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Abstract. This paper examines dimension of the graph of the famous Weierstrass non-
differentiable function

Wλ,b(x) =

∞X
n=0

λn cos(2πbnx)

for an integer b larger than 1 and 1/b < λ < 1. We prove that for every b there exists
(explicitly given) λb ∈ (1/b, 1) such that the Hausdorff dimension of the graph is equal to

D = 2 + log λ
log 2

for every λ ∈ (λb, 1). We also show that the dimension is equal to D for

almost every λ on some larger interval. This partially solves a well-known thirty-year-old
conjecture.

1. Introduction and statements

This paper is devoted to the study of dimension of the graph of the famous function

Wλ,b(x) =
∞∑
n=0

λn cos(2πbnx)

for x ∈ R, where 0 < λ < 1 < b and bλ > 1, introduced by Weierstrass in 1872 as one
of the first examples of a continuous nowhere differentiable function on the real line. In
fact, Weierstrass proved the non-differentiability for some values of the parameters, while the
complete proof was given by Hardy [11] in 1916. Later, starting from the work of Besicovitch
and Ursell [5], the graphs of functions of the form

f(x) =
∞∑
n=0

bD−2
n φ(bnx+ θn) (1.1)

for non-constant Lipschitz, piecewise C1, Z-periodic functions φ : R → R and 1 < D < 2,
bn+1/bn > b > 1, θn ∈ R were studied from a geometric point of view as fractal curves in the
plane. Much attention was paid to the classical case bn = bn for an integer b larger than 1
and θn = 0. Then the graph of f is an invariant repeller for the expanding dynamical system
Φ : R/Z× R→ R/Z× R,

Φ(x, y) =
(
bx (mod 1),

y − φ(x)
λ

)
(1.2)

with Lyapunov exponents log 2, log λ for λ = bD−2, which allows to use the methods of ergodic
theory of smooth dynamical systems.
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The case of the Weierstrass function Wλ,b for integer b is of particular interest, because
then it is the real part of the lacunar (Hadamard gaps) power series

w(z) =
∞∑
n=0

λnzb
n
, z ∈ C, |z| ≤ 1

on the unit circle, which relates the problem to harmonic analysis and boundary behaviour of
analytic maps. For instance, it was proved by Salem and Zygmund [26] and Kahane, Weiss
and Weiss [15] that for λ sufficiently close to 1, the image of the unit circle under w is a Peano
curve, i.e. it covers an open subset of the plane. Moreover, Belov [3] and Barański [2] showed
that in this case the map w does not preserve (forwardly) Borel sets on the unit circle. The
complicated topological boundary behaviour of w was also studied recently by Dong, Lau and
Liu in [8].

The graph of a function f of the form (1.1) is approximately self-affine with scales λ and
1/b, which suggests that its dimension should be equal to

D = 2 +
log λ
log b

.

Indeed, Kaplan, Mallet-Paret and Yorke [14] proved that the box dimension of the graph of
f is equal to D. However, the question of determining the Hausdorff dimension turned out to
be much more complicated. The conjecture that it is equal to D for the classical Weierstrass
case f = Wλ,b was formulated by Mandelbrot in 1977 [18] and then repeated in many papers,
see e.g. [4, 9, 13, 16, 20, 23] and the references therein.

In 1986, Mauldin and Williams [20] proved that if a function f has the form (1.1) with
bn = bn for an integer b larger than 1, then for given D there exists a constant C > 0 such
that the Hausdorff dimension of the graph is larger than D − C/ log b for large b. Shortly
after, Przytycki and Urbański showed in [23] that if f = Wλ,b for any integer b larger than
1, then the Hausdorff dimension of the graph is larger than 1. Rezakhanlou [25] proved that
the packing dimension of the graph of Wλ,b is equal to D and in [12], Hu and Lau showed the
same for the so-called K-dimension (both are not smaller than the Hausdorff dimension).

In 1992, Ledrappier [16] proved that if f has the form (1.1) with bn = 2n, φ(x) = dist(x,Z)
and θ = 0, then the Hausdorff dimension of the graph is equal to D provided the infi-
nite Bernoulli convolutions

∑∞
n=0±2(1−D)n, with ± chosen independently with probability

(1/2, 1/2), have absolutely continuous distribution (by the result of Solomyak [29], this holds
for almost all D ∈ (1, 2) with respect to the Lebesgue measure). Analogous result for other
functions φ was showed by Solomyak in [28].

In 1998, Hunt [13] proved that in the case bn = bn for an integer b larger than 1, if one
considers the numbers θn in (1.1) as independent random variables with uniform distribution
on [0, 1], then for many functions φ, including φ(x) = cos(2πx), the Hausdorff dimension of
the graph is equal to D almost surely.

It is interesting to notice that in the case bn+1/bn → ∞ the question of determining the
Hausdorff and box dimension of graphs of functions (1.1) can be solved completely, as proved
recently by Carvalho [7] and Barański [1]. In this case the Hausdorff and upper box dimension
need not coincide.

Recently, Biacino [6] and Fu [10] solved partially the question of determining the Hausdorff
dimension of the graph of the classical Weierstrass function Wλ,b, showing that it is equal to
D for sufficiently large integers b.
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In this paper we make a further step, proving the conjecture for every integer b larger than
1, provided λ is sufficiently close to 1. The proof uses methods of ergodic theory of smooth
dynamical systems. In fact, we show that he measure µλ,b has dimension D, where

µλ,b = ((Id,Wλ,b)|[0,1])∗L|[0,1]

is the lift of the Lebesgue measure L on [0, 1] to the graph of Wλ,b.

Definition. We say that a Borel measure µ in a metric space X has local dimension d at a
point x ∈ X, if

lim
r→0

logµ(Br(x))
log r

= d,

where Br(x) denotes the ball of radius r centered at x. If the local dimension of µ exists and
is equal to d at µ-almost every x, then we write dimµ = d.

If dimµ = d, then every set of positive measure µ has Hausdorff dimension at least d.
Denote by Gλ,b ⊂ R2 the graph of the function Wλ,b on the interval [0, 1], i.e.

