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1 PRELIMINARY

1 Preliminary

1.1 Introduction

This year marks the hundredth anniversary of Florian Eggenberger, György Pólya’s stu-

dent, defending his doctoral thesis on Pólya Urns in 1924 after writing an article on it in

1923 [5]. In the hundred years since then, almost everything that could be said on the

subject has been said. Nevertheless, in this paper we will try to add a new touch to this

rich subject. In doing so, we wish to pay tribute to our great predecessors and to the

anniversary.

1.2 The Pólya Urn and the Dual Pólya Urn

The concept of Pólya Urn is well known. The main properties can be found in [9]. We

give a short recap about the most important ones. The basic notions and theorems of

probability theory which we use in this paper can be found in [4]. Consider an urn

with some blue and red balls in it. We we draw a ball at random from the urn chosen

uniformly and put back the ball with a new ball from the exact same color. This defines

a Markov-chain in the following way.

Definition 1.2.1 (Pólya Urn). Let b0, r0 ∈ N (b0 + r0 > 0) be the initial number of blue

and red balls in the urn. We denote the number of blue and red balls after the nth draw

with Bn and Rn with the following transition probalilities

P(B0 = b0, R0 = r0) = 1

and

P(Bn+1 = b + 1, Rn+1 = r | Bn = b, Rn = r ) = b

b + r
,

P(Bn+1 = b, Rn+1 = r + 1 | Bn = b, Rn = r ) = r

b + r
.

This concept can be easily interpreted as a random walk on N × N (Figure 1). We call

this the Pólya Walk.

We can consider the ratio of blue balls in the urn after n draws. This is the random

variable in the form of

ξn = Bn

Bn + Rn

. (1)
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1 PRELIMINARY 1.2 The Pólya Urn and the Dual Pólya Urn

(b, r)

(b, r + 1)

(b + 1, r)

r
b+r

b
b+r

(b, r)(b − 1, r)
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Figure 1: The Pólya Walk (left) and the Dual Pólya Walk (right) on N× N.

It is known that ξn is a martingale and converges almost surely.

Theorem 1.2.2. Let ξn be the sequence of random variables defined in Equation (1).

Then we have the following

ξn
a.s.→ ξ, as n → ∞,

where

ξ ∼ BETA(b0, r0).

We use ∼ throughout the paper to indicate when two distributions are equal. However if

we compare two series, it will mean their ratio tends to one. In this case ξ is a random

variable with absolutely continuous distribution with probability density function

x 7→ Γ(b0 + r0)
Γ(b0)Γ(r0)

· xb0−1(1 − x)r0−1 · 1 [0 ≤ x ≤ 1] .

Now let us consider an urn with some blue and red balls in it. In this setting we remove

a random ball from the urn chosen uniformly. In this case we can also define a similar

Markov-chain.

Definition 1.2.3 (Dual Pólya Urn). Let b0, r0 ∈ N be the initial number of blue and red

balls in the urn. We denote the number of blue and red balls after removing the nth ball

by Bn and Rn with the following transition probabilities for

P(B0 = b0, R0 = r0) = 1
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1.2 The Pólya Urn and the Dual Pólya Urn 1 PRELIMINARY

and for b + r > 0

P(Bn+1 = b − 1, Rn+1 = r |Bn = b, Rn = r ) = b

b + r
,

P(Bn = b, Rn+1 = r − 1 |Bn = b, Rn = r ) = r

b + r
.

Also for b = r = 0.

P(Bn+1 = 0, Rn+1 = 0 |Bn = 0, Rn = 0) = 1.

We can also assign a random walk on N×N to the reverse Pólya urn (Figure 1). We call

this the Dual Pólya Walk.
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2 THE PÓLYA WEB

2 The Pólya Web

2.1 The Pólya Web and its dual

In this chapter we define a coupling of Pólya Walks on N×N in a way that two walks with

different starting point stay independent until they meet. We call this construction the

Pólya Web. This construction relates to the Random Walk Web introduced by B. Tóth

and W. Werner in 1998 [8], but this time, we use Pólya Walks as primary constituents

instead of simple symmetric random walks.

Definition 2.1.1 (The Pólya Web). Let Xi,j (i, j ∈ N with i + j > 0) be indepentent

random vector variables with the following distribution.

P(Xi,j = (1, 0)) = i

i + j
and P(Xi,j = (0, 1)) = j

i + j
.

Figure 2: The Pólya Web (blue) and its dual (orange).

Definition 2.1.2 (Pólya Walk started from the pair (i, j)).

S
(n)
i,j :=


(i, j) if n = i + j

S
(n−1)
i,j + X

S
(n−1)
i,j

if i + j < n
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2.1 The Pólya Web and its dual 2 THE PÓLYA WEB

Definition 2.1.3 (Dual Pólya Walk started from the pair (i, j)).

T
(n)
i,j :=


(i, j) if n = i + j

T
(n+1)
i,j − X

T
(n+1)
i,j

if 0 ≤ i + j < n

Notice that the lower indices denote the starting point of the walk. The upper index

denotes the total number of balls, thus it serves as a universal time to compare walks

started from different points.

We can observe that the new definition coincides with our previous definitions of the Pólya

Walks and Dual Pólya Walks.

Proposition 2.1.4. The Pólya Walk defined above Definition 2.1.2 has the same distri-

bution as the walk defined as a Markov chain in Definition 1.2.1.

Proof. For n = i + j we have

P
(
S

(i+j)
i,j = (i, j)

)
= 1.

For n > i + j let (b, r) ∈ N× N. Then

P
(
S

(n)
i,j = (b + 1, r)

∣∣∣ S
(n−1)
i,j = (b, r)

)
= P

(
S

(n−1)
i,j + X

S
(n−1)
i,j

= (b + 1, r)
∣∣∣ S

(n−1)
i,j = (b, r)

)

= P((b, r) + Xb,r = (b + 1, r)) = P(Xb,r = (1, 0)) = b

r + b
,

and also

P
(
S

(n)
i,j = (b, r + 1)

∣∣∣ S
(n−1)
i,j = (b, r)

)
= P

(
S

(n−1)
i,j + X

S
(n−1)
i,j

= (b, r + 1)
∣∣∣ S

(n−1)
i,j = (b, r)

)

= P((b, r) + Xb,r = (b, r + 1)) = P(Xb,r = (0, 1)) = r

r + b
.

■

Proposition 2.1.5. The Dual Pólya Walk defined above Definition 2.1.3 has the same

distribution as the walk defined as a Markov chain in Definition 1.2.3.

Proof. For n = i + j we have

P
(
T

(i+j)
i,j = (i, j)

)
= 1.

For n > i + j let (b, r) ∈ N× N, b + r > 0. Then

P
(
T

(n)
i,j = (b − 1, r)

∣∣∣ T
(n−1)
i,j = (b, r)

)
= P

(
T

(n−1)
i,j − X

T
(n−1)
i,j

= (b − 1, r)
∣∣∣ T

(n−1)
i,j = (b, r)

)

10



2 THE PÓLYA WEB 2.2 Orders

= P((b, r) − Xb,r = (b − 1, r)) = P(Xb,r = (1, 0)) = b

r + b
,

and also

P
(
T

(n)
i,j = (b, r − 1)

∣∣∣ T
(n−1)
i,j = (b, r)

)
= P

(
T

(n−1)
i,j − X

T
(n−1)
i,j

= (b, r − 1)
∣∣∣ T

(n−1)
i,j = (b, r)

)

= P((b, r) − Xb,r = (b, r − 1)) = P(Xb,r = (0, 1)) = r

r + b
.

