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Chapter 1

Linear algebra

1.1 Matrices

We begin by recalling some basic definitions from our previous studies on linear algebra. First,
let us consider one of the basic objects, namely, the matrices.

Let m and n be positive integers. The matrix m × n A = [aij ] = [aij ]
m,n
i=1,j=1 is a table of

numbers

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 ,

with m rows and n columns, where ai,j are reals indexed by two index set: i ∈ {1, . . . ,m}, j ∈
{1, . . . , n}. We denote the set of m× n matrices by Rm×n.

1.1.1 Basic operations

For given two n×m matrices A = [aij ] ∈ Rm×n and B = [bij ] ∈ Rm×n, we define the sum A+B

as an m× n matrix of which element in the ith row and jth column is aij + bij . That is,

A+B =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

+

b11 b12 · · · b1n

b21 b22 · · · b2n
... ... . . . ...

bm1 bm2 · · · bmn

 =


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
... ... . . . ...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

Similarly, the multiplication of a matrix A = [aij ] ∈ Rm×n with a scalar c ∈ R, we define the
matrix cA as an m× n matrix of which element in the ith row and jth column is caij . That is,

cA = c


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
... ... . . . ...

cam1 cam2 · · · camn

 .
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Given two matrices, A = [aij ] ∈ Rm×n and B = [bkℓ] ∈ Rn×h we can define A · B ∈ Rm×h,
the product of matrices, with the equation:

AB =
[ n∑
j=1

aijbjℓ

]m,h

i=1,ℓ=1
.

That is, the AB matrix has m rows and h columns and its i, ℓth element is∑n
j=1 aijbjℓ.

Example 1.1.1. Let us multiply a 2× 3 matrix with a 3× 4 matrix:

A =

[
1 2 3

4 5 6

]
, B =

 1 0 2 1

−1 3 1 0

2 4 0 −2

 .

The product AB is defined since the inner dimensions (3 and 3) agree, and the result is a 2× 4

matrix.

AB =

[
1 · 1 + 2 · (−1) + 3 · 2 1 · 0 + 2 · 3 + 3 · 4 1 · 2 + 2 · 1 + 3 · 0 1 · 1 + 2 · 0 + 3 · (−2)
4 · 1 + 5 · (−1) + 6 · 2 4 · 0 + 5 · 3 + 6 · 4 4 · 2 + 5 · 1 + 6 · 0 4 · 1 + 5 · 0 + 6 · (−2)

]

=

[
5 18 4 −5
11 39 13 −8

]
.

Thus AB is a 2× 4 matrix.

Let us note that unlike the multiplication of real numbers, the multiplication of matrices is
not commutative.

Example 1.1.2. Consider two 2× 2 matrices:

A =

[
1 2

0 1

]
, B =

[
0 1

1 0

]
.

Compute

AB =

[
1 · 0 + 2 · 1 1 · 1 + 2 · 0
0 · 0 + 1 · 1 0 · 1 + 1 · 0

]
=

[
2 1

1 0

]
,

while

BA =

[
0 · 1 + 1 · 0 0 · 2 + 1 · 1
1 · 1 + 0 · 0 1 · 2 + 0 · 1

]
=

[
0 1

1 2

]
.

Since

AB =

[
2 1

1 0

]
̸=

[
0 1

1 2

]
= BA,

we see that matrix multiplication is generally not commutative.

Definition 1.1.3. Let A = [aij ] ∈ Rm×n. The transpose of A, denoted A⊤, is the n×m matrix of
which element in the ith row and jth column is aji. That is, the rows of A become the columns of
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AT , and vice versa. That is,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 , then A⊤ =


a11 a21 · · · am1

a12 a22 · · · am2

...
... . . . ...

a1n a2n · · · amn

 .

Proposition 1.1.4. For A,B ∈ Rm×n,

(A+B)⊤ = A⊤ +B⊤.

Moreover, for two matrices A ∈ Rm×n and B ∈ Rn×h we have that

(AB)⊤ = B⊤A⊤.

1.1.2 Determinant

Definition 1.1.5. The determinant is a function that assigns to every square matrix A ∈ Rn×n a
scalar det(A) ∈ R, defined inductively as follows:

• For n = 1, if A = [a], then det(A) = a.

• For n = 2, if A =

[
a b

c d

]
, then det(A) = ad− bc.

• For n ≥ 2, the determinant is defined by expanding along the first row:

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j),

where A1j is the (n− 1)× (n− 1) matrix obtained by deleting the first row and j-th column
of A. These submatrices are called minors of A. For example for a 4× 4 matrix:

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ⇝ A12 =

a21 a23 a24

a31 a33 a34

a41 a43 a44

 .

Theorem 1.1.6. Let A ∈ Rn×n. The determinant of A can be computed by expanding along any
row or any column. Specifically, for any fixed row i or column j,

det(A) =
n∑

k=1

(−1)i+kaik det(Aik) =
n∑

k=1

(−1)k+jakj det(Akj),

where Aik or Akj are the appropriate minors of A.

Theorem 1.1.7. For a 3 × 3 matrix, the determinant can be computed using a shortcut known as
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Sarrus’ Rule. Let

A =

a b c

d e f

g h i

 .

Then the determinant is:

det(A) = aei+ bfg + cdh− ceg − bdi− afh.

Remark 1.1.8. Sarrus’ rule can be visualized by rewriting the first two columns of the matrix next
to it and then summing the products of the diagonals from upper left to lower right, and subtracting
the products of the diagonals from lower left to upper right.

a b c a b

d e f d e

g h i g h




The red diagonals correspond to the positive terms

aei+ bfg + cdh,

while the blue diagonals correspond to the negative terms

ceg + bdi+ afh.

?⟨ex:3b3⟩?
Example 1.1.9 (Determinant of a 3× 3 Matrix). Find the determinant det(A) of the matrix

A =

1 2 3

4 5 6

7 8 9

 .

We apply Sarrus’ rule. That is, we copy the first two columns to the right:1 2 3

4 5 6

7 8 9

 1 2

4 5

7 8

.

Now compute the diagonal products:

(1 · 5 · 9) + (2 · 6 · 7) + (3 · 4 · 8) = 45 + 84 + 96 = 225,

and the antidiagonal products:

(3 · 5 · 7) + (1 · 6 · 8) + (2 · 4 · 9) = 105 + 48 + 72 = 225.
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Subtracting:
det(A) = 225− 225 = 0.

?⟨prop:det⟩?Theorem 1.1.10. Let A,B ∈ Rn×n, and let c ∈ R. Then:

1. det(A⊤) = det(A),

2. det(cA) = cn det(A),

3. det(AB) = det(A) det(B).

Remark 1.1.11. In R2, the determinant gives the signed area of the parallelogram spanned by two
column vectors of A. In R3, it gives the signed volume of the parallelepiped defined by the columns
of A. See also later, Remark 1.5.7.

Definition 1.1.12 (Inverse of a Matrix). Let A ∈ Rn×n be a square matrix. If there exists a matrix
B ∈ Rn×n such that

AB = BA = In,

where

In =


1 0 · · · 0

0 1
. . . ...

... . . . . . . 0

0 · · · 0 1


is the n×n identity matrix, then A is said to be invertible, and B is called the inverse of A, denoted
A−1.

Theorem 1.1.13 (Formulas for case 2× 2). For a 2× 2 matrix

A =

[
a b

c d

]
,

if det(A) = ad− bc ̸= 0, then

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Proof. Let us check the product

1

ad− bc

[
d −b
−c a

][
a b

c d

]
=

1

ad− bc

[
da− cb −ab+ ba

−ac+ ca −bc+ ad

]
=

[
1 0

0 1

]
.

Example 1.1.14 (Inverse of a 2× 2 Matrix). Let

A =

[
2 1

5 3

]
.
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First compute the determinant:

det(A) = 2 · 3− 1 · 5 = 6− 5 = 1.

Since det(A) ̸= 0, A is invertible. By the formula,

A−1 =
1

1

[
3 −1
−5 2

]
=

[
3 −1
−5 2

]
.

?⟨cor:inv⟩?Theorem 1.1.15. A square matrix A ∈ Rn×n is invertible if and only if det(A) ̸= 0.

Example 1.1.16. To see a non-invertible matrix, use the previous corollary to see that the matrix
in Example 1.1.9 is not invertible.

1.1.3 Exercises

1. Let

A =

[
1 2

3 4

]
, B =

[
1 1 1

3 2 1

]
, C =

0 2 3

1 4 2

3 2 1

 .

Calculate A(BC) and (AB)C.

2. Calculate the determinant of

A =

11 −2 −1
3 4 −8
7 1 2

 .

3. Calculate the inverse of
A =

[
61 24

29 4

]
.

1.2 Linear Equations and Linear Equation Systems

Definition 1.2.1. A linear equation of n variables x1, x2, . . . , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an and b are real (or complex) numbers, and x1, x2, . . . , xn are variables, that is,
unknown numbers. A system of linear equations is a collection ofm linear equations of n variables:

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm.


(1.2.1) ?eq:lineq?

We call a system of linear equations homogeneous if b1 = · · · = bm = 0.
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The central goal is to find all tuples (x1, . . . , xn) that satisfy every equation in the system
simultaneously. Let us note that a homogeneous linear equation system always has (at least one)
solution by taking x1 = · · · = xn = 0. To find solutions, we are allowed to perform a set of
operations that preserve the solution set. These are known as the elementary operations:

• Exchange the positions of two equations.

• Multiply an equation by a non-zero scalar.

• Replace one equation with the sum of itself and a scalar multiple of another equation.

These operations clearly do not change the solution. Using such operations, we aim to trans-
form a given system into a simpler one, from which the solution is easier to determine. First, let
us introduce two notations.

Definition 1.2.2. Given a system of m linear equations in n variables as in (1.2.1), the coefficient
matrix A is the m× n matrix containing the coefficients of the variables:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .

The extended coefficient matrix (or simply, augmented matrix) of the system is the m× (n+ 1)

matrix obtained by appending the column of constants to the coefficient matrix:

[A | b] =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

... . . . ...
...

am1 am2 · · · amn bm

 .

Using the coefficient matrix A, and defining x =


x1
...
xn

 ∈ Rn×1 and b =


b1
...
bm

 ∈ Rm×1, we

can write (1.2.1) in the form
Ax = b. (1.2.2) ?eq:lineq3?

For every i = 1, . . . , n, the ith column of the augmented matrix corresponds to the variable
xi by representing it coefficients in the linear equation system. Each elementary operation of
a linear equation system corresponds naturally to the manipulations of rows in the augmented
matrix. These operations are called elementary row manipulations:

• Exchange the position of two rows in the augmented matrix.

• Multiply a row by a non-zero scalar.

• Replace a row with the sum of itself and scalar multiple of another row.

10
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Let us see now an example to demonstrate how to use elementary row manipulations for
solving linear equation systems.
Example 1.2.3. Consider the following system of linear equations of four variables:

x1 + 2x2 − x3 + x4 = 3,

2x1 + 5x2 + x3 + 4x4 = 10,

3x1 + 7x2 + 5x4 = 13.

 (1.2.3) ?eq:ex2?

Then We write its extended matrix:  1 2 −1 1 3

2 5 1 4 10

3 7 0 5 13

 .

The general idea in solving linear equations is as follows: the easiest way to read the solution
would be if every variable would appear in the linear equation in a "reversed chronological" order
(i.e. the first variable appears in the first the first equation, but not in the others; the second appears
in the first and second but nowhere else etc.). This is not always possible, but it is a good guideline
for our strategy. Along these lines, let us do the following:

Step 1: Eliminate entries below 1 in the first column. First, subtract the double of row 1 from
row 2:

R2 ← R2 − 2R1 :

 1 2 −1 1 3

0 1 3 2 4

3 7 0 5 13

 .

Then subtract the triple of row 1 from row 3:

R3 ← R3 − 3R1 :

 1 2 −1 1 3

0 1 3 2 4

0 1 3 2 4

 .

As we see, every element in the first column is zero except the first one. In particular, we eliminated
the first variable from every equation except the first, where its coefficient is 1. Now, we intend to do
the same with the second variable.

Step 2: Eliminate entries below the first non-zero element in the second column: Subtract row 2
from row 3:

R3 ← R3 −R2 :

 1 2 −1 1 3

0 1 3 2 4

0 0 0 0 0

 . (1.2.4) ?eq:ex1?

This is a stage where we can determine the solution. The augmented matrix above corresponds
to the following linear equation system:

x1 + 2x2 − x3 + x4 = 3,

x2 + 3x3 + 2x4 = 4,

0 = 0.

11
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The last row corresponds to the trivial equation 0 = 0 therefore we can omit it. Since there are four
variables and only two non-trivial equations, we can choose two variables freely. Set x3 = s, x4 = t,
where s, t ∈ R. Then we can express x2 as

x2 + 3s+ 2t = 4 ⇒ x2 = 4− 3s− 2t.

Now, using this, we can also express x1 by s and t

x1 + 2x2 − s+ t = 3.

Substitute x2 = 4− 3s− 2t:

x1+2(4−3s−2t)−s+ t = 3⇒ x1+8−6s−4t−s+ t = 3⇒ x1 = 3−8+7s+3t = −5+7s+3t.

So, the solution is:
x1 = −5 + 7s+ 3t,

x2 = 4− 3s− 2t,

x3 = s,

x4 = t,

where s, t ∈ R can be chosen freely, that is, the choice of x1, . . . , x4 above solves the linear equation
system in (1.2.3) for every values of s and t.

This has augmented matrix  1 0 −7 −3 −5
0 1 3 2 4

0 0 0 0 0

 .

Notice, that this last step could be easily done by working only on the augmented matrix by subtract-
ing the double of row 2 from row 1.

There is a general strategy for solving linear equations in the form (1.2.1), which is called the
Gauss-Jordan elimination. It is an algorithmic procedure for solving systems of linear equations
by systematically applying elementary row operations to transform the augmented matrix of a
system into a special form known as the reduced row echelon form (RREF).

?⟨def:RREF⟩?Definition 1.2.4. We say that an m× n matrix A has row echelon form (REF) if

• all rows containing non-zero elements are above any rows which contain only zeros;

• the leftmost non-zero entry in each non-zero row is 1. This is called a pivot element;

• in any two consecutive rows, the pivot element of the row below stands strictly to the right of
the pivot of the row above.

