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Chapter 1

Linear algebra

1.1 Matrices

We begin by recalling some basic definitions from our previous studies on linear algebra. First,
let us consider one of the basic objects, namely, the matrices.

Let m and n be positive integers. The matrix m x n A = [a;;] = [a;]{2] ;_; is a table of

numbers

ai; a2 ain

a a2 azn

A= )

Gm1 Am2 - Amnp
with m rows and n columns, where q; ; are reals indexed by two index set: i € {1,...,m},j €
{1,...,n}. We denote the set of m x n matrices by R"™*".

1.1.1 Basic operations

For given two n x m matrices A = [a;;] € R™*" and B = [b;;] € R™*", we define the sum A+ B

as an m x n matrix of which element in the ith row and jth column is a;; + b;;. That is,

air a2 - Qip bin b2 -+ bin a1 +bir aix+bi2 - aip +biy

a1 @2 -+ G2, bor  bap -+ boy ag1 +ba1 @z +ban - ag, + by
A+B = | | .. R el A . .| =

Aml Am2 - Qmn bml b - bmn Gm1 + bm1 am2 + bm2 c Qmp Tt bmn

Similarly, the multiplication of a matrix A = [a;;] € R™*" with a scalar ¢ € R, we define the

matrix cA as an m x n matrix of which element in the ith row and jth column is ca;;. That is,

ain a2 - Qip cailr  caiz - Caip

a1 a2 T A2n ca21 ca22 te C2n
cA=c| . . ] =

Gml Om2 " Gmn Cam1 Cam2 -+ CaAmn
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Given two matrices, A = [a;;] € R™*™ and B = [b] € R™*" we can define A - B € R™*h,

the product of matrices, with the equation:
" m,h
AB = |3 aijby] .
jz_; RACK] PRva

That is, the AB matrix has m rows and h columns and its ¢, /th element is Z;‘L:1 a;jbje.

Example 1.1.1. Let us multiply a 2 x 3 matrix with a 3 x 4 matrix:

123 Lo
A= ] B=|-1 3

4 5 6
2 40 -2

The product AB is defined since the inner dimensions (3 and 3) agree, and the result is a 2 x 4
matrix.

1-142-(-1)+3-2 1-04+2-34+43-4 1-2+2-143-0 1-14+2-04+3-(=2)
4.145-(=1)+6-2 4-0+5-34+6-4 4.245-1+6-0 4-1+5-0+6-(-2)

5 18 4 -5
11 39 13 -8

Thus AB is a 2 x 4 matrix.

Let us note that unlike the multiplication of real numbers, the multiplication of matrices is
not commutative.

Example 1.1.2. Consider two 2 x 2 matrices:

Ll el

Compute i ) ) i
. . 1 .
AB — 1-04+2-1 1-1+2-0 _ 2 ’
0-0+1-1 0-14+1-0 1 0]
while _ } _ -
141 2411
BA— 0-14+1-0 0-2+ _ 0
1-140-0 1-240-1 1 2
Since

AB = — BA,

2 1 01
10]#[12

we see that matrix multiplication is generally not commutative.

Definition 1.1.3. Let A = [a;;] € R™*™. The transpose of A, denoted AT, is the n x m matrix of

which element in the ith row and jth column is a;;. That is, the rows of A become the columns of
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AT and vice versa. That is,

ail ai2 e Aln ailp azi e am1

a1 a2 o a2n a2 a2 - am?2
A= ] |, then AT =|

Aml Am2 - Omn A1p A2n " Gmp

Proposition 1.1.4. For A, B € R™*",
(A+B)" =4 +BT.
Moreover, for two matrices A € R™*" and B € R™ " we have that
(AB)" =BT A",

1.1.2 Determinant

Definition 1.1.5. The determinant is a function that assigns to every square matrix A € R"*" a
scalar det(A) € R, defined inductively as follows:

* Forn =1, if A = [al, then det(A) = a.

e Forn=2if A=

b
“ ] then det(A) = ad — be.
c d

e For n > 2, the determinant is defined by expanding along the first row:

det(A) = Z(—1)1+ja1j det(Alj),
7=1

where Ay is the (n — 1) x (n — 1) matrix obtained by deleting the first row and j-th column
of A. These submatrices are called minors of A. For example for a 4 x 4 matrix:

ail a2 a3 a4
o a are a as a3 a2
21 G22 G23 G24
A= ~ A2 = |az1 asz am
a3;p as2 asz as4
a41 Q43 Q44
a4l @42 Q43 Q44

Theorem 1.1.6. Let A € R"*"™. The determinant of A can be computed by expanding along any

row or any column. Specifically, for any fixed row i or column j,

n

(—1)i+kaik det(Aik) = Z(—l)kﬂ'akj det(Akj),
1 k=1

det(A) =

NE

M

where A;, or Ay; are the appropriate minors of A.

Theorem 1.1.7. For a 3 x 3 matrix, the determinant can be computed using a shortcut known as
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Sarrus’ Rule. Let

a b c
A=|d e f
g h i

Then the determinant is:
det(A) = aei + bfg+ cdh — ceg — bdi — afh.

Remark 1.1.8. Sarrus’ rule can be visualized by rewriting the first two columns of the matrix next
to it and then summing the products of the diagonals from upper left to lower right, and subtracting
the products of the diagonals from lower left to upper right.

The red diagonals correspond to the positive terms
aet + bfg + cdh,
while the blue diagonals correspond to the negative terms
ceqg + bdi + afh.

?(ex:3b3)?
fex ) Example 1.1.9 (Determinant of a 3 x 3 Matrix). Find the determinant det(A) of the matrix

BN
I
~N &~ =

2
5
8

© O W

We apply Sarrus’ rule. That is, we copy the first two columns to the right:

2
5.
8

~N s~ =
O O W
~N s =

2
)
8
Now compute the diagonal products:
(1-5-9)+(2-6-7) 4 (3-4-8) =45 + 84 + 96 = 225,

and the antidiagonal products:

(3:5-7)4+(1-6-8)+(2-4-9) = 105 + 48 + 72 = 225.



?(prop:det)?
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Subtracting:
det(A) = 225 — 225 = 0.

Theorem 1.1.10. Let A, B € R™*"™, and let ¢ € R. Then:
1. det(AT) = det(A),
2. det(cA) = " det(A),
3. det(AB) = det(A) det(B).

Remark 1.1.11. In R?, the determinant gives the signed area of the parallelogram spanned by two
column vectors of A. In R3, it gives the signed volume of the parallelepiped defined by the columns
of A. See also later, Remark 1.5.7.

Definition 1.1.12 (Inverse of a Matrix). Let A € R™*" be a square matrix. If there exists a matrix
B € R™ ™ such that

AB = BA=1,,
where _ )
1 0 0
0 1
I, =
: . -0
0 -+ 0 1

is the n x n identity matrix, then A is said to be invertible, and B is called the inverse of A, denoted
AL

Theorem 1.1.13 (Formulas for case 2 x 2). For a 2 x 2 matrix
a b
c d|’

1 d —b
ATl = :
ad — be [—C a ]

A:

if det(A) = ad — be # 0, then

Proof. Let us check the product

1 d —=b|lla b B 1 da—cb —ab+ba
ad—bc |—c a ¢ dl  ad—be

|10
—ac+ca —be+ ad o 1|

Example 1.1.14 (Inverse of a 2 x 2 Matrix). Let

AL ;].
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First compute the determinant:
det(A)=2-3-1-5=6-5=1.

Since det(A) # 0, A is invertible. By the formula,

3 —1] _ [ 3 —1] |

-5 2 -5 2

?(cor:inv)? Theorem 1.1.15. A square matrix A € R"*" is invertible if and only if det(A) # 0.

11
1

Example 1.1.16. To see a non-invertible matrix, use the previous corollary to see that the matrix

in Example 1.1.9 is not invertible.

1.1.3 Exercises

1. Let

w = O
N = DN
N W

1 2 1 11
5 B = 5 C =
3 4 3 21

Calculate A(BC) and (AB)C.

2. Calculate the determinant of

11 -2 -1
A=13 4 -8
7T 1 2

3. Calculate the inverse of
61 24
A= .
29 4
1.2 Linear Equations and Linear Equation Systems
Definition 1.2.1. A linear equation of n variables x1, xs,. .., x, is an equation of the form
a171 + asxe + -+ + apxy = b,

where a1, as, ..., a, and b are real (or complex) numbers, and x4, xo, . .., x, are variables, that is,

unknown numbers. A system of linear equations is a collection of m linear equations of n variables:

a11x1 + a1px2 + - - + apTy = by,

a21T1 + a22%2 + - - - + a2,y = ba,
(1.2.1) ?eq:1ineq?

Am121 + Ama®2 + -+ -+ QmnTn = by,

We call a system of linear equations homogeneous if by = --- = b,, = 0.
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The central goal is to find all tuples (x1,...,z,) that satisfy every equation in the system
simultaneously. Let us note that a homogeneous linear equation system always has (at least one)
solution by taking x; = --- = x,, = 0. To find solutions, we are allowed to perform a set of
operations that preserve the solution set. These are known as the elementary operations:

» Exchange the positions of two equations.
e Multiply an equation by a non-zero scalar.

* Replace one equation with the sum of itself and a scalar multiple of another equation.

These operations clearly do not change the solution. Using such operations, we aim to trans-
form a given system into a simpler one, from which the solution is easier to determine. First, let

us introduce two notations.

Definition 1.2.2. Given a system of m linear equations in n variables as in (1.2.1), the coefficient

matrix A is the m x n matrix containing the coefficients of the variables:

ail ai2 e A1n

a1 a2 e a2n
A=

aml Aam2 - Omn

The extended coefficient matrix (or simply, augmented matrix) of the system is the m x (n + 1)

matrix obtained by appending the column of constants to the coefficient matrix:

air a2 - aip | b
ag1 az - G| be
[A]b] =
Am1 Am2 **  Qmn | by
I bl
Using the coefficient matrix A, and definingz = | : | ¢ R andb = | : | € R™*}, we
L, b
can write (1.2.1) in the form
Ax =b. (1.2.2) ?eq:1ineq3?
For every i = 1,...,n, the ith column of the augmented matrix corresponds to the variable

x; by representing it coefficients in the linear equation system. Each elementary operation of
a linear equation system corresponds naturally to the manipulations of rows in the augmented

matrix. These operations are called elementary row manipulations:
* Exchange the position of two rows in the augmented matrix.
* Multiply a row by a non-zero scalar.

* Replace a row with the sum of itself and scalar multiple of another row.

10
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Let us see now an example to demonstrate how to use elementary row manipulations for
solving linear equation systems.

Example 1.2.3. Consider the following system of linear equations of four variables:

1+ 229 —x3 + x4 = 3,

2x1 + 5xo + x3 + 4a4 = 10, (1.2.3) ?eq:ex2?

3x1 + Txo + 5ry = 13.

Then We write its extended matrix:

1 2 -1 1| 3
2 5 1 4110
37 0 5|13

The general idea in solving linear equations is as follows: the easiest way to read the solution
would be if every variable would appear in the linear equation in a "reversed chronological" order
(i.e. the first variable appears in the first the first equation, but not in the others; the second appears
in the first and second but nowhere else etc.). This is not always possible, but it is a good guideline
for our strategy. Along these lines, let us do the following:

Step 1: Eliminate entries below 1 in the first column. First, subtract the double of row 1 from

row 2:
1 2 -1 1 3
R2 — R2 — 2R1 : 01 3 2 4
3 7 13
Then subtract the triple of row 1 from row 3:
1 2 -1 1|3
R3s < R3s — 3R : 0 1 3 214
01 3 2|4

As we see, every element in the first column is zero except the first one. In particular, we eliminated
the first variable from every equation except the first, where its coefficient is 1. Now, we intend to do
the same with the second variable.

Step 2: Eliminate entries below the first non-zero element in the second column: Subtract row 2
from row 3:

R3 — R3 — Ry : (1.2.4) ?eq:ex1?

S O =

2
1
0

oS W
S NN =
S = W

This is a stage where we can determine the solution. The augmented matrix above corresponds
to the following linear equation system:

1+ 229 — 23 + 24 = 3,
T9 + 3x3 + 214 = 4,
0=0.