Gλ,b = {(x,Wλ,b(x)) : x ∈ [0, 1]} .

Let dimH and dimB denote, respectively, the Hausdorff and box dimension (for the definition
and basic properties of the Hausdorff and box dimension we refer to [9, 19]). As mentioned
above, it is well-known that dimB Gλ,b = D. Since dimH Gλ,b ≤ dimB Gλ,b, to determine the
Hausdorff dimension of Gλ,b it is sufficient to prove dimµλ,b = D.

The first of the paper is the following.

Theorem A. For every positive integer b larger than 1,

dimµλ,b = 2 +
log λ
log b

for every λ ∈ (λb, 1), where λb is equal to the unique zero of the function

hb(λ) =

{
1

4λ2(2λ−1)2
+ 1

16λ2(4λ−1)2
− 5

64λ2 +
√

2
2λ − 1 for b = 2

1
(bλ−1)2

+ 1
(b2λ−1)2

− sin2 π
b for b ≥ 3

on the interval (1/b, 1). In particular,

dimH Gλ,b = dimB Gλ,b = 2 +
log λ
log b

for every λ ∈ (λb, 1).

Using Peres–Solomyak transversality methods, we can extend the result for almost every
λ on some larger interval. To state the next theorem, we need to recall some definitions
related to so-called (∗)-functions considered in the study of infinite Bernoulli convolutions
(see e.g. [21, 22, 28]). For β ≥ 1 let

Gβ =

{
g(t) = 1 +

∞∑
n=1

gnt
n, gn ∈ [−β, β] for n ≥ 1

}
.

Let y(β) be the smallest possible value of positive double roots of functions in Gβ, i.e.

y(β) = inf
{
t > 0 : there exists g ∈ Gβ such that g(t) = g′(t) = 0

}
.
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Theorem B. For every positive integer b larger than 1,

dimµλ,b = 2 +
log λ
log b

for Lebesgue almost every λ ∈ (λ̃b, 1), where λ̃b is equal to the unique root of the equation

y

(
1√

sin2(π/b)− 1/(b2λ− 1)2

)
=

1
bλ

on the interval (1/b, 1). In particular,

dimH Gλ,b = dimB Gλ,b = 2 +
log λ
log b

for Lebesgue almost every λ ∈ (λ̃b, 1).

Estimating the numbers λb and λ̃b in the above theorems, we obtain the following.

Corollary C.

dimH Gλ,2 = 2 +
log λ
log 2

for every λ ∈ (0.9531, 1) and almost every λ ∈ (0.81, 1),

dimH Gλ,3 = 2 +
log λ
log 3

for every λ ∈ (0.7269, 1) and almost every λ ∈ (0.55, 1),

dimH Gλ,4 = 2 +
log λ
log 4

for every λ ∈ (0.6083, 1) and almost every λ ∈ (0.44, 1).

For every b ≥ 5,

dimH Gλ,b = 2 +
log λ
log b

for every λ ∈ (0.5448, 1) and almost every λ ∈ (1.04/
√
b, 1).

Obviously, using Theorem A and B, one can get better estimates for b ≥ 5 (for large b, the
numbers λb tend to 1/π and λ̃b

√
b tends to 1/

√
π, see Lemmas 3.4 and 4.1).

2. Background

We consider Gλ,b as an invariant repeller of the dynamical system (1.2) for φ(x) = cos(2πx)
and use the results of ergodic theory of non-uniformly hyperbolic smooth dynamical systems
on manifolds (Pesin theory) developed by Ledrappier and Young in [17] and applied by Ledrap-
pier in [16] to study the graphs of the Weierstrass-type functions. The theory in [17] is valid
for smooth diffeomorphisms, so to apply it for Φ one considers the inverse limit (alternatively,
it is possible to use analogous theory for smooth endomorphisms developed by Qian, Xie and
Zhu in [24]).

For the reader’s convenience, let us recall the results of Ledrappier–Young theory from
[16, 17] applied for the graph of Wλ,b. (Note that the quoted results are formulated in [16] for
b = 2. However, the theory is valid for any integer b larger than 1.) Consider the symbolic
space

Σ = {0, . . . , b− 1}Z
+

and let

Σ∗ =
∞⋃
n=0

{0, . . . , b− 1}n



ON THE DIMENSION OF THE GRAPH OF THE CLASSICAL WEIERSTRASS FUNCTION 5

be the set of finite length words of symbols. For a finite length word (i1, . . . , in) ∈ Σ∗ let
[i1, . . . , in] be the corresponding cylinder set, i.e.

[i1, . . . , in] = {(j1, j2, . . . ) ∈ Σ : j1 = i1, . . . , jn = in} .

Define for x ∈ [0, 1] and γ ∈ (1/b, 1) a mapping Yx,λ from Σ to the real line as follows:

Yx,γ(i) = 2π
∞∑
n=1

γn sin
(

2π
(
x

bn
+
i1
bn

+ · · ·+ in
b

))
, (2.1)

where i = (i1, i2, . . .) and

γ =
1
bλ
.

The latter formula will be used throughout the paper.
Define the inverse of the map Φ from (1.2) as the map F : [0, 1]×R×Σ→ [0, 1]×R×Σ,

F (x, y, i) =
(
x

b
+
i1
b
, λy + φ

(
x

b
+
i1
b

)
, σ(i)

)
,

where φ(x) = cos(2πx), i = (i1, i2, . . .) and σ is the left-side shift on Σ. We have

F (Gλ,b × Σ) = Gλ,b × Σ, F∗(µλ,b × P) = µλ,b × P.