We say that an m× n matrix A has reduced row echelon form (RREF) if

• it has a row echelon form;

• Entries above and below each pivot are zero.

12
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Clearly, in a matrix of row echelon form, the entries below each pivot elements are zero.
Example 1.2.5. The following matrices are in row-echelon form:

1 4 3 7

0 1 6 2

0 0 0 1

0 0 0 0

 ;

1 0 0 0 2

0 0 1 2 2

0 0 0 1 −1

 .

The following matrices are in reduced row-echelon form:

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 4 0 0 1

0 0 1 0 2

0 0 0 1 −1
0 0 0 0 0


Algorithm 1.2.6 (Gauss-Jordan elimination). Let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .

?⟨st:1⟩? (i) If the first column of A contains only zeros then replace cover the first column and continue
the procedure with the uncovered part of the matrix from (i). Otherwise go to the next step.

(ii) If the first column of A contains a non-zero element then exchange the first row and the row
with non-zero first element. If the first element of the first column is non-zero, then go to next
step.

(iii) Divide the first row by its first (non-zero) element. So we are at stage:
1 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


(iv) Subtract from the lower rows the corresponding multiplier of the first row to make the first

elements in the lower rows zero. That is, subtract from row k the ak1 multiplier of the row 1.
So we are at stage: 

1 a12 · · · a1n

0 a22 · · · a2n
...

... . . . ...
0 am2 · · · amn


(v) Cover the first row and first column of the matrix. If there is nothing left, stop, otherwise

continue the process on the uncovered part from (i).

13
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The matrix at the end of the process described above has row-echelon form. Then continue with the
following:

?⟨st:1b⟩?
(vi) If the last column of A contains only zeros then replace cover the last column and continue the

procedure with the uncovered part of the matrix from (vi).

(vii) If the last column of the matrix has a non-zero element then the last non-zero element of the
column must be a pivot. Then subtract from the upper rows the corresponding multiplier of
that row to make all the elements above zero. Then cover the last column of the matrix. If
nothing left then stop, otherwise go to (vi).

Let us note that we need to do every manipulation described above with the covered parts too!

The solution can be easily read from the reduced row-echelon form if we rewrite it in the
linear equation system form.

?⟨prop:solutions⟩?Proposition 1.2.7. The linear equation system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm.


• has no solution, if the reduced row-echelon form of its augmented matrix (after the Gauss-

Jordan elimination) contains a pivot element in the last column;

• has a unique solution if every column in the reduced row-echelon form of its augmented matrix
(after the Gauss-Jordan elimination) contains a pivot element except the last column;

• has infinitely many solutions, if the last column and another column in the reduced row-
echelon form of its augmented matrix (after the Gauss-Jordan elimination) do not contain
pivot element. In that case, the free parameters can be chosen to be the variables of which
corresponding column does not contain pivot elements.

Proof. Since we know that the elementary row manipulations do not change the solution, it is
enough to focus on linear equation systems with augmented matrix in reduced row-echelon form.
Let A be such augmented matrix. If the last column contains a pivot element then it has the form

1 a12 · · · a1n b1

0
. . . . . . ... ...

... . . . . . . ... bm

0 0 0 0 1

0 0 0 0 0
... ... ... ... ...


.

Rewriting the augmented matrix in the linear equation system form, the last non-zero row gives
the equation 0 = 1, which is absurd, so the equation system does not have a solution.

14



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

If every column of the reduced row-echelon form contains a pivot element except the last one,
then it must have the form 

1 0 · · · 0 b1

0 1
. . . ... ...

... . . . . . . 0
...

0 · · · 0 1 bn

0 0 0 0 0
... ... ... ... ...


.

Rewriting the augmentedmatrix in the linear equation system form, we get that x1 = b1, . . . , xn =

bn, which is the unique solution.
We can solve the remaining case, when the last column and another column do not contain

pivot elements, then rewriting the augmented matrix back to the linear equation form, we can
express every variable which corresponds to a column with pivot element using variables corre-
sponding to columns without pivot elements. These latter ones are called free variables.

Let us demonstrate the Gauss-Jordan elimination on the following example.

Example 1.2.8. Solve the following linear equation system:

x+ 2y − z = 3

2x+ 4y + z = 7

2z − x = 0.


Let us rewrite it into the augmented matrix form. 1 2 −1 3

2 4 1 7

−1 0 2 0

 R2←R2−2R1,
R3←R3+R1−−−−−−−−−→

 1 2 −1 3

0 0 3 1

0 2 1 3

 R2↔R3−−−−−→

 1 2 −1 3

0 2 1 3

0 0 3 1


R2←R2/3−−−−−−→

 1 2 −1 3

0 1 1/2 3
2

0 0 3 1

 R3← 1
3
R3−−−−−−→

 1 2 −1 3

0 1 1/2 3
2

0 0 1 1
3


R2←R2− 1

2
R3

R1←R1+R3−−−−−−−−→

 1 2 0 10
3

0 1 0 4
3

0 0 1 1
3

 R1←R1−2R2−−−−−−−−→

 1 0 0 2
3

0 1 0 4
3

0 0 1 1
3


That is, the linear equation system has the unique solution x = 2

3 , y = 4
3 and z = 1

3 .

The Gauss-Jordan elimination is one of the most important tools in linear algebra. Solving
linear equation systems is not only important on its own but many problems can be reduced to
solving a system of linear equations.

15
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1.2.1 Exercises

1. Solve the following homogeneous linear equation system

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 0,

−x1 + x2 − 6x4 + x5 = 0,

3x2 + x3 + 5x4 − x5 = 0

2x3 − 7x4 + 7x5 = 0.


2. Let us consider the following system of linear equations

2x− y + z = 4,

2y + 3z = 3,

x+ y + az = b.


How shall we choose the parameters a and b such that

(a) the system has no solution,
(b) the system has a unique solution,
(c) the system has infinitely many solutions.

In all of the cases (when it is possible), give all solutions!

1.3 Vector spaces

We now continue with the basic object of linear algebra, the vector spaces.

Definition 1.3.1. A vector space over the reals R is a set V equipped with two operations vector
addition and scalar multiplication such that for all u, v, w ∈ V and all scalars a, b ∈ R, the following
axioms hold:

1. u+ v = v + u (Commutativity of +)

2. (u+ v) + w = u+ (v + w) (Associativity of +)

3. There exists a zero vector 0 ∈ V such that u+ 0 = u (Zero element)

4. For each u ∈ V , there exists −u ∈ V such that u+ (−u) = 0 (Inverse)

5. a(u+ v) = au+ av and (a+ b)u = au+ bu (Distributive properties)

6. 1 · u = u and 0 · u = 0.

Example 1.3.2. Another natural example of vector spaces is the space of row vectors Rn. That is,
let n ∈ N be positive integer and let us write

Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R}.
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For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and a ∈ R, let us define the following operations

x+ y := (x1 + y1, . . . , xn + yn) and a · x := (a · x1, . . . , a · xn).

With these operations, Rn is a vectorspace. Usually, the vectors described in Example ?? are repre-
sented by the vectors in R3.

Example 1.3.3 (Vector addition in R2). Let u =

[
2

1

]
and v =

[
1

2

]
be vectors in R2. Vector addition

is defined componentwise:

u+ v =

[
2 + 1

1 + 2

]
=

[
3

3

]
.

x

y

u =

[
2
1

]v =

[
1
2

]
v

u

O

u+ v =

[
3
3

]

Figure 1.1: Geometric interpretation of vector addition. The sum u+v can be obtained by placing
the tail of v at the tip of u; equivalently, u+ v is the diagonal of the parallelogram spanned by u
and v. The red arrow is u, the blue arrow is v, the blue arrow translated to the tip of u is drawn
dashed, and the green arrow is u+ v.

With a slight abuse of notation, we will also use the notationRn for the vector space of column
vectors

Rn =



x1
...
xn

 : x1, . . . , xn ∈ R

 .

The operations are defined similarly, that is, we take the sum and scalar product element-wise.

Definition 1.3.4. Let v1, v2, . . . , vn be vectors in a vector space V over R. A linear combination of
these vectors is any vector of the form

a1v1 + a2v2 + · · ·+ anvn,

where a1, a2, . . . , an ∈ R. The scalars are called the coefficients of the linear combination.
?⟨ex2⟩?

Example 1.3.5. Consider the linear equation system
x1 − x2 = −1

5x1 + 2x2 = 8

}
. Then the linear equation

17
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can be written in the form

x1

[
1

5

]
+ x2

[
−1
2

]
=

[
−1
8

]
.

This means solving liner equation systems is equivalent to finding coefficients x1, x2 such that the

corresponding linear combination of the vectors v1 and v2 equals to b, where v1 :=

[
1

5

]
, v2 :=[

−1
2

]
, b :=

[
−1
8

]
.

Example 1.3.5 shows actually a general phenomenon. Consider the linear equation system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.


(1.3.1) ?eq:lineq2?

Let

vi :=


a1i
...

ami

 ∈ Rm for every i = 1, . . . , n, and let b :=


b1
...
bm

 ∈ Rm . (1.3.2) ?eq:coeffvec?

Then the linear equation system (1.3.1) can be written in the form

x1v1 + · · ·+ xnvn = b.

Hence, solving the linear equation system 1.3.1 is equivalent with the question: Does there ex-
ists coefficients x1, . . . , xn such that b can be expressed as the linear combination of the vectors
v1, . . . , vn (which are column vectors of the coefficient matrix of the linear equation system).
Proposition 1.2.7 provides us a method to answer this question and now, we will discuss what
consequences does it have for vector spaces.

Definition 1.3.6. LetW ⊆ V be a subset of the vector space V over R. We callW a linear subspace
if:

• The zero vector 0 ∈W ;

• W is closed under vector addition, that is, u+ v ∈W for every u, v ∈W ;

• W is closed under scalar multiplication: av ∈W for every a ∈ R and v ∈W .

In other words, a subspace is a subset of V that is itself a vector space under the same operations.

Example 1.3.7. The sets

K =


xy
z

 ∈ R3 : x+ y + z = 0

 ,


xy
0

 ∈ R3 : x, y ∈ R


18



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

are subspaces of R3. For example consider two vectors a1 =

x1y1
z1

 and a2 =

x2y2
z2

 ∈ K. Now their

sum, a1 + a2 =

x1 + x2

y1 + y2

z1 + z2

, and clearly

(x1 + x2) + (y1 + y2) + (z1 + z2) = (x1 + y1 + z1) + (x2 + y2 + z2) = 0.

Hence, a1 + a2 ∈ K. Moreover, for a constant s, we have that sa1 =

sx1sy1

sz1

, and
sx1 + sy1 + sz1 = s(x1 + y1 + z1) = s · 0 = 0.

Thus, sa1 ∈ K.

Example 1.3.8 (Not a Subspace). The sets
xy
z

 ∈ R3 : x+ y + z = 1

 ,


xy
1

 ∈ R3 : x, y ∈ R


are not subspaces of R3, since they do not contain the origin.

?⟨def:span⟩?Definition 1.3.9. Given vectors v1, v2, . . . , vn ∈ V . We call the set of all possible linear combinations
of these vectors by the subspace spanned by the vectors v1, v2, . . . , vn, and we denote it as

span(v1, v2, . . . , vn) = {a1v1 + a2v2 + · · ·+ anvn : ai ∈ R} .

The span is always a subspace of V .

Using the definition of spanned subspace, it is easy to see that the linear equation system
(1.3.1) has a solution (infinitely many or a unique) if and only if

b ∈ span(v1, v2, . . . , vn),

where the vectors b and vi are as in (1.3.2). To decide whether the solution is unique or not, we
need a better understanding on the vectors v1, . . . , vn.

1.3.1 Exercises

1. Let V be a vector space and let v1, . . . , vn ∈ V . Show that span(v1, . . . , vn) is a subspace of
V .
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1.4 Linear independence, basis, basis representation

Definition 1.4.1. Let V be a vector space. The vectors v1, v2, . . . , vn in V are said to be linearly
independent if the equation

a1v1 + a2v2 + · · ·+ anvn = 0

has only the trivial solution: a1 = a2 = · · · = an = 0. If there exist non-trivial scalars a1, . . . , an
satisfying the equation, the vectors are called linearly dependent.

Definition 1.4.2. A set of vectors v1, v2, . . . , vn ∈ V is said to generate (or span) a subspaceW ⊆ V

if every element of W can be written as a linear combination of v1, v2, . . . , vn; that is,

W ⊆ span(v1, v2, . . . , vn).

Definition 1.4.3. The set of vectors {v1, v2, . . . , vn} in a vector space V is called a basis of V if the
vectors are linearly independent and they span V . We say that a vector space V is finite dimensional
if it has a basis with finitely many elements.

Theorem 1.4.4. Any two bases of a finite-dimensional vector space V have the same number of
elements. That is, if {v1, . . . , vn} and {w1, . . . , wm} are both forming a basis of V , then n = m.

The number of vectors in any basis is called the dimension of V and denoted by dimV .

Proof. Let
B = {v1, . . . , vn} and C = {w1, . . . , wm}

be two bases of the finite-dimensional vector space V . We will prove n = m by showing n ≤ m

and m ≤ n.
Since C is a basis, it spans V . Hence each vi is a linear combination of the wj; that is, for

every i there exist scalars a1i, . . . , ami with

vi =
m∑
j=1

ajiwj . (1.4.1) ?eq:subthis?

Consider the equation
n∑

i=1

xivi = 0.

Substituting (1.4.1) in the above equation gives
n∑

i=1

xi

( m∑
j=1

ajiwj

)
=

m∑
j=1

( n∑
i=1

ajixi

)
wj = 0.

Since the vectors w1, . . . , wm form a basis, each coefficient must vanish:
n∑

i=1

ajixi = 0 for j = 1, . . . ,m.

This is a homogeneous linear system of m equations in the n unknowns x1, . . . , xn, hence as-
suming n > m, it has a nontrivial solution. Thus if n > m the vi would be linearly dependent,
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contradicting that B is a basis. Therefore n ≤ m.
The inequality m ≤ n can be showed by the above argument with swapping the roles.