11
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The last row corresponds to the trivial equation 0 = 0 therefore we can omit it. Since there are four
variables and only two non-trivial equations, we can choose two variables freely. Set x3 = s, x4 = t,
where s,t € R. Then we can express xs as

To+3s+2t=4 = 1x9=4-—3s—2t.
Now, using this, we can also express x1 by s and t
1+ 229 —s+t=3.
Substitute xo = 4 — 3s — 2t:
r1+2(4—-35s—2t)—s+t=3=121+8—6s—4t—s+t=3=121 =3—-8+T7s+3t = -5+ 7s+3t.

So, the solution is:
r1 = —5+4T7s+ 3t,

r9 =4 — 3s — 2t,

I3 = S,
T4 = t,
where s,t € R can be chosen freely, that is, the choice of x1, ..., x4 above solves the linear equation

system in (1.2.3) for every values of s and t.
This has augmented matrix

10 -7 =3|-5
01 3 2
00 0 0] O

Notice, that this last step could be easily done by working only on the augmented matrix by subtract-
ing the double of row 2 from row 1.

There is a general strategy for solving linear equations in the form (1.2.1), which is called the
Gauss-Jordan elimination. It is an algorithmic procedure for solving systems of linear equations
by systematically applying elementary row operations to transform the augmented matrix of a
system into a special form known as the reduced row echelon form (RREF).
?{def :RREF)? Definition 1.2.4. We say that an m x n matrix A has row echelon form (REF) if
* all rows containing non-gero elements are above any rows which contain only zeros;

* the leftmost non-zero entry in each non-zero row is 1. This is called a pivot element;

* in any two consecutive rows, the pivot element of the row below stands strictly to the right of
the pivot of the row above.

We say that an m x n matrix A has reduced row echelon form (RREF) if
* it has a row echelon form;

* Entries above and below each pivot are zero.

12
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Clearly, in a matrix of row echelon form, the entries below each pivot elements are zero.

Example 1.2.5. The following matrices are in row-echelon form:

1 4 3 7
100 0 2
01 6 2
;10 01 2 2
0 0 0 1
000 1 —1
0 00O
The following matrices are in reduced row-echelon form:
1 4 00
01 00
0010 2
0 0 1 0f,
00 01 -1
0 0 0 1
0000 O
Algorithm 1.2.6 (Gauss-Jordan elimination). Let
ain a2 - Qip
Ao ay azz - a2p
aml Am2 - amn

2st:1)? . . : . .
Pst:1)? (D) If the first column of A contains only zeros then replace cover the first column and continue

the procedure with the uncovered part of the matrix from (i). Otherwise go to the next step.

(ii) If the first column of A contains a non-gero element then exchange the first row and the row
with non-zero first element. If the first element of the first column is non-gzero, then go to next
step.

(iii) Divide the first row by its first (non-zero) element. So we are at stage:

1 ap - amm
a1 a2 o a2n
Gml Om2 " OGmn

(iv) Subtract from the lower rows the corresponding multiplier of the first row to make the first
elements in the lower rows gzero. That is, subtract from row k the ay; multiplier of the row 1.
So we are at stage:

1 a2 -+ a
0 azxp -+ an
0 am2 - amn

(v) Cover the first row and first column of the matrix. If there is nothing left, stop, otherwise
continue the process on the uncovered part from (i).

13
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The matrix at the end of the process described above has row-echelon form. Then continue with the
following:
?(st:1b)?
(vi) If the last column of A contains only zeros then replace cover the last column and continue the

procedure with the uncovered part of the matrix from (vi).

(vii) If the last column of the matrix has a non-zero element then the last non-zero element of the
column must be a pivot. Then subtract from the upper rows the corresponding multiplier of
that row to make all the elements above zero. Then cover the last column of the matrix. If
nothing left then stop, otherwise go to (vi).

Let us note that we need to do every manipulation described above with the covered parts too!

The solution can be easily read from the reduced row-echelon form if we rewrite it in the
linear equation system form.

:soluti ? .. . .
rop:solutions) Proposition 1.2.7. The linear equation system

a11r1 + a12x2 + - - + a1pTy = by,

a21T1 + a22%2 + - - - + agpTy = ba,

Am1T1 + Am2T2 + -+ + GpnTp = bm-,

* has no solution, if the reduced row-echelon form of its augmented matrix (after the Gauss-
Jordan elimination) contains a pivot element in the last column;

* has a unique solution if every column in the reduced row-echelon form of its augmented matrix
(after the Gauss-Jordan elimination) contains a pivot element except the last column;

* has infinitely many solutions, if the last column and another column in the reduced row-
echelon form of its augmented matrix (after the Gauss-Jordan elimination) do not contain
pivot element. In that case, the free parameters can be chosen to be the variables of which

corresponding column does not contain pivot elements.

Proof. Since we know that the elementary row manipulations do not change the solution, it is
enough to focus on linear equation systems with augmented matrix in reduced row-echelon form.
Let A be such augmented matrix. If the last column contains a pivot element then it has the form

(1 a2 -+ amn | by |
0
bm,
0 1
0 0 0

Rewriting the augmented matrix in the linear equation system form, the last non-zero row gives
the equation 0 = 1, which is absurd, so the equation system does not have a solution.

14
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If every column of the reduced row-echelon form contains a pivot element except the last one,

then it must have the form

1 0 -+ 0]bh
0 1 :
0
0 0 11b,
0 0 0]0
Rewriting the augmented matrix in the linear equation system form, we get that x; = by,...,z, =

by, which is the unique solution.

We can solve the remaining case, when the last column and another column do not contain
pivot elements, then rewriting the augmented matrix back to the linear equation form, we can
express every variable which corresponds to a column with pivot element using variables corre-
sponding to columns without pivot elements. These latter ones are called free variables. O

Let us demonstrate the Gauss-Jordan elimination on the following example.

Example 1.2.8. Solve the following linear equation system:

r+2y—2z=3
20 +4y+2="7
2z —x =0.

Let us rewrite it into the augmented matrix form.

1 2 —1[3] ReeRo—2r, |1 2 —1|3 1 2 —1|3
2 4 1 |7 | DR g3 | | 222 g o 3
-1 0 210 02 113 00 3|1
L2 —1y3] o [12 -13
Ro+R2/3 3l

Bl g 1 a2 |8 | 255 Lo 1 1y2 3
00 3|1 00 1|2

Roe-Ro—iRs [ 1 2 0] 1 10 0]2

Ri<Ri1+R3 O 1 0 % R1+R1—2R> O 1 0 %

0 1|42 00 1|3

That is, the linear equation system has the unique solution x = %, y = 5 and z = 1.

The Gauss-Jordan elimination is one of the most important tools in linear algebra. Solving
linear equation systems is not only important on its own but many problems can be reduced to

solving a system of linear equations.

15
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1.2.1 Exercises
1. Solve the following homogeneous linear equation system
x1 + 229 + 3x3 + 44 + S5 = 0,
—x1+x0 — 64 + 25 =0,

3ry+x3+5r4 — x5 =0
203 — Txy + Txs = 0.

2. Let us consider the following system of linear equations

20 —y + 2z =4,
2y 4+ 3z =3,
r+y+az =0

How shall we choose the parameters a and b such that

(@) the system has no solution,
(b) the system has a unique solution,

(c) the system has infinitely many solutions.

In all of the cases (when it is possible), give all solutions!

1.3 Vector spaces

We now continue with the basic object of linear algebra, the vector spaces.

Definition 1.3.1. A vector space over the reals R is a set V equipped with two operations vector
addition and scalar multiplication such that for all u,v,w € V and all scalars a,b € R, the following

axioms hold:
1. u+tv=v+u (Commutativity of +)
2. (utv)tw=u+ (v+uw) (Associativity of +)
3. There exists a zero vector 0 € V such thatu+0=u (Zero element)
4. For each u € V, there exists —u € V such that u + (—u) =0 (Inverse)
5. alu+v) =au+avand (a+ b)u = au + bu (Distributive properties)

6. 1-u=uand0-u=0.

Example 1.3.2. Another natural example of vector spaces is the space of row vectors R". That is,

let n € N be positive integer and let us write

Rn:{($17"->xn):$1,...,$nER}.

16
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Forevery x = (x1,...,2n),y = (Y1,...,¥n) € R" and a € R, let us define the following operations

z+y:=(x1+y1,.., xntyp)anda-z:=(a-x1,...,a - x,).

With these operations, R" is a vectorspace. Usually, the vectors described in Example ?? are repre-
sented by the vectors in R>.

Example 1.3.3 (Vector addition in R?). Let u =

2 1
1] andv = [2] be vectors in R2. Vector addition

_ [g]

is defined componentwise:

2+1
1+2

utv=

Figure 1.1: Geometric interpretation of vector addition. The sum u-+v can be obtained by placing
the tail of v at the tip of u; equivalently, u + v is the diagonal of the parallelogram spanned by u
and v. The red arrow is u, the blue arrow is v, the blue arrow translated to the tip of u is drawn
dashed, and the green arrow is u + v.

With a slight abuse of notation, we will also use the notation R" for the vector space of column

vectors
I

R™ = Y rxy, .., €R

Tn

The operations are defined similarly, that is, we take the sum and scalar product element-wise.

Definition 1.3.4. Let v,,v,,...,v,, be vectors in a vector space V over R. A linear combination of

these vectors is any vector of the form
a1y + a2V + -+ + Anly,

where a1, as,...,a, € R. The scalars are called the coefficients of the linear combination.

Tl — T2 = -1
Example 1.3.5. Consider the linear equation system . Then the linear equation
5x1 + 229 =8
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-5

This means solving liner equation systems is equivalent to finding coefficients x1,xo such that the

can be written in the form
1

5

T + x2

) . o 1
corresponding linear combination of the vectors v, and v, equals to b, where v, = [5] , Uy 1=

-1 -1
) b = .
2 8
Example 1.3.5 shows actually a general phenomenon. Consider the linear equation system

a11x1 + apxe + - - + aipxy = by,

a2171 + a22%2 + -+ + a2pTy = by,
(1.3.1) ?eq:1ineq2?

Am121 + AmaZ2 + - -+ QmnTn = by,

Let
ai; bl

v,:=| : | eR™ foreveryi=1,...,n,andletb:= | : | € R™. (1.3.2) ?eq: coeffvec?
Ay bm

Then the linear equation system (1.3.1) can be written in the form
T1vy + -+ T, =D,

Hence, solving the linear equation system 1.3.1 is equivalent with the question: Does there ex-
ists coefficients x1, ..., x, such that b can be expressed as the linear combination of the vectors
vy,...,v, (which are column vectors of the coefficient matrix of the linear equation system).
Proposition 1.2.7 provides us a method to answer this question and now, we will discuss what
consequences does it have for vector spaces.

Definition 1.3.6. Let W C V be a subset of the vector space V over R. We call W a linear subspace
* The gero vector 0 € W;
e W is closed under vector addition, that is, u + v € W for every u,v € W;
* W is closed under scalar multiplication: av € W for every a € Rand v € W.

In other words, a subspace is a subset of V' that is itself a vector space under the same operations.

Example 1.3.7. The sets

i €T
K={ |yl eR¥:2+y+2=0p, y| eR®:z,y € R
z 0

18
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T o
are subspaces of R3. For example consider two vectors a; = |y, | and a; = |y»| € K. Now their
21 29
1+ T2
sum, a; +ay = |y1 + s |, and clearly
21+ 22

(w1 4+ 22) + (y1 +y2) + (21 +22) = (@1 +y1 + 21) + (22 + y2 + 22) = 0.

Hence, a; + a5 € K. Moreover, for a constant s, we have that sa; = |sy; |, and

sr1+sy1+sz1 =s(x1+y1+21) =s-0=0.

Thus, sa; € K.

Example 1.3.8 (Not a Subspace). The sets

X X
yl eR¥:z4+y+2=17, yl eR3:2,yeR
z 1

are not subspaces of R3, since they do not contain the origin.

Definition 1.3.9. Given vectors v, vs, ...,v, € V. We call the set of all possible linear combinations
of these vectors by the subspace spanned by the vectors v,,v,,...,v,, and we denote it as
span(vy, vy, ..., v,) = {a1v; + avy + -+ - + apy, : a; € R}.

The span is always a subspace of V.

Using the definition of spanned subspace, it is easy to see that the linear equation system
(1.3.1) has a solution (infinitely many or a unique) if and only if

b € span(vy, vy, ...,0,),

» YUn

where the vectors b and v; are as in (1.3.2). To decide whether the solution is unique or not, we

need a better understanding on the vectors vy, ..., v,,.