Defining

Fi(x, y) =
(
x

b
+
i

b
, λy + φ

(
x

b
+
i

b

))
for i ∈ {0, . . . , b− 1}, we have

DFi(x, y) =
[

1/b 0
φ′(x/b+ i/b)/b λ

]
Consider the products of these matrices which arise by composing the maps Fi1 , Fi2 , . . . for
given i = (i1, i2, . . .). By the Oseledets multiplicative ergodic theorem, the Lyapunov expo-
nents of the system are equal to − log 2, log λ and there is exactly one strong stable direction
in R2 (corresponding to the exponent − log 2), given by

Jx,i =
[

1
−
∑∞

n=1 γ
nφ′(x/bn + i1/b

n + · · ·+ in/b)

]
=
[

1
Yx,γ(i)

]
for γ = 1/(bλ). In fact,

DFi1(x, y)(Jx,i) =
1
b
Jx/b+i1/b, σ(i).

Note that Jx,i does not depend on y. For given i, the vector field Jx,i defines a foliation
of (0, 1) × R into strong stable manifolds, given by parallel smooth curves Γx,y,i (graphs of
functions of the first coordinate).

For the measure µ = µλ,b there exists a system of conditional measures µx,y,i on Γx,y,i,
associated to this foliation treated as a measurable partition. Take a vertical line ` and
let νx,i (called transversal measure) be the projection of µ to ` along the curves Γx,y,i, y ∈
R. The following result is a part of the Ledrappier–Young theory from [17] (see also [16,
Proposition 2]).
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Theorem 2.1 (Ledrappier–Young). The local dimension of the measure µ exists and is con-
stant µ-almost everywhere. The local dimension of the measure µx,y,i exists, is constant µx,y,i-
almost everywhere, and is constant for (µ× P)-almost every (x, y, i). The local dimension of
the measure νx,i exists, is constant νx,i-almost everywhere, and is constant for (L×P)-almost
every (x, i), where L is the Lebesgue measure. Moreover,

dimµ = dimµx,y,i + dim νx,i

and
log bdimµx,y,i − log λdim νx,i = log b.

The latter is a “conditional” version of the Pesin entropy formula. As a corollary, one gets

dimµλ,b = 1 +
(

1 +
log λ
log b

)
dim νx,i. (2.2)

In [16], Ledrappier proved a kind of the Marstrand-type projection theorem, showing that
if the distribution of angles of directions Jx,i has dimension 1, then the dimension of the
transversal measure is also equal to 1. More precisely, he proved the following.

Let P =
{

1
b , . . . ,

1
b

}Z+

be the uniform Bernoulli measure on Σ and let

mx,γ = (Yx,γ)∗ P.

Theorem 2.2 (Ledrappier, [16]). Let γ ∈ (1/b, 1). If dimmx,γ = 1 for Lebesgue almost every
x ∈ (0, 1), then dim νx,i = 1.

In view of (2.2), this implies that to have dimµλ,b = 2 + log λ/ log b, it is enough to prove
that dimmx,γ = 1 for Lebesgue almost every x ∈ (0, 1). In fact, we will show that mx,γ

is absolutely continuous with respect to the Lebesgue measure for Lebesgue almost every
x ∈ (0, 1), which is a stronger property.

3. Proof of Theorem A

In the proof of Theorem A we use a result due to Tsujii [30]. He considered the SBR
measure ν for a skew product T : S1 × R→ S1 × R of the form

T (x, y) = (bx, γy + ϕ(x))

for an integer b larger than 1, a real number γ ∈ (0, 1) and a C2 function ϕ on S1 = R/Z. We
apply here his results for ϕ(x) = sin(2πx).

Definition 3.1 (Tsujii, [30]). Let ε, δ > 0, i, j ∈ Σ, m ∈ N, k ∈ {1, . . . , bm}. The functions
Y·,γ(i) and Y·,γ(j) are called (ε, δ)-transversal on the interval Im,k = [(k − 1)/bm, k/bm] if for
every x ∈ Im,k,

|Yx,γ(i)− Yx,γ(j)| > ε or
∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ > δ.

Otherwise they are called (ε, δ)-tangent on Im,k.
Let e(n,m; ε, δ) be the maximum over k ∈ {1, . . . , bm} and (i1, . . . , in) ∈ Σ∗ of the maximal

number of finite words (j1, . . . , jn) ∈ Σ∗ for which there exist i ∈ [i1, . . . , in] and j ∈ [j1, . . . , jn]
such that the functions Y·,γ(i) and Y·,γ(j) are (ε, δ)-tangent on Im,k.

Remark. The above definition is suited to the case ϕ(x) = sin(2πx). In general, instead of
Yx,γ(i) one should take

∑∞
n=1 γ

nϕ(x/bn + i1/b
n + · · ·+ in/b).
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In [30], Tsujii proved the following result.

Theorem 3.2 (Tsujii, [30, Proposition 8]). If e(n,m; ε, δ) < γnbn for some ε, δ > 0 and
positive integers n,m, then the SBR measure ν for T is absolutely continuous with respect to
the Lebesgue measure on S1 × R.

There is a direct relation between the SBR measure ν for ϕ(x) = sin(2πx) and the measure
mx,γ . More precisely, we have

ν = Ψ∗(L|S1 × P),
where Ψ : S1 × Σ→ S1 × R,

Ψ(x, i) =
(
x,
Yx,γ(i)

2πγ

)
and L is the Lebesgue measure (for details, see [30]). Hence, for a measurable A ⊂ S1 × R,
we have

ν(A) = (L|S1 × P)
({

(x, i) :
(
x,
Yx,γ(i)

2πγ

)
∈ A

})
=
∫

S1

mx,γ({2πγy : (x, y) ∈ A})dx.

This easily implies the following lemma.

Lemma 3.3. If the SBR measure ν for T (x, y) = (bx, γy + sin(2πx)) is absolutely continu-
ous, then the measure mx,γ is absolutely continuous for Lebesgue almost every x ∈ (0, 1), in
particular dimmx,γ = 1 for Lebesgue almost every x ∈ (0, 1).

Now we will find conditions under which the measure ν is absolutely continuous. To use
Theorem 3.2, we check the transversality condition for the functions Y·,γ . First, we prove the
existence of the numbers λb defined in Theorem A.