Finally for b = r = 0.

P
(
T

(n)
i,j = (0, 0)

∣∣∣ T
(n−1)
i,j = (0, 0)

)
= P

(
T

(n−1)
i,j − X

T
(n−1)
i,j

= (0, 0)
∣∣∣ T

(n−1)
i,j = (0, 0)

)
= P((0, 0) − X0,0 = (0, 0)) = P(X0,0 = (0, 0)) = 1.

■

Throughout the paper we will use the following notations. For the number of blue balls

we will use the notation proj1 ◦ S
(n)
i,j , the projection onto the first coordinate. Likewise

the number of red balls is denoted by proj2 ◦ S
(n)
i,j . For the total number of balls we use

the 1-norm on R2. Notice that

proj1 ◦ S
(n)
i,j + proj2 ◦ S

(n)
i,j =

∥∥∥S(n)
i,j

∥∥∥
1

= n (2)

where ∥ · ∥1 denotes the 1-norm of a vector. We will also use these notations for the dual

walk in the same way.

2.2 Orders

In this section, we define partial orderings in the sample space and in the plane so that

they are consistent with certain properties of The Pólya Web.

Definition 2.2.1 (Order on the set {(0, 1), (1, 0)}). The K relation on the set {(0, 1), (1, 0)}

is defined in the following way

(0, 1) K (0, 1), (0, 1) K (1, 0), (1, 0) K (1, 0).

Proposition 2.2.2. The relation in Definition 2.2.1 is an order on {(0, 1), (1, 0)}.

Proof. Trivial. ■

From now on let us denote

Ω = {(0, 1), (1, 0)}N×N\{(0,0)}. (3)

11



2.2 Orders 2 THE PÓLYA WEB

Definition 2.2.3 (Partial order on the set Ω). For any ω, ω′ ∈ Ω we say that

ω K ω′

if and only if for any i, j ∈ N having i + j > 0

ωi,j K ω′
i,j.

Proposition 2.2.4. The relation in Definition 2.2.3 is a partial order on Ω.

Proof. Let us check the properties

• Reflexivity: Let ω ∈ Ω, then

ωi,j K ωi,j,

thus

ω K ω.

• Antisymmetry: Let ω, ω′ ∈ Ω such that ω K ω′ and ω′ K ω. Then

ωi,j K ω′
i,j and ω′

i,j K ωi,j,

thus ωi,j = ω′
i,j, which means

ω = ω′.

• Transitivity: Let ω, ω′, ω′′ ∈ Ω such that ω K ω′ and ω′ K ω′′. Then

ωi,j K ω′
i,j and ω′

i,j K ω′′
i,j,

which implies

ωi,j K ω′′
i,j,

thus by definition

ω K ω′′.

■

Definition 2.2.5 (Partial order on the plane). For (i, j), (k, l) ∈ N× N we say that

(i, j) ≻ (k, l)

if and only if

i ≤ k and j ≥ l.

12



2 THE PÓLYA WEB 2.2 Orders

(i, j)(i, j)

(i, j) ≻ (k, l)(i, j) ≻ (k, l)

(k, l) ≻ (i, j)(k, l) ≻ (i, j)

Figure 3: Partial order of the plane defined in Definition 2.2.5.

Proposition 2.2.6. The relation defined in Definition 2.2.5 is a partial order on N×N.

Proof. We should check the properties one by one.

• Reflexivity: Let (i, j) ∈ N× N. Then clearly

i ≤ i and j ≤ j,

thus by definition

(i, j) ≻ (i, j).

• Antisymmetry: Suppose for (i, j), (k, l) ∈ N× N we have (i, j) ≻ (k, l) and (i, j) ≺

(k, l). Then by definition

i ≤ k and j ≥ l and k ≤ i and l ≥ j,

thus i = k and j = l, which implies

(i, j) = (k, l).

• Transitivity: Suppose for (i, j), (k, l), (m, n) ∈ N × N we have (i, j) ≻ (k, l) and

(k, l) ≻ (m, n). Then

i ≤ k and j ≥ l and k ≤ m and l ≥ n,

13



2.2 Orders 2 THE PÓLYA WEB

thus

i ≤ m and j ≥ n

which is by definition

(i, j) ≻ (m, n).

■

We now point out a monotonic property of the previously defined ordering with respect

to the Pólya Walk.

Proposition 2.2.7. The random variable proj1 ◦ S
(n)
i,j is a decreasing, while proj2 ◦ S

(n)
i,j is

an increasing function of ω with respect to the partial order on Ω defined in Definition 2.2.3

and the usual order on N.

Proof. We will only prove it for proj1 ◦ S
(n)
i,j by induction on n ∈ N. The proof for

proj2 ◦ S
(n)
i,j is completely similar. Let us suppose ω K ω′.

For n = i + j we have

proj1 ◦ S
(i+j)
i,j (ω) = i ≤ i = proj1 ◦ S

(i+j)
i,j (ω′) .

Suppose for some n we have.

proj1 ◦ S
(n)
i,j (ω) ≤ proj1 ◦ S

(n)
i,j (ω′)

Then for n + 1 let us consider the following two cases.

1. Suppose S
(n)
i,j (ω) = S

(n)
i,j (ω′). Then

proj1 ◦ S
(n+1)
i,j (ω) = proj1 ◦ S

(n)
i,j (ω)︸                 ︷︷                 ︸

=proj1◦S
(n)
i,j (ω′)

+1

[
ω

S
(n)
i,j (ω) = (1, 0)

]
︸                       ︷︷                       ︸

=1
[

ω
S

(n)
i,j

(ω′)
=(1,0)

]
= proj1 ◦ S

(n)
i,j (ω′) + 1

[
ω

S
(n)
i,j (ω′) = (1, 0)

]
︸                        ︷︷                        ︸

≤1

[
ω′

S
(n)
i,j

(ω′)
=(1,0)

]

≤ proj1 ◦ S
(n)
i,j (ω′) + 1

[
ω′

S
(n)
i,j (ω′) = (1, 0)

]
= proj1 ◦ S

(n+1)
i,j (ω′) .

2. Suppose S
(n)
i,j (ω) , S

(n)
i,j (ω′). Then by the induction hypothesis

proj1 ◦ S
(n)
i,j (ω) < proj1 ◦ S

(n)
i,j (ω′) ,

14



2 THE PÓLYA WEB 2.3 Properties of the trajectories

thus

proj1 ◦ S
(n+1)
i,j (ω) − proj1 ◦ S

(n+1)
i,j (ω′)

= proj1 ◦ S
(n)
i,j (ω) − proj1 ◦ S

(n)
i,j (ω′)︸                                            ︷︷                                            ︸

≤−1

+1

[
ω

S
(n)
i,j (ω) = (1, 0)

]
− 1

[
ω′

S
(n)
i,j (ω′) = (1, 0)

]
︸                                                         ︷︷                                                         ︸

≤1

≤ 1 − 1 = 0.

■

Proposition 2.2.8. The random variables proj1 ◦ S
(n)
i,j and proj2 ◦ S

(n)
i,j are an increasing

function of n with respect to the the usual order on N.