1.3.1 Exercises

1. Let V be a vector space and let v, ...,v,, € V. Show that span(vy,...,v,,) is a subspace of
V.
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1.4 Linear independence, basis, basis representation

Definition 1.4.1. Let V be a vector space. The vectors v,,vs,...,v, in V are said to be linearly
independent if the equation
a1V, + agvy + -+ apy, =0

has only the trivial solution: a1 = as = --- = a,, = 0. If there exist non-trivial scalars aq, ..., a,
satisfying the equation, the vectors are called linearly dependent.

Definition 1.4.2. A set of vectors vy, v,,...,v, € V issaid to generate (or span) a subspace W C V

if every element of W can be written as a linear combination of vy, v, . .. that is,

b n)
W C span(vy,vg, ..., 0,).

Definition 1.4.3. The set of vectors {v;,vs,...,v, } in a vector space V is called a basis of V' if the
vectors are linearly independent and they span V. We say that a vector space V is finite dimensional
if it has a basis with finitely many elements.

Theorem 1.4.4. Any two bases of a finite-dimensional vector space V have the same number of
elements. That is, if {v;,...,v,} and {w,,...,w,,} are both forming a basis of V, then n = m.
The number of vectors in any basis is called the dimension of V' and denoted by dim V.

Proof. Let
B={v,...,v,} and C={wy,...,w,}

be two bases of the finite-dimensional vector space V. We will prove n = m by showing n < m
and m < n.

Since C is a basis, it spans V. Hence each v, is a linear combination of the w;; that is, for
every ¢ there exist scalars ay;, . . . , Gy, With

v; = Z @i W;. (1.4.1) ?eq:subthis?

Consider the equation

Substituting (1.4.1) in the above equation gives

zn;xi<§aﬂw > i (Zn:aﬂ:c,)wj =0.

1=

Since the vectors wy, ..., w,, form a basis, each coefficient must vanish:
n
E ajixizo fOI'jzl,...,m

This is a homogeneous linear system of m equations in the n unknowns z1, ..., z,, hence as-
suming n > m, it has a nontrivial solution. Thus if n > m the v; would be linearly dependent,
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contradicting that B is a basis. Therefore n < m.

The inequality m < n can be showed by the above argument with swapping the roles. O

? .
Theorem 1.4.5. Let B = {v;,...,v, } be a basis for a vector space V. Then every vector v € V can
be written uniquely as a linear combination

V= a1V + agVy + - -+ anv,,
for scalars a1, . ..,a, € R. We use the notation

[v]p =

Qan

for the representation of v in the basis 5. These scalars are called the coordinates of v in the basis
B.

Proof. Let us argue by contradiction. Let B = {v,,...,v, } be a basis for a vector space V. Since
B spans V, for every v € V there exist scalars aq, ..., a, € R such that

V=a10; + -+ apl,.

Suppose that there exists v € V' for which this representation is not unique. That is, there exist
scalars by, ...,b, € R with a; # b; for some i = 1,...,n such that

v="b1vy + -+ bpy,.
Then using these two linear combinations, we get
0=v—v=_(a1 —b1)uy + -+ (an — bp)v,,

However, this would mean that there is a non-trivial linear combinations of the vectors v, ..., v

no

which gives the zero vector. This contradicts to the assumption that 53 being linearly independent.
O

Since every vector in V' can be uniquely represented in a basis B, w get
[v+wls = [v]s+ [w]p and [a - v]g = a- [v]3

for every v,w € V and a € R.

Example 1.4.6. Consider the vector space of column vectors R". The set N' = {ey,...,e,} forms
the natural basis of R", where
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In other words, e, is the vector for which the kth element is 1 and every other element is 0.

U1
We will use the convention that if we write v = | : | € R", then the coordinates of v are
U’I’L
expressed in the natural basis AV.
We can rewrite Theorem 1.4.5 in terms of linear equations. The system of linear equations
(1.3.1) with coefficients vectors vy,...,v, defined in (1.3.2) has a unique solution for every
constant vector b

.Z'lyl‘i‘""i’xnyn:b

ifand only if vy, ..., v,, forms a basis of R". So by using Proposition 1.2.7, it follows that v;, ..., v

r=n

forms a basis of R” if and only if, after the Gauss-Jordan elimination, the reduced row-echelon
form of the matrix

air a2 - Qin
a a .oa
A=y o ow]= | @ on
|@m1 Qm2 " Qmn |
is the n x n identity matrix
1 0 0
0 1
I =
0
0 -+ 0 1]
1 1 1 1
Example 1.4.7. Let v = 2| € R3, Let B be the basis O, 1|, ]|1| p.- What are the coordi-
3 0 0 1
nates of v in basis B?
Let us write for the coordinates of the vector v in basis B by [v]g = |y |. Using the definition of
z

coordinates Theorem 1.4.5, we can write v as a linear combination of the vectors of the basis. Thus,
we have to solve the following linear equation system:

1 1 1 1
z |0 +y |l +2z |1 = |2
0 0 1 3

We now solve this using Gauss—Jordan elimination.

11 1|1 11 1] 1 11 0]-2
01 1|2 | B g ogfoq | B2 1 g 1 o) 21
00 1/3 00 1|3 00 1|3
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Thus the solution is
(Z’,y,Z) = (_17 _173)

So the coordinates of v in basis B are:

1.4.1 Finding a basis of the spanned subspace

asisofspanned)? . .
P ) For a general collection, the vectors vy, ..., v,, € R" usually won’t form a basis of span{v, ..., v, },

because there might be linear dependences. To get rid of the linear dependences is to write it in
a matrix form

Perform the Gauss-Jordan elimination on M, we obtain the reduced row-echelon form of M.
Suppose that the pivot elements are contained in the columns with indices ji, ..., j,. Then

B = {le,...,yjr}

is a basis of span{v,,...,v, }, and in particular, the number of pivot elements is the dimension of
the space span{v,,...,v,}.
To see this, it is enough to show that {v; ,...,v; } are linearly independent, and any other

vector v, ¢ {v;,,-..,v; } can be expressed as a linear combination of {v; ,...,v; }.
Solve the linear equation

105, + -+ TRy, =0

by repeating the same steps of the Gauss-Jordan elimination performed on M. Hence, we get
that every column of the RREF of the matrix

le ... er
contains a pivot, and so, x; = --- = z, = 0 is the only solution. This shows the linear indepen-
dency.
On the other hand, adding any other column vector v,, where ¢ # ji,..., ¢ # j,, and solving

the linear equation
vy, + -+ + Y0, =0
again by repeating the same steps of the Gauss-Jordan elimination performed on M, we see that

the all columns of the RREF of

Uy 0 Y50 Yy
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contains a pivot element, except the last one. Hence, the equation has infinitely many solutions,

and so, the vectors {v; ,...,v; ,

As a corollary of the above. The column vectors of the RREF of M which do not contain pivot

v,} are linearly dependent.

element are containing the basis representation of the corresponding column in the basis B.

Example 1.4.8. Let

1 2 0 2 5
-2 -5 1 1 -8

v = , Vg = _a|” V3 = 3| Uy = ) andg5: 1
6 0 -7 2

Find a basis of U = span{v;, vs, Vs, 04,05} out of the vectors {v;,vs,v3,v4,v5} and express the
remaining vectors in this basis!

We form the 4 x 5 matrix whose columns are these vectors:

1 2 0 2 )
-2 -5 1 -1 =8
A=
0 -3 3 4 1
3 6 0 -7 2
Apply the Gauss-Jordan elimination to A:

1 2 0 2 ) 1 2 0 2 )
2 5 1 -1 8| BoEHER 0 11 030 2
LS
0 -3 3 4 1 0 -3 3 4 1
3 6 0 -7 2 0 0 0 —-13 -13

1 2 0 2 ) 10 2 01
RisRs—3R, |0 —1 1 3 2 01 -1 0 1
e s —

0 0 0 -5 =5 00 0 11

0 0 —13 -—-13 00 00

From the pivot positions (columns 1,2,4), we see that B = {v1, va, v4} is a basis of U. Thus

dim U = 3, and vs,v5 can be written as a linear combination of v, vy, v4. Explicitly,

2 1
[wsls = [-1|, [usls= |1
0 1

1.4.2 Equivalent conditions for invertibility

Summarizing of the previous properties, we get the following theorem.
? < ?
?(thm: 1av)? Theorem 1.4.9 (Equivalent Conditions for Invertibility). Let A € R™*™ be an n x n matrix. The

following are equivalent:

1. The reduced row-echelon form of A is the identity matrix.
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2. Ais invertible.

3. The linear system Ax = 0 has the unique solution: x = 0.

4. The linear system Ax = b has a unique solution for every b € R".
5. det(A) # 0.

6. The columns of A are linearly independent.

7. The columns of A form a basis of R"™.

8. The rows of A are linearly independent.

9. The rows of A form a basis of R"™.

1.4.3 Change of basis

In a vector space, there are usually many different bases. Next, we discuss how these different
bases related to each other.

Let V be a vector space, and let B = {v;,...,v,,} and B’ = {w,...,w, } be two bases of V.
Then the basis transformation matrix from B to B’ is the matrix Pg/_,5 whose columns are the
coordinates of w, expressed in the 3 basis:

Pgp = |yl [walp ... [w,]s]-

?(prop:basis)? Proposition 1.4.10. Let V be a vector space, and let B and B’ be two bases of V. If a vector
v € V has coordinates [v]p in basis BB/, then its coordinates in basis B are given by the usual matrix
multiplication:

[v]s = P[]

Proof. Let B ={v;,...,v,} and B = {w;,...,w,}, and let v € V be arbitrary. Let us write the
coordinates of v in basis B’ as

[v]g = | : | which means that bjw; + - - + byw,, = v.

Let us write the coordinates of w; in basis B by

ai;
[w;]g = | : | which means that aj;v; + - + aniv, = w,.

Anj
Hence, combining the above we get

=bi(anv; + -+ aniv,) + - - + bp(ainvy + - - + annvy,)
= (allbl +---+ alnbn)ﬂl +---+ (anlbl +-+ annbn)ﬂn-
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Using the definition of the coordinates of the vector v in basis B, we get

anby + -+ apby a1 - ain| |b
[v]s = : =1 : " s

ap1b1 + -+ appby an1 - Qnn bn,
which had to be proven. O

A simple consequence of the uniqueness of the coordinate representation of vectors Propo-
sition 1.4.10 is the following: let B, B’ and B” be bases of a vector space V. Then the basis
transformation matrices satisfy the following identity:

Pppr = Pppr Pasp.

In particular, for any two bases B, B’ of V'

I = Pg,pPp s,

where [ is the identity matrix. Thus, Ps_.z = (Pp _}B)’l with the usual matrix inversion.

1

Example 1.4.11. Let V = R? Let N = {el = [O

- fu= [

(@) Find the basis transformation matrices Pn_.p and Pg_ .

] , €9 = [i)] } be the natural basis, and let

1

] } be another basis.

3
(b) Letv = [v|y = [1] Find the coordinates [v]p of the vector v in basis B.

We wish to find the change of basis matrix Ps_,xr from B to N. Since v, and v, are expressed in
the natural basis, we have Pp_, s as the matrix of the column vectors of the base B (in the natural

1 1
Py = 1 1l

basis), i.e.

On the other hand, we have

_ 1 |—-1 -1
PN*)B:(PBHN)lzl ]:

and so
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1.4.4 Exercises

1 0 1
1. Let us consider the following vectors: u; = |2|, uy = |—1| and u3 = |0]|. Are the
3 1 5)

vectors u;, Uy, us linearly independent? If not express the one with the others!

2. Let B= {Ul =

1 1 —1
2] , Uy = [ 1] } be a basis of R?, and let v = [ . ] . Find the coordinates

of v in the basis B.

3. Let B be the basis of R? as in the previous exercise. Find the basis transformation matrices
Pg_,n and Py, where N is the natural basis of R?.
1.5 Linear transformations

Definition 1.5.1. Let V and W be vector spaces over R. A function T : V — W is called a linear
transformation (or a linear map) if, for all u,v € V and X € R, the following properties hold:

1. Additivity: T(u+v)=T(u)+ T (v),
2. Homogeneity: T(\v) = \T(v).

A simple consequence that a linear map 7' maps the 0 vector (of the vectorspace V) to the
zero vector 0 (of the vector space W). Indeed,

T(0)=T(0+0) =T(0) + T(0) = 27(0).

Thus, 7'(0) = 0.