Lemma 3.4. For every integer b larger than 1, the function hb is strictly decreasing on the
interval (1/b, 1) and has a unique zero λb ∈ (1/b, 1). In particular, λ2 < 0.9531, λ3 < 0.7269,
λ4 < 0.6083 and λb < 0.5448 for b ≥ 5. Moreover, λb → 1/π as b→∞.

Proof. Consider first the case b = 2. We easily check

d

dλ

(
− 5

64λ2
+
√

2
2λ

)
< 0

for λ ∈ (1/2, 1), which immediately implies that the function h2 is strictly decreasing on the
interval (1/2, 1]. Moreover, h2(λ) → +∞ as λ → (1/2)+ and h2(1) < 0. Hence, h2 has a
unique zero λ2 ∈ (1/2, 1).

Consider now the case b ≥ 3. It is obvious that hb is strictly decreasing on the interval
(1/b, 1] and tends to +∞ as λ→ (1/b)+. Using the inequality sinx > x− x3/6 for x > 0, we
get

hb(λ) <
1

(bλ− 1)2
+

1
(b2λ− 1)2

+
π4

3b4
− π2

b2
=
Hb(λ)
b2

for

Hb(λ) =
1

(λ− 1/b)2
+

1
(bλ− 1/b)2

+
π4

3b2
− π2.

For λ ∈ (1/b, 1], the function b 7→ Hb(λ) is strictly decreasing. Moreover, H3(1) < 0, so
hb(1) < 0 for b ≥ 3. This proves the existence of the unique zero λb ∈ (1/b, 1) of the function
hb.
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One can directly check that h2(0.9531), h3(0.7269), h4(0.6083) < 0, which shows λ2 <
0.9531, λ3 < 0.7269, λ4 < 0.6083. Moreover, H5(0.5448) < 0, so Hb(0.5448) < 0 for every
b ≥ 5, which implies λb < 0.5448 for b ≥ 5. The last assertion of the lemma follows easily
from the definition of the function hb and the fact limx→0 sinx/x = 1. �

Now we prove the transversality condition for the functions Y·,γ .

Proposition 3.5. If γ ∈ (1/b, 1/(bλb)), then there exists δ > 0 such that for every i =
(i1, i2, . . .), j = (j1, j2, . . .) ∈ Σ with i1 6= j1 and every x ∈ [0, 1],

|Yx,γ(i)− Yx,γ(j)| > δ or
∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ > δ.

Proof. Fix γ ∈ (1/b, 1/(bλb)). Suppose the assertion does not hold. Then for every δ > 0
there exist i = (i1, i2, . . .), j = (j1, j2, . . .) ∈ Σ with i1 6= j1 and x ∈ [0, 1], such that

|Yx,γ(i)− Yx,γ(j)| ≤ δ,
∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ ≤ δ. (3.1)

First, consider the case b ≥ 3. By the definition of Yx,γ (see (2.1)),

|Yx,γ(i)− Yx,γ(j)| ≥ 2πγ
∣∣∣∣sin(2π

x+ i1
b

)
− sin

(
2π
x+ j1
b

)∣∣∣∣− 4π
∞∑
n=2

γn

= 4πγ sin
(

2π
|i1 − j1|

2b

) ∣∣∣∣cos
(

2π
2x+ i1 + j1

2b

)∣∣∣∣− 4πγ2

1− γ

≥ 4πγ sin
π

b

∣∣∣∣cos
(

2π
2x+ i1 + j1

2b

)∣∣∣∣− 4πγ2

1− γ
,

(3.2)

as 1 ≤ |i1 − j1| ≤ b− 1. Similarly, since

d

dx
Yx,γ(i) = 4π2

∞∑
n=1

(γ
b

)n
cos
(

2π
(
x

bn
+
i1
bn

+ · · ·+ in
b

))
,

we obtain∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ ≥ 4π2γ

b

∣∣∣∣cos
(

2π
x+ i1
b

)
− cos

(
2π
x+ j1
b

)∣∣∣∣− 8π2
∞∑
n=2

(γ
b

)n
=

8π2γ

b
sin
(

2π
|i1 − j1|

2b

) ∣∣∣∣sin(2π
2x+ i1 + j1

2b

)∣∣∣∣− 8π2γ2

b(b− γ)

≥ 8π2γ

b
sin

π

b

∣∣∣∣sin(2π
2x+ i1 + j1

2b

)∣∣∣∣− 8π2γ2

b(b− γ)
.

(3.3)

By (3.1), (3.2) and (3.3),

sin
π

b

∣∣∣∣cos
(

2π
2x+ i1 + j1

2b

)∣∣∣∣ ≤ γ

1− γ
+

δ

4πγ
,

sin
π

b

∣∣∣∣sin(2π
2x+ i1 + j1

2b

)∣∣∣∣ ≤ γ

b− γ
+

δb

8π2γ
.

Taking the sum of the squares of the two inequalities, we get

sin2 π

b
≤
(

γ

1− γ
+

δ

4πγ

)2

+
(

γ

b− γ
+

δb

8π2γ

)2

.



ON THE DIMENSION OF THE GRAPH OF THE CLASSICAL WEIERSTRASS FUNCTION 9

Since δ is arbitrarily small, in fact this implies

0 ≤ γ2

(1− γ)2
+

γ2

(b− γ)2
− sin2 π

b
= hb(λ)

for λ = 1/(bγ) > λb, which contradicts Lemma 3.4. This ends the proof in the case b ≥ 3.
Consider now the case b = 2. We improve the estimates made by Tsujii in [30, Appendix].