Proof. We will only prove it for proj1 ◦ S
(n)
i,j . The proof for proj2 ◦ S

(n)
i,j is analogous.

proj1 ◦ S
(n+1)
i,j (ω) = proj1 ◦ S

(n)
i,j (ω) + 1

[
ω

S
(n)
i,j (ω) = (1, 0)

]
︸                       ︷︷                       ︸

≥0

≥ proj1 ◦ S
(n)
i,j (ω)

■

2.3 Properties of the trajectories

An important observation is the fact that if two Pólya Walks meet at one point they will

stay together for the rest of the time.

Lemma 2.3.1. If there exists n ∈ N such that

S
(n)
i,j = S

(n)
k,l ,

then for any m ∈ N

S
(n+m)
i,j = S

(n+m)
k,l .

Proof. We will finish the proof using induction on m ∈ N. For m = 0

S
(n+0)
i,j = S

(n)
i,j = S

(n)
k,l︸           ︷︷           ︸

by our assumption

= S
(n+0)
k,l .

Suppose it is true for some m ∈ N then

S
(n+m+1)
i,j = S

(n+m)
i,j + X

S
(n+m)
i,j

= S
(n+m)
k,l + X

S
(n+m)
k,l︸                                                  ︷︷                                                  ︸

since S
(n+m)
i,j = S

(n+m)
k,l

by the induction hypothesis

= S
(n+m+1)
k,l .

■
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2.3 Properties of the trajectories 2 THE PÓLYA WEB

The next lemma connects the order defined in Definition 2.2.5 with the paths of the

trajectories of the random walks. Namely for any (i, j) ≻ (k, l) the trajectory of the walk

started from (i, j) stays above the path started from (k, l). Thus the Pólya Walk preserves

the order of the starting points (Figure 4).

Figure 4: The trajectory of the random walk started from (i, j) marked by red. The

trajectories started from (i, j) ≻ (k.l) marked dark orange, while (k, l) ≻ (i, j) marked

dark blue. Notice that if we cannot compare a point to (i, j) (marked with light color)

then the Pólya Walk started from it can have different outcomes with respect to the

ordering.

Lemma 2.3.2. For any

(i, j) ≻ (k, l)

16



2 THE PÓLYA WEB 2.3 Properties of the trajectories

and for any n ∈ N we have that

S
(n)
i,j ≻ S

(n)
k,l .

Proof. We will prove it by induction on n ∈ N.

First suppose i + j ≤ k + l and let i + j ≤ n ≤ k + l. Then

proj1 ◦ S
(n)
i,j = i +

n−1∑
m=i+j

1

[
X

S
(m)
i,j

= (1, 0)
]

︸                              ︷︷                              ︸
≤(k+l)−(i+j)

≤ k + (l − j)︸     ︷︷     ︸
≤0

≤ k = proj1 ◦ S
(n)
k,l ,

proj2 ◦ S
(n)
i,j = j +

n−1∑
m=i+j

1

[
X

S
(m)
i,j

= (0, 1)
]

︸                              ︷︷                              ︸
≥0

≥ j ≥ l = proj2 ◦ S
(n)
k,l .

Now suppose i + j ≥ k + l and let k + l ≤ n ≤ i + j. Then

proj1 ◦ S
(n)
k,l = k +

n−1∑
m=k+l

1

[
X

S
(m)
k,l

= (1, 0)
]

︸                              ︷︷                              ︸
≥0

≥ k ≥ i = proj1 ◦ S
(n)
i,j .

proj2 ◦ S
(n)
k,l = l +

n−1∑
m=k+l

1

[
X

S
(m)
k,l

= (0, 1)
]

︸                              ︷︷                              ︸
≤(i+j)−(k+l)

≤ j + (i − k)︸     ︷︷     ︸
≤0

≤ j = proj1 ◦ S
(n)
i,j ,

We concluded that for n = max {i + j, k + l} we have that

S
(n)
i,j ≻ S

(n)
k,l .

Now suppose it is true for some n ≥ max {i + j, k + l} we have that S
(n)
i,j ≻ S

(n)
k,l . Consider

the following two cases

1. proj1 ◦ S
(n)
i,j < proj1 ◦ S

(n)
k,l , then

proj1 ◦ S
(n+1)
i,j − proj1 ◦ S

(n+1)
k,l

= proj1 ◦ S
(n)
i,j − proj1 ◦ S

(n)
k,l︸                                ︷︷                                ︸

≤−1

+1

[
X

S
(n)
i,j

= (1, 0)
]

− 1

[
X

S
(n)
k,l

= (1, 0)
]

︸                                                  ︷︷                                                  ︸
≤1

≤ 0.

Then it also follows that

proj2 ◦ S
(n+1)
i,j = n + 1 − proj1 ◦ S

(n+1)
i,j ≥ n + 1 − proj1 ◦ S

(n+1)
k,l = proj2 ◦ S

(n+1)
k,l

By definition it means

S
(n+1)
i,j ≻ S

(n+1)
k,l .
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2.4 Connection between the trajectories 2 THE PÓLYA WEB

2. proj1 ◦ S
(n)
i,j = proj1 ◦ S

(n)
k,l , then proj2 ◦ S

(n)
i,j = proj2 ◦ S

(n)
k,l , thus

S
(n)
i,j = S

(n)
k,l ,

thus by Lemma 2.3.1 we have that

S
(n+1)
i,j = S

(n+1)
k,l ,

which implies

S
(n+1)
i,j ≻ S

(n+1)
k,l .

■

Lemma 2.3.3. For any

(i, j) ≻ (k, l)

and for any n ∈ N we have that

T
(n)
i,j ≻ T

(n)
k,l .

Proof. The proof is completely analogous to the proof of Lemma 2.3.2. ■

2.4 Connection between the trajectories

In this section we will show some important result corresponding to the paths of the Pólya

Walks and the Dual Pólya Walks. The first lemma shows that the path of a Dual Pólya

Walk on the Dual Web cannot cross the path of a Pólya Walk on the Pólya Web.

Lemma 2.4.1. For any 1 ≤ m ≤ n and i, j, k, l ∈ N such that

i + j = m,

k + l = n − 1.

(1) If (k, l) ≻ S
(n)
i,j then for any m ≤ r ≤ n we have

T
(r−1)
k,l ≻ S

(r)
i,j .

(2) If S
(n)
i,j ≻ (k, l) then for any m ≤ r ≤ n we have

S
(r)
i,j ≻ T

(r−1)
k,l .

18



2 THE PÓLYA WEB 2.4 Connection between the trajectories

Proof. We will prove (1), the proof of (2) is completely simmilar.

First for r = n we have

T
(r−1)
k,l = T

(n−1)
k,l = (k, l) ≻ S

(n)
i,j︸             ︷︷             ︸

by assumption

= S
(r)
i,j .

Suppose it is true for some m < r ≤ n. Then consider the following two cases.

1. Suppose T
(r−1)
k,l = S

(r−1)
i,j . Then

T
(r−2)
k,l = T

(r−1)
k,l − X

T
(r−1)
k,l

= T
(r−1)
k,l − X

S
(r−1)
i,j

≻ S
(r)
i,j − X

S
(r−1)
i,j

= S
(r−1)
i,j .

2. Suppose T
(r−1)
k,l , S

(r−1)
i,j . Then supposing

proj1 ◦ T
(r−1)
k,l > proj1 ◦ S

(r−1)
k,l and proj2 ◦ T

(r−1)
k,l < proj2 ◦ S

(r−1)
k,l

by the induction hypothesis leads to

proj1 ◦ S
(r)
k,l ≥ proj1 ◦ T

(r−1)
k,l >proj1 ◦ S

(r−1)
k,l ,

proj1 ◦ S
(r)
k,l ≤ proj2 ◦ T

(r−1)
k,l <proj2 ◦ S

(r−1)
k,l

which is a contradiction.