Example 1.5.2. The following maps are linear transformations on the plane R?:

* Reflection across the x-axis:

X X
T = .
Yy )
* Reflection across the line y = x: o o
X
" ="
x
* Projection onto the x-axis: o o
x x
T —
0
. T x+1] . . . .
Non-example: The transformation T = is not linear, since it does not preserve the
Y Y

gero vector: T

“ )
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For every m x n matrix A, the action 7: R"™ — R™ defined as
T(v) = Av

gives a linear transformation.

Definition 1.5.3 (Matrix Representation of a Linear Transformation). Let T : V' — W be a linear
transformation between finite-dimensional vector spaces. Let B = {v;,...,v,} be a basis of V,
and let C = {w,,...,w,,} be a basis of W. Then the matrix of T with respect to the bases B and
C, denoted [T'|p—c, is the m x n matrix whose j-th column is the coordinate vector of T'(v;) with
respect to C, that is:

Tlsoe = |[Te)le - [Tl

If V =W and B is a basis of V' then we use the simplified notation [T|g = [T|5-5

The matrix representation of the linear map 7 satisfies:

[T(y)}c = [T]B—)C . [Q]B forallv e V. (1.5.1) ?eq:1inrep?
To see this, let us write v € V in the basis B = {v;,...,v,},i.e. [vJs = | : |. Then

T(v) =T(bivy + -+ bpy,) =0T (vy) + -+ b, (v,,).

Thus,
[T@)le = 1T (v1) + -+ T (vy)]e = 0[T(w)le + -+ + ba[T'(v,)]e,

which implies (1.5.1).
Example 1.5.4. Let T : R? — R? be the transformation defined by:
T(z,y,z) = 2z —y, =+ 2).

Find the matrix representation [T, n;, of T in the natural bases of R? and R3,
1 0 0

1
Let {|0], |1, |0]|} be the natural basis of R and { [0] , [(1)] } the natural basis of R%. Then
0 0 1
1 0
2 — 0
7(fo))= ||| T >=[ ],andﬂo):“
0 1
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Theorem 1.5.5 (Change of Basis for Linear Transformations). Let T : V' — V be a linear trans-
formation, and let B = {v,,...,v,} and B’ = {wy,...,w, } be two bases of V. Then

[Tp = Pp—p [T|8Ps 8.

Proof. Using the definition of the basis representation of the linear transformation 7" in (1.5.1)
and the property of the basis transformation matrix Proposition 1.4.10, we have

Tg(z]g = [T(z)]lp = Ps—p [T(x))s = Ps—p|T)slz]s = Ps—p [T)8Ps—5lz]s -

The matrices on the left-hand side and the right-hand side are both satisfying (1.5.1), thus, are
equal. O

1
Example 1.5.6. Let B = { L] ) [

mation defined by:

1
1] } be a basis of R?, and let T : R? — R? be a linear transfor-

T(z,y) = Bz +y, +2y).

What is the matrix representation [Tz of T in basis B?

31
1 2|

To compute the matrix of T in the new basis B we construct the basis transformation matrices

i
|

Let us now make a slight detour and show that the determinant of a square matrix A € R"*"

In the standard basis, the matrix of T is:

[T]n =

Pn_p, Paosy:

N[

PN =

1
1] and P/\/—>B = (PB—>N)_1 = [

N[ D=

Compute the new matrix representation:

[T)5 = (Pp—sn) TN Py = [

N[ = N[
N[ =

N[ =

has a nice geometric interpretation.

2
"Remark 1.5.7 (Geometric Meaning of the Determinant). Let A be an n x n matrix of reals. Let

T: R™ — R" be a linear transformation defined as T'(x) = Az. For a region U C R", let
TU)={T(z):z €U}
be the image of the region U under the linear transformation T. Then
Vol(T'(U)) = | det(A)|Vol(U),

where Vol denotes the volume (area in R?). That is, | det(A)| tells how the transformation T scales

the volume of any region in R".
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The sign of the determinant indicates whether the transformation preserves orientation:
e det(A) > 0: orientation is preserved,
* det(A) < 0: orientation is reversed,
* det(A) = 0: the transformation collapses volume entirely (i.e., maps n-dimensional volume
into a lower-dimensional space).
1.5.1 Exercises

1. Let T: R? — R? be the linear transformation that rotates the plane with 60 deg around the
origin in the counter clockwise direction. What is the basis representation matrix of 7" in
the natural basis?

2. Let T: R? — R2 be the linear transformation defined as

T(z,y) = (2 — y,3y — ).

1 1
Let B = { [2] , [ ] } be a basis of R?. What is the basis representation of T in the natural

basis and in basis B?

1.6 Eigenvalues, eigenvectors

Now we wish to find a basis, where the linear transformation acts nicely.

Definition 1.6.1. Let A € R"*" be a square matrix. A non-zero vector v € R" \ {0} is called an
eigenvector of A if there exists a scalar A € R such that

Av = M.

The scalar )\ is called the eigenvalue corresponding to the eigenvector v.
The following theorem provides a way of finding the eigenvalues of an n x n matrix A.

Theorem 1.6.2. Let A be an nxn matrix. Then A is an eigenvalue of A if and only if det(A—AI) = 0.
This is called the characteristic equation of A.

Proof. If ) is an eigenvalue of A then there exists a non-zero vector v € R" such that Av = \v.
Then
Av=X v = Av— v =0= (A— \)v.

Hence, the matrix A — \I is not invertible and by Corollary 1.1.15, det(A — AI) = 0.

On the other hand, if det(A — AI) = 0 then by Theorem 1.4.9 A — AI is not invertible and
there exists v non-zero vector v € R™\{0} such that (A — AI)v = 0, and so, Av = v, which
means that )\ is an eigenvalue. O
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4 1
Example 1.6.3. Consider the matrix A = 5 3| Find the eigenvalues and eigenvectors of A.

We compute the eigenvalues by solving the characteristic equation:

det([4_>\ ! ]):(4—/\)(3—/\)—2:)\2—7)\+10:0.
2 3-A

The solutions are Ay = 5, Ao = 2. To find the eigenvector for Ay = 5, we need to solve the linear
equation:

-1 1 x 0 x
Rl (Y 1 e |

For Aoy = 2, solve:
2 1| |x 0 T
= = yYy=-2r = wvyg= .

As the example shows, an eigenvalue has many eigenvalues. In particular, the eigenvectors
of A corresponding to the eigenvalue A forms a subspace.

Definition 1.6.4. We call an n x n matrix A € R™" diagonalizable if there exists eigenvectors
vy, ...,0, of Awhich form a basis of R".

Example 1.6.5. Consider the matrix

Its characteristic polynomial is
det(A — XI) = (A — 1),

so the only eigenvalue is A = 1. To find eigenvectors, we solve

0 1| [, y
A-Tw= = 17| =o0.
a-mm= o) =1 -

This gives y = 0, so every eigenvector is of the form v = [O] . Hence, the eigenvectors cannot form a

basis of R?, and for diagonalization we would need a basis, thus A cannot be diagonalized.

Theorem 1.6.6 (Eigendecomposition). Let A € R™ " be diagonalizable. Then there exists an

invertible matrix P and a diagonal matrix D such that

A=PDP !,
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where ) )
A 0 - 0
0 X oo
D = . 2 andP:PB_>N:[Q1 Qni|7
N ¢
I 0o --- 0 )\n_
where A1, ..., \, are eigenvalues of A, and v, is the eigenvector corresponding to the eigenvalue \;
fori=1,... n.
Proof. Since A is diagonalizable, there exists a basis B = {v,,...,v,} of R" consisting of eigen-

vectors of A. By definition of an eigenvector, we have
Av; = v, i=1,...,n,

where )\, is the eigenvalue corresponding to v;.
Now, let P be the basis transformation matrix

<
3
—_

P =P,y = [Ql %

Next, consider the action of AP:

(A0 0]
0 A
= [/\121 AQQQ )\nyn} = [21 Vo - Qn] . 2 = PD,
: 0
0 0 Anj
' 0 - 0]
0 A . . . . . . . .
where D = is the diagonal matrix formed by the eigenvalues. Multiplying
N
0 - 0 A
both sides by P~! on the right gives A = PDP~1. O

This means in particular that the matrix representation of the diagonalisable matrix A in the

basis formed by the eigenvectors of A is a diagonal matrix.

Corollary 1.6.7. If A € R™*"™ has eigenvalues A1, ..., A\, then

det(4) =[] x.
i=1
Proof. We show it only in the case when A is diagonalisable. Then by Theorem 1.6.6 and the
properties of the determinant Theorem 1.1.10

det(A) = det(PDP™') = det(P) det(D) det(P~!) = det(D),
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hence, the claim follows.

1.6.1 Exercises

14 —4
1. Diagonalise the matrix A = .
30 -9
2 -1 -1
2. Find the eigenvalues of the matrix A= [0 —1 0
0 2 1

1.7 Scalar product

Now, we equip the vector space V' with the so-called scalar product. This allows us to study the

geometric properties of vectors, like length or angle.

Definition 1.7.1. Let V' be a vector space over R. A function
(,):VxV =R

is called a scalar product on V if it satisfies the following properties for all u,v,w € V and all

scalars A € R:
1. Symmetry: (u,v) = (v,u).
2. Linearity in the first argument:

(u+ v, w) = (u,w) + (v, w) and (Au, w) = A, w).

3. Positive definiteness:

(v,v) >0 and (v,v) =0ifandonlyif v = 0.

The pair (V, (-, -)) is called an inner product space.

T 1

Example 1.7.2 (Scalar Product on R"). Letu= | : | ,u= | : | € R™ Their scalar product is

In Yn

n
(w,v) = u"v =21Y1 + Toy2 + -+ Tnn = Y Tili
=1

Definition 1.7.3.

* The length (or norm) of a vector v € V is defined by

vl = Vv, v).
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* The angle <(u,v) between non-zero vectors u and v is given by

<(u,v) = arccos <<uv>> .

[l - ]l
* We say that the vectors u,v € V are called orthogonal if

(u,v) = 0.

Definition 1.7.4. A basis {v;,...,v,,} C R" is called an orthonormal basis if its elements are
pairwise orthogonal and have length one. That is,

1 ifi=j,

0 ifi#j.
Definition 1.7.5. A square matrix Q € R™*" is called orthogonal if Q= = QT, or equivalently,
QIQ=1
Theorem 1.7.6. Let Q € R"*" be an orthogonal matrix. Then

1. The columns of @ form an orthonormal basis of R™.

2. Q preserves scalar products: for all u,v € R",
(Qu, Qu) = (u,v).

3. @ preserves lengths and angles.

4. |det@Q| = 1.
Proof. Suppose that ) = {g R Qn] is an orthogonal matrix, where q, are the column vectors.
a
Then Q' = | : | and so
0,
af 949, 44,
T _ . _ .
QQ=|: [gl gn}— :
g, 4,9, - 4,4,

Hence, gjgj =1if:=jand g:gj =0ifi+# j.
On the other hand, for every u,v € R"

(Qu,Quv) = (Qu) T Qu=u"Q"Qu=1u"v,

hence, @) preserves the length and so the angles.
Finally,

1 =det(]) = det(QQ") = (det Q)% O
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1.8 Symmetric matrices

Definition 1.8.1. We call an n x n matrix A symmetric, if AT = A.

Proposition 1.8.2. Let A € R"*" be a symmetric matrix. Then all eigenvalues of A are real.
Moreover, for every v,,v, € R" eigenvectors of A corresponding to distinct eigenvalues \; # A2, v,

and v, are orthogonal.

Proof. We only show the second claim. Assume Av; = \jv; and Avy, = Aav,, with A; # Ag. Then
A1{vy, vg) = (M, v9) = (Avy, vy) = <ﬂ1aAT22> = (v1, Avg) = (v, Aawg) = A2(vy,v9).

Hence
(A1 = A2){vy,v9) = 0.

Since A1 # Ao, it follows that (v, v4) = 0. O

Theorem 1.8.3. Every real symmetric matrix is orthogonally diagonalizable. That is, if A € R"*"
and AT = A, then there exists an orthogonal matrix Q@ € R™*" and a diagonal matrix D € R™*"™
such that

A=QDQ".

The columns of () are eigenvectors of A, which form an orthonormal basis, and the diagonal entries
of D are the corresponding eigenvalues.

2 1 . . .
Example 1.8.4. Let A = ) 2] . Diagonalise the matrix!

Let us first find the roots of the characteristic polynomial, which are the eigenvalues.
O=det(A—AN)=(2-N?—1-1=)X2—4\+3,

therefore the eigenvalues are

We obtain the eigenvectors through solving the equation

(A—3DNz =0, thatis, [_11 1 ] [mll 0.