In this case we need to consider also the second term of Yx,γ . Since i1 6= j1, we can assume
i1 = 1, j1 = 0. Then

|Yx,γ(i)− Yx,γ(j)|

≥ 2πγ
∣∣∣∣sin(π(x+ 1))− sin(πx) + γ

(
sin
(
π
x+ 1 + 2i2

2

)
− sin

(
π
x+ 2j2

2

))∣∣∣∣− 4π
∞∑
n=3

γn

= 4πγ
∣∣∣∣sin(πx)− γ

(
sin
(
π

1 + 2(i2 − j2)
4

)
cos
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣− 4πγ3

1− γ

and∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣
≥ 2π2γ

∣∣∣∣cos(π(x+ 1))− cos(πx) +
γ

2

(
cos
(
π
x+ 1 + 2i2

2

)
− cos

(
π
x+ 2j2

2

))∣∣∣∣− 8π2
∞∑
n=3

(γ
2

)n
= 4π2γ

∣∣∣∣cos(πx) +
γ

2

(
sin
(
π

1 + 2(i2 − j2)
4

)
sin
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣− 2π2γ3

2− γ

which together with (3.1) implies∣∣∣∣sin(πx)− γ
(

sin
(
π

1 + 2(i2 − j2)
4

)
cos
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣ ≤ γ2

1− γ
+

δ

4πγ
,∣∣∣∣cos(πx) +

γ

2

(
sin
(
π

1 + 2(i2 − j2)
4

)
sin
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣ ≤ γ2

2(2− γ)
+

δ

4π2γ
.

Recall that i2, j2, x depend on δ. Taking a sequence of δ-s tending to 0 we can choose a
subsequence such that i2, j2, x converge, so by continuity we can assume∣∣∣∣sin(πx)− γ

(
sin
(
π

1 + 2(i2 − j2)
4

)
cos
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣ ≤ γ2

1− γ
,∣∣∣∣cos(πx) +

γ

2

(
sin
(
π

1 + 2(i2 − j2)
4

)
sin
(
π

2x+ 1 + 2(i2 + j2)
4

))∣∣∣∣ ≤ γ2

2(2− γ)
.

for some i2, j2 ∈ {0, 1} and x ∈ [0, 1]. Taking the sum of the squares of the two inequalities
and noting that sin2(π(1 + 2(i2 − j2))/4) = 1/2, we obtain

g(x) ≥ 0, (3.4)

where

g(t) = g̃(t)− 3γ2

8
cos2

(
π

2t+ 1 + 2(i2 + j2)
4

)
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for

g̃(t) =
γ4

(1− γ)2
+

γ4

4(2− γ)2
− γ2

8
− 1

+ 2γ sin
(
π

1 + 2(i2 − j2)
4

)
sin(πt) cos

(
π

2t+ 1 + 2(i2 + j2)
4

)
− γ sin

(
π

1 + 2(i2 − j2)
4

)
cos(πt) sin

(
π

2t+ 1 + 2(i2 + j2)
4

)
.

We have

g′(t) =
3πγ

8
cos
(
π

2t+ 1 + 2(i2 + j2)
4

)
(

4 sin
(
π

1 + 2(i2 − j2)
4

)
cos(πt) + γ sin

(
π

2t+ 1 + 2(i2 + j2)
4

))
and

g̃′(t) =
3πγ

2
sin
(
π

1 + 2(i2 − j2)
4

)
cos(πt) cos

(
π

2t+ 1 + 2(i2 + j2)
4

)
.

Now we consider four cases, depending on the values of i2, j2.
First, let i2 = j2 = 0. Then

g̃′(t) =
3
√

2πγ
4

cos(πt) cos
(
π

2t+ 1
4

)
≥ 0

for t ∈ [0, 1]. Hence,

g(x) ≤ g̃(x) ≤ g̃(1) =
γ4

(1− γ)2
+

γ4

4(2− γ)2
− γ2

8
+
γ

2
− 1. (3.5)

Let now i2 = j2 = 1. Then

g̃′(t) = −3
√

2πγ
4

cos(πt) cos
(
π

2t+ 1
4

)
≤ 0

for t ∈ [0, 1], so

g(x) ≤ g̃(x) ≤ g̃(0) =
γ4

(1− γ)2
+

γ4

4(2− γ)2
− γ2

8
+
γ

2
− 1. (3.6)

The third case is i2 = 1, j2 = 0. Then

g′(t) = −3πγ
8

sin
(
π

2t+ 1
4

) (
2
√

2 cos(πt) + γ cos
(
π

2t+ 1
4

)){
≤ 0 for t ∈ [0, 1/2]
> 0 for t ∈ (1/2, 1],

which implies

g(x) ≤ max(g(0), g(1)) =
γ4

(1− γ)2
+

γ4

4(2− γ)2
− 5γ2

16
− γ

2
− 1. (3.7)
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The last case is i2 = 0, j2 = 1. Then

g′(t) = −3πγ
8

sin
(
π

2t+ 1
4

)(
−2
√

2 cos(πt) + γ cos
(
π

2t+ 1
4

))
= −3

√
2πγ

16
sin
(
π

2t+ 1
4

)(
cos

πt

2
− sin

πt

2

)(
γ − 4

(
cos

πt

2
+ sin

πt

2

))
{
≥ 0 for t ∈ [0, 1/2]
< 0 for t ∈ (1/2, 1],

since γ − 4(cos(πt/2) + sin(πt/2)) ≤ γ − 4 < 0 for t ∈ [0, 1]. Hence,

g(x) ≤ g(1/2) =
γ4

(1− γ)2
+

γ4

4(2− γ)2
− 5γ2

16
+
√

2γ − 1. (3.8)

Considering the conditions (3.5)–(3.8) we easily conclude that the largest upper estimate
for g(x) appears in (3.8). Therefore, by (3.4), in all cases we have

0 ≤ γ4

(1− γ)2
+

γ4

4(2− γ)2
− 5γ2

16
+
√

2γ − 1 = h2(λ)

for λ = 1/(2γ) > λ2, which contradicts Lemma 3.4. This ends the proof in the case b = 2. �

To conclude the proof of Theorem A, it is enough to notice that by Proposition 3.5, for
λ ∈ (λb, 1) we have e(1, 1; δ, δ) = 1 < γb and use Theorem 3.2, Lemma 3.3, Theorem 2.2 and
(2.2). The estimates for λ2, λ3 and λ4 in Corollary C follow from Lemma 3.4.

4. Proof of Theorem B

Using the transversality method developed by Peres and Solomyak in the study of infinite
Bernoulli convolutions (see [21, 22]), with a minor modification on the standard argument,
we will show that mx,γ is absolutely continuous for Lebesgue almost every (x, γ) ∈ (0, 1) ×
(1/b, 1/(bλ̃b)). The statement will follow from the Fubini theorem.