It follows that we have

proj1 ◦ T
(r−1)
k,l < proj1 ◦ S

(r−1)
k,l and proj2 ◦ T

(r−1)
k,l > proj2 ◦ S

(r−1)
k,l

which implies either

proj1 ◦ T
(r−2)
k,l <proj1 ◦ S

(r−1)
k,l

proj2 ◦ T
(r−2)
k,l >proj2 ◦ S

(r−1)
k,l

or proj1 ◦ T
(r−2)
k,l <proj1 ◦ S

(r−1)
k,l

proj2 ◦ T
(r−2)
k,l ≥proj2 ◦ S

(r−1)
k,l .

In both cases we have

T
(r−2)
k,l ≻ S

(r−1)
i,j .

■

The second lemma is the consequence of the first one. It shows that we can characterise

the path of two neighbouring Pólya Walks with only one Dual Pólya Walk (Figure 5).
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2.4 Connection between the trajectories 2 THE PÓLYA WEB

(i, j)(i, j)

(i + 1, j − 1)(i + 1, j − 1)

S
(n)
i,jS
(n)
i,j

S
(n)
i+1,j−1S
(n)
i+1,j−1

(k, l)(k, l)

(i, j − 1)(i, j − 1)

Figure 5: The characterization of two neighboring Pólya Walks (blue) with one Dual

Pólya Walk (orange).

Lemma 2.4.2. For any m ≤ n and i + j = m, k + l = n − 1 we have that

S
(n)
i,j ≻ (k, l) ≻ S

(n)
i+1,j−1

if and only if

T
(m−1)
k,l = (i, j − 1).

Proof. Suppose S
(n)
i,j ≻ (k, l) ≻ S

(n)
i+1,j−1. Then Lemma 2.4.1 implies that

(i, j) = S
(m)
i,j ≻ T

(m−1)
k,l ≻ S

(m)
i+1,j−1 = (i + 1, j − 1),

where

i ≤ proj1 ◦ T
(m−1)
k,l and j − 1 ≤ proj2 ◦ T

(m−1)
k,l .

Notice that

proj1 ◦ T
(m−1)
k,l + proj2 ◦ T

(m−1)
k,l = m − 1 = i + j − 1,

thus

T
(m−1)
k,l = (i, j − 1).
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2 THE PÓLYA WEB 2.5 The joint distribution of the limiting random variables

Suppose the opposite of S
(n)
i,j ≻ (k, l) ≻ S

(n)
i+1,j−1. Then two cases can happen by Lemma 2.3.2

S
(n)
i,j ≻ S

(n)
i+1,j−1 ≻ (k, l) or (k, l) ≻ S

(n)
i,j ≻ S

(n)
i+1,j−1.

Then using Lemma 2.4.1

(i + 1, j − 1) ≻ T
(m−1)
k,l or T

(m−1)
k,l ≻ (i, j).

In both cases we have

T
(m−1)
k,l , (i, j − 1).

■

2.5 The joint distribution of the limiting random variables

We have seen that the ratio of blue (or red) balls converges almost surely to a random

variable with beta distribution. This motivates to introduce the same ratio for the Pólya

Walk.

Definition 2.5.1 (Ratio of blue balls of the Pólya urn started form the pair (i.j)).

ξ
(n)
i,j :=

proj1 ◦ S
(n)
i,j∥∥∥S(n)

i,j

∥∥∥
1

=
proj1 ◦ S

(n)
i,j

proj1 ◦ S
(n)
i,j + proj2 ◦ S

(n)
i,j

=
proj1 ◦ S

(n)
i,j

n
.

Definition 2.5.2 (Ratio of red balls of the Pólya urn started form the pair (i.j)).

η
(n)
i,j :=

proj2 ◦ S
(n)
i,j∥∥∥S(n)

i,j

∥∥∥
1

=
proj2 ◦ S

(n)
i,j

proj1 ◦ S
(n)
i,j + proj2 ◦ S

(n)
i,j

=
proj2 ◦ S

(n)
i,j

n
.

A trivial observation is the following

ξ
(n)
i,j + η

(n)
i,j = 1.

Corollary 2.5.3.

ξ
(n)
i,j

a.s.→ ξi,j ∼ BETA(i, j) and η
(n)
i,j

a.s.→ ηi,j ∼ BETA(j, i), as n → ∞.

Proof. Applying Theorem 1.2.2 our proof is finished. ■

Now we prove some important properties of the joint distribution of the limiting beta

variables. First we show that the joint distribution coincides with the ordering of the

plane defined previously in Definition 2.2.5.
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2.5 The joint distribution of the limiting random variables 2 THE PÓLYA WEB

Lemma 2.5.4. For any

(i, j) ≻ (k, l)

we have that
i

i + j
≤ k

k + l
.

Proof.
i

i + j
− k

k + l
= i · l − k · j

(i + j)(k + l) ≤ k · l − k · l

(i + j)(k + l)︸                                        ︷︷                                        ︸
since i ≤ k and j ≥ l

= 0.

■

Lemma 2.5.5. For any

(i, j) ≻ (k, l)

and for any n ∈ N we have that

ξ
(n)
i,j ≤ ξ

(n)
k,l and η

(n)
i,j ≥ η

(n)
k,l .

Proof. For any n ∈ N using Lemma 2.3.2 we have

(
proj1 ◦ S

(n)
i,j , proj2 ◦ S

(n)
i,j

)
= S

(n)
i,j ≻ S

(n)
k,l =

(
proj1 ◦ S

(n)
k,l , proj2 ◦ S

(n)
k,l

)
,

then using Lemma 2.5.4

ξ
(n)
i,j =

proj1 ◦ S
(n)
i,j

proj1 ◦ S
(n)
i,j + proj2 ◦ S

(n)
i,j

≤
proj1 ◦ S

(n)
k,l

proj1 ◦ S
(n)
k,l + proj2 ◦ S

(n)
k,l

= ξ
(n)
k,l .

Then it follows that

η
(n)
i,j = 1 − ξ

(n)
i,j ≥ 1 − ξ

(n)
k,l = η

(n)
k,l .

■

Proposition 2.5.6. For any

(i, j) ≻ (k, l)

we have that

P(ξi,j ≤ ξk,l) = P(ηi,j ≥ ηk,l) = 1.

Proof.

1 = P
(
ξ

(n)
i,j ≤ ξ

(n)
k,l

)
︸                      ︷︷                      ︸

by Lemma 2.5.5

= P
(

lim
n→∞

ξ
(n)
i,j ≤ lim

n→∞
ξ

(n)
k,l

)
= P(ξi,j ≤ ξk,l)︸                                                     ︷︷                                                     ︸

by Corollary 2.5.3
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2 THE PÓLYA WEB 2.5 The joint distribution of the limiting random variables

Then it follows

P(ηi,j ≥ ηk,l) = P(1 − ξi,j ≥ 1 − ξk,l) = P(ξi,j ≤ ξk,l) = 1.

■

Notice that in contrast with the previous statements Proposition 2.5.6 above states it for

almost every realization. While the previous statements are true for every realization. It

is needed because we only have almost sure convergence in the limit of the ratios.