?⟨thm:basis⟩?Theorem 1.4.5. Let B = {v1, . . . , vn} be a basis for a vector space V . Then every vector v ∈ V can
be written uniquely as a linear combination

v = a1v1 + a2v2 + · · ·+ anvn,

for scalars a1, . . . , an ∈ R. We use the notation

[v]B =


a1
...
an


for the representation of v in the basis B. These scalars are called the coordinates of v in the basis
B.

Proof. Let us argue by contradiction. Let B = {v1, . . . , vn} be a basis for a vector space V . Since
B spans V , for every v ∈ V there exist scalars a1, . . . , an ∈ R such that

v = a1v1 + · · ·+ anvn.

Suppose that there exists v ∈ V for which this representation is not unique. That is, there exist
scalars b1, . . . , bn ∈ R with ai ̸= bi for some i = 1, . . . , n such that

v = b1v1 + · · ·+ bnvn.

Then using these two linear combinations, we get

0 = v − v = (a1 − b1)v1 + · · ·+ (an − bn)vn,

However, this would mean that there is a non-trivial linear combinations of the vectors v1, . . . , vn,
which gives the zero vector. This contradicts to the assumption that B being linearly independent.

Since every vector in V can be uniquely represented in a basis B, w get

[v + w]B = [v]B + [w]B and [a · v]B = a · [v]B

for every v, w ∈ V and a ∈ R.

Example 1.4.6. Consider the vector space of column vectors Rn. The set N = {e1, . . . , en} forms
the natural basis of Rn, where

e1 =


1

0
...
0

 , · · · , en =


0
...
0

1

 .
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In other words, ek is the vector for which the kth element is 1 and every other element is 0.

We will use the convention that if we write v =


v1
...
vn

 ∈ Rn, then the coordinates of v are

expressed in the natural basis N .
We can rewrite Theorem 1.4.5 in terms of linear equations. The system of linear equations

(1.3.1) with coefficients vectors v1, . . . , vn defined in (1.3.2) has a unique solution for every
constant vector b

x1v1 + · · ·+ xnvn = b

if and only if v1, . . . , vn forms a basis ofRn. So by using Proposition 1.2.7, it follows that v1, . . . , vn
forms a basis of Rn if and only if, after the Gauss-Jordan elimination, the reduced row-echelon
form of the matrix

A =
[
v1 · · · vn

]
=


a11 a12 · · · a1n

a21 a22
. . . a2n

... . . . . . . ...
am1 am2 · · · amn


is the n× n identity matrix

I =


1 0 · · · 0

0 1
. . . ...

... . . . . . . 0

0 · · · 0 1

 .

Example 1.4.7. Let v =

12
3

 ∈ R3, Let B be the basis


10
0

 ,

11
0

 ,

11
1


. What are the coordi-

nates of v in basis B?

Let us write for the coordinates of the vector v in basis B by [v]B =

xy
z

. Using the definition of

coordinates Theorem 1.4.5, we can write v as a linear combination of the vectors of the basis. Thus,
we have to solve the following linear equation system:

x

10
0

+ y

11
0

+ z

11
1

 =

12
3

 .

We now solve this using Gauss–Jordan elimination. 1 1 1 1

0 1 1 2

0 0 1 3

 R2←R2−R3−−−−−−−→

 1 1 1 1

0 1 0 −1
0 0 1 3

 R1←R1−R3−−−−−−−→

 1 1 0 −2
0 1 0 −1
0 0 1 3


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R1←R1−R2−−−−−−−→

 1 0 0 −1
0 1 0 −1
0 0 1 3

 .

Thus the solution is
(x, y, z) = (−1,−1, 3).

So the coordinates of v in basis B are:

[v]B =

−1−1
3

 .

1.4.1 Finding a basis of the spanned subspace
?⟨sec:basisofspanned⟩? For a general collection, the vectors v1, . . . , vn ∈ Rm usually won’t form a basis of span{v1, . . . , vn},

because there might be linear dependences. To get rid of the linear dependences is to write it in
a matrix form

M =
[
v1 v2 · · · vn

]
.

Perform the Gauss-Jordan elimination on M , we obtain the reduced row-echelon form of M .
Suppose that the pivot elements are contained in the columns with indices j1, . . . , jr. Then

B = {vj1 , . . . , vjr}

is a basis of span{v1, . . . , vn}, and in particular, the number of pivot elements is the dimension of
the space span{v1, . . . , vn}.

To see this, it is enough to show that {vj1 , . . . , vjr} are linearly independent, and any other
vector vℓ /∈ {vj1 , . . . , vjr} can be expressed as a linear combination of {vj1 , . . . , vjr}.

Solve the linear equation
x1vj1 + · · ·+ xrvjr = 0

by repeating the same steps of the Gauss-Jordan elimination performed on M . Hence, we get
that every column of the RREF of the matrix[

vj1 · · · vjr

]
contains a pivot, and so, x1 = · · · = xr = 0 is the only solution. This shows the linear indepen-
dency.

On the other hand, adding any other column vector vℓ, where ℓ ̸= j1, . . . , ℓ ̸= jr, and solving
the linear equation

y1vj1 + · · ·+ yrvjr + yr+1vℓ = 0

again by repeating the same steps of the Gauss-Jordan elimination performed on M , we see that
the all columns of the RREF of [

vj1 · · · vjr vℓ

]
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contains a pivot element, except the last one. Hence, the equation has infinitely many solutions,
and so, the vectors {vj1 , . . . , vjr , vℓ} are linearly dependent.

As a corollary of the above. The column vectors of the RREF ofM which do not contain pivot
element are containing the basis representation of the corresponding column in the basis B.

Example 1.4.8. Let

v1 =


1

−2
0

3

 , v2 =


2

−5
−3
6

 , v3 =


0

1

3

0

 , v4 =


2

−1
4

−7

 , and v5 =


5

−8
1

2

 .

Find a basis of U = span{v1, v2, v3, v4, v5} out of the vectors {v1, v2, v3, v4, v5} and express the
remaining vectors in this basis!

We form the 4× 5 matrix whose columns are these vectors:

A =


1 2 0 2 5

−2 −5 1 −1 −8
0 −3 3 4 1

3 6 0 −7 2

 .

Apply the Gauss-Jordan elimination to A:
1 2 0 2 5

−2 −5 1 −1 −8
0 −3 3 4 1

3 6 0 −7 2


R2→R2+2R1,
R4→R4−3R1−−−−−−−−−→


1 2 0 2 5

0 −1 1 3 2

0 −3 3 4 1

0 0 0 −13 −13



R3→R3−3R2−−−−−−−−→


1 2 0 2 5

0 −1 1 3 2

0 0 0 −5 −5
0 0 0 −13 −13

 −→

1 0 2 0 1

0 1 −1 0 1

0 0 0 1 1

0 0 0 0 0

 .

From the pivot positions (columns 1, 2, 4), we see that B = {v1, v2, v4} is a basis of U . Thus
dimU = 3, and v3, v5 can be written as a linear combination of v1, v2, v4. Explicitly,

[v3]B =

 2

−1
0

 , [v5]B =

11
1

 .

1.4.2 Equivalent conditions for invertibility

Summarizing of the previous properties, we get the following theorem.
?⟨thm:inv⟩?Theorem 1.4.9 (Equivalent Conditions for Invertibility). Let A ∈ Rn×n be an n× n matrix. The

following are equivalent:

1. The reduced row-echelon form of A is the identity matrix.
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2. A is invertible.

3. The linear system Ax = 0 has the unique solution: x = 0.

4. The linear system Ax = b has a unique solution for every b ∈ Rn.

5. det(A) ̸= 0.

6. The columns of A are linearly independent.

7. The columns of A form a basis of Rn.

8. The rows of A are linearly independent.

9. The rows of A form a basis of Rn.

1.4.3 Change of basis

In a vector space, there are usually many different bases. Next, we discuss how these different
bases related to each other.

Let V be a vector space, and let B = {v1, . . . , vn} and B′ = {w1, . . . , wn} be two bases of V .
Then the basis transformation matrix from B to B′ is the matrix PB′→B whose columns are the
coordinates of wi expressed in the B basis:

PB′→B :=
[
[w1]B [w2]B . . . [wn]B

]
.

?⟨prop:basis⟩?Proposition 1.4.10. Let V be a vector space, and let B and B′ be two bases of V . If a vector
v ∈ V has coordinates [v]B′ in basis B′, then its coordinates in basis B are given by the usual matrix
multiplication:

[v]B = PB→B′ [v]B′ .

Proof. Let B = {v1, . . . , vn} and B′ = {w1, . . . , wn}, and let v ∈ V be arbitrary. Let us write the
coordinates of v in basis B′ as

[v]B′ =


b1
...
bn

 which means that b1w1 + · · ·+ bnwn = v.

Let us write the coordinates of wi in basis B by

[wi]B =


a1i
...

ani

 which means that a1iv1 + · · ·+ anivn = wi.

Hence, combining the above we get

v = b1w1 + · · ·+ bnwn

= b1(a11v1 + · · ·+ an1vn) + · · ·+ bn(a1nv1 + · · ·+ annvn)

= (a11b1 + · · ·+ a1nbn)v1 + · · ·+ (an1b1 + · · ·+ annbn)vn.
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Using the definition of the coordinates of the vector v in basis B, we get

[v]B =


a11b1 + · · ·+ a1nbn

...
an1b1 + · · ·+ annbn

 =


a11 · · · a1n
... . . . ...

an1 · · · ann



b1
...
bn

 ,

which had to be proven.

A simple consequence of the uniqueness of the coordinate representation of vectors Propo-
sition 1.4.10 is the following: let B, B′ and B′′ be bases of a vector space V . Then the basis
transformation matrices satisfy the following identity:

PB→B′′ = PB′→B′′PB→B′ .

In particular, for any two bases B, B′ of V

I = PB→B′PB′→B,

where I is the identity matrix. Thus, PB→B′ = (PB′→B)
−1 with the usual matrix inversion.

Example 1.4.11. Let V = R2. Let N =

{
e1 =

[
1

0

]
, e2 =

[
0

1

]}
be the natural basis, and let

B =

{
v1 =

[
1

1

]
, v2 =

[
1

−1

]}
be another basis.

(a) Find the basis transformation matrices PN→B and PB→N .

(b) Let v = [v]N =

[
3

1

]
. Find the coordinates [v]B of the vector v in basis B.

We wish to find the change of basis matrix PB→N from B to N . Since v1 and v2 are expressed in
the natural basis, we have PB→N as the matrix of the column vectors of the base B (in the natural
basis), i.e.

PB→N =

[
1 1

1 −1

]
.

On the other hand, we have

PN→B = (PB→N )
−1 =

1

−2

[
−1 −1
−1 1

]
=

1

2

[
1 1

1 −1

]
,

and so

[v]B = PN→B[v]N
1

2

[
1 1

1 −1

][
3

1

]
=

1

2

[
4

2

]
=

[
2

1

]
.
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1.4.4 Exercises

1. Let us consider the following vectors: u1 =

12
3

 , u2 =

 0

−1
1

 and u3 =

10
5

. Are the

vectors u1, u2, u3 linearly independent? If not express the one with the others!

2. Let B =

{
v1 =

[
1

2

]
, v2 =

[
1

−1

]}
be a basis of R2, and let v =

[
−1
5

]
. Find the coordinates

of v in the basis B.

3. Let B be the basis of R2 as in the previous exercise. Find the basis transformation matrices
PB→N and PN→B, where N is the natural basis of R2.

1.5 Linear transformations

Definition 1.5.1. Let V and W be vector spaces over R. A function T : V → W is called a linear
transformation (or a linear map) if, for all u, v ∈ V and λ ∈ R, the following properties hold:

1. Additivity: T (u+ v) = T (u) + T (v),

2. Homogeneity: T (λv) = λT (v).

A simple consequence that a linear map T maps the 0 vector (of the vectorspace V ) to the
zero vector 0 (of the vector space W ). Indeed,

T (0) = T (0 + 0) = T (0) + T (0) = 2T (0).

Thus, T (0) = 0.

Example 1.5.2. The following maps are linear transformations on the plane R2:

• Reflection across the x-axis:

T

[
x

y

]
=

[
x

−y

]
.

• Reflection across the line y = x:

T

[
x

y

]
=

[
y

x

]

• Projection onto the x-axis:

T

[
x

y

]
=

[
x

0

]

Non-example: The transformation T

[
x

y

]
=

[
x+ 1

y

]
is not linear, since it does not preserve the

zero vector: T

[
0

0

]
=

[
1

0

]
̸=

[
0

0

]
.
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For every m× n matrix A, the action T : Rn → Rm defined as

T (v) = Av

gives a linear transformation.

Definition 1.5.3 (Matrix Representation of a Linear Transformation). Let T : V →W be a linear
transformation between finite-dimensional vector spaces. Let B = {v1, . . . , vn} be a basis of V ,
and let C = {w1, . . . , wm} be a basis of W . Then the matrix of T with respect to the bases B and
C, denoted [T ]B→C , is the m × n matrix whose j-th column is the coordinate vector of T (vj) with
respect to C, that is:

[T ]B→C =
[
[T (v1)]C · · · [T (vn)]C

]
.

If V = W and B is a basis of V then we use the simplified notation [T ]B = [T ]B→B

The matrix representation of the linear map T satisfies:

[T (v)]C = [T ]B→C · [v]B for all v ∈ V. (1.5.1) ?eq:linrep?

To see this, let us write v ∈ V in the basis B = {v1, . . . , vn}, i.e. [v]B =


b1
...
bn

. Then
T (v) = T (b1v1 + · · ·+ bnvn) = b1T (v1) + · · ·+ bnT (vn).

Thus,
[T (v)]C = [b1T (v1) + · · ·+ bnT (vn)]C = b1[T (v1)]C + · · ·+ bn[T (vn)]C ,

which implies (1.5.1).

Example 1.5.4. Let T : R3 → R2 be the transformation defined by:

T (x, y, z) = (2x− y, x+ z).

Find the matrix representation [T ]N3→N2 of T in the natural bases of R2 and R3.

Let {

10
0

 ,

01
0

 ,

00
1

} be the natural basis of R3 and {

[
1

0

]
,

[
0

1

]
} the natural basis of R2. Then

T (

10
0

) = [2
1

]
, T (

01
0

) = [−1
0

]
, and T (

00
1

) = [0
1

]
.