First, we prove the existence of the numbers λ̃b defined in Theorem B.

Lemma 4.1. For every integer b larger than 1 there exists a unique number λ̃b ∈ (1/b, 1)
such that

y

 1√
sin2(π/b)− 1/(b2λ̃b − 1)2

 =
1
bλ̃b

and for λ ∈ (1/b, 1),

y

(
1√

sin2(π/b)− 1/(b2λ− 1)2

)
<

1
bλ

⇐⇒ λ ∈ (1/b, λ̃b).

Moreover, λ̃b < λb for every b ≥ 2, λ̃b < 1.04/
√
b for every b ≥ 5 and λ̃b

√
b → 1/

√
π as

b→∞.

Proof. First, note that

sin
π

b
>

1
b2λ− 1
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for every λ ∈ (1/b, 1). Indeed, for b = 2 it is obvious and for b ≥ 3,

sin
π

b
− 1
b2λ− 1

> sin
π

b
− 1
b− 1

> 0

since hb(1) < 0 (see the proof of Lemma 3.4). This implies that

β = β(λ) =
1√

sin2(π/b)− 1/(b2λ− 1)2

is well-defined for λ ∈ (1/b, 1). Obviously, β > 1.
It is known (see [22]) that for β ≥ 1 the function β 7→ y(β) is strictly decreasing, continuous

and satisfies
1 > y(β) ≥ 1

1 +
√
β
. (4.1)

Moreover,

y(β) =
1

1 +
√
β

for β ≥ 3 +
√

8. (4.2)

This implies that y(β) − 1/(bλ) strictly increases with respect to λ ∈ (1/b, 1), moreover
y(β)− 1/(bλ) < 0 for λ sufficiently close to 1/b and

y(β)− 1
(bλ)

>
1

1 +
√
β
− 1
bλ

(4.3)

for λ ∈ (1/b, 1). By the definition of β, the inequality
1

1 +
√
β
− 1

(bλ)
> 0 (4.4)

is equivalent to h̃b(λ) < 0 for

h̃b(λ) =
1

(bλ− 1)4
+

1
(b2λ− 1)2

− sin2 π

b
.

We have h̃b(λ) < hb(λ), so by Lemma 3.4, the inequality (4.4) holds for λ sufficiently close to
1. By (4.3), y(β) − 1/(bλ) > 0 for λ sufficiently close to 1. This implies that there exists a
unique number λ̃b ∈ (1/b, 1) such that λ̃b < λb and y(β) = 1/(bλ̃).

Like in the proof of Lemma 3.4, using the inequality sinx− x3/6 for x > 0, we obtain

h̃b(λ) <
1

(bλ− 1)4
+

1
(b2λ− 1)2

+
π4

3b4
− π2

b2
=
H̃b(λ)
b2

for

H̃b(λ) =
1

(
√
bλ− 1/

√
b)4

+
1

(bλ− 1/b)2
+
π4

3b2
− π2.

Substituting λ = c/
√
b for c > 0, we get

H̃b(c/
√
b) =

1
(c− 1/

√
b)4

+
1

(c
√
b− 1/b)2

+
π4

3b2
− π2.

The function H̃b(c/
√
b) is strictly decreasing with respect to c and b and one can directly

check H̃5(1.04/
√

5) < 0. This implies that λ̃b < 1.04/
√
b for every b ≥ 5.

For β ≥ 19,

β >
1

sin(π/19)
>

19
π
> 3 +

√
8,
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so by (4.2), the number λ̃b is equal to the unique zero of the function h̃b on the interval (1/b, 1).
This easily implies that λ̃b

√
b→ 1/

√
π as b→∞ (the details are left to the reader). �

Let

γ̃b =
1
bλ̃b

.

Now we prove a modified transversality condition for the functions Y·,·(i). The trick we use
is to consider transversality with respect to two variables x, γ.

Proposition 4.2. For every ε > 0 there exists δ > 0 such that for every i = (i1, i2, . . .), j =
(j1, j2, . . .) ∈ Σ with i1 6= j1,

|Yx,γ(i)− Yx,γ(j)| > δ or
∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣+
∣∣∣∣ ddγ Yx,γ(i)− d

dγ
Yx,γ(j)

∣∣∣∣ > δ

for every x ∈ (0, 1) and γ ∈ (1/b, γ̃b − ε).

Proof. The proof is similar to the proof of Proposition 3.5. Suppose that the statement does
not hold. Then for every δ > 0 there exist i = (i1, i2, . . .), j = (j1, j2, . . .) ∈ Σ with i1 6= j1,
x ∈ (0, 1) and γ ∈ (1/b+ ε, γ̃b − ε), such that

|Yx,γ(i)− Yx,γ(j)| ≤ δ,
∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ ≤ δ, ∣∣∣∣ ddγ Yx,γ(i)− d

dγ
Yx,γ(j)

∣∣∣∣ ≤ δ. (4.5)

Repeating the estimates in (3.3), we obtain∣∣∣∣ ddxYx,γ(i)− d

dx
Yx,γ(j)

∣∣∣∣ ≥ 8π2γ

b
sin

π

b

∣∣∣∣sin(2π
2x+ i1 + j1

2b

)∣∣∣∣− 8π2γ2

b(b− γ)
. (4.6)

By (4.5) and (4.6),

sin
π

b

∣∣∣∣sin(π(2x+ i1 + j1)
b

)∣∣∣∣ ≤ γ

b− γ
+

δb

8π2γ
<

γ

b− γ
+
δb2

8π2
<

1
b− 1

+
δb2

8π2
. (4.7)