We would like to demonstrate an already known property of the Beta-distribution as a

short corollary of Proposition 2.5.6. For that, we have to recall the definition of stochastic

dominance and a corresponding theorem. For more details check [7].

Theorem 2.5.7. Let X and Y be two real valued random variables (not necessarily defined

on the same space). Then

P(X ≤ t) ≤ P(Y ≤ t)

for any t ∈ R (i. e. Y stochastically dominates X) happens if and only if there exist a(
X̃, Ỹ

)
coupling such that

X ∼ X̃, Y ∼ Ỹ and P
(
X̃ ≤ Ỹ

)
= 1.

Corollary 2.5.8. Let 1 ≤ i ≤ k and 1 ≤ l ≤ j. Then BETA(k, l) stochastically dominates

BETA(i, j).

Proof. We have the coupling (ξi,j, ξk,l), where

ξi,j ∼ BETA(i, j) and ξk,l ∼ BETA(k, l).

By Proposition 2.5.6 we have

P(ξi,j ≤ ξk,l) = 1.

Thus applying Theorem 2.5.7 finishes our proof. ■

In the last part we show a monotone property of the ratios which will come helpful in the

upcoming Section 3.1 by letting us to apply the Harris-inequality. First let us recall the

definition of increasing and decreasing events.

Definition 2.5.9 (Decreasing and increasing event). Let (Ω, F) be a measureable space

and ≤ a partial order on Ω. We say that the event A ∈ F is decreasing if for any ω ∈ A,

ω′ ≤ ω implies ω′ ∈ A. The event B ∈ F is increasing if for any ω ∈ B, ω ≤ ω′ implies

ω′ ∈ B.
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2.6 The limiting random variables and the trajectories 2 THE PÓLYA WEB

.

Proposition 2.5.10. For any (i, j) and 0 ≤ α ≤ 1 the events{
lim inf

n→∞
ξ

(n)
i,j < α

}
and

{
lim sup

n→∞
ξ

(n)
i,j < α

}

are decreasing, while the events{
α < lim inf

n→∞
ξ

(n)
i,j

}
and

{
α < lim sup

n→∞
ξ

(n)
i,j

}

are increasing with respect to the order on Ω defined in Definition 2.2.3.

Proof. We only prove it for one of the event. The proof for the rest is analogous. Let

ω ∈
{

ω ∈ Ω : lim inf
n→∞

ξ
(n)
i,j (ω) < α

}

Now suppose ω′ K ω. Then Proposition 2.2.7 implies for any n ∈ N

proj1 ◦ S
(n)
i,j (ω′) ≤ proj1 ◦ S

(n)
i,j (ω) .

After dividing we get

ξ
(n)
i,j (ω′) =

proj1 ◦ S
(n)
i,j (ω′)

n
≤

proj1 ◦ S
(n)
i,j (ω′)

n
= ξ

(n)
i,j (ω′).

Then taking the lim inf as n → ∞

lim inf
n→∞

ξ
(n)
i,j (ω′) ≤ lim inf

n→∞
ξ

(n)
i,j (ω) < α.

This exaclty means

ω′ ∈
{

ω ∈ Ω : lim inf
n→∞

ξ
(n)
i,j (ω) < α

}
.

■

2.6 The limiting random variables and the trajectories

In this section we show some connection between the joint distribution of the limiting

variables and the paths of the Pólya Walks. We also state a conjecture which we have not

been able to prove yet.

Lemma 2.6.1. For any n ∈ N and (i, j), (k, l) ∈ N× N \ {(0, 0)}

P
(
ξi,j = ξk,l

∣∣∣S(n)
i,j = S

(n)
k,l

)
= 1.
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2 THE PÓLYA WEB 2.6 The limiting random variables and the trajectories

Proof. For any m ≥ max {i + j, k + l, n} using Lemma 2.3.1 we have that

1 = P
(
S

(m)
i,j = S

(m)
k,l

∣∣∣S(n)
i,j = S

(n)
k,l

)
= P

S
(m)
i,j

m
=

S
(m)
k,l

m

∣∣∣S(n)
i,j = S

(n)
k,l


= P

(
ξ

(m)
i,j = ξ

(m)
k,l

∣∣∣S(n)
i,j = S

(n)
k,l

)
.

Then applying Corollary 2.5.3

1 = P
(

lim
m→∞

ξ
(m)
i,j = lim

m→∞
ξ

(m)
k,l

∣∣∣S(n)
i,j = S

(n)
k,l

)
= P

(
ξi,j = ξk,l

∣∣∣S(n)
i,j = S

(n)
k,l

)
.

■

Proposition 2.6.2.

P

(
ξi,j = ξk,l

∣∣∣∣∣
∞⋃

n=0

{
S

(n)
i,j = S

(n)
k,l

})
= 1.

Proof. Notice that by Lemma 2.3.1
{
S

(n)
i,j = S

(n)
k,l

}
n∈N

is an increasing set of events. Thus

P

(
ξi,j = ξk,l

∣∣∣∣∣
∞⋃

n=0

{
S

(n)
i,j = S

(n)
k,l

})
= lim

n→∞
P
(
ξi,j = ξk,l

∣∣∣ S
(n)
i,j = S

(n)
k,l

)
︸                                  ︷︷                                  ︸

= 1, by Lemma 2.6.1

= 1.

■

1

1

ξi,j = ξk,l

ξi,j < ξk,lξi,j < ξk,l

ξi,j

ξk,l

Figure 6: The joint distribution of ξi,j and ξk,l if (i, j) ≻ (k, l).

Conjecture 2.6.3.

P

( ∞⋃
n=0

{
S

(n)
i,j = S

(n)
k,l

}
| ξi,j = ξk,l

)
= 1.
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2.6 The limiting random variables and the trajectories 2 THE PÓLYA WEB

Proposition 2.6.2 states that if two Pólya Walks meet at one point they will have the same

limiting ratio almost surely. While Conjecture 2.6.3 is that the equality of the limiting

ratios happens almost surely if and only if the two walks meet at one point. Although we

have not proved this up to this point.

To summarise the section so far if we take the joint distributions of ξi,j and ξk,l having

(i, j) ≻ (k, l) on the unit square [0, 1] × [0, 1] then the total mass is located above the

diagonal from (0, 0) to (1, 1). If our conjecture is true the mass on the diagonal equals

with the probability that the Pólya Walks started from (i, j) and (k, l) meet (Figure 6).

Figure 7: The random graph defined in Definition 2.6.4.

Definition 2.6.4 (The random oriented graph corresponding to the coupled Pólya Walks).

Let us consider the following graph G.

V (G) = N× N \ {(0, 0)},

and for (i, j), (k, l) ∈ V (G)

(i, j) → (k, l) ∈ E (G)

if and only if

Xi,j = (k, l) − (i, j).
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2 THE PÓLYA WEB 2.6 The limiting random variables and the trajectories

In the definition of G Xi,j is the random variable defined in Definition 2.1.1.

We show a realization of the random graph (Figure 7). The colors denote different com-

ponents of the graph, which is an oriented forest itself. The points with the same color

have the same limiting ratio. If our conjecture is true different components have different

limiting ratios. Notice that on the figure trajectories which do not have a common point

might have the same color. This happens since they meet at a point which is not included

in the picture (because of the obvious reason that we do not posses infinite time for simu-

lation and cannot plot the whole N×N on a page). The Pólya Walks on the picture were

simulated until n = 1000 and the picture shows the trajectories up to n = 100. Notice

that we can also see the trajectories of the Dual Pólya Walks. Those are the white spaces

between the trajectories of two Pólya Walks.