This reduces to x1 — 2 = 0, i.e. 1 = x9. S0 an eigenvector is

2 V2

o op=+Y2
v 2

By normalizing it, we get

1=ol? =2*+=
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V2

and so v; = \}5] . We know that the eigenvectors of a symmetric matrix A are pairwise orthogonal,

2
then on the plane, we can choose the eigenvector v, of the eigenvalue Ao = 1 as

NG
2
So,
o] T2 gl o) [2 %

Theorem 1.8.3 follows essentially from Proposition 1.8.2, however, it might happen that the
eigenvalues of A appears with multiplicity. That is, the eigenvectors of a certain eigenvalue
forms a subspace with dimension strictly greater than two. To handle this case, we use the

Gram-Schmidt orthogonalisation on that subspace.

1.8.1 Gram-Schmidt orthogonalisation

Algorithm 1.8.5 (Gram-Schmidt Orthogonalization). Let V' be a vector space. Let v, v, ...,v,
be linearly independent vectors. The Gram-Schmidt process constructs an orthonormal set of vectors

Uy, Uy, . . ., U, that spans the same subspace. First, let us define vectors uf, ..., u,, recursively. Let
/ Pp—
Uy ‘=0
Then, let
/
<22aﬂl> /
Ug = Uy — = Uy
(uy,uy)
If the vectors v’ , ..., u) are defined for k < n then let
1 » 2k
/ /
o — (Qk+1»@1> o <Qk+1>yk> i
U1 = Vgt — 7y W1~ T U
(uy,uy) (up )

Finally, for every k = 1,...,nlet

/

u

Uy
Uy = =
[

The algorithm indeed produces an orthonormal basis. The vectors u;, us, . . ., u,, clearly have
unit length. Since the angle does not depend on the length, it is enough to check that the vectors
ul,ub, ..., u), are pairwise orthogonal. We show the orthogonality inductively. Suppose that the
vectors u}, u, . .., uj, are pairwise orthogonal for some k < n. Then for every i < k + 1

<u/ u/ > _ <u/ v <Qk+1’@,1> / <Qk+1’y;c> >
Wip Up1) = \ Wir Vg1 — —7 7 7\ Y1 = = 5\ Yk
v PR, ) (upy )
/ /
/ <Qk+17ﬂl> o <Qk+17ﬂk> /
= (U.. vV e E———y Y N JA —_ e — ——— (U U
<—’L’ 7k+1> <Q,1,Q,1> <fz? 71) <ﬂ;€, Q;€> (7177k>
/
o <Qk+lvﬂi> /AN
- <@iayk+1> - <Q;,ﬂ;> <f7,7@> - 07
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where at the equation before the last, we used the inductive assumption on pairwise orthogonal-
ity.

Example 1.8.6. Find an orthonormal basis of the vectorspace V' = span{v;, vy, v3}, where

= o O =

Let us apply the Gram-Schmidt orthogonalisation on the vectors {v,, vs, v3 }, which form a basis
of V. In the first step, let u} := v;. So,

1
V2
1
i = V12 + 12102+ 02anduy = L = |V2
vyl 0
0
For the second basis vector, let:
<Q2>@/1>
U 1= vy — Wl uy = vy — (U9, Uy )y
1 < 1 1 3]
V2 2
0 1 1 1 0 1 _1
= —(1-—=4+0-—=+1-0+0-0) | V2| = — 2] = 2
1 ( V2 V2 ) 0 1 0 1
0 0 0 0 0

The length of ul, is ||ub|| = \/(%)2 +(—3)2+ 12402 = \/g, so by normalising u,, we get that the

second element of the basis is

- N
2 NG
/ 1 _ 1
Tl T 2
2 V6

0 0

Finally, we compute the third basis vector. By definition,

1 1 1

) =1-—+0-—=+0-04+1-0=—,

(v, 1) /2 /2 /2
1 1 2 1
v3,uy) =1 —=+0-(——= ) +0- —=4+1-0=—
(3, 12) V6 < \/6> V6 V6
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Let
1 i [ _1_1] [ 1]
: v S O I
0 1 |5 L | % —27T% ~3
/
Uy = vg — (U3, Uy Uy — (U3, Us)uy = - |2 - = ‘1/26 = =
12 2 1
of Vv2jo| V6|2 0-0-2 -3
1 0 0 1-0-0 1
Now,
el = /() + ()" + (=) +12= 2
Us 3 3 3 V3
and so,
- e
3 6
e U V33| — 3
U = 71 = 5 = -
2 1 3
] Y B
V3
R
So the orthonormal basis is:
( B \/g'
SEEIRN
1 _ 1 _V3
\/i ) 2\/6 b \j’
2 3
0 V6 -5
0 0 V3
L 2

1.8.2 Quadratic Forms
Now, we will consider an application of symmetric matrices.

Definition 1.8.7. A quadratic form of two variables is a polynomial with terms all of degree 2.
That is,
Q(z,y) = ax® + bry + ¢,

where a, b, ¢ are real numbers.

A quadratic form can be written as

b/2
Qa,y) = az® +bay + ey’ = [¢ 4] ij / H
C

We intend to study the level sets of quadratic forms. That is, we wish to understand and draw
the set of points (z,y) on the plane such that

Qz,y) =d

for some d € R. These are called conic sections (ellipses, hyperbolas, pairs of lines, etc.). The

38



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

kind of the shape depends on the signs of the eigenvalues of the matrix

R b/2 .
b/2 ¢
To see this, we apply Theorem 1.8.3 and diagonalise the symmetric matrix A. That is, A =
0

2
orthonormal basis of R2. Then

A
QDQ', where D = [ 01 ] and Q = [gl g2i| are such that Au; = A\;ju; and {u;, u,} forms an

)E(FT )

] in the new coordinate system formed by {u, u, } as [U] ,i.e. PT
z

X

Y

X

Qy) = [+ y|@DQT H - (PT
Y Y

T

Y

T

Y

Let us write the vector [

v .
. Hence, the level set is
z

d=Qv,z2) = {v z} D [Z] = M2 4 \p2?

in the coordinate system formed by {u,, u,}. From this form, we see that

1. If ;A2 > 0 and \id > O then it forms an ellipse which intersects the z axis at 4,/ )\% and

the v axis at + %;

2. If \y)o > 0 and A\ d = 0 then it is one point, the origin, and if A;d < 0 then it is the empty
set;

3. If A\; = 0 and Aaod > 0 then it is two lines parallel to the v axis intersecting the 2 axis at
/d .
+ N>
4. If \y = 0 and d = 0 then it is the v axis, and if d\y < 0 then it is the empty set;

5. If A\, = 0 and \;d > 0 then it is two lines parallel to the z axis intersecting the v axis at
/5
A

6. If Ao = 0 and d = 0 then it is the z axis, and if d\; < 0 then it is the empty set;
7. If A1A2 < 0 and A\1d > 0 then it is a hyperbola intersecting the v axis at + % ;
8. If A1 \2 < 0 and \od > 0 then it is a hyperbola intersecting the z axis at =+, /)\% ;

9. If AiA2 < 0 and d = 0 then it two lines intersecting at the origin slopes j:i—; with respect
to the v axis.
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(@) The ellipse in case Ay Ay > 0 and \;d > 0
intersecting the v axis at £, /Ail1 and the z axis

/d
at + L

z

z

(c¢) The two lines in case A\ s < Oand d = 0
with slopes % with in point of view of v axis.

—

/

(b) The hyperbola in case A\; A2 < 0 and \i;d > 0
intersecting the v axis at i\/% .

z

(d) The two lines in case A\; = 0 and d\y > 0
intersecting the z axis at + /\%.

Figure 1.2: The possible cases of the quadratic form.

Example 1.8.8. Draw a sketch of the points (x,y) on the plane which satisfy the equation

222 + 2y% — 2zy = 1.

First, we write this quadratic form as a matrix product:

-

b=



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

2
For matrix A =

-1 . . . .
], we solve the characteristic equation to find the eigenvalues.

2—-X -1
-1 2-2A

=(2-N?—1=X - 4+4-1=X2-4A+3=1-1)(1-3)=0

det(A — XI) :det[ ] =(2-N2—(=1)(-1)

Therefore: A\ = 1 and Ay = 3. For \y = 1:

(A Iy, = [_11 _11] H ) [8]

Y

] . For normalising the length, we need y> +y? = 1,
Y

This givesus x —y = 0, so x = y, and so v, = [

1

thus, v, = [‘?] Since the eigenvectors are pairwise orthogonal, we get that the eigenvector for

V2
1

A2 = 3 can be chosen as vy = [\_/?] . Hence, in the coordinate system {v;, vy} our equation becomes

V2

W+ 3?=1

This is the equation of an ellipse in standard form with semi-axes of length a = 1 (along the
u-axis) and b = % (along the v-axis).

Conclusion: The original equation describes an ellipse rotated 45 counterclockwise from the
coordinate axes, with major axis length 1 along direction (1,1) and minor axis length - along

V3
direction (1, —1).

222 +2y% — 22y =1 <l>
U1 = §
1

k=l

1
Uy = ,
Eigenve(gtokj

Figure 1.3: Visualization of the quadratic form 222 + 2y? — 2xy = 1. The red ellipse is rotated 45
from the coordinate axes. The blue vectors show the eigenvectors, which align with the principal
axes of the ellipse. The purple dashed lines indicate the major axis (¢ = 1) and minor axis
b=1/ v/3) in the rotated coordinate system.
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1.8.3 Exercises

1. Diagonalise the matrix A =

7T =2
-2 3|
2. Using Gram-Schmidt orthogonalisation, find an orthonormal basis of the subspace

x
yl ER®:2—3y+2=0

z

3. Draw a sketch of the points on the plane which satisfies the equation 922 + 4y + 6y% = 5.

1 2 2
4. Diagonalise the 3 x 3 matrix A = |2 4 4/|. (Hint: Use Gram-Schmidt orthogonalisation

2 4 4
for the eigenvalue which has multiplicity 2.)

1.9 Trace and double dot product*

Definition 1.9.1. The trace of a square matrix A € R™*", denoted by tr(A), is defined as the sum
of the elements on the main diagonal:

tI'(A) = Zn: (77
=1

Theorem 1.9.2. Basic Properties of the Trace Let A, B, C € R™*" be square matrices, and let « € R.
Then:

thm:proptrace)?
o tr(AT) = tr(A)
* tr(A+ B) =tr(A) + tr(B),
* tr(ad) = a-tr(A4),
* tr(AB) = tr(BA),
* More generally, for three matrices:

tr(ABC) = tr(BCA) = tr(CAB),

but not necessarily equal to tr(AC B) or any non-cyclic permutation.

Theorem 1.9.3. Let A € R"*"™ be a diagonalisable matrix with eigenvalues A, ..., \,. Then:

tr(A) = zn: )\2
i=1
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Proof. Since Ais diagonalisable, by Theorem 1.6.6 there exist a invertible matrix P and a diagonal

A1

0
matrix D such that A = PDP~land D =

K

Theorem 1.9.2,

0
A2

0

. Then by the last assertion of

0 M\

tdA):thDP”):thJPD):thyzﬁéAb
=1

a1 a2 o Qip

. eie as;  azy - as
Definition 1.9.4. Let A = "
aAml Am2 *°° Qmn

and B =

m x n matrices. The double-dot product is defined as

A:B = iiazjbi]‘.

i=1 j=1

Equivalently,

O
(b1 by -+ iy |
b b o bgy,
21 22 2" | be two real
_bml bm2 T bmn_

A:B=tr(A"B).

Theorem 1.9.5. Let A, B,C € R™*" and o € R. Then:

1. Symmetry:

A:B=DB:A.

2. Bilinearity:

(tA+B):C=a(A:C)+(B:C),

A:(aB4+C)=a(A:B)+ (A:C).

3. Positivity:

A:A=>">"a
i=1 j=1
0 --- 0
with equality if and only if A =
0 --- 0

2

Definition 1.9.6. An n x n matrix K € R"*" is called skew-symmetric (or antisymmetric) if

K' = K.