So the matrix representation of T is:

[T ]N3→N2 =

[
2 −1 0

1 0 1

]
.
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Theorem 1.5.5 (Change of Basis for Linear Transformations). Let T : V → V be a linear trans-
formation, and let B = {v1, . . . , vn} and B′ = {w1, . . . , wn} be two bases of V . Then

[T ]B′ = PB→B′ [T ]BPB′→B.

Proof. Using the definition of the basis representation of the linear transformation T in (1.5.1)
and the property of the basis transformation matrix Proposition 1.4.10, we have

[T ]B′ [x]B′ = [T (x)]B′ = PB→B′ [T (x)]B = PB→B′ [T ]B[x]B = PB→B′ [T ]BPB′→B[x]B′ .

The matrices on the left-hand side and the right-hand side are both satisfying (1.5.1), thus, are
equal.

Example 1.5.6. Let B =

{[
1

1

]
,

[
1

−1

]}
be a basis of R2, and let T : R2 → R2 be a linear transfor-

mation defined by:
T (x, y) = (3x+ y, x+ 2y).

What is the matrix representation [T ]B of T in basis B?
In the standard basis, the matrix of T is:

[T ]N =

[
3 1

1 2

]
.

To compute the matrix of T in the new basis B we construct the basis transformation matrices
PN→B, PB→N :

PB→N =

[
1 1

1 −1

]
and PN→B = (PB→N )

−1 =

[
1
2

1
2

1
2 −1

2

]
.

Compute the new matrix representation:

[T ]B = (PB→N )
−1[T ]NPB→N =

[
1
2

1
2

1
2 −1

2

][
3 1

1 2

][
1 1

1 −1

]
=

[
4 0

0 1

]
.

Let us now make a slight detour and show that the determinant of a square matrix A ∈ Rn×n

has a nice geometric interpretation.
?⟨rem:det⟩?Remark 1.5.7 (Geometric Meaning of the Determinant). Let A be an n × n matrix of reals. Let

T : Rn → Rn be a linear transformation defined as T (x) = Ax. For a region U ⊂ Rn, let

T (U) = {T (x) : x ∈ U}

be the image of the region U under the linear transformation T . Then

Vol(T (U)) = | det(A)|Vol(U),

where Vol denotes the volume (area in R2). That is, | det(A)| tells how the transformation T scales
the volume of any region in Rn.
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The sign of the determinant indicates whether the transformation preserves orientation:

• det(A) > 0: orientation is preserved,

• det(A) < 0: orientation is reversed,

• det(A) = 0: the transformation collapses volume entirely (i.e., maps n-dimensional volume
into a lower-dimensional space).

1.5.1 Exercises

1. Let T : R2 → R2 be the linear transformation that rotates the plane with 60 deg around the
origin in the counter clockwise direction. What is the basis representation matrix of T in
the natural basis?

2. Let T : R2 → R2 be the linear transformation defined as

T (x, y) = (2x− y, 3y − x).

Let B =

{[
1

2

]
,

[
1

−1

]}
be a basis of R2. What is the basis representation of T in the natural

basis and in basis B?

1.6 Eigenvalues, eigenvectors

Now we wish to find a basis, where the linear transformation acts nicely.

Definition 1.6.1. Let A ∈ Rn×n be a square matrix. A non-zero vector v ∈ Rn \ {0} is called an
eigenvector of A if there exists a scalar λ ∈ R such that

Av = λv.

The scalar λ is called the eigenvalue corresponding to the eigenvector v.

The following theorem provides a way of finding the eigenvalues of an n× n matrix A.

Theorem 1.6.2. LetA be an n×nmatrix. Then λ is an eigenvalue ofA if and only if det(A−λI) = 0.
This is called the characteristic equation of A.

Proof. If λ is an eigenvalue of A then there exists a non-zero vector v ∈ Rn such that Av = λv.
Then

Av = λv ⇒ Av − λv = 0⇒ (A− λI)v.

Hence, the matrix A− λI is not invertible and by Corollary 1.1.15, det(A− λI) = 0.
On the other hand, if det(A − λI) = 0 then by Theorem 1.4.9 A − λI is not invertible and

there exists v non-zero vector v ∈ Rn \{0} such that (A − λI)v = 0, and so, Av = λv, which
means that λ is an eigenvalue.
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Example 1.6.3. Consider the matrix A =

[
4 1

2 3

]
. Find the eigenvalues and eigenvectors of A.

We compute the eigenvalues by solving the characteristic equation:

det

([
4− λ 1

2 3− λ

])
= (4− λ)(3− λ)− 2 = λ2 − 7λ+ 10 = 0.

The solutions are λ1 = 5, λ2 = 2. To find the eigenvector for λ1 = 5, we need to solve the linear
equation:

(A− λ1I)v = 0 ⇔

[
−1 1

2 −2

][
x

y

]
=

[
0

0

]
⇒ x = y ⇒ v1 =

[
x

y

]
.

For λ2 = 2, solve: [
2 1

2 1

][
x

y

]
=

[
0

0

]
⇒ y = −2x ⇒ v2 =

[
x

−2x

]
.

As the example shows, an eigenvalue has many eigenvalues. In particular, the eigenvectors
of A corresponding to the eigenvalue λ forms a subspace.

Definition 1.6.4. We call an n × n matrix A ∈ Rn×n diagonalizable if there exists eigenvectors
v1, . . . , vn of A which form a basis of Rn.

Example 1.6.5. Consider the matrix

A =

1 1

0 1

 .

Its characteristic polynomial is
det(A− λI) = (λ− 1)2,

so the only eigenvalue is λ = 1. To find eigenvectors, we solve

(A− I)v =

0 1

0 0

[x
y

]
=

[
y

0

]
= 0.

This gives y = 0, so every eigenvector is of the form v =

[
x

0

]
. Hence, the eigenvectors cannot form a

basis of R2, and for diagonalization we would need a basis, thus A cannot be diagonalized.
?⟨thm:diag⟩?Theorem 1.6.6 (Eigendecomposition). Let A ∈ Rn×n be diagonalizable. Then there exists an

invertible matrix P and a diagonal matrix D such that

A = PDP−1,
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where

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

 and P = PB→N =
[
v1 · · · vn

]
,

where λ1, . . . , λn are eigenvalues of A, and vi is the eigenvector corresponding to the eigenvalue λi

for i = 1, . . . , n.

Proof. Since A is diagonalizable, there exists a basis B = {v1, . . . , vn} of Rn consisting of eigen-
vectors of A. By definition of an eigenvector, we have

Avi = λivi, i = 1, . . . , n,

where λi is the eigenvalue corresponding to vi.
Now, let P be the basis transformation matrix

P := PB→N =
[
v1 v2 · · · vn

]
.

Next, consider the action of AP :

AP = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]

=
[
λ1v1 λ2v2 · · · λnvn

]
. =

[
v1 v2 · · · vn

]

λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

 = PD,

where D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

 is the diagonal matrix formed by the eigenvalues. Multiplying

both sides by P−1 on the right gives A = PDP−1.

This means in particular that the matrix representation of the diagonalisable matrix A in the
basis formed by the eigenvectors of A is a diagonal matrix.

Corollary 1.6.7. If A ∈ Rn×n has eigenvalues λ1, . . . , λn, then

det(A) =
n∏

i=1

λi.

Proof. We show it only in the case when A is diagonalisable. Then by Theorem 1.6.6 and the
properties of the determinant Theorem 1.1.10

det(A) = det(PDP−1) = det(P ) det(D) det(P−1) = det(D),
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hence, the claim follows.

1.6.1 Exercises

1. Diagonalise the matrix A =

[
14 −4
30 −9

]
.

2. Find the eigenvalues of the matrix A =

2 −1 −1
0 −1 0

0 2 1

.

1.7 Scalar product

Now, we equip the vector space V with the so-called scalar product. This allows us to study the
geometric properties of vectors, like length or angle.

Definition 1.7.1. Let V be a vector space over R. A function

⟨·, ·⟩ : V × V → R

is called a scalar product on V if it satisfies the following properties for all u, v, w ∈ V and all
scalars λ ∈ R:

1. Symmetry: ⟨u, v⟩ = ⟨v, u⟩.

2. Linearity in the first argument:

⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ and ⟨λu,w⟩ = λ⟨u,w⟩.

3. Positive definiteness:

⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0.

The pair (V, ⟨·, ·⟩) is called an inner product space.

Example 1.7.2 (Scalar Product on Rn). Let u =


x1
...
xn

 , v =


y1
...
yn

 ∈ Rn. Their scalar product is

⟨u, v⟩ = uT v = x1y1 + x2y2 + · · ·+ xnyn =

n∑
i=1

xiyi.

Definition 1.7.3.

• The length (or norm) of a vector v ∈ V is defined by

∥v∥ =
√
⟨v, v⟩.
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• The angle ∢(u, v) between non-zero vectors u and v is given by

∢(u, v) = arccos

(
⟨u, v⟩
∥u∥ · ∥v∥

)
.

• We say that the vectors u, v ∈ V are called orthogonal if

⟨u, v⟩ = 0.

Definition 1.7.4. A basis {v1, . . . , vn} ⊂ Rn is called an orthonormal basis if its elements are
pairwise orthogonal and have length one. That is,

⟨vi, vj⟩ =

1 if i = j,

0 if i ̸= j.

Definition 1.7.5. A square matrix Q ∈ Rn×n is called orthogonal if Q−1 = Q⊤, or equivalently,
Q⊤Q = I.

Theorem 1.7.6. Let Q ∈ Rn×n be an orthogonal matrix. Then

1. The columns of Q form an orthonormal basis of Rn.

2. Q preserves scalar products: for all u, v ∈ Rn,

⟨Qu,Qv⟩ = ⟨u, v⟩.

3. Q preserves lengths and angles.

4. |detQ| = 1.

Proof. Suppose thatQ =
[
q
1
· · · q

n

]
is an orthogonal matrix, where q

i
are the column vectors.

Then Q⊤ =


q⊤
1...
q⊤
n

 and so

QTQ =


q⊤
1...
q⊤
n

[q1 · · · q
n

]
=


q⊤
1
q
1
· · · q⊤

1
q
n... . . . ...

q⊤
n
q
1
· · · q⊤

n
q
n

 .

Hence, q⊤
i
q
j
= 1 if i = j and q⊤

i
q
j
= 0 if i ̸= j.

On the other hand, for every u, v ∈ Rn

⟨Qu,Qv⟩ = (Qu)TQv = u⊤Q⊤Qv = u⊤v,

hence, Q preserves the length and so the angles.
Finally,

1 = det(I) = det(QQ⊤) = (detQ)2.
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1.8 Symmetric matrices

Definition 1.8.1. We call an n× n matrix A symmetric, if A⊤ = A.
?⟨prop:symdiag⟩?Proposition 1.8.2. Let A ∈ Rn×n be a symmetric matrix. Then all eigenvalues of A are real.

Moreover, for every v1, v2 ∈ Rn eigenvectors of A corresponding to distinct eigenvalues λ1 ̸= λ2, v1
and v2 are orthogonal.

Proof. We only show the second claim. Assume Av1 = λ1v1 and Av2 = λ2v2, with λ1 ̸= λ2. Then

λ1⟨v1, v2⟩ = ⟨λ1v1, v2⟩ = ⟨Av1, v2⟩ = ⟨v1, AT v2⟩ = ⟨v1, Av2⟩ = ⟨v1, λ2v2⟩ = λ2⟨v1, v2⟩.

Hence
(λ1 − λ2)⟨v1, v2⟩ = 0.

Since λ1 ̸= λ2, it follows that ⟨v1, v2⟩ = 0.
?⟨thm:symdiag⟩?Theorem 1.8.3. Every real symmetric matrix is orthogonally diagonalizable. That is, if A ∈ Rn×n

and A⊤ = A, then there exists an orthogonal matrix Q ∈ Rn×n and a diagonal matrix D ∈ Rn×n

such that
A = QDQ⊤.

The columns of Q are eigenvectors of A, which form an orthonormal basis, and the diagonal entries
of D are the corresponding eigenvalues.

Example 1.8.4. Let A =

[
2 1

1 2

]
. Diagonalise the matrix!

Let us first find the roots of the characteristic polynomial, which are the eigenvalues.

0 = det(A− λI) = (2− λ)2 − 1 · 1 = λ2 − 4λ+ 3,

therefore the eigenvalues are

λ1,2 =
4±
√
42 − 4 · 3
2

=

3,

1.

We obtain the eigenvectors through solving the equation

(A− 3I)x = 0, that is,

[
−1 1

1 −1

][
x1

x2

]
= 0.

This reduces to x1 − x2 = 0, i.e. x1 = x2. So an eigenvector is

v1 =

[
x

x

]
.

By normalizing it, we get

1 = ∥v1∥2 = x2 + x2 ⇒ x = ±
√
2

2
,
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and so v1 =

[√
2
2√
2
2

]
. We know that the eigenvectors of a symmetric matrix A are pairwise orthogonal,

then on the plane, we can choose the eigenvector v2 of the eigenvalue λ2 = 1 as

v2 =

[ √
2
2

−
√
2
2

]
.

So, [
2 1

1 2

]
=

[√
2
2

√
2
2√

2
2 −

√
2
2

][
3 0

0 1

][√
2
2

√
2
2√

2
2 −

√
2
2

]
.

Theorem 1.8.3 follows essentially from Proposition 1.8.2, however, it might happen that the
eigenvalues of A appears with multiplicity. That is, the eigenvectors of a certain eigenvalue
forms a subspace with dimension strictly greater than two. To handle this case, we use the
Gram-Schmidt orthogonalisation on that subspace.

1.8.1 Gram-Schmidt orthogonalisation

Algorithm 1.8.5 (Gram–Schmidt Orthogonalization). Let V be a vector space. Let v1, v2, . . . , vn
be linearly independent vectors. The Gram–Schmidt process constructs an orthonormal set of vectors
u1, u2, . . . , un that spans the same subspace. First, let us define vectors u′1, . . . , u′n recursively. Let

u′1 := v1.

Then, let

u2 := v2 −
⟨v2, u′1⟩
⟨u′1, u′1⟩

u′1.

