinity dimension (t,) of the self-affine IFS
®,, is uniquely determined by following equation

tn—1

Z s (%) =1

7€{1,2,3,4}%"

Q-=Id
Let (pi)ﬁnl be a probability vector such that p; = J\%L for all 1 <i < N,,. Let F,, := {h, :
Q,=1Idand 7 € {1,2,3,4}*"}} be the Furstenberg IFS corresponding to the IFS ®,,. Let
(% be the invariant measure corresponding to the IFS F,, with probability vector (i)
Since the graph directed IFS {f. : e € £} with directed graph G(V,€&) corresponding
to the Furstenberg IFS 7 is non-degenerate, the projection of the F,, on the direction
v = (1,1) € R? is also non-degenerate. Then, by the result of Hochman [9], there exist a
set &, C (3, 1) with dimy(&,) = 0 such that

N,
— D _i—y pilog p; : 1 n 1
dimH(,u;L:) Zmin{l, N,Zzzlp ogp } :mln{l,ﬂ} Vsc (_71> \ &
iz pilog(2s)*" 2nlog(2s) 2
Now, by using the estimate ([5.3)) of N, we get

. . log 4 log 12 1
d ) > 1 — -1 .
() 2 mln{ "log(2s) 2nlog 25} Vse (2’ ) \én
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Let £, € R be such that

1 fn—l 42n 1 fn—l
2n 2n _
2 @ (2_) “12° (2—) -

7€{1,2,3,4}%"
QT:Id

This implies that t, > t, and
log4s log12 5 log s log 12

t, =1 = .
+ log2  2nlog?2 log2 2nlog?2

> : log 4 ]
Clearly, t,, — t as n — oo. Since 102%23) > —lggg Vs e (3,1), we have

) log 4 log 12 . 1
1 - —th 23—ty =1
mln{ "log(2s) 2n10g2s} >3 23 vse <2 )

for all n > Ny, where N7 € N is some large number. This implies that for n > max{ Ny, N; }
we get

1
Then, by Theorem , for n > max{Ny, N;} we obtain

. 1
dlmH(Aq,n) = tn 2 tn Vse <§, 1) \gn
Set € 1= U, —maxno.ny) En- Thus, dimy(E) = 0. This implies that

R 1
Thus, for all s € (%, 1) \ &, we get
dimg(G(f7) >t Vse (% 1) \£.

Since dimp (G(f*)) < dimp(G(f*)) < t =3 + &) we have

log(2)
: « : . log(s)
dimy (G(f*)) = dimp(G(f*)) =t =3+ og(2)
for all s € (%, 1) \ €. This completes the proof. O
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