By the definition of Yx,γ (see (2.1)), we have

Yx,γ(i)− Yx,γ(j) = 2π
∞∑
n=1

ynγ
n,

where

y1 = sin
(

2π
x+ i1
b

)
− sin

(
2π
x+ j1
b

)
= 2 sin

(
2π
i1 − j1

2b

)
cos
(

2π
2x+ i1 + j1

2b

)
and |yn| ≤ 2 for n ≥ 2. Using the fact i1 6= j1 and (4.7), we obtain

|y1| ≥ 2 sin
π

b

∣∣∣∣cos
(

2π
2x+ i1 + j1

2b

)∣∣∣∣
> 2

√
sin2 π

b
−
(

γ

b− γ
+

δb

8π2γ

)2

> 2

√
sin2 π

b
−
(

1
b− 1

+
δb2

8π2

)2

,

(4.8)
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in particular y1 6= 0 for sufficiently small δ (because hb(1) < 0, see the proof of Lemma 3.4).
Hence, for the function

g(t) =
Yx,t(i)− Yx,t(j)

2πy1t

we have

g(t) = 1 +
∞∑
n=1

gnt
n,

where

|gn| =
|yn+1|
|y1|

<
1√

sin2(π/b)− (γ/(b− γ) + δb/(8π2γ))2
.

This implies that g ∈ Gβ for

β =
1√

sin2(π/b)− (γ/(b− γ) + δb/(8π2γ))2
.

On the other hand, by (4.5) and (4.8),

|g(γ)| ≤ δ

2π|y1|γ
<

δb

4π
√

sin2(π/b)− (1/(b− 1) + δb2/(8π2))2
(4.9)

and

|g′(γ)| ≤ (γ + 1)δ
2π|y1|γ2

<
δb2

2π
√

sin2(π/b)− (1/(b− 1) + δb2/(8π2))2
(4.10)

Note that g, γ and β depend on δ. Take a sequence of δ-s tending to 0. Then we can choose
a subsequence such that γ → γ∗ ∈ [1/b, γ̃b − ε], β → β∗ for

β∗ =
1√

sin2(π/b)− (γ∗/(b− γ∗))2
<

1√
sin2(π/b)− (γ̃b/(b− γ̃b))2

and g converges uniformly in [1/b, γ̃b] to a function g∗ ∈ Gβ∗ . Since the right-hand sides of
(4.9) and (4.10) tend to 0 as δ → 0, we obtain

g∗(γ∗) = g′∗(γ∗) = 0,

so y(β∗) ≤ γ∗. This is a contradiction, because by Lemma 4.1,

y(β∗) = y

(
1√

sin2(π/b)− 1/(b2λ∗ − 1)2

)
>

1
bλ∗

= γ∗

for λ∗ = 1/(bγ∗) > 1/(bγ̃b) = λ̃b. This ends the proof. �

As a simple consequence of the previous proposition one can prove the following statement
(for the proof we refer to [27, Lemma 7.3]).

Lemma 4.3. For every ε > 0 there exists a constant C > 0 such that for every i =
(i1, i2, . . . , ), j = (j1, j2, . . . , ) ∈ Σ with i1 6= j1,

L2 ({(x, γ) ∈ (0, 1)× (1/b, γ̃b − ε) : |Yx,γ(i)− Yx,γ(j)| < r}) ≤ Cr

for every r > 0, where L2 is the Lebesgue measure on the plane.
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To state next results, we need to introduce some notation. For i = (i1, i2, . . . ) ∈ Σ let
i|n = (i1, . . . , in). For i = (i1, i2, . . . , ), j = (j1, j2, . . . , ) ∈ Σ let

i ∧ j = min {n ≥ 0 : in+1 6= jn+1} .

For a finite length word (l1, . . . , ln) ∈ Σ∗ let

A(l1,...,ln) =
{

(i, j) ∈ Σ2 : i ∧ j = n
}
.

We note that for the empty word we have A∅ =
{

(i, j) ∈ Σ2 : i1 6= j1
}

. We will write

A(l1,...,ln)

∣∣
N

= {(i|N , j|N ) : (i, j) ∈ A(l1,...,ln)}

for N ≥ 1. For a finite length word i = (i1, . . . , in) ∈ Σ∗ let

vi(x) =
x

bn
+
i1
bn

+ · · ·+ in
b
.

Let us observe that for any i, j ∈ Ai,

|Yx,γ(i)− Yx,γ(j)| = γn
∣∣∣Yvi(x),γ(σni)− Yvi(x),γ(σnj)

∣∣∣ , (4.11)

where σ denotes the left-side shift on Σ and n is the length of i.
Unfortunately, because of the structure of the measure mx,γ , it is not possible to apply

directly the transversality method and Lemma 4.3. To avoid this difficulty, we introduce the
following lemma.

Lemma 4.4. Let i = (i1, i2, . . . , ), j = (j1, j2, . . . , ) ∈ Σ with i1 6= j1. Then for every r > 0
there exists N = N(r) such that

|Yx,γ(i)− Yx,γ(j)| < r ⇒ |Yx,γ( i|N 0)− Yx,γ( j|N 0)| < 2r (4.12)

for every x ∈ (0, 1) and γ ∈ (1/b, γ̃b), where 0 = (0, 0, . . . ).

Proof. We have

||Yx,γ(i)− Yx,γ(j)| − |Yx,γ( i|N 0)− Yx,γ( j|N 0)||
≤ |(Yx,γ(i)− Yx,γ( i|N 0))− (Yx,γ(j)− Yx,γ( j|N 0))|

≤ γN
∣∣∣Yv i|N (x),γ(σN i)− Yv i|N (x),γ(0)

∣∣∣+ γN
∣∣∣Yv j|N (x),γ(σN j)− Yv j|N (x),γ(0)

∣∣∣
≤ γN 8πγ

1− γ
< γ̃Nb

8πγ̃b
1− γ̃b

≤ r,

which implies the inequality (4.12) for sufficiently large N = N(r). �

Proposition 4.5. For Lebesgue almost every γ ∈ (1/b, γ̃b) the measure mx,γ is absolutely
continuous (in particular, dimmx,γ = 1) for Lebesgue almost every x ∈ (0, 1).