If the vectors u′1, . . . , u′k are defined for k < n then let

u′k+1 := vk+1 −
⟨vk+1, u

′
1⟩

⟨u′1, u′1⟩
u′1 − · · · −

⟨vk+1, u
′
k⟩

⟨u′k, u′k⟩
u′k.

Finally, for every k = 1, . . . , n let

uk :=
u′k
∥u′k∥

.

The algorithm indeed produces an orthonormal basis. The vectors u1, u2, . . . , un clearly have
unit length. Since the angle does not depend on the length, it is enough to check that the vectors
u′1, u

′
2, . . . , u

′
n are pairwise orthogonal. We show the orthogonality inductively. Suppose that the

vectors u′1, u′2, . . . , u′k are pairwise orthogonal for some k < n. Then for every i < k + 1

⟨u′i, u′k+1⟩ =
〈
u′i, vk+1 −

⟨vk+1, u
′
1⟩

⟨u′1, u′1⟩
u′1 − · · · −

⟨vk+1, u
′
k⟩

⟨u′k, u′k⟩
uk

〉
= ⟨u′i, vk+1⟩ −

⟨vk+1, u
′
1⟩

⟨u′1, u′1⟩
⟨u′i, u′1⟩ − · · · −

⟨vk+1, u
′
k⟩

⟨u′k, u′k⟩
⟨u′i, uk⟩

= ⟨u′i, vk+1⟩ −
⟨vk+1, u

′
i⟩

⟨u′i, u′i⟩
⟨u′i, u′i⟩ = 0,
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where at the equation before the last, we used the inductive assumption on pairwise orthogonal-
ity.

Example 1.8.6. Find an orthonormal basis of the vectorspace V = span{v1, v2, v3}, where

v1 =


1

1

0

0

 , v2 =


1

0

1

0

 , v3 =


1

0

0

1

 .

Let us apply the Gram-Schmidt orthogonalisation on the vectors {v1, v2, v3}, which form a basis
of V . In the first step, let u′1 := v1. So,

∥u′1∥ =
√

12 + 12 + 02 + 02 and u1 =
v1
∥v1∥

=


1√
2
1√
2

0

0

 .

For the second basis vector, let:

u′2 := v2 −
⟨v2, u′1⟩
⟨u′1, u′1

u′1 = v2 − ⟨v2, u1⟩u1

=


1

0

1

0

−
(
1 · 1√

2
+ 0 · 1√

2
+ 1 · 0 + 0 · 0

)
1√
2
1√
2

0

0

 =


1

0

1

0

−


1
2
1
2

0

0

 =


1
2

−1
2

1

0

 .

The length of u′2 is ∥u′2∥ =
√

(12)
2 + (−1

2)
2 + 12 + 02 =

√
3
2 , so by normalising u′2, we get that the

second element of the basis is

u2 =
u′2
∥u′2∥

=
1√
3
2


1
2

−1
2

1

0

 =


1√
6

− 1√
6

2√
6

0

 .

Finally, we compute the third basis vector. By definition,

⟨v3, u1⟩ = 1 · 1√
2
+ 0 · 1√

2
+ 0 · 0 + 1 · 0 =

1√
2
,

⟨v3, u2⟩ = 1 · 1√
6
+ 0 ·

(
− 1√

6

)
+ 0 · 2√

6
+ 1 · 0 =

1√
6
.
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Let

u′3 = v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2 =


1

0

0

1

− 1√
2


1√
2
1√
2

0

0

− 1√
6


1√
6
−1√
6

12√
6

0

 =


1− 1

2 −
1
6

0− 1
2 + 1

6

0− 0− 2
6

1− 0− 0

 =



1
3

−1
3

−1
3

1

 .

Now,
∥u′3∥ =

√(
1
3

)2
+
(
−1

3

)2
+
(
−1

3

)2
+ 12 = 2√

3

and so,

u3 =
u′3
∥u′3∥

=

√
3

2



1
3

−1
3

−1
3

1

 =



√
3
6

−
√
3
6

−
√
3
6
√
3
2

 .

So the orthonormal basis is: 


1√
2
1√
2

0

0

 ,


1√
6

− 1√
6

2√
6

0

 ,



√
3
6

−
√
3
6

−
√
3
6
√
3
2




.

1.8.2 Quadratic Forms

Now, we will consider an application of symmetric matrices.

Definition 1.8.7. A quadratic form of two variables is a polynomial with terms all of degree 2.
That is,

Q(x, y) = ax2 + bxy + cy2,

where a, b, c are real numbers.

A quadratic form can be written as

Q(x, y) = ax2 + bxy + cy2 =
[
x y

] a b/2

b/2 c

[x
y

]
.

We intend to study the level sets of quadratic forms. That is, we wish to understand and draw
the set of points (x, y) on the plane such that

Q(x, y) = d

for some d ∈ R. These are called conic sections (ellipses, hyperbolas, pairs of lines, etc.). The
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kind of the shape depends on the signs of the eigenvalues of the matrix

A =

[
a b/2

b/2 c

]
.

To see this, we apply Theorem 1.8.3 and diagonalise the symmetric matrix A. That is, A =

QDQ⊤, where D =

[
λ1 0

0 λ2

]
and Q =

[
u1 u2

]
are such that Aui = λiui and {u1, u2} forms an

orthonormal basis of R2. Then

Q(x, y) =
[
x y

]
QDQ⊤

[
x

y

]
=

(
P⊤

[
x

y

])⊤
D

(
P⊤

[
x

y

])
.

Let us write the vector
[
x

y

]
in the new coordinate system formed by {u1, u2} as

[
v

z

]
, i.e. P⊤

[
x

y

]
=[

v

z

]
. Hence, the level set is

d = Q(v, z) =
[
v z

]
D

[
v

z

]
= λ1v

2 + λ2z
2

in the coordinate system formed by {u1, u2}. From this form, we see that

1. If λ1λ2 > 0 and λ1d > 0 then it forms an ellipse which intersects the z axis at ±
√

d
λ2

and
the v axis at ±

√
d
λ1
;

2. If λ1λ2 > 0 and λ1d = 0 then it is one point, the origin, and if λ1d < 0 then it is the empty
set;

3. If λ1 = 0 and λ2d > 0 then it is two lines parallel to the v axis intersecting the z axis at
±
√

d
λ2
;

4. If λ1 = 0 and d = 0 then it is the v axis, and if dλ2 < 0 then it is the empty set;

5. If λ2 = 0 and λ1d > 0 then it is two lines parallel to the z axis intersecting the v axis at
±
√

d
λ1
;

6. If λ2 = 0 and d = 0 then it is the z axis, and if dλ1 < 0 then it is the empty set;

7. If λ1λ2 < 0 and λ1d > 0 then it is a hyperbola intersecting the v axis at ±
√

d
λ1
;

8. If λ1λ2 < 0 and λ2d > 0 then it is a hyperbola intersecting the z axis at ±
√

d
λ2
;

9. If λ1λ2 < 0 and d = 0 then it two lines intersecting at the origin slopes ±λ1
λ2

with respect
to the v axis.
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x

y

v

z

(a) The ellipse in case λ1λ2 > 0 and λ1d > 0

intersecting the v axis at ±
√

d
λ1

and the z axis
at ±

√
d
λ2
.

x

y

v

z

(b) The hyperbola in case λ1λ2 < 0 and λ1d > 0

intersecting the v axis at ±
√

d
λ1
.

x

y

v

z

(c) The two lines in case λ1λ2 < 0 and d = 0
with slopes λ1

λ2
with in point of view of v axis.

x

y

v

z

(d) The two lines in case λ1 = 0 and dλ2 > 0

intersecting the z axis at ±
√

d
λ2
.

Figure 1.2: The possible cases of the quadratic form.

Example 1.8.8. Draw a sketch of the points (x, y) on the plane which satisfy the equation

2x2 + 2y2 − 2xy = 1.

First, we write this quadratic form as a matrix product:

[
x y

] [ 2 −1
−1 2

][
x

y

]
= 1.
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For matrix A =

[
2 −1
−1 2

]
, we solve the characteristic equation to find the eigenvalues.

det(A− λI) = det

[
2− λ −1
−1 2− λ

]
= (2− λ)2 − (−1)(−1)

= (2− λ)2 − 1 = λ2 − 4λ+ 4− 1 = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0

Therefore: λ1 = 1 and λ2 = 3. For λ1 = 1:

(A− I)v1 =

[
1 −1
−1 1

][
x

y

]
=

[
0

0

]

This gives us x−y = 0, so x = y, and so v1 =

[
y

y

]
. For normalising the length, we need y2+y2 = 1,

thus, v1 =

[
1√
2
1√
2

]
. Since the eigenvectors are pairwise orthogonal, we get that the eigenvector for

λ2 = 3 can be chosen as v2 =

[
1√
2
−1√
2

]
. Hence, in the coordinate system {v1, v2} our equation becomes

u2 + 3v2 = 1

This is the equation of an ellipse in standard form with semi-axes of length a = 1 (along the
u-axis) and b = 1√

3
(along the v-axis).

Conclusion: The original equation describes an ellipse rotated 45 counterclockwise from the
coordinate axes, with major axis length 1 along direction (1, 1) and minor axis length 1√

3
along

direction (1,−1).

x

y

-1 -0.5 0.5 1

-1

-0.5

0.5

1 v1 =

(
1
1

)

v2 =

(
1
−1

)

a = 1

b = 1√
3

45

2x2 + 2y2 − 2xy = 1

Eigenvectors

Figure 1.3: Visualization of the quadratic form 2x2+2y2− 2xy = 1. The red ellipse is rotated 45
from the coordinate axes. The blue vectors show the eigenvectors, which align with the principal
axes of the ellipse. The purple dashed lines indicate the major axis (a = 1) and minor axis
(b = 1/

√
3) in the rotated coordinate system.
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1.8.3 Exercises

1. Diagonalise the matrix A =

[
7 −2
−2 3

]
.

2. Using Gram-Schmidt orthogonalisation, find an orthonormal basis of the subspace
xy
z

 ∈ R3 : x− 3y + z = 0

 .

3. Draw a sketch of the points on the plane which satisfies the equation 9x2 + 4xy + 6y2 = 5.

4. Diagonalise the 3× 3 matrix A =

1 2 2

2 4 4

2 4 4

. (Hint: Use Gram-Schmidt orthogonalisation

for the eigenvalue which has multiplicity 2.)

1.9 Trace and double dot product*

Definition 1.9.1. The trace of a square matrix A ∈ Rn×n, denoted by tr(A), is defined as the sum
of the elements on the main diagonal:

tr(A) =

n∑
i=1

aii.

Theorem 1.9.2. Basic Properties of the Trace LetA,B,C ∈ Rn×n be square matrices, and let α ∈ R.
?⟨thm:proptrace⟩?Then:

• tr(AT ) = tr(A)

• tr(A+B) = tr(A) + tr(B),

• tr(αA) = α · tr(A),

• tr(AB) = tr(BA),

• More generally, for three matrices:

tr(ABC) = tr(BCA) = tr(CAB),

but not necessarily equal to tr(ACB) or any non-cyclic permutation.

Theorem 1.9.3. Let A ∈ Rn×n be a diagonalisable matrix with eigenvalues λ1, . . . , λn. Then:

tr(A) =
n∑

i=1

λi.
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Proof. SinceA is diagonalisable, by Theorem 1.6.6 there exist a invertiblematrixP and a diagonal

matrix D such that A = PDP−1 and D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

. Then by the last assertion of

Theorem 1.9.2,
tr(A) = tr(PDP−1) = tr(P−1PD) = tr(D) =

n∑
i=1

λi.

Definition 1.9.4. Let A =


a11 a12 · · · a1n

a21 a22
. . . a2n

... . . . . . . ...
am1 am2 · · · amn

 and B =


b11 b12 · · · b1n

b21 b22
. . . b2n

... . . . . . . ...
bm1 bm2 · · · bmn

 be two real

m× n matrices. The double-dot product is defined as

A : B :=
m∑
i=1

n∑
j=1

aij bij .

Equivalently,
A : B = tr(A⊤B).

Theorem 1.9.5. Let A,B,C ∈ Rm×n and α ∈ R. Then:

1. Symmetry:
A : B = B : A.

2. Bilinearity:
(αA+B) : C = α(A : C) + (B : C),

A : (αB + C) = α(A : B) + (A : C).

3. Positivity:

A : A =
m∑
i=1

n∑
j=1

a2ij ≥ 0,

with equality if and only if A =


0 · · · 0
... . . . ...
0 · · · 0

.
Definition 1.9.6. An n× n matrix K ∈ Rn×n is called skew-symmetric (or antisymmetric) if

K⊤ = −K.

Equivalently, kii = 0 for all i and kij = −kji for all i ̸= j.
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Theorem 1.9.7. For every square matrix A ∈ Rn×n there exist unique matrices S and K such that

A = S +K,

where S is symmetric (S⊤ = S) and K is skew-symmetric (K⊤ = −K). Moreover,

S =
A+A⊤

2
, K =

A−A⊤

2
.

1.9.1 Exercises

1.9/1. Let A =

[
1 2

3 4

]
and B =

[
5 6

7 8

]
. Find tr(A) =? and A : B =?

1.9/2. Let A =

1 2 3

4 5 6

7 8 9

. Write A as A = S + K, where S is a symmetric and K is a skew-

symmetric matrix.

1.10 Fundamental Subspaces of a Matrix

Definition 1.10.1. Let A ∈ Rm×n. The column space of A is the subspace of Rm spanned by its
columns:

Col(A) = span{c1, c2, . . . , cn},

where cj ∈ Rm denotes the j-th column vector of A.

Definition 1.10.2. Let A ∈ Rm×n. The row space of A is the subspace of Rn spanned by its rows:

Row(A) = span{r⊤1 , r⊤2 , . . . , r⊤m},

where rj ∈ Rn denotes the j-th row vector of A.

Observe that Row(A) = Col(A⊤).

Theorem 1.10.3. For any matrix A ∈ Rm×n,

dimCol(A) = dimRow(A).

This common dimension is called the rank of A, and denoted by rank(A).

Proof. Apply Gauss-Jordan elimination to bring A into reduced row echelon form. It is clear that
the elementary row manipulations does not change the row space. Moreover, the non-zero rows
will be linearly independent due to the strict ordering between the pivot elements (see third claim
in the Definition 1.2.4). So, the non-zero rows of the RREF of A will form a basis of Row(A). In
particular, the number of pivot elements equals dimRow(A).