Equivalently, k;; = 0 for all i and k;; = —k;j; for all i # j.
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Theorem 1.9.7. For every square matrix A € R™*" there exist unique matrices S and K such that

A=S+ K,
where S is symmetric (ST = S) and K is skew-symmetric (K = —K). Moreover,
T T
G- A+ A 7 - A—A .
2 2

1.9.1 Exercises

2 6
1.9/1. Let A = 4] and B = 8] . Find tr(A) =?and A: B =7
1 2 3
1.9/2. Let A= [4 5 6|. Write Aas A = S + K, where S is a symmetric and K is a skew-
78 9

symmetric matrix.

1.10 Fundamental Subspaces of a Matrix

Definition 1.10.1. Let A € R™*". The column space of A is the subspace of R™ spanned by its
columns:
Col(A) = spanfcy, ¢y, -, ¢}

where ¢; € R™ denotes the j-th column vector of A.

Definition 1.10.2. Let A € R™*". The row space of A is the subspace of R™ spanned by its rows:
Row(A) = span{r{ ,rg,...,7}},

where r; € R" denotes the j-th row vector of A.
Observe that Row(A4) = Col(AT).

Theorem 1.10.3. For any matrix A € R™*",
dim Col(A) = dim Row(A).

This common dimension is called the rank of A, and denoted by rank(A).

Proof. Apply Gauss-Jordan elimination to bring A into reduced row echelon form. It is clear that
the elementary row manipulations does not change the row space. Moreover, the non-zero rows
will be linearly independent due to the strict ordering between the pivot elements (see third claim
in the Definition 1.2.4). So, the non-zero rows of the RREF of A will form a basis of Row(A). In
particular, the number of pivot elements equals dim Row(A).

By Section 1.4.1, the columns that contain a pivot element in the RREF of A, form a basis of

Col(A), and so, the number of pivot elements equals dim Col(A). O
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Definition 1.10.4. The nullspace (or kernel) of the m x n matrix A is the subspace
Null(A) = {z € R" | Az = 0}.

We denote the dimension of Null(A) by nullity(A) = dim Null(A).

Definition 1.10.5. For an m x n matrix A € R™*", the subspaces Col(A), Row(A), Null(A) and
Null(AT) the fundamental subspaces of the matrix A.

\ . ?
(thm: ranknull)? Theorem 1.10.6 (Rank-nullity theorem). Let A € R™*™ be an m x n real matrix. Then:

rank(A) + nullity(A) = n.

T
Proof. Let us solve the linear equation Az = 0, where x = | : |. Apply the Gauss-Jordan
‘TTL
elimination, and let M be the reduced row-echelon form of A. Suppose that the columns ji, .. ., jk
contain a pivot element, and the columns i1, . .., i,,_; does not contain pivot. Hence, the solution
of the equation Az = 0 can be written in the form
n—k n—k
Tj = — Z My igLigy + v vy T, = — Z M ioLiy (1.10.1) ?eq:nullsp?
(=1 =1

where m;; denotes the element of the RREF M in the jth row and ith column.

Hence, the vectors z,...,z,_; form a basis of Null(4) where the elements of z,, are such
that z;, = 1, z;, = 0 if £ # p and the remaining elements satisfy (1.10.1). Since the number of
pivot elements corresponds to rank(A) = k, the claim follows. O

Theorem 1.10.7. For all A € R™*"™, we have
rank(A) = rank(A" A).

Proof. Let A be an m x n real matrix. Observe that A" A is an n x n matrix. It is enough to show
that Null(4) = Null(A" A). Then the claim follows by Theorem 1.10.6 applied for both A and
ATA.

If z € Null(A) then Az = 0, and so, AT Az =0andso, z € Null(ATA). On the other hand,
if z € Null(AT A) then AT Az = 0. Then

0=z A" Az = (Az)" Az = ||Az|]>.

This implies that Az = 0, which gives that z € Null(A). O]
Example 1.10.8. Let
0 2 4 0 2
1 2
A= J
2 -1 -4 0 -5
-1 0 1 2 4
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(@ Give a basis of the column space Col(A) out of the column vectors of A, and express the coor-
dinates of the remaining vectors in this basis.

(b) Find a basis of the null space Null(A).
) What are rank(A), rank(AT A), nullity(A) and nullity(AT)?

First, let’s find the reduced row echelon form (RREF) of A by using the Gauss-Jordan elimination.
Now, we omit the details and leave the calculation for the reader.:

We get
0 2 4 0 2 10 -1 0 -2
1 Y e [0 1 2 0 1
2 -1 -4 0 -5 0 0 1
-1 0 1 2 4 00 0 O

(@) The columns that contain a pivot element are the columns 1, 2, and 4. Therefore, a basis of

Col(A) is:
0 2 0
1 1 3
B = ) )
2 -1 0
-1 0 2

4 2
1 -1 2 —2
=12 | and =11
[|_,|'s [|_5|)s
1
1 4

(b) For Null(A), we solve Ax = 0. From the RREF, we see that:

1‘1—563—2565:0
To + 2x3 + x5 =0

T4+ x5 =0

Setting free variables x3 = s and x5 = t:

1 =5+ 2t
Tr9g = —25s—1t
T3 =S
x4 = —1
x5 =1
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Therefore every vector v € Null(A) can be written as

1 2
-2 —1
x=s|1|+t| 0
0 -1
L 0 . L 1 .
Thus, a basis of Null(A) is:
([1] [2]
-2 —1
1(,0
—1
L J L 1 d 7

(¢) From our calculations:

* rank(A) = 3 (number of pivot columns)
 rank(A'TA) = rank(A) = 3
* nullity(A) = 5 — 3 = 2 (by rank-nullity theorem)

* nullity(AT) =4 — 3 = 1 (since rank(A") = rank(A) = 3 and again by the rank-nullity
theorem)

1.10.1 Orthogonal complements

Definition 1.10.9. Let V' be a vector space and W C V' a subspace. The orthogonal complement
of Wis
W .= {v € V : vis perpendicular to w for all w € W}.
I<thm:perpfund>?Theorem 1.10.10 (Fundamental subspaces and orthogonal complements). For any A € R™*":

Row(A)* = Null(4), Null(A") = Col(4)".

rf

Proof. Let A= | : | bean m x n real matrix where r, denotes the ith row vector. If x € Null(A)
T

then for every i = 1,...,m, r/ z = 0, and in particular, z is perpendicular for every row vector

of A. This implies that z is perpendicular for every linear combination of the row vectors, and
so, x € Row(A)*. The other direction is straightforward, since if z € Row(A)~* then for every
1= 1,...,m,f;-rg:O,andso,Ag:Q.

For the second statement, consider AT . O

?(thm:ort ?
(thm: ortocom) Theorem 1.10.11 (Dimension and orthogonal complements). Let W C R" be a subspace. Then

dim(W) 4 dim(W+) = n.
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wy
Proof. Choose a basis {w;,...,w;,} of W,andlet A= | : | be an k x n matrix formed by these

-
Wy,
vectors as column vectors. Hence, Row(A) = W, and in particular, rank(A) = dim W.
By Theorem 1.10.10, Null(4) = Row(A)* = W+. Thus, nullity(A) = dim W+. The claim

then follows by Theorem 1.10.6. O]

A:1_3_2.
2 -6 —4

Determine all four fundamental subspaces and check the statement of the Theorem 1.10.10 on them.

Example 1.10.12. Let

For that we will use Gauss-Jordan elimination. Starting with A:
1 =3 —2| RyeRy—2RrR, |1 —3 -2
s
2 -6 —4 0 O 0
This is already in reduced row echelon form.

* Column space Col(A): The pivot column of A is column 1. Therefore:

Col(4) = span{ [;] }

* Row space Row(A): The nonzero row of RREF(A) gives us:

1
Row(A) =spang |—3
-2
* Null space Null(A): From RREF(A), we solve Ax = 0:

$1—3$2—2$3:0

Setting free variables xo = s and x3 = t:

r1 = 3s+ 2t
Tr9 =S
xr3 =1

Therefore:
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So:
3

Null(A) =span¢ [1],
0 1

Finally, to determine Null(AT), we need to apply the Gauss-Jordan elimination on A'.

L 2| RycRrotsr |1 2
AT — -3 _g R3<R3+2R; 0 0
-2 —4 0 0
Thus,
e The null space Null(A"): The solutions of A" yl] =0are
Y2
y1+2y2 =0.

Setting free variable y, = s:

Therefore:

Null(A") = span{ [_12] }

Let us now verify that Row(A)* = Null(A). We need to show that every vector in Null(A) is
orthogonal to every vector in Row(A). For that, it is enough to check for the orthogonality of the
base vectors.

1 3 2
Row space basis vector: r = | —3|. Null space basis vectors: ny = 1|, ny = |0]|. Then
—2 0 1

(1) = (1)) + (=3)(1) + (=2)(0) =3 -3+ 0=0v

(r,m) = (1)(2) + (=3)(0) + (~2)(1) =2+ 0 -2 = 0V

Furthermore, dim(Row(A)) = 1 and dim(Null(A)) = 2, and so, by Theorem 1.10.11, we see that
Null(A))+ = Row(A).

Finally, we verify that Null(AT) = Col(A)*. To show that every vector in Null(A ") is orthogonal
to every vector in Col(A), again, it is enough to check for the orthogonality of the base vectors.

49



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

1 —2
Column space basis vector: ¢ = [2] Left null space basis vector: [ = [ . ] Then

eh=0(=2)+2)(1) =-2+2=0v

Also, dim(Col(A)) = 1 and dim(Null(A")) =1, so 1+1 = 2 = m, confirming that Null(A") =
Col(A)*.

1.10.2 Exercises

1.10/1. Let
0 2 4 0 2
1 1 3 2
A=
2 -1 -4 0 -2
-1 0 1 2 4

(@) Give a basis of the column space Col(A) out of the column vectors of A, and express

the coordinates of the remaining vectors in this basis.

(b) What are rank(A),rank(A" A), nullity(A) and nullity(AT)?
1.10/2. Let A be the matrix as in the previous exercise.

(@) Find a basis of Null(A).
(b) Find an orthonormal basis of Null(A).

1.11 Orthogonal projections

Now, we will study a special class of linear transformations, namely, the orthogonal projections.

Definition 1.11.1. Let V be a finite dimensional vector space with a scalar product. Furthermore,
let W C V be a subspace, and let v € V' be a vector. Then the orthogonal projection of v onto W
is the unique vector w € W such that v — w € W. We denote the map, which maps v to its the
orthogonal projection, by Py .

Note that the orthogonal projection of a vector v is well defined, since if there would be
wy,wy € W such that v — w; € W+ and v — w, € W+. Then using that W+ is a subspace, we
get (v —w;) — (v —wy) = wy —w; € WE. But wy — w; € W, which means that w; = w,.

An important property about the orthogonal projections is that for a subspace W C R", the
closest vector to v € R™ in W is its orthogonal projection Py (v).

? . imin)?
?(thm:projmin)? Theorem 1.11.2. Let W C R" be a subspace and let Py : R"™ — W be the orthogonal projection.

Then for every v € R"
i lv —wl| = [lv— Pw ()|
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Proof. Letv € R" and w € W be arbitrary. Then

v — w|* = (v — w,v — w) = (v— Pw(v) + Pw(v) — w,v — P (v) + Pw(v) — w)

=(v—Pw(v),v— Pw(v) + 2(v — Pw(v), Pw(v) —w) + (Pw(v) — w, Pw(v) — w).
Since Py (v) —w € W and v — Py (v) € W+, we get that this is equal to

= |lv = Pw @)|I* + 1P (v) — wll > [lv — Pw (0)]*.

Thus, the minimum of ||v — w||? is attained precisely at w = Py (v). O

Figure 1.4: Visualisation of the orthogonal projection from R? to the plane .

First, let us study the special case of orthogonal projections to one-dimensional subspaces.

Proposition 1.11.3. Let u € R™ be a non-zero vector; and let U = span{u}. The orthogonal
projection of a vector v € R™ onto U (or the vector ) is the vector

Proof. Write v = au + w, where w is perpendicular to u. Then the orthogonality condition
becomes:

0= (w,u) = (v—au,u) = (v,u) — afu,u).