27



3 LOCAL PROPERTIES

3 Local properties

In this chapter we will show properties of such Pólya Walks which start from neighboring

points or points being relatively close to each other. We specify the meaning of the last

statement later in a precise mathematical way.

3.1 Bounds on the pair (1,2) and (2,1)

First we show some bounds for the Pólya Walks started from the points (1,2) and (2,1).

This can be easily generalized for any pairs of neighboring points. First we will prove a

lower bound on the joint distributions.

Proposition 3.1.1. For any

(i, j) ≻ (k, l)

we have

P(ξi,j = ξk,l) ≥
∫ 1

0
max

{(
1 − Fξi,j

(x)
)

fξk,l
(x), Fξk,l

(x)fξi,j
(x)
}

dx.

Proof. For any 0 ≤ x ≤ 1

P(ξi,j = ξk,l ∈ (x, x + dx)) ≥ P
(
ξ̃i,j > x, ξk,l ∈ (x, x + dx)

)
,

where ξ̃i,j is the ratio of blue balls started from the point (i, j) independently from ξk,l.

Thus after using independence and the fact that ξ̃i,j ∼ ξi,j

P(ξi,j = ξk,l ∈ (x, x + dx)) ≥ P
(
ξ̃i,j > x

)
· P(ξk,l ∈ (x, x + dx)) =

(
1 − Fξi,j

(x)
)

· fξk,l
(x) dx.

By a similar argument we get the following

P(ξi,j = ξk,l ∈ (x, x + dx)) ≥ Fξk,l
(x) · fξi,j

(x) dx.

After comparing the two inequalities

P(ξi,j = ξk,l ∈ (x, x + dx)) ≥ max
{(

1 − Fξi,j
(x)
)

· fξk,l
(x), Fξk,l

(x) · fξi,j
(x)
}

dx

and integrating we get the desired result. ■

Before stating our estimations we should recall the so called Harris-inequality [6].
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3 LOCAL PROPERTIES 3.1 Bounds on the pair (1,2) and (2,1)

Theorem 3.1.2 (Harris-inequality). Let Ω = {0, 1}N and P =
⊗
i∈N

µi where µi are

Bernoulli measures on {0, 1}. Then if A is an increasing and B is a decreasing event

with the order defined on Ω as ω ≤ ω′ if ωi ≤ ω′
i for every i ∈ N, we have

P(A ∩ B) ≤ P(A)P(B).

Notice that in our case we have as in Equation (3)

Ω = {(1, 0), (0, 1)}N×N\{(0,0)}

and the corresponding Bernoulli-measures are

µi,j((1, 0)) = i

i + j
and µi,j((0, 1)) = j

i + j
.

Our measure on Ω is exactly

P =
⊗
i,j

µi,j.

Thus our setting coincides with the probability space (and also our order defined in

Definition 2.2.3) stated in Theorem 3.1.2.

Corollary 3.1.3. For any (i, j), (k, l) and 0 ≤ α, β ≤ 1 we have

P(α < ξi,j, ξk,l < β) ≤ P(α < ξi,j)P(ξk,l < β)

Proof. By Proposition 2.5.10 the event{
α < lim inf

n→∞
ξ

(n)
i,j

}

is decreasing and the event {
lim sup

n→∞
ξ

(n)
k,l < β

}
is increasing. After applying Theorem 3.1.2

P
(

α < lim inf
n→∞

ξ
(n)
i,j , lim sup

n→∞
ξ

(n)
k,l < β

)
≤ P

(
α < lim inf

n→∞
ξ

(n)
i,j

)
P
(

lim sup
n→∞

ξ
(n)
k,l < β

)
.

However by Corollary 2.5.3 we have

P
(

α < lim inf
n→∞

ξ
(n)
i,j , lim sup

n→∞
ξ

(n)
k,l < β

)
= P(α < ξi,j, ξk,l < β),

P
(

α < lim inf
n→∞

ξ
(n)
i,j

)
= P(α < ξi,j) and P

(
lim sup

n→∞
ξ

(n)
k,l < β

)
= P(ξk,l < β).

■
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Proposition 3.1.4.
11
48 ≤ P(ξ1,2 = ξ2,1) ≤ 2

5
Proof. We will prove the lower and upper bound separately.

1. To get the lower bound we just apply Proposition 3.1.1 to the pair (1, 2) and (1, 2).

Then

P(ξ1,2 = ξ2,1) ≥
∫ 1

0
max

{(
1 − Fξ1,2(x)

)
fξ2,1(x), Fξ2,1(x)fξ1,2(x)

}
dx =∫ 1

0
max

{(
1 + x2 − 2x

)
· 2x, x2 · (2 − 2x)

}
dx = 11

48 .

2. For the upper bound let us suppose 0 ≤ y ≤ 1
2 ≤ x ≤ 1 (Figure 8). First notice that

P(ξ1,2 < x < ξ2,1) = P(ξ1,2 < x) − P(ξ2,1 < x)︸                                                             ︷︷                                                             ︸
by Proposition 2.5.6

= 2x(1 − x)

and also we have the equality

P(ξ1,2 < x < ξ2,1) = P
(

ξ2,1 <
1
2 , x < ξ2,1

)
+ P

(1
2 < ξ1,2 < x, x < ξ2,1

)
.

Then after applying Proposition 2.5.10

P
(

ξ2,1 <
1
2 , x < ξ2,1

)
≤ P

(
ξ2,1 <

1
2

)
· P(x < ξ2,1) = 3

4(1 − x2),

we get the lower bound

P
(1

2 < ξ1,2 < x, x < ξ2,1

)
≥ 2x(1 − x) − 3

4(1 − x2) = 1
20 − 5

4

(
x − 4

5

)2
≥ 1

20

with equality if and only if x = 4
5.

Using the completely same argument we can archive the bound

P
(

y < ξ2,1 <
1
2 , ξ1,2 < y

)
≥ 1

20 − 5
4

(
y − 1

5

)2
≥ 1

20

with equality if and only if y = 1
5.

Thus we have the following bound

P(ξ1,2 < ξ2,1) ≥

P
(

ξ1,2 <
1
2 < ξ2,1

)
+ P

(1
2 < ξ1,2 <

4
5 ,

4
5 < ξ2,1

)
+ P

(1
5 < ξ2,1 <

1
2 , ξ1,2 <

1
5

)
=

1
2 + 1

20 + 1
20 = 3

5 .

From this it follows that

P(ξ1,2 = ξ2,1) = 1 − P(ξ1,2 < ξ2,1) ≤ 1 − 3
5 = 2

5 .
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■

y 1
2

x 1

y

1
2

x

1

ξ1,2

ξ2,1

Figure 8: The upper bound on the probability P(ξ1,2 = ξ2,1).

At the end of this subsection we present some numerical empirical bounds on the proba-

bilities above. We simulated the Pólya Walks for 107 steps with a sample size of 104. The

empirical probability that the two ratios of equal was 0.328. This is a numerical upper

bound to the probabilty P(ξ1,2 = ξ2,1).
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3.2 The beta and the binomial distribution

In this section we will prove an already known formula describing the connection between

the cumulative distribution function of a beta and a corresponding binomial distribution.

However in our proof we will use some properties of the joint Pólya’s urns.