By Section 1.4.1, the columns that contain a pivot element in the RREF of A, form a basis of
Col(A), and so, the number of pivot elements equals dimCol(A).
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Definition 1.10.4. The nullspace (or kernel) of the m× n matrix A is the subspace

Null(A) = {x ∈ Rn | Ax = 0}.

We denote the dimension of Null(A) by nullity(A) = dimNull(A).

Definition 1.10.5. For an m× n matrix A ∈ Rm×n, the subspaces Col(A), Row(A), Null(A) and
Null(A⊤) the fundamental subspaces of the matrix A.

?⟨thm:ranknull⟩?Theorem 1.10.6 (Rank–nullity theorem). Let A ∈ Rm×n be an m× n real matrix. Then:

rank(A) + nullity(A) = n.

Proof. Let us solve the linear equation Ax = 0, where x =


x1
...
xn

. Apply the Gauss-Jordan

elimination, and letM be the reduced row-echelon form ofA. Suppose that the columns j1, . . . , jk
contain a pivot element, and the columns i1, . . . , in−k does not contain pivot. Hence, the solution
of the equation Ax = 0 can be written in the form

xj1 = −
n−k∑
ℓ=1

mj1,iℓxiℓ , . . . , xjk = −
n−k∑
ℓ=1

mjk,iℓxiℓ , (1.10.1) ?eq:nullsp?

where mj,i denotes the element of the RREF M in the jth row and ith column.
Hence, the vectors x1, . . . , xn−k form a basis of Null(A) where the elements of xp are such

that xip = 1, xiℓ = 0 if ℓ ̸= p and the remaining elements satisfy (1.10.1). Since the number of
pivot elements corresponds to rank(A) = k, the claim follows.

Theorem 1.10.7. For all A ∈ Rm×n, we have

rank(A) = rank(A⊤A).

Proof. Let A be an m×n real matrix. Observe that A⊤A is an n×n matrix. It is enough to show
that Null(A) = Null(A⊤A). Then the claim follows by Theorem 1.10.6 applied for both A and
A⊤A.

If x ∈ Null(A) then Ax = 0, and so, A⊤Ax = 0 and so, x ∈ Null(A⊤A). On the other hand,
if x ∈ Null(A⊤A) then A⊤Ax = 0. Then

0 = x⊤A⊤Ax = (Ax)⊤Ax = ∥Ax∥2.

This implies that Ax = 0, which gives that x ∈ Null(A).

Example 1.10.8. Let

A =


0 2 4 0 2

1 1 1 3 2

2 −1 −4 0 −5
−1 0 1 2 4

 .
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(a) Give a basis of the column space Col(A) out of the column vectors of A, and express the coor-
dinates of the remaining vectors in this basis.

(b) Find a basis of the null space Null(A).

(c) What are rank(A), rank(A⊤A), nullity(A) and nullity(A⊤)?

First, let’s find the reduced row echelon form (RREF) of A by using the Gauss-Jordan elimination.
Now, we omit the details and leave the calculation for the reader.:

We get 
0 2 4 0 2

1 1 1 3 2

2 −1 −4 0 −5
−1 0 1 2 4


by Gauss-Jordan

elimination−−−−−−−−−→


1 0 −1 0 −2
0 1 2 0 1

0 0 0 1 1

0 0 0 0 0

 .

(a) The columns that contain a pivot element are the columns 1, 2, and 4. Therefore, a basis of
Col(A) is:

B =




0

1

2

−1

 ,


2

1

−1
0

 ,


0

3

0

2




From the RREF form, we can express the remaining columns:

[


4

1

−4
1

]B =

−12
0

 and [


2

2

−5
4

]B =

−21
1

 .

(b) For Null(A), we solve Ax = 0. From the RREF, we see that:
x1 − x3 − 2x5 = 0

x2 + 2x3 + x5 = 0

x4 + x5 = 0

Setting free variables x3 = s and x5 = t:

x1 = s+ 2t

x2 = −2s− t

x3 = s

x4 = −t

x5 = t
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Therefore every vector v ∈ Null(A) can be written as

x = s


1

−2
1

0

0

+ t


2

−1
0

−1
1


Thus, a basis of Null(A) is: 


1

−2
1

0

0

 ,


2

−1
0

−1
1




(c) From our calculations:

• rank(A) = 3 (number of pivot columns)

• rank(A⊤A) = rank(A) = 3

• nullity(A) = 5− 3 = 2 (by rank-nullity theorem)

• nullity(A⊤) = 4− 3 = 1 (since rank(A⊤) = rank(A) = 3 and again by the rank-nullity
theorem)

1.10.1 Orthogonal complements

Definition 1.10.9. Let V be a vector space and W ⊆ V a subspace. The orthogonal complement
of W is

W⊥ := {v ∈ V : v is perpendicular to w for all w ∈W}.
?⟨thm:perpfund⟩?Theorem 1.10.10 (Fundamental subspaces and orthogonal complements). For any A ∈ Rm×n:

Row(A)⊥ = Null(A), Null(A⊤) = Col(A)⊥.

Proof. Let A =


r⊤1
...
r⊤m

 be anm×n real matrix where ri denotes the ith row vector. If x ∈ Null(A)

then for every i = 1, . . . ,m, r⊤i x = 0, and in particular, x is perpendicular for every row vector
of A. This implies that x is perpendicular for every linear combination of the row vectors, and
so, x ∈ Row(A)⊥. The other direction is straightforward, since if x ∈ Row(A)⊥ then for every
i = 1, . . . ,m, r⊤i x = 0, and so, Ax = 0.

For the second statement, consider A⊤.
?⟨thm:ortocom⟩?

Theorem 1.10.11 (Dimension and orthogonal complements). Let W ⊆ Rn be a subspace. Then

dim(W ) + dim(W⊥) = n.
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Proof. Choose a basis {w1, . . . , wk} of W , and let A =


w⊤1
...

w⊤k

 be an k×n matrix formed by these

vectors as column vectors. Hence, Row(A) = W , and in particular, rank(A) = dimW .
By Theorem 1.10.10, Null(A) = Row(A)⊥ = W⊥. Thus, nullity(A) = dimW⊥. The claim

then follows by Theorem 1.10.6.

Example 1.10.12. Let

A =

[
1 −3 −2
2 −6 −4

]
.

Determine all four fundamental subspaces and check the statement of the Theorem 1.10.10 on them.
For that we will use Gauss-Jordan elimination. Starting with A:[

1 −3 −2
2 −6 −4

]
R2←R2−2R1−−−−−−−−→

[
1 −3 −2
0 0 0

]

This is already in reduced row echelon form.

• Column space Col(A): The pivot column of A is column 1. Therefore:

Col(A) = span

{[
1

2

]}

• Row space Row(A): The nonzero row of RREF(A) gives us:

Row(A) = span


 1

−3
−2




• Null space Null(A): From RREF(A), we solve Ax = 0:

x1 − 3x2 − 2x3 = 0

Setting free variables x2 = s and x3 = t:
x1 = 3s+ 2t

x2 = s

x3 = t

Therefore:

x = s

31
0

+ t

20
1



48



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

So:

Null(A) = span


31
0

 ,

20
1




Finally, to determine Null(A⊤), we need to apply the Gauss-Jordan elimination on A⊤.

A⊤ =

 1 2

−3 −6
−2 −4

 R2←R2+3R1
R3←R3+2R1−−−−−−−−→

1 2

0 0

0 0

 .

Thus,

• The null space Null(A⊤): The solutions of A⊤
[
y1

y2

]
= 0 are

y1 + 2y2 = 0.

Setting free variable y2 = s: y1 = −2s

y2 = s

Therefore:

y = s

[
−2
1

]

So:

Null(A⊤) = span

{[
−2
1

]}

Let us now verify that Row(A)⊥ = Null(A). We need to show that every vector in Null(A) is
orthogonal to every vector in Row(A). For that, it is enough to check for the orthogonality of the
base vectors.

Row space basis vector: r =

 1

−3
−2

. Null space basis vectors: n1 =

31
0

, n2 =

20
1

. Then
⟨r, n1⟩ = (1)(3) + (−3)(1) + (−2)(0) = 3− 3 + 0 = 0✓

⟨r, n2⟩ = (1)(2) + (−3)(0) + (−2)(1) = 2 + 0− 2 = 0✓

Furthermore, dim(Row(A)) = 1 and dim(Null(A)) = 2, and so, by Theorem 1.10.11, we see that
Null(A))⊥ = Row(A).

Finally, we verify thatNull(A⊤) = Col(A)⊥. To show that every vector inNull(A⊤) is orthogonal
to every vector in Col(A), again, it is enough to check for the orthogonality of the base vectors.
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Column space basis vector: c =

[
1

2

]
. Left null space basis vector: l =

[
−2
1

]
. Then

⟨c, l⟩ = (1)(−2) + (2)(1) = −2 + 2 = 0✓

Also, dim(Col(A)) = 1 and dim(Null(A⊤)) = 1, so 1+1 = 2 = m, confirming that Null(A⊤) =
Col(A)⊥.

1.10.2 Exercises

1.10/1. Let

A =


0 2 4 0 2

1 1 1 3 2

2 −1 −4 0 −2
−1 0 1 2 4

 .

(a) Give a basis of the column space Col(A) out of the column vectors of A, and express
the coordinates of the remaining vectors in this basis.

(b) What are rank(A), rank(A⊤A), nullity(A) and nullity(A⊤)?

1.10/2. Let A be the matrix as in the previous exercise.

(a) Find a basis of Null(A).
(b) Find an orthonormal basis of Null(A).

1.11 Orthogonal projections

Now, we will study a special class of linear transformations, namely, the orthogonal projections.

Definition 1.11.1. Let V be a finite dimensional vector space with a scalar product. Furthermore,
let W ⊆ V be a subspace, and let v ∈ V be a vector. Then the orthogonal projection of v onto W

is the unique vector w ∈ W such that v − w ∈ W⊥. We denote the map, which maps v to its the
orthogonal projection, by PW .

Note that the orthogonal projection of a vector v is well defined, since if there would be
w1, w2 ∈ W such that v − w1 ∈ W⊥ and v − w2 ∈ W⊥. Then using that W⊥ is a subspace, we
get (v − w1)− (v − w2) = w2 − w1 ∈W⊥. But w2 − w1 ∈W , which means that w1 = w2.

An important property about the orthogonal projections is that for a subspace W ⊆ Rn, the
closest vector to v ∈ Rn in W is its orthogonal projection PW (v).

?⟨thm:projmin⟩?Theorem 1.11.2. Let W ⊆ Rn be a subspace and let PW : Rn → W be the orthogonal projection.
Then for every v ∈ Rn

min
w∈W

∥v − w∥ = ∥v − PW (v)∥.
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Proof. Let v ∈ Rn and w ∈W be arbitrary. Then

∥v − w∥2 = ⟨v − w, v − w⟩ = ⟨v − PW (v) + PW (v)− w, v − PW (v) + PW (v)− w⟩

= ⟨v − PW (v), v − PW (v)⟩+ 2⟨v − PW (v), PW (v)− w⟩+ ⟨PW (v)− w,PW (v)− w⟩.

Since PW (v)− w ∈W and v − PW (v) ∈W⊥, we get that this is equal to

= ∥v − PW (v)∥2 + ∥PW (v)− w∥ ≥ ∥v − PW (v)∥2.

Thus, the minimum of ∥v − w∥2 is attained precisely at w = PW (v).

W
0

v

PW (v)

v − PW (v)

Figure 1.4: Visualisation of the orthogonal projection from R3 to the plane W .

First, let us study the special case of orthogonal projections to one-dimensional subspaces.
?⟨prop:planarproj⟩?Proposition 1.11.3. Let u ∈ Rn be a non-zero vector, and let U = span{u}. The orthogonal

projection of a vector v ∈ Rn onto U (or the vector u) is the vector

PU (v) =
⟨u, v⟩
⟨u, u⟩

u =
uu⊤

u⊤u
v.

Proof. Write v = αu + w, where w is perpendicular to u. Then the orthogonality condition
becomes:

0 = ⟨w, u⟩ = ⟨v − αu, u⟩ = ⟨v, u⟩ − α⟨u, u⟩.

Hence, choosing α = ⟨u,v⟩
⟨u,u⟩ , gives the desired formula.

Example 1.11.4. Let u =

[
2

1

]
and v =

[
3

4

]
. Find the orthogonal projection of v to the subspace

spanned by u.
Applying Proposition 1.11.3, we get that the orthogonal projection is

⟨u, v⟩
⟨u, u⟩

u =
2 · 3 + 1 · 4
22 + 12

[
2

1

]
=

10

5

[
2

1

]
=

[
4

2

]
.
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Observe that for a given non-zero vector u = (u1, . . . , un) ∈ Rn, the matrix

P =
uu⊤

u⊤u
=

1

u21 + · · ·+ u2n


u1u1 · · · u1un
... . . . ...

unu1 · · · unun


is the matrix representation of the orthogonal projection v 7→ Pspan{u}v. In the following, we
construct the matrix representation for general subspace W ⊆ Rn.

?⟨prop:ortprojform⟩?Proposition 1.11.5. Let W ⊆ Rn be a subspace. Let u1, u2, . . . , uk ∈ Rn be a basis of W and write

M =
[
u1 · · · uk

]
the matrix formed by the basis u1, . . . , uk as column vectors. Then the orthogonal projection PW is
given by the matrix

PW = M(M⊤M)−1M⊤.

We call the matrix PW the orthogonal projection matrix (in the natural basis).

Proof. By definition, Col(M) = W , and so, W⊥ = Col(M)⊥ = Null(M⊤) by Theorem 1.10.10.
Furthermore, everyw ∈W can be expressed uniquely as a linear combination of vectors {u1, . . . , uk}.
In particular, for every v ∈ Rn there exists c ∈ Rk such that PW (v) = Mc. Since v − PW (v) =

v −Mc ∈W⊥, we get
M⊤(v −Mc) = 0.

This gives thatM⊤M c = M⊤v. SinceM⊤M is a k×k matrix with rank(M⊤M) = rank(M) = k,
we get that it is invertible by Theorem 1.4.9, and so

c = (M⊤M)−1M⊤v.