Hence, choosing o = %

, gives the desired formula. O

2 3
Example 1.11.4. Let u = L] and v = L] Find the orthogonal projection of v to the subspace

spanned by wu.
Applying Proposition 1.11.3, we get that the orthogonal projection is

(w,v)  2-3+1-4 2| 102 |4
(wuy " 22412 1] 5 1] 2|

51



Lecture Notes CHAPTER 1. LINEAR ALGEBRA

Observe that for a given non-zero vector u = (uq, ..., u,) € R", the matrix
ujuy - Urlp
uu' 1
P==—=— 2
u'w o ouy+ttuy

UpUy -+ Upln

is the matrix representation of the orthogonal projection v + Py,an(yv- In the following, we

construct the matrix representation for general subspace W C R".
rort j £ ? .. . .
p:ortprojform) Proposition 1.11.5. Let W C R" be a subspace. Let u;,us, ..., u;, € R"™ be a basis of W and write

M=fw o w)]

the matrix formed by the basis w,, ..., u; as column vectors. Then the orthogonal projection Py is
given by the matrix

Py =MM"M)'MT.
We call the matrix Py the orthogonal projection matrix (in the natural basis).
Proof. By definition, Col(M) = W, and so, W+ = Col(M)*+ = Null(M ") by Theorem 1.10.10.
Furthermore, every w € W can be expressed uniquely as a linear combination of vectors {u, . .., u;}.
In particular, for every v € R" there exists ¢ € R* such that Py (v) = Mc. Since v — Py (v) =

v—Mce W', we get
M'(v— Mc) =0.

This gives that M " M ¢ = M "v. Since M " M is a k x k matrix with rank(M " M) = rank(M) = k,
we get that it is invertible by Theorem 1.4.9, and so

c=M"M)"'M .

Thus,
Py (v) = Mc= MM "M)"'M"v.
O
xr
Example 1.11.6. Find the matrix of the orthogonal projection from R3 to theplane V =< |y| : 2z —y+32=0
z
2
What is the orthogonal projection of v = | 4 | onto V?
—1

We choose two base vectors in V. For instance,

since2-1—-2+3-0=0and2(—3) —0+3-2= —6+ 6 = 0. Form the matrix M € R3*? whose
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columns are these basis vectors:

—
|
w

S N

Compute
1 (13 3 13/56 3/56

(MTM)~!

563 5 3/56  5/56

Hence the matrix of the orthogonal projection onto V is

5 1 _3
7 7 7
_ Tan—1asT _ | 1 13 3
_3 3 5
7 14 14
2
Now project the vectorv= | 4 | to V as:
-1
5 1 _3 17
77 7| | 2 7 34
1
_ |1 13 3 _ | 83 | _
3 3 5| |-1 _5 =5
7 14 14 14

Let us give here an alternative solution too: Observe that plane V' is the orthogonal complement

of its normal vector

hence and by Proposition 1.11.3, the orthogonal projection matrix onto V is

.
nn
PV =] - ——.
[l
We have ||n||?> = 22 + (—1)2 + 32 = 14 and
4 -2 6
nn'=|-2 1 -3
6 -3 9
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Hence
T4 ) 61 5 1 37
4 —2 6 14 14 14 707 7
1 —92 1 -3 1 13 3
Py=I—-——1|-2 1 -—3|=|--2 - 2=z = =
v 14 3 14 14 14 7 14 14
6 =3 9 6 =S 3 3 3 5
L 14 14 4] L7 14 14
Therefore
(5 1 3]
7T 7 7 X 34
1 13 3
Py(w)=Pr-u=1|_ — —||4]|=7]53
viv) =P v 7 14 14 14
3 3 5L =5
"7 14 14

The following theorem characterises when a matrix is an orthogonal projection.

Theorem 1.11.7. Let P € R™*" be an n x n matrix. Then P is the orthogonal projection matrix
onto the subspace Col(P) if and only if

PP=pP and P'=P

Proof. First, suppose that P is an orthogonal projection onto a subspace W = Col(P). Then using
the form P = M(M " M)~'M T in Proposition 1.11.5, one can see that P> = P and PT = P.

Now suppose that P satisfies the properties P2 = P and P' = P. To show that P is a matrix
of an orthogonal projection, it is enough to show that v — Puv is perpendicular to Pv. Indeed,

(v—Pu, Pv) = (v, Pv)—(Pv, Pv) = (v, Pv)—(v, PT Pv) = (v, Pv)—(v, P*v) = (v, Pv)—(v, Pv) =0,

which had to be shown. O

1.11.1 Method of least squares

We have seen that a linear equation Az = b has no solution if and only if b ¢ Col(A). In this case,
we can study the vector z, which is closest to be a solution in the sense that || Az — b|| is minimal.

Theorem 1.11.8 (Approximation via projections). Let A € R™*™ be an m x n matrix and let
b € R™. If the linear equation system Ax = b has no solution, then the minimizer z* of | Az — b||
satisfies the normal equations

ATAz* = AT

Proof. Clearly, for every z € R", Az € Col(A). By Theorem 1.11.2 mingegn || Az —b|| = || Az* —b||
if and only if Az* = Pgoa)b. But b — Pgoya)b € Col(A)* = Null(AT) by Theorem 1.10.10, and
so,

0=A"(b— Pogiah) = AT (b — Az).

So z* satisfies the equation AT Az* = ATb. O
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Example 1.11.9. Find the solution of the linear equation Ax = b in the sense of the least squares
and determine the error, where

3 4
A=|-2 —5 and@:[m 6 3}.
1 -2

The least squares solution is given by:

z = (ATA)_lATQ

Now
3 2 1 s 14 20
4 -5 =2 20 45
1 -2
hence ; _
45 20 4
<ATA>—1—1[45 _2(’]—[23;5 B _33]
therefore

4 7

QI(ATA)_IATQZ [4?6 _2%3] [3 -2 1
23 115

The error vector is

_ 81
230
A ; 34 1 | 745 ; 0
r=Ar — b= -2 =5 ﬁ 4 B 23 ’
1 -2 63
230

hence the error is

]l = \/(%)2 + (—55)2 + (53)2 = 0.44786829687102771022343 . ..

A particular example for that is when we want to fit a regression line to a data set.

Example 1.11.10 (Fitting a regression line). Let (x1,¥1),..., (Zn, yn) be n points in R% Find the
constants a, b such that y = ax + b approximates the n points best in sense of the least squared, i.e.

is minimal.
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rp 1 Y1
ar; +b=vy; foreveryi=1,...,n — I [a]: :

Let

Then

ATA=

1
Z?:I 51%2 Z?:l L and AT | : | = Z?:l LilYi
Z?:l Li n ' 2?21 Yi

Yn

Hence, solving the linear equation

[Z?:lxzz doic1 37%] [a] _ [Z?:ll’z?/ZI .
Do T n b D i1 Vi

leads us to
0= ny i iy — (s ) Q2 ¥i) b— (> iey wzyz)(Z? 1Ti) — Y Y
n(doi 5%2) - (2 xi)? 7 ny i z - (2 xi)?
and furthermore

Ay —b]| = J S (gn — azn — )2

=1

Example 1.11.11. Let us consider the points (—1,—2), (0, —3), (1,2), (2, 3) on the plane. Using the
method of the least squares, find the line which fits the best on these points. Determine the value of

the error!
Computing
> ay= (1)+0+1+2_2
Y yi=(-2)+(-3)+2+3=0,
> al= (- 1)2+02+12+22 1+0+1+4=6,
d wyi=(-1)(-2)+0-(=3)+1-2+2:3=2+0+2+6 = 10.
yields
_410-2)0) _, ,_(10)2)-4-0
4622 7 46-(22

Hence the best fitting linear equation is y = ax — b = 2x — 1. The error is

r=(=2-2(-1) = 1)2+ (-3 (200) - 1)) + (2 - (2(1) = 1))* + (3 - (2(2) - 1))?
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1.11.2 Exercises

—6
1.11/1. Denote L the line spanned by the vector a = [ . in R2.

(@) Give the matrix of the orthogonal projection from R? to the line L (in the natural
basis)!

1
(b) Find the orthogonal projection of the vector [ ] to the line L!

1.11/2. Let us consider the vectors

2 0 -1
u = [1|,uy=|-1| andv = | 2
0 2 —1

Let V = span{uy, u,} C R? be the spanned vector space defined by the vectors u; and us.

(a) Find the matrix Py of the orthogonal projection from R? to V!
(b) Find the orthogonal projection of the the vector v to the subspace V.

(c) Find the coordinates of the orthogonal projection of the vector v to the subspace V' in
the basis B = {u;, uy}!

1 2 2
1.11/3. Let B = % 2 4 4|. Show that there exists a subspace V C R? such that B is the matrix

2 4 4
of the orthogonal projection from R to V! What is a basis of V?

1.11/4. Find the solution with the method of the least squares of the equation Az = b, where
2 1 3
A= |4 2| andb= |2
-2 1 1

1.11/5. With the method of least squares, find the equation of the line which fits the best to the

data set (2,1),(3,2),(5,3) and (6,4). Determine the error!

1.12 Decompositions of matrices
1.12.1 Definite matrices

Definition 1.12.1. Let A € R™*" be an n x n symmetric matrix. We say that A is
* Positive definite if " Az > 0 for all z € R™\{0}.
* Positive semidefinite if z' Az > 0 for all x € R™

* Negative definite if 2" Az < 0 for all z € R™"\{0}.
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* Negative semidefinite if x " Az < 0 for all z € R™
* Indefinite if there exist z, x € R" such that 2" Az > 0 and y" Ay < 0.

’ Theorem 1.12.2. Let A € R™" bean xn symmetric matrix with eigenvalues A\; < Ay < --- < \,,.
Then the followings hold:

* A is positive definite if and only if \; > 0 for all i.
A is positive semidefinite if and only if A; > 0 for all i.
A is negative definite if and only if \; < 0 for all i.
A is negative semidefinite if and only if \; < 0 for all 1.

A is indefinite if and only if A has both positive and negative eigenvalues.

Proof. By Theorem 1.8.3, we can diagonalise A. That is, there exists an orthogonal matrix ) and

A0 0
. . 0 )\2 T .. T
a diagonal matrix D = such that A = QDQ"'. Then writing y = Q' z we
: 0
0 0 A

have .
' Az=(Q"z)'D(Q"z) =y ' Dy=> Ny}
i=1
So the sign of 2" Az for x # 0 depends solely on the signs of the );. For instance Y"1 | A\;y? > 0
for every y # 0 then in particular for the choice Y, =€ and so \; > 0. And conversely, if \; > 0
for every i then for every y # 0 there exists j such that y; # 0, and so Y 3i'} Aiy7? > Njy7 > 0. O

Theorem 1.12.3. If A € R"*" is symmetric and positive (semi)definite, then there exists a unique
symmetric positive (semi)definite matrix B such that B> = A.

Proof. By Theorem 1.8.3, we can diagonalise A. That is, there exists an orthogonal matrix () and

A1 0 0
. . 0 A2 -
a diagonal matrix D = | such that A = QDQ"'. By Theorem 1.12.2, \; > 0
: 0
0 0 A
foreveryi=1,...,n. i
VA1 0 0
0 VA
Define A = 2 and B := QAQ'". Then B is symmetric and positive
: ’ 0
0 0 VvV

semidefinite by Theorem 1.12.2. Furthermore,
B> =QAQTQAQT =QA’QT = A
since Q7 = Q! by the orthogonality of Q.
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Example 1.12.4. Show that the matrix A = 6

—6] . .. . . . .
] is positive definite. Find a positive definite

matrix B such that B? = A.
The characteristic polynomial of A is

det(A — ) = (4 —A\)(13 = \) — (=6)% = A% — 17\ + 16,
Hence, the eigenvalues are

174225 17415 )16,

A prm—
1,2 2 2 L

Both eigenvalues are positive, therefore A is positive definite.
Next compute an orthonormal eigenbasis. For A\ = 16 a corresponding eigenvector is

1 5 - 7i 1
U1—[ ]7 ”21”:\/1 +(_2) —\/5, Ul_\/g[ ]

-2 -2

2
Using Proposition 1.8.2, a corresponding eigenvector for Ao = 1 is then u, = % !1] Let

@=|u w| ad D= [106 g].

Then A = QAQT. A symmetric positive definite square root of A is

B=QAQ",
16 0 4 0
where A = V16 = . After doing the matrix multiplication, we get
0 Vi 0
8 —6
-1
bl-6 17

1.12.2 Singular value decomposition (SVD)
Theorem 1.12.5. For any A € R™*", the matrix A" A is symmetric and positive semidefinite.
Proof. We have 2" (AT A)z = (Az) " (Az) = || Az||®> > 0. O

Definition 1.12.6. Let A € R™*™ be an m x n real matrix. The singular values of A are the
non-negative square roots of the eigenvalues of A" A. They are usually denoted by oy > ag > - >
o > 0.