Proof. Take ε > 0. We will prove that mx,γ is absolutely continuous with respect to the
Lebesgue measure, with density in L2, for Lebesgue almost every (x, γ) ∈ Rε, where

Rε = (0, 1)× (1/b+ ε, γ̃b − ε) .

Since ε > 0 is arbitrarily small, this will imply the statement. Denote by

D(mx,γ , y) = lim inf
r→0

mx,γ(Br(y))
2r
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the lower density of the measure mx,γ at the point y, where Br(y) denotes the ball with radius
r centered at y. By [19, Theorem 2.12], if D(mx,γ , y) <∞ for mx,γ-almost every y, then the
measure mx,γ is absolutely continuous. It is enough to show that

I :=
∫∫

Rε

∫
R
D(mx,γ , y) dmx,γ(y)dL2(x, γ) <∞.

The statement follows from the Fubini theorem. By standard manipulations we have

I ≤ lim inf
r→0

1
2r

∫∫
Σ×Σ
L2 ({(x, γ) ∈ Rε : |Yx,γ(i)− Yx,γ(j)| < r}) dP(i)dP(j).

Then∫∫
Σ×Σ
L2 ({(x, γ) ∈ Rε : |Yx,γ(i)− Yx,γ(j)| < r}) dP(i)dP(j)

=
∞∑
n=0

∑
i∈{0,...,b−1}n

∫∫
Ai

L2 ({(x, γ) ∈ Rε : |Yx,γ(i)− Yx,γ(j)| < r}) dP(i)dP(j).

By (4.11), for any i, j ∈ Ai,

L2 ({(x, γ) ∈ Rε : |Yx,γ(i)− Yx,γ(j)| < r})

= L2

({
(x, γ) ∈ Rε :

∣∣∣Yvi(x),γ(σni)− Yvi(x),γ(σnj)
∣∣∣ < γ−nr

})
= bnL2

({
(x, γ) ∈ Ri,ε : |Yx,γ(σni)− Yx,γ(σnj)| < γ−nr

})
≤ bnL2

({
(x, γ) ∈ Ri,ε : |Yx,γ(σni)− Yx,γ(σnj)| <

(
1
b

+ ε

)−n
r

})
,

where Ri,ε = (vi(0), vi(1))× (1/b+ ε, γ̃b). Applying Lemma 4.4, we get

bnL2

({
(x, γ) ∈ Ri,ε : |Yx,γ(σni)− Yx,γ(σnj)| <

(
1
b

+ ε

)−n
r

})

≤ bnL2

({
(x, γ) ∈ Ri,ε : |Yx,γ(σni|N 0)− Yx,γ(σnj|N 0)| < 2

(
1
b

+ ε

)−n
r

})
,

where N depends on n, r. Hence,∑
i∈{0,...,b−1}n

∫∫
Ai

L2 ({(x, γ) ∈ Rε : |Yx,γ(i)− Yx,γ(j)| < r}) dP(i)dP(j)

≤
∑

i∈{0,...,b−1}n

∑
(k,l)∈A∅|N

bn

b2n+2N
L2

({
(x, γ) ∈ Ri,ε :

∣∣Yx,γ(k0)− Yx,γ(l0)
∣∣ < 2

(
1
b

+ ε

)−n
r

})

=
∑

(k,l)∈A∅|N

bn

b2n+2N
L2

({
(x, γ) ∈ Rε :

∣∣Yx,γ(k0)− Yx,γ(l0)
∣∣ < 2

(
1
b

+ ε

)−n
r

})
,
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where in the last inequality we used that Rε =
⋃
i∈{0,...,b−1}n Ri,ε. Using Lemma 4.3 we get

I ≤ lim inf
r→0

1
2r

∞∑
n=0

∑
(k,l)∈A∅|N

bn

b2n+2N
L2

({
(x, γ) ∈ Rε :

∣∣Yx,γ(k0)− Yx,γ(l0)
∣∣ < 2

(
1
b

+ ε

)−n
r

})

≤ lim inf
r→0

1
2r

∞∑
n=0

∑
(k,l)∈A∅|N

bn

b2n+2N
2Cr

(
1
b

+ ε

)−n
≤ C

∞∑
n=0

(1 + bε)−n,

which is finite since ε > 0. �

Proof of Theorem B. The result is a consequence of Proposition 4.5, Proposition 2.2 and
(2.2). �

To obtain more precise estimates of λ̃2, λ̃3, λ̃4 presented in Corollary C, one needs to find
suitable (∗)-functions. To do it, we use the following result.

Lemma 4.6 (Peres, Solomyak [22, Lemma 5.1]). Let β ≥ 1. Suppose that for some positive
integer k = k(β) and a real number η = η(β) there exists a function gβ : R→ R,

gβ(t) = 1− β
k−1∑
n=1

tn + ηtk + β

∞∑
n=k+1

tn

such that for some tβ ∈ (0, 1),

gβ(tβ) > 0 and g′β(tβ) < 0.

Then y(β) > tβ. More precisely, there exists ε > 0 such that for every g ∈ Gβ and every
t ∈ (0, tβ),

g(t) < ε ⇒ g′(t) < −ε.

Let
β =

1√
sin2(π/b)− 1/(b2λ− 1)2

.

and consider functions gβ defined in Lemma 4.6.
For b = 2 take k = 4, η = 0.81, λ = 0.81. Then gβ(0.62) > 0 and g′β(0.62) < 0, so

y(β) > 0.62. On the other hand, 1/(2λ) = 1/1.62 < 0.62. By Lemma 4.1, λ̃2 < 0.81.
For b = 3 take k = 4, η = 1.43398, λ = 0.55. Then gβ(0.6061) > 0 and g′β(0.6061) < 0, so

y(β) > 0.6061. On the other hand, 1/(3λ) = 1/1.65 < 0.6061. By Lemma 4.1, λ̃3 < 0.55.
For b = 4 take k = 3, η = −0.298, λ = 0.44. Then gβ(0.569) > 0 and g′β(0.569) < 0, so

y(β) > 0.569. On the other hand, 1/(4λ) = 1/1.76 < 0.569. By Lemma 4.1, λ̃4 < 0.44.
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