Thus,
PW (v) = Mc = M(M⊤M)−1M⊤v.

Example 1.11.6. Find thematrix of the orthogonal projection fromR3 to the plane V =


xy
z

 : 2x− y + 3z = 0

.

What is the orthogonal projection of v =

 2

4

−1

 onto V ?

We choose two base vectors in V . For instance,

u1 =

12
0

 , u2 =

−30
2

 ,

since 2 · 1− 2 + 3 · 0 = 0 and 2(−3)− 0 + 3 · 2 = −6 + 6 = 0. Form the matrix M ∈ R3×2 whose

52



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

columns are these basis vectors:

M =


1 −3

2 0

0 2

 .

Compute

(M⊤M)−1 =
1

56

13 3

3 5

 =

13/56 3/56

3/56 5/56

 .

Hence the matrix of the orthogonal projection onto V is

PV = M (M⊤M)−1M⊤ =


5
7

1
7 −3

7

1
7

13
14

3
14

−3
7

3
14

5
14

 .

Now project the vector v =

 2

4

−1

 to V as:

PV v =


5
7

1
7 −3

7

1
7

13
14

3
14

−3
7

3
14

5
14




2

4

−1

 =


17
7

53
14

− 5
14

 =
1

14

3453
−5

 .

Let us give here an alternative solution too: Observe that plane V is the orthogonal complement
of its normal vector

n =

 2

−1
3

 ,

hence and by Proposition 1.11.3, the orthogonal projection matrix onto V is

PV = I − nn⊤

∥n∥2
.

We have ∥n∥2 = 22 + (−1)2 + 32 = 14 and

nn⊤ =

 4 −2 6

−2 1 −3
6 −3 9

 .
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Hence

PV = I − 1

14

 4 −2 6

−2 1 −3
6 −3 9

 =


1− 4

14
−−2

14
− 6

14

−−2
14

1− 1

14
−−3

14

− 6

14
−−3

14
1− 9

14

 =


5

7

1

7
−3

7
1

7

13

14

3

14

−3

7

3

14

5

14

 .

Therefore

PV (v) = PV · v =


5

7

1

7
−3

7
1

7

13

14

3

14

−3

7

3

14

5

14


 2

4

−1

 =
1

14

3453
−5



The following theorem characterises when a matrix is an orthogonal projection.

Theorem 1.11.7. Let P ∈ Rn×n be an n × n matrix. Then P is the orthogonal projection matrix
onto the subspace Col(P ) if and only if

P 2 = P and P⊤ = P.

Proof. First, suppose that P is an orthogonal projection onto a subspaceW = Col(P ). Then using
the form P = M(M⊤M)−1M⊤ in Proposition 1.11.5, one can see that P 2 = P and P⊤ = P .

Now suppose that P satisfies the properties P 2 = P and P⊤ = P . To show that P is a matrix
of an orthogonal projection, it is enough to show that v − Pv is perpendicular to Pv. Indeed,

⟨v−Pv, Pv⟩ = ⟨v, Pv⟩−⟨Pv, Pv⟩ = ⟨v, Pv⟩−⟨v, P⊤Pv⟩ = ⟨v, Pv⟩−⟨v, P 2v⟩ = ⟨v, Pv⟩−⟨v, Pv⟩ = 0,

which had to be shown.

1.11.1 Method of least squares

We have seen that a linear equation Ax = b has no solution if and only if b /∈ Col(A). In this case,
we can study the vector x, which is closest to be a solution in the sense that ∥Ax− b∥ is minimal.

Theorem 1.11.8 (Approximation via projections). Let A ∈ Rm×n be an m × n matrix and let
b ∈ Rm. If the linear equation system Ax = b has no solution, then the minimizer x∗ of ∥Ax − b∥
satisfies the normal equations

A⊤Ax∗ = A⊤b.

Proof. Clearly, for every x ∈ Rn, Ax ∈ Col(A). By Theorem 1.11.2minx∈Rn ∥Ax−b∥ = ∥Ax∗−b∥
if and only if Ax∗ = PCol(A)b. But b− PCol(A)b ∈ Col(A)⊥ = Null(A⊤) by Theorem 1.10.10, and
so,

0 = A⊤(b− PCol(A)b) = A⊤(b−Ax∗).

So x∗ satisfies the equation A⊤Ax∗ = A⊤b.
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Example 1.11.9. Find the solution of the linear equation Ax = b in the sense of the least squares
and determine the error, where

A =

 3 4

−2 −5
1 −2

 and b =
[
10 −6 3

]
.

The least squares solution is given by:

x = (A⊤A)−1A⊤b

Now

ATA =

[
3 −2 1

4 −5 −2

] 3 4

−2 −5
1 −2

 =

[
14 20

20 45

]

hence

(A⊤A)−1 =
1

230

[
45 −20
−20 14

]
=

[
45
230 − 20

230

− 20
230

14
230

]
=

[
9
46 − 4

23

− 4
23

7
115

]
therefore

x = (A⊤A)−1A⊤b =

[
9
46 − 4

23

− 4
23

7
115

][
3 −2 1

4 −5 −2

]10−6
3

 =
1

230

745
−4


The error vector is

r = Ax− b =

 3 4

−2 −5
1 −2

 1

230

745
−4

− b =


− 81

230

− 9
23

63
230

 ,

hence the error is

∥r∥ =
√

( 81
230)

2 + (− 9
23)

2 + ( 63
230)

2 = 0.44786829687102771022343 . . .

A particular example for that is when we want to fit a regression line to a data set.

Example 1.11.10 (Fitting a regression line). Let (x1, y1), . . . , (xn, yn) be n points in R2. Find the
constants a, b such that y = ax+ b approximates the n points best in sense of the least squared, i.e.

n∑
i=1

(yn − axn − b)2

is minimal.
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axi + b = yi for every i = 1, . . . , n =⇒


x1 1
...

...
xn 1


[
a

b

]
=


y1
...
yn

 .

Let

A =


x1 1
...

...
xn 1

 .

Then

A⊤A =

[∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

]
, and A⊤


y1
...
yn

 =

[∑n
i=1 xiyi∑n
i=1 yi

]
.

Hence, solving the linear equation[∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

][
a

b

]
=

[∑n
i=1 xiyi∑n
i=1 yi

]
.

leads us to

a =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n(
∑n

i=1 x
2
i )− (

∑n
i=1 xi)

2
, b =

(
∑n

i=1 xiyi)(
∑n

i=1 xi)− n
∑n

i=1 yi
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

and furthermore

∥Ay − b∥ =

√√√√ n∑
i=1

(yn − axn − b)2.

Example 1.11.11. Let us consider the points (−1,−2), (0,−3), (1, 2), (2, 3) on the plane. Using the
method of the least squares, find the line which fits the best on these points. Determine the value of
the error!

Computing ∑
xi = (−1) + 0 + 1 + 2 = 2,∑
yi = (−2) + (−3) + 2 + 3 = 0,∑
x2i = (−1)2 + 02 + 12 + 22 = 1 + 0 + 1 + 4 = 6,∑

xiyi = (−1)(−2) + 0 · (−3) + 1 · 2 + 2 · 3 = 2 + 0 + 2 + 6 = 10.

yields

a =
4 · 10− (2)(0)

4 · (6)− (2)2
= 2, b =

(10)(2)− 4 · 0
4 · 6− (2)2

= 1.

Hence the best fitting linear equation is y = ax− b = 2x− 1. The error is

r =
√

(−2− (2(−1)− 1))2 + (−3− (2(0)− 1))2 + (2− (2(1)− 1))2 + (3− (2(2)− 1))2
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1.11.2 Exercises

1.11/1. Denote L the line spanned by the vector a =

[
−6
8

]
in R2.

(a) Give the matrix of the orthogonal projection from R2 to the line L (in the natural
basis)!

(b) Find the orthogonal projection of the vector
[
1

−1

]
to the line L!

1.11/2. Let us consider the vectors

u1 =

21
0

 , u2 =

 0

−1
2

 and v =

−12
−1

 .

Let V = span{u1, u2} ⊂ R3 be the spanned vector space defined by the vectors u1 and u2.

(a) Find the matrix PV of the orthogonal projection from R3 to V !
(b) Find the orthogonal projection of the the vector v to the subspace V .
(c) Find the coordinates of the orthogonal projection of the vector v to the subspace V in

the basis B = {u1, u2}!

1.11/3. Let B = 1
9

1 2 2

2 4 4

2 4 4

. Show that there exists a subspace V ⊆ R3 such that B is the matrix

of the orthogonal projection from R3 to V ! What is a basis of V ?

1.11/4. Find the solution with the method of the least squares of the equation Ax = b, where

A =

 2 1

4 2

−2 1

 and b =

32
1

 .

1.11/5. With the method of least squares, find the equation of the line which fits the best to the
data set (2, 1), (3, 2), (5, 3) and (6, 4). Determine the error!

1.12 Decompositions of matrices

1.12.1 Definite matrices

Definition 1.12.1. Let A ∈ Rn×n be an n× n symmetric matrix. We say that A is

• Positive definite if x⊤Ax > 0 for all x ∈ Rn \{0}.

• Positive semidefinite if x⊤Ax ≥ 0 for all x ∈ Rn.

• Negative definite if x⊤Ax < 0 for all x ∈ Rn \{0}.
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• Negative semidefinite if x⊤Ax ≤ 0 for all x ∈ Rn.

• Indefinite if there exist x, x ∈ Rn such that x⊤Ax > 0 and y⊤Ay < 0.

?⟨thm:posdef⟩?Theorem 1.12.2. Let A ∈ Rn×n be a n×n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

Then the followings hold:

• A is positive definite if and only if λi > 0 for all i.

• A is positive semidefinite if and only if λi ≥ 0 for all i.

• A is negative definite if and only if λi < 0 for all i.

• A is negative semidefinite if and only if λi ≤ 0 for all i.

• A is indefinite if and only if A has both positive and negative eigenvalues.

Proof. By Theorem 1.8.3, we can diagonalise A. That is, there exists an orthogonal matrix Q and

a diagonal matrix D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

 such that A = QDQ⊤. Then writing y = Q⊤x we

have
x⊤Ax = (Q⊤x)⊤D(Q⊤x) = y⊤Dy =

n∑
i=1

λiy
2
i .

So the sign of x⊤Ax for x ̸= 0 depends solely on the signs of the λi. For instance
∑n

i=1 λiy
2
i > 0

for every y ̸= 0 then in particular for the choice y
i
= ei and so λi > 0. And conversely, if λi > 0

for every i then for every y ̸= 0 there exists j such that yj ̸= 0, and so∑n
i=1 λiy

2
i ≥ λjy

2
j > 0.

Theorem 1.12.3. If A ∈ Rn×n is symmetric and positive (semi)definite, then there exists a unique
symmetric positive (semi)definite matrix B such that B2 = A.

Proof. By Theorem 1.8.3, we can diagonalise A. That is, there exists an orthogonal matrix Q and

a diagonal matrix D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

 such that A = QDQ⊤. By Theorem 1.12.2, λi ≥ 0

for every i = 1, . . . , n.

Define Λ =


√
λ1 0 · · · 0

0
√
λ2

. . . ...
... . . . . . . 0

0 · · · 0
√
λn

 and B := QΛQ⊤. Then B is symmetric and positive

semidefinite by Theorem 1.12.2. Furthermore,

B2 = QΛQ⊤QΛQ⊤ = QΛ2Q⊤ = A

since QT = Q−1 by the orthogonality of Q.
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Example 1.12.4. Show that the matrix A =

[
4 −6
−6 13

]
is positive definite. Find a positive definite

matrix B such that B2 = A.
The characteristic polynomial of A is

det(A− λI) = (4− λ)(13− λ)− (−6)2 = λ2 − 17λ+ 16,

Hence, the eigenvalues are

λ1,2 =
17±

√
225

2
=

17± 15

2
=

16,

1.

Both eigenvalues are positive, therefore A is positive definite.
Next compute an orthonormal eigenbasis. For λ1 = 16 a corresponding eigenvector is

v1 =

[
1

−2

]
, ∥v1∥ =

√
12 + (−2)2 =

√
5, u1 =

1√
5

[
1

−2

]
.

Using Proposition 1.8.2, a corresponding eigenvector for λ2 = 1 is then u2 =
1√
5

[
2

1

]
. Let

Q =
[
u1 u2

]
and D =

[
16 0

0 1

]
.

Then A = QΛQ⊤. A symmetric positive definite square root of A is

B = QΛQ⊤,

where Λ =

[√
16 0

0
√
1

]
=

[
4 0

0 1

]
. After doing the matrix multiplication, we get

B =
1

5

 8 −6

−6 17

 .

1.12.2 Singular value decomposition (SVD)
?⟨thm:posdef2⟩?Theorem 1.12.5. For any A ∈ Rm×n, the matrix A⊤A is symmetric and positive semidefinite.

Proof. We have x⊤(A⊤A)x = (Ax)⊤(Ax) = ∥Ax∥2 ≥ 0.

Definition 1.12.6. Let A ∈ Rm×n be an m × n real matrix. The singular values of A are the
non-negative square roots of the eigenvalues of A⊤A. They are usually denoted by α1 ≥ α2 ≥ · · · ≥
αn ≥ 0.

By Theorem 1.12.5, the matrix A⊤A is symmetric and positive semidefinite, hence it has real,
non-negative eigenvalues, so the singular values are well-defined.
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?⟨thm:svd⟩?Theorem 1.12.7 (Singular value decomposition (SVD)). Let A ∈ Rm×n be an m×n real matrix.
There exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV ⊤

where Σ ∈ Rm×n is such that Σi,i = αi for i = 1, . . . ,min{m,n}, and Σi,j = 0 for i ̸= j, where αi

is the ith singular values of A.

Proof. We will only consider the proof of the special case when m = n and A is invertible.
By Theorem 1.8.3, we can diagonalise the n × n symmetric matrix A⊤A. That is, there

exist n× n orthogonal matrix V =
[
v1 · · · vn

]
with column vectors vj and a diagonal matrix

Λ =


α2
1 0 · · · 0

0 α2
2

. . . ...
... . . . . . . 0

0 · · · 0 α2
n

, where αi is the ith singular value of A, and A⊤A = V ΛV ⊤. In

particular,
Λ = V ⊤A⊤AV = (AV )⊤AV.