By Theorem 1.12.5, the matrix A" A is symmetric and positive semidefinite, hence it has real,
non-negative eigenvalues, so the singular values are well-defined.
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Theorem 1.12.7 (Singular value decomposition (SVD)). Let A € R™*™ be an m x n real matrix.
There exist orthogonal matrices U € R™*™ and V' € R™*" such that

A=UxvV"

where ¥ € R™*" is such that ¥; ; = «; for i = 1,...,min{m,n}, and 3; ; = 0 for i # j, where o

is the ith singular values of A.

Proof. We will only consider the proof of the special case when m = n and A is invertible.
By Theorem 1.8.3, we can diagonalise the n x n symmetric matrix A" A. That is, there

N

with column vectors v, and a diagonal matrix

exist n x n orthogonal matrix V' = [yl i

a? 0 0
0 o : TN T T
A= , Where «; is the ith singular value of A, and A'A = VAV'. In
: 0
0 0 ai_
particular,

A=VTATAV = (AV)T AV.

Thatis, A; j = (Ayi)TAgj and so, Av; and Av, are perpendicular if i # j, moreover, || Av;||? = af

for every i = 1,...,n. By our assumption, A is invertible and so a; > 0 for every i.
Let us define the matrix U = [g gn} , where u, = aiiAgi. Thus, U is also an orthogonal
(0 0 0]
. . 0 a9
matrix. Furthermore, define ¥ = . Hence,
: 0
i 0 0 Q|

U=AVSl=UsvV' =4,

which had to be proven. O

Note that if m # n or A is not invertible then one can define U as follows: We may assume

}

O%Aﬁi for i = 1,...,k and by Gram-Schmidt orthogonalisation find an or-

U,

without loss of generality that «; > -+ ax > 0=ag11 =+ = a,. Thenlet U = [gl

be such that wu;
thonormal basis {u; ;...

, U, } for span{Av, : ; > 0}*. Thus, U is also an orthogonal matrix.

3 2
Example 1.12.8. Find the singular value decomposition of A = \0[ \/§]
The first step is to compute AT A and its eigenvalues, (normalised) eigenvectors.
ATA V3 0| [v3 2| |3 23
2 V3|0 V3 2v3 7 |

The characteristic polynomial is det(AT A — XI) = (3 — X\)(7 — ) — 12 = X\ — 10\ + 9. Hence, the
eigenvalues are A\ = 9, Ao = 1 and the singular values are a1 = 3, ay = 1.
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For \y = 9:

-6 23
2v/3 -2

V3
0 y

].

We know that the eigenvectors of A" A are pairwise orthogonal so we might choose v, = [

m%-wngjl

0 Gauss-Jordan elim. 1 - 3
=
0 0 0

[ N|—
[

Normalising the vector v, we get 1y + y* = 1. We get that y = j:*/Tg and so, v, = [

N[ N’lg
wW

|

as the normalised eigenvector for the eigenvalue Ao = 1. Thus,

V=[yl 92]=[

Finally, we calculate the column vectors of U via u; = L Av;. Fori = 1:

1 V3
Uy = lAQ1 = 1 \/§ 2 \;g = % f .
3 30 V3] |¥ 3
V3 1
9 _V3 _1
Uy = i1422 = \/§ 12 = \/g .
a2 0 \/§ bl

U= [Ql uz] = [ﬁ

The singular value decomposition has an important geometric interpretation. Namely, it de-

[ N|—
[
—

Similarly, for i = 2:

Thus,

N[ = ml
ot L
| I
™
Il
o w'
2

scribes the image of the unit ball under the linear transformation x — Ax, see Figure 1.5.

- &

l

e
Figure 1.5: The geometric meaning of singular value decomposition: In Example 1.12.8, V' is a
rotation by 60°, X scales by factors 3 and 1, and U is a rotation by 30°. So A maps the unit circle

to an ellipse . The matrix A = ULV | maps the unit circle to an ellipse whose principal axes are

along the columns of U with semi-axis of length o1 = 3 and o9 = 1.
?(fig:SVD)?
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prop:polardec)? . ) . )
Proposition 1.12.9 (Polar decompostion). For a n x n real matrix A € R™*", there exist a sym-

metric positive semidefinite n x n matrix P and an orthogonal () such that
A=PQ

If A is invertible then P is positive definite and () is unique.

Proof. By Theorem 1.12.7, A = UXVT, where U and V are n x n orthogonal matrices and X
is the diagonal matrix formed by the singular values a; > --- > «, > 0. Consider the matrix
P = UXU'. By Theorem 1.12.2, P is symmetric positive semi definite and if A is invertible
then «,, > 0 and so, P is positive definite. Moreover, A = USV " = USU UV = PQ, where
@ = UV is an orthogonal matrix. O

NI
0 V3|

From Exercise 1.12.8, we get that the singular value decomposition of A is

V3 -1
2 2],22!3 0] and V =
01

Example 1.12.10. Find the polar decomposition of A =

_ T _
A=UXV ', whereU = 1 3
2 2

w

1 _ V3
2 2
V3 1 |-
2 2

By the construction in the proof of Proposition 1.12.9

P=UXUT, Q=UV".

Computing P and @ by using matrix multiplication, we get

_ 5 3
Ik 21”3 0”? ;]: ;Y
1 3 —1 3
R N 33
Now compute
V3 _1 1 V3 V3 o1
Q=UVT = 2 2 2 2| |2 2
a I IS 3 N B S U I D RS
2 2 2 2 2 2

which is orthogonal, as the decomposition required it to be.

Let us observe that P is the unique positive semi-definite symmetric matrix such that P? =
AAT, which might provide us an alternative construction for P.
1.12.3 Spectral decomposition

Proposition 1.12.11 (Spectral decomposition). Let A € R™*™ be a symmetric n x n real matrix.

Then
n
.
A= N
i=1
where A1, ..., \, are the eigenvalues and u,, . .. , u,, are the corresponding eigenvectors of A forming

an orthonormal basis of R™.
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A0 0]
T 0 )\2 .
Proof. By Theorem 1.8.3, A = QDQ "', where D = and Q = |u; u, gn]
UV
L 0 )\n_
Then
uf uf
T uy - uy - T
A=QDQ Z[)qyl Aoty - )\nﬂn} . ZZ[Q 0 Ay Q- Q} =)0 h
: i1 : —
u, Up
by the basic law of matrix multiplication. O

Note that the matrix u;u; is the matrix of orthogonal projection to the subspace span{u,}. In
particular, every symmetric n x n real matrix can be written as a linear combination of orthogonal

projections. Moreover,

Z/\UZUZ Z)\UJU] ii)\)\uu Q’LL Z)\z Z’L?

=1 j=1

where we used that QZT u; =0 if 1 # j. In particular, for any k£ > 1

Z)\l u; U, Z. (1.12.1) ?eq:power?

Definition 1.12.12 (Matrix valued functions). Let A be an n x n symmetric real matrix with eigen-
values M1, ..., \,. Let f: R — R be a real analytic function on an interval containing {1, ..., A, }.
Then we define

= Zf()\ usu
i=1

where >, Mu;u, is the spectral decomposition of A.

The definition is coherent in the following sense: Since f: R — R is analytic, we can write

flz) =372, ! (k>(0):c , where f(¥) denotes the kth derivative of f. By this analogy, we define

)
pay =3 Oy

k=0
But applying (1.12.1) to calculate the matrix powers, and so

n

=3 gt = S S tar = 33 Lt =3 s

k=0 ’ ! i=1 k=0
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Example 1.12.13. Consider the symmetric matrix

1
A= 2 .
2 =2

(@) Find the spectral decomposition of A.
(b) Find the matrix 4.

Compute the eigenvalues of A from det(A — \I) = 0:

1—-X 2
det =(1-=XN(-2-X)—-4=X+)1-6=0.
2 —2-)

Hence, the eigenvalues are

For \y =2 solve (A —21)v =0:

=0 = —2+4+2y=0=z=2.

Using that the eigenvectors of a symmetric matrix are pairwise orthogonal (Proposition 1.8.2), we
can choose the eigenvector of the eigenvalue Ao = —3 to be

Hence, the spectral decomposition theorem gives

A= Alglg]— + )\QQZQ;— = 2Q1g]— — 3g2g; (1.12.2) ?eq:specdec?
Explicitly,
4 2 1 _2
I 5 5 Ul 5 5
14U 2 1 ) 22522 2 4 ’
5 5 5 5
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so one may check

4 2 1 2 1 92
2 1 2 4 2 2 ’

as required.

(b) To compute €24, we use the spectral decomposition in (1.12.2). Thus,

et = et uul +e Cupu .

Using the matrices for u,u; and u,u. above,
18] 2Us

det + 676 2t — 276

4 2 1 _2
5 5 _ 5 5
p2A _ o4 +e6 _ 45 e 45_6
2 1 _2 4 2e* — 2e e* 4 4de
5 5 5 5
5 5

1.12.4 Exercises

1.12/1. Let

¥

(@) Show that the matrix A is positive definite.

(b) Find a positive definite matrix B such that B? = A!

(3 8
1.12/2. Find the singular value decomposition of the matrix A = ] .

1 1
1.12/3. Find the singular value decomposition of the matrix A = |0 1].
1 0

]

(@) Give the spectral decomposition of the matrix A.

1.12/4. Consider the matrix A =

(b) Find the matrix e4.

1.13 Mixed exercises in Linear Algebra

4 5 6
1.13/1. Consider the matrix A = |3 —1 2{.
0 2 1

(@) Find the determinant det(A).

(b) Ifit is invertible find the inverse matrix A~1.
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1.13/2.

1.13/3.

1.13/4.

1.13/5.

1.13/6.

1.13/7.

Solve the following linear equation system:

T, + 3x9 — 223 + 215 = 0
2x1 + 6x0 — drs — 224 + 45 — 316 = —1
ox3 + 10x4 + 1526 = 5

2x1 + 6x9 + 8x4 + 45 + 18z = 6.

Is the collection of vectors linearly independent?

@)
[

1
’Ul = 2 y U2 = —]_ and 23 = 0
3 1 9

If not then choose a maximal linearly independent subset and express the remaining vector
as a linear combination of these vectors.

1 2 1
Consider two bases B = {ul = [ 52] Uy = [ 81]} and B’ = {vl = [5] Uy = [2]} of

RQ
(a) Find the basis transformation matrices Py _,5 and Py _,p.

(b) If [wy = [;] then what is [w]|g =7

© If z]p = [;] then what is [z]5z =7

0 0 1
A linear transformation 7" maps the vectors B =< u; = |0 ,us = [1] ,u3 = |1 to the
1 1 1
2 1 0
vectors v; = [3|,vy = |0]| and v3 = | 1 | respectively (that is 7'(u;) = v; for every
9 0 -1
i=1,2,3).
(@) Find the matrix representation [T']z of the linear transformation 7 in the basis B.
(b) Find the matrix representation [T]xr of 7" in the natural basis N.
. . . . . . 1
Find the eigenvalues and eigenvectors and diagonalise the matrix A = 1] .

Determine an orthonormal basis for the subspace spanned by the vectors

5

4
and uz =

0

) S BTN
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1.13/8.

1.13/9.

1.13/10.

1.13/11.

1.13/12.

1.13/13.

1.13/14.

1.13/15.

Draw the points on the plane, which satisfy the equation 522 — 4zy + 8y? = 36.

Let
2 1 1 0 5
1 1 2
A 0 0
0O 3 -3 0 3
-1 0 -1 1 -3

(@) Give a basis of the column space Col(A) out of the column vectors of A, and express
the coordinates of the remaining vectors in this basis.

(b) What are rank(A),rank(A" A), nullity(A") and nullity(A)?

Determine the matrix of the orthogonal projection (in the natural basis) from R? to the line

1
Yy = @x What is the orthogonal projection of the point v = [3] ?

Determine the matrix of the orthogonal projection (in the natural basis) from R to the

T 8
plane { [y | : bz — 6y + z = 0}. What is the orthogonal projection of the pointv = |1]?
z 3

Find the equation of the line, which fits the best (in the sense of least squares) to the points
(—=3,-2),(0,3),(1,1) and (2,0), and determine the error!

S]

(a) Show that A is positive definite.

Let A =

(b) Find a positive definite symmetric matrix B such that B? = A.

Bl

(@) Find the singular value decomposition of the matrix A.

Let A =

(b) Find the polar decomposition of the matrix A.

Let A =

~13 20]
15 ‘

~15q2

(@) Find the spectral decomposition of the matrix A.

(b) Determine the matrix cos(mA).
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