Proposition 3.2.1. The probability of the event, that the Dual Pólya Walk starting from

(K, N − K) hits the point (k, n − 1 − k) is

P
(
T

(n−1)
N,N−K = (k, n − 1 − k)

)
=
(

N − n + 1
K − k

)(
N

K

)−1(
n − 1

k

)
. (4)

(k + 1, n − 1 − k)

(k, n − k)

(k, n − 1 − k)

(K, N − K)

Figure 9: The Dual Pólya Walk started from (N, N − K) hitting (k, n − 1 − k).

Proof. Starting from (K, N −K) for this it has to take K −k steps in the vertical direction

and all together N − n + 1 steps (Figure 9). Thus the total number of possible paths is
(

N − n + 1
K − k

)
.

Now since all paths has the same probability, which equals to
(

N

K

)−1(
n − 1

k

)
,

multiplying the two we get Equation (4). ■
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3 LOCAL PROPERTIES 3.2 The beta and the binomial distribution

Lemma 3.2.2. For any irrational 0 < α < 1 we have the following

P
(
ξ

(N)
k,n−k < α < ξ

(N)
k+1,n−1−k

)
=
(

⌊αN⌋ + ⌊(1 − α)N⌋ − n + 1
⌊αN⌋ − k

)(
⌊αN⌋ + ⌊(1 − α)N⌋

⌊αN⌋

)−1(
n − 1

k

)
(5)

N

α

(αN, (1 − α)N)

(k + 1, n − 1 − k)

(k, n − k)
(⌊αN⌋, ⌊(1 − α)N⌋)

Figure 10: The event ξ
(N)
k,n−k < α < ξ

(N)
k+1,n−1−k.

Proof. The event ξ
(N)
k,n−k < α < ξ

(N)
k+1,n−1−k means that

proj1 ◦ S
(N)
k,n−k < αN and proj2 ◦ S

(N)
k+1,n−1−k ≤ (1 − α)N

and since α is irrational αN and (1 − α)N is never an integer. Thus the event happens

if and only if

S
(N)
k,n−k ≻ (⌊αN⌋, ⌊(1 − α)N⌋) ≻ S

(N)
k+1,n−1−k.

Also notice that ⌊αN⌋ + ⌊(1 − α)N⌋ = N − 1. Thus after applying Lemma 2.4.2 and the

formula Equation (4)

P
(
ξ

(N)
k,n−k < α < ξ

(N)
k+1,n−1−k

)
=
(

Ñ − n + 1
K̃ − k

)(
Ñ

K̃

)−1(
n − 1

k

)

with

Ñ = ⌊αN⌋ + ⌊(1 − α)N⌋ and K̃ = ⌊αN⌋,

we get Equation (5). ■
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Lemma 3.2.3.

lim
N→∞

P
(
ξ

(N)
k,n−k < α < ξ

(N)
k+1,n−1−k

)
= P(ξk,n−k < α < ξk+1,n−1−k).

Proof. Notice that by Lemma 2.5.5

P
(
ξ

(N)
k,n−k > α > ξ

(N)
k+1,n−1−k

)
= 0,

thus it follows that for the complementary event

1 − P
(
ξ

(N)
k,n−k < α < ξ

(N)
k+1,n−1−k

)
= P

(
α ≤ ξ

(N)
k,n−k

)
+ P

(
ξ

(N)
k+1,n−1−k ≤ α

)
.

Using the convergence of the variables and the fact that the beta distribution has a

continuous distribution function we have the following

lim
N→∞

P
(
α ≤ ξ

(N)
k,n−k

)
+ P

(
ξ

(N)
k+1,n−1−k ≤ α

)
= P(α ≤ ξk,n−k) + P(ξk+1,n−1−k ≤ α).

Now also notice that by Proposition 2.5.6

P(ξk+1,n−1−k < ξk,n−k) = 0,

so we have the equality

P(α ≤ ξk,n−k) + P(ξk+1,n−1−k ≤ α) = 1 − P(ξk,n−k < α < ξk+1,n−1−k).

■

Proposition 3.2.4. For any 0 ≤ α ≤ 1 we have

P(ξk,n−k < α < ξk+1,n−1−k) =
(

n − 1
k

)
αk(1 − α)n−1−k. (6)

Proof. Now let 0 < α < 1 be an arbitrary irrational number. Then considering Lemma 3.2.3

and Equation (5) we have that

P(ξk,n−k < α < ξk+1,n−1−k) = lim
N→∞

(
Ñ − n + 1

K̃ − k

)(
Ñ

K̃

)−1(
n − 1

k

)
,

where

Ñ = ⌊αN⌋ + ⌊(1 − α)N⌋ and K̃ = ⌊αN⌋.

Using Stirling’s formula we have the following(
Ñ − n + 1

K̃ − k

)(
Ñ

K̃

)−1

∼ K̃k(Ñ − K̃)n−1−k

Ñn−1
=
(

K̃

Ñ

)k (
1 − K̃

Ñ

)n−1−k
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3 LOCAL PROPERTIES 3.2 The beta and the binomial distribution

Now notice that

lim
N→∞

K̃

Ñ
= lim

N→∞

⌊αN⌋
⌊αN⌋ + ⌊(1 − α)N⌋

= α.

Thus we obtained the following result

P(ξk,n−k < α < ξk+1,n−1−k)

=
(

n − 1
k

)
lim

N→∞

(
K̃

Ñ

)k (
1 − K̃

Ñ

)n−1−k

=
(

n − 1
k

)
αk(1 − α)n−1−k.

Finally let 0 ≤ α ≤ 1 be any real number. Then exits a 0 < αj < 1 sequence of irrational

numbers such that

lim
j→∞

αj = α.

Using the same argument as previously in Lemma 3.2.3

P(ξk,n−k < α < ξk+1,n−1−k) = 1 − P(α ≤ ξk,n−k) − P(ξk+1,n−1−k ≤ α).

Since the cumulative distribution functions of ξk,n−k and ξk+1,n−1−k are both continuous

the following identity holds

1 − P(α ≤ ξk,n−k) − P(ξk+1,n−1−k ≤ α) = lim
j→∞

1 − P(αj ≤ ξk,n−k) − P(ξk+1,n−1−k ≤ αj) =

lim
j→∞
P(ξk,n−k < αj < ξk+1,n−1−k).

Now applying the formula we obtained above for irrational numbers

P(ξk,n−k < α < ξk+1,n−1−k) = lim
j→∞

(
n − 1

k

)
αk

j (1 − αj)n−1−k =
(

n − 1
k

)
αk(1 − α)n−1−k.

■

The next result is already a well known one (for more detals check [2]). A different version

was stated by Bayes [1]. However we will prove this using just the special behavior of the

coupled Pólya Walks.

Corollary 3.2.5. Let X ∼ BETA(k, n−k) and Y ∼ BIN(n−1, p), not necessarily jointly

defined. Then the following holds

P(X < p) = P(k ≤ Y ). (7)

Proof.

P(X < p) =
n−1∑
j=k

P(ξj,n−j < p < ξj+1,n−1−j) =
n−1∑
j=k

(
n − 1

k

)
pk(1 − p)n−1−k = P(k ≤ Y ),

where we used Equation (6). ■

Remark 3.2.6. We proved our corollary in the case when the beta distribution has integer

parameters. However this can be generalized for any pair of positive real numbers.
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3.3 Asymptotic bounds on the joint probabilities

In the first part of this section we investigate the allocation of mass in the joint distribution

of the limiting ratios of Pólya Walks started next to each other. It turns out that the

probability P(ξk,n−k < α < ξk+1,n−1−k) is exponentially small for large enough n if α is

different than the ratio k

n
.