That is, Λi,j = (Avi)
⊤Avj and so, Avj and Avi are perpendicular if i ̸= j, moreover, ∥Avi∥2 = α2

i

for every i = 1, . . . , n. By our assumption, A is invertible and so αi > 0 for every i.
Let us define the matrix U =

[
u1 · · · un

]
, where ui = 1

αi
Avi. Thus, U is also an orthogonal

matrix. Furthermore, define Σ =


α1 0 · · · 0

0 α2
. . . ...

... . . . . . . 0

0 · · · 0 αn

. Hence,

U = AV Σ−1 ⇒ UΣV ⊤ = A,

which had to be proven.

Note that if m ̸= n or A is not invertible then one can define U as follows: We may assume
without loss of generality that α1 ≥ · · ·αk > 0 = αk+1 = · · · = αn. Then let U =

[
u1 · · · um

]
be such that ui = 1

αi
Avi for i = 1, . . . , k and by Gram-Schmidt orthogonalisation find an or-

thonormal basis {uk+1, . . . , um} for span{Avi : αi > 0}⊥. Thus, U is also an orthogonal matrix.
?⟨ex:svd⟩?

Example 1.12.8. Find the singular value decomposition of A =

[√
3 2

0
√
3

]
.

The first step is to compute A⊤A and its eigenvalues, (normalised) eigenvectors.

A⊤A =

[√
3 0

2
√
3

][√
3 2

0
√
3

]
=

[
3 2

√
3

2
√
3 7

]
.

The characteristic polynomial is det(A⊤A− λI) = (3− λ)(7− λ)− 12 = λ2 − 10λ+ 9. Hence, the
eigenvalues are λ1 = 9, λ2 = 1 and the singular values are α1 = 3, α2 = 1.
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For λ1 = 9:

(A⊤A− 9I)v1 = 0 ⇒

[
−6 2

√
3 0

2
√
3 −2 0

]
Gauss-Jordan elim.⇒

[
1 −

√
3
3 0

0 0 0

]
⇒ v1 =

[√
3
3 y

y

]
.

Normalising the vector v1 we get 1
3y

2 + y2 = 1. We get that y = ±
√
3
2 and so, v1 =

[
1
2√
3
2

]
.

We know that the eigenvectors of A⊤A are pairwise orthogonal so we might choose v2 =

[
−
√
3
2

1
2

]
,

as the normalised eigenvector for the eigenvalue λ2 = 1. Thus,

V =
[
v1 v2

]
=

[
1
2 −

√
3
2√

3
2

1
2

]
.

Finally, we calculate the column vectors of U via ui =
1
αi
Avi. For i = 1:

u1 =
1

3
Av1 =

1

3

[√
3 2

0
√
3

][
1
2√
3
2

]
= 1

2

[√
3
2
1
2

]
.

Similarly, for i = 2:

u2 =
1

α2
Av2 =

[√
3 2

0
√
3

][
−
√
3
2

1
2

]
=

[
−1

2√
3
2

]
.

Thus,

U =
[
u1 u2

]
=

[√
3
2

−1
2

1
2

√
3
2

]
, Σ =

[
3 0

0 1

]
.

The singular value decomposition has an important geometric interpretation. Namely, it de-
scribes the image of the unit ball under the linear transformation x 7→ Ax, see Figure 1.5.

Figure 1.5: The geometric meaning of singular value decomposition: In Example 1.12.8, V is a
rotation by 60◦, Σ scales by factors 3 and 1, and U is a rotation by 30◦. So A maps the unit circle
to an ellipse . The matrix A = UΣV ⊤ maps the unit circle to an ellipse whose principal axes are
along the columns of U with semi-axis of length σ1 = 3 and σ2 = 1.

?⟨fig:SVD⟩?
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?⟨prop:polardec⟩?
Proposition 1.12.9 (Polar decompostion). For a n × n real matrix A ∈ Rn×n, there exist a sym-
metric positive semidefinite n× n matrix P and an orthogonal Q such that

A = PQ

If A is invertible then P is positive definite and Q is unique.

Proof. By Theorem 1.12.7, A = UΣV ⊤, where U and V are n × n orthogonal matrices and Σ

is the diagonal matrix formed by the singular values α1 ≥ · · · ≥ αn ≥ 0. Consider the matrix
P = UΣU⊤. By Theorem 1.12.2, P is symmetric positive semi definite and if A is invertible
then αn > 0 and so, P is positive definite. Moreover, A = UΣV ⊤ = UΣU⊤UV ⊤ = PQ, where
Q = UV ⊤ is an orthogonal matrix.

Example 1.12.10. Find the polar decomposition of A =

[√
3 2

0
√
3

]
.

From Exercise 1.12.8, we get that the singular value decomposition of A is

A = UΣV ⊤, where U =

[√
3
2

−1
2

1
2

√
3
2

]
, Σ =

[
3 0

0 1

]
and V =

[
1
2 −

√
3
2√

3
2

1
2

]
.

By the construction in the proof of Proposition 1.12.9

P = UΣU⊤, Q = UV ⊤.

Computing P and Q by using matrix multiplication, we get

P =

[√
3
2

−1
2

1
2

√
3
2

][
3 0

0 1

][√
3
2

1
2

−1
2

√
3
2

]
=

 5
2

√
3
2

√
3
2

3
2

 .

Now compute

Q = UV ⊤ =

√32 −1
2

1
2

√
3
2

 1
2

√
3
2

−
√
3
2

1
2

 =

√32 1
2

−1
2

√
3
2

 ,

which is orthogonal, as the decomposition required it to be.

Let us observe that P is the unique positive semi-definite symmetric matrix such that P 2 =

AA⊤, which might provide us an alternative construction for P .

1.12.3 Spectral decomposition

Proposition 1.12.11 (Spectral decomposition). Let A ∈ Rn×n be a symmetric n× n real matrix.
Then

A =
n∑

i=1

λiuiu
⊤
i ,

where λ1, . . . , λn are the eigenvalues and u1, . . . , un are the corresponding eigenvectors of A forming
an orthonormal basis of Rn.
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Proof. By Theorem 1.8.3,A = QDQ⊤, whereD =


λ1 0 · · · 0

0 λ2
. . . ...

0
. . . . . . 0

0 · · · 0 λn

 andQ =
[
u1 u2 · · · un

]
.

Then

A = QDQ⊤ =
[
λ1u1 λ2u2 · · · λnun

]

u⊤1
u⊤2
...
u⊤n

 =

n∑
i=1

[
0 · · · 0 λiui 0 · · · 0

]

u⊤1
u⊤2
...
u⊤n

 =

n∑
i=1

λiuiu
⊤
i

by the basic law of matrix multiplication.

Note that the matrix uiu
⊤
i is the matrix of orthogonal projection to the subspace span{ui}. In

particular, every symmetric n×n real matrix can be written as a linear combination of orthogonal
projections. Moreover,

A2 =
n∑

i=1

λiuiu
⊤
i

n∑
j=1

λjuju
⊤
j =

n∑
i=1

n∑
j=1

λiλjuiu
⊤
i uju

⊤
j =

n∑
i=1

λ2
iuiu

⊤
i ,

where we used that u⊤i uj = 0 if i ̸= j. In particular, for any k ≥ 1

Ak =
n∑

i=1

λk
i uiu

⊤
i . (1.12.1) ?eq:power?

Definition 1.12.12 (Matrix valued functions). LetA be an n×n symmetric real matrix with eigen-
values λ1, . . . , λn. Let f : R→ R be a real analytic function on an interval containing {λ1, . . . , λn}.
Then we define

f(A) :=

n∑
i=1

f(λi)uiu
⊤
i ,

where
∑n

i=1 λiuiu
⊤
i is the spectral decomposition of A.

The definition is coherent in the following sense: Since f : R → R is analytic, we can write
f(x) =

∑∞
k=0

f (k)(0)
k! xk, where f (k) denotes the kth derivative of f . By this analogy, we define

f(A) :=
∞∑
k=0

f (k)(0)

k!
Ak.

But applying (1.12.1) to calculate the matrix powers, and so

f(A) =
∞∑
k=0

f (k)(0)

k!
Ak =

∞∑
k=0

f (k)(0)

k!

n∑
i=1

λk
i uiu

⊤
i =

n∑
i=1

∞∑
k=0

f (k)(0)

k!
λk
i uiu

⊤
i =

n∑
i=1

f(λi)uiu
⊤
i .
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Example 1.12.13. Consider the symmetric matrix

A =

[
1 2

2 −2

]
.

(a) Find the spectral decomposition of A.

(b) Find the matrix e2A.

Compute the eigenvalues of A from det(A− λI) = 0:

det

1− λ 2

2 −2− λ

 = (1− λ)(−2− λ)− 4 = λ2 + λ− 6 = 0.

Hence, the eigenvalues are

λ1,2 =
−1±

√
1− 4(−6)
2

=

2

−3.

For λ1 = 2 solve (A− 2I)v = 0:−1 2

2 −4

x
y

 = 0 ⇒ −x+ 2y = 0⇒ x = 2y.

Take v1 =

[
2y

y

]
, normalizing it we get that (2y)2 + y2 = 1 and so y = ±1√

5
. In particular,

u1 =
1√
5

2
1

 .

Using that the eigenvectors of a symmetric matrix are pairwise orthogonal (Proposition 1.8.2), we
can choose the eigenvector of the eigenvalue λ2 = −3 to be

u2 =
1√
5

 1

−2

 .

Hence, the spectral decomposition theorem gives

A = λ1u1u
⊤
1 + λ2u2u

⊤
2 = 2u1u

⊤
1 − 3u2u

⊤
2 . (1.12.2) ?eq:specdec?

Explicitly,

u1u
⊤
1 =

4
5

2
5

2
5

1
5

 , u2u
⊤
2 =

 1
5 −2

5

−2
5

4
5

 ,
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so one may check

A = 2

4
5

2
5

2
5

1
5

− 3

 1
5 −2

5

−2
5

4
5

 =

1 2

2 −2

 ,

as required.

(b) To compute e2A, we use the spectral decomposition in (1.12.2). Thus,

e2A = e4 u1u
⊤
1 + e−6 u2u

⊤
2 .

Using the matrices for u1u⊤1 and u2u
⊤
2 above,

e2A = e4

4
5

2
5

2
5

1
5

+ e−6

 1
5 −2

5

−2
5

4
5

 =


4e4 + e−6

5

2e4 − 2e−6

5
2e4 − 2e−6

5

e4 + 4e−6

5

 .

1.12.4 Exercises

1.12/1. Let
A =

[
5 4

4 5

]
(a) Show that the matrix A is positive definite.
(b) Find a positive definite matrix B such that B2 = A!

1.12/2. Find the singular value decomposition of the matrix A =

[
3 8

−4 6

]
.

1.12/3. Find the singular value decomposition of the matrix A =

1 1

0 1

1 0

.

1.12/4. Consider the matrix A =

[
4 2

2 1

]
.

(a) Give the spectral decomposition of the matrix A.
(b) Find the matrix eA.

1.13 Mixed exercises in Linear Algebra

1.13/1. Consider the matrix A =

4 5 6

3 −1 2

0 2 1

.
(a) Find the determinant det(A).
(b) If it is invertible find the inverse matrix A−1.
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1.13/2. Solve the following linear equation system:

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6.

1.13/3. Is the collection of vectors linearly independent?

v1 =

12
3

 , v2 =

 0

−1
1

 and v3 =

10
5

 .

If not then choose a maximal linearly independent subset and express the remaining vector
as a linear combination of these vectors.

1.13/4. Consider two bases B =

{
u1 =

[
15

−2

]
, u2 =

[
8

−1

]}
and B′ =

{
v1 =

[
2

5

]
, v2 =

[
1

2

]}
of

R2.

(a) Find the basis transformation matrices PN→B and PB′→B.

(b) If [w]N =

[
1

3

]
then what is [w]B =?

(c) If [z]B′ =
[
1

3

]
then what is [z]B =?

1.13/5. A linear transformation T maps the vectors B =

u1 =

00
1

 , u2 =

01
1

 , u3 =

11
1


 to the

vectors v1 =

23
5

 , v2 =

10
0

 and v3 =

 0

1

−1

 respectively (that is T (ui) = vi for every

i = 1, 2, 3).

(a) Find the matrix representation [T ]B of the linear transformation T in the basis B.
(b) Find the matrix representation [T ]N of T in the natural basis N .

1.13/6. Find the eigenvalues and eigenvectors and diagonalise the matrix A =

[
2 1

4 1

]
.

1.13/7. Determine an orthonormal basis for the subspace spanned by the vectors

u1 =


2

1

3

1

 , u2 =


4

6

5

1

 and u3 =


5

4

−2
0

 .
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1.13/8. Draw the points on the plane, which satisfy the equation 5x2 − 4xy + 8y2 = 36.

1.13/9. Let

A =


2 1 1 0 5

1 0 1 2 0

0 3 −3 0 3

−1 0 −1 1 −3

 .

(a) Give a basis of the column space Col(A) out of the column vectors of A, and express
the coordinates of the remaining vectors in this basis.

(b) What are rank(A), rank(A⊤A), nullity(A⊤) and nullity(A)?

1.13/10. Determine the matrix of the orthogonal projection (in the natural basis) from R2 to the line

y =
√
3
2 x. What is the orthogonal projection of the point v =

[
1

3

]
?

1.13/11. Determine the matrix of the orthogonal projection (in the natural basis) from R3 to the

plane {

xy
z

 : 5x− 6y + z = 0}. What is the orthogonal projection of the point v =

81
3

?
1.13/12. Find the equation of the line, which fits the best (in the sense of least squares) to the points

(−3,−2), (0, 3), (1, 1) and (2, 0), and determine the error!

1.13/13. Let A =

[
9 6

6 9

]
(a) Show that A is positive definite.
(b) Find a positive definite symmetric matrix B such that B2 = A.

1.13/14. Let A =

[
1 2

2 −2

]
.

(a) Find the singular value decomposition of the matrix A.
(b) Find the polar decomposition of the matrix A.

1.13/15. Let A =

[
−13 20

−15
2 12

]
.

(a) Find the spectral decomposition of the matrix A.
(b) Determine the matrix cos(πA).
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