Proposition 3.3.1. Let 0 ≤ α, β ≤ 1 and let

k = ⌊βn⌋,

then

P(ξk,n−k < α < ξk+1,n−1−k) ∼ 1√
2πβ(1 − β)

e−(n−1)D(BER(β)∥BER(α) ) (8)

where D(· ∥·) denotes the Kullbach-Leiber divergence.

The definition and the main properties of the Kullbach-Leiber divergence can be found

in [3].

Proof. Using Equation (6) we have

P(ξk,n−k < α < ξk+1,n−1−k) =
(

n − 1
⌊βn⌋

)
α⌊βn⌋(1 − α)n−1−⌊βn⌋

After applying Stirling’s formula we can approximate the probability with the following

1√
2π ⌊βn⌋

n−1 (1 − ⌊βn⌋
n−1 )

( ⌊βn⌋
n − 1

)− ⌊βn⌋
n−1 (n−1) (

1 − ⌊βn⌋
n − 1

)−
(

1− ⌊βn⌋
n−1

)
(n−1)

α
⌊βn⌋
n−1 (n−1)(1−α)

(
1− ⌊βn⌋

n−1

)
(n−1).

Considering that

lim
n→∞

⌊βn⌋
n − 1 = β,

we have that

P(ξk,n−k < α < ξk+1,n−1−k)

∼ 1√
2πβ(1 − β)

β−β(n−1) (1 − β)−(1−β)(n−1) αβ(n−1)(1 − α)(1−β)(n−1).

After rearranging

P(ξk,n−k < α < ξk+1,n−1−k)

∼ 1√
2πβ(1 − β)

exp
(

−(n − 1)
(

β log
(

β

α

)
+ (1 − β) log

(1 − β

1 − α

)))
.
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In the exponent

β log
(

β

α

)
+ (1 − β) log

(1 − β

1 − α

)
= D(BER(β) ∥BER(α)).

■

Corollary 3.3.2. If α , β, then

lim
n→∞

P
(
ξ⌊βn⌋,n−⌊βn⌋ < α < ξ⌊βn⌋+1,n−1−⌊βn⌋

)
= 0

exponentially fast.

Proof. Since

D(BER(β) ∥BER(α)) ≥ 0

and equality holds if and only if α = β, then for α , β it is strictly positive and by

Equation (8) the probability tends to zero as we let n → ∞. ■

In the second part of the section we focus on Pólya Walks started from points on the same

line (k + l = n) with a distance n
1
2 +ε.

Proposition 3.3.3. Let 0 < α < 1, a > 0 and ε ≥ 0 be arbitrary. Let us denote

k+ = ⌈αn⌉ +
⌊
an

1
2 +ε

⌋
k− = ⌊αn⌋ −

⌊
an

1
2 +ε

⌋ l+ = ⌈(1 − α)n⌉ +
⌊
an

1
2 +ε

⌋
l− = ⌊(1 − α)n⌋ −

⌊
an

1
2 +ε

⌋
Then we have the inequality

lim inf
n→∞

P(ξk−,l+ < ξk+,l−) ≥


1 if ε > 0

2Φ
(

a√
α(1−α)

)
− 1 if ε = 0

Proof. Using Equation (7) we have that

P(ξk−,l+ < ξk+,l−) ≥ P
(
⌊αn⌋ −

⌊
an

1
2 +ε

⌋
≤ Xn ≤ ⌈αn⌉ +

⌊
an

1
2 +ε

⌋)
,

where

Xn ∼ BIN(n − 1, α),

since

⌈αn⌉ + ⌊(1 − α)n⌋ = ⌊αn⌋ + ⌈(1 − α)n⌉ = n.
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After standardizing we get

P(ξk−,l+ < ξk+,l−)

≥ P

⌈αn⌉ − α(n − 1) −
⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)
≤ Xn − α(n − 1)√

(n − 1)α(1 − α)
≤

⌊αn⌋ − α(n − 1) +
⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)

.

Then using the Central Limit Theorem and the fact that the cumulative distribution

function of the standard normal distribution is continuous we get

lim inf
n→∞

P(ξk−,l+ < ξk+,l−)

≥ lim
n→∞

Φ
⌈αn⌉ − α(n − 1) +

⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)

− Φ
⌊αn⌋ − α(n − 1) −

⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)

 . (9)

Nocite that if ε > 0 we have

lim
n→∞

⌈αn⌉ − α(n − 1) +
⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)
= ∞ and lim

n→∞

⌊αn⌋ − α(n − 1) −
⌊
an

1
2 +ε

⌋
√

(n − 1)α(1 − α)
= −∞.

In case of ε = 0 we have

lim
n→∞

⌈αn⌉ − α(n − 1) + ⌊a
√

n⌋√
(n − 1)α(1 − α)

= a√
α(1 − α)

and

lim
n→∞

⌊αn⌋ − α(n − 1) − ⌊a
√

n⌋√
(n − 1)α(1 − α)

= − a√
α(1 − α)

.

After substituting into Equation (9) we get the desired formula. ■
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4 Global properties

4.1 Bound on the expected number of components

In this section we consider the following problem. Let us fix an n ∈ N+ and start Pólya

Walks from each (i, j) point with i + j = n. Consider the random graph we obtain this

way (Figure 11). Let us denote the number of components of the graph by Cn. We show

an asymptotic lower bound on the expected number of Cn.

Figure 11: Random walks started simultaneously from the line i + j = n = 900. The

different colors denote the different components of the graph.

Proposition 4.1.1. The following inequality holds√
π

2 ≤ lim inf
n→∞

E(Cn)√
n

.

Proof. Notice that the following equality holds

Cn =
n−1∑
k=0

1

[ ∞⋃
m=n

{
S

(m)
k,n−k , S

(m)
k+1,n−1−k

}]
.
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Thus for the expected number of components we have the following equality

E(Cn) =
n−1∑
k=0
P

( ∞⋃
m=n

{
S

(m)
k,n−k , S

(m)
k+1,n−1−k

})
.

Notice that by Proposition 2.6.2 we have the following inequality

P

( ∞⋃
m=n

{
S

(m)
k,n−k , S

(m)
k+1,n−1−k

})
≥ P(ξk,n−k < ξk+1,n−1−k).

Then for any 0 ≤ αk ≤ 1

E(Cn) ≥
n−1∑
k=0
P(ξk,n−k < αk < ξk+1,n−1−k).

Now let 0 < ε1 < ε2 < 1. Then let us denote

n1 = ⌈ε1(n − 1)⌉ and n2 = ⌊ε2(n − 1)⌋.

In this case the following inequality also holds with choosing αk = k
n−1

E(Cn) ≥
n2∑

k=n1

P

(
ξk,n <

k

n − 1 < ξk+1,n

)

=
n2∑

k=n1

(
n − 1

k

)(
k

n − 1

)k (
1 − k

n − 1

)n−1−k

(10)

where for the last equality we used Equation (6). Using the following Stirling’s approxi-

mation formula

√
2πnnne−n · e

1
12n

− 1
360n3 < n! <

√
2πnnne−n · e

1
12n ,

we have the following for any n1 ≤ k ≤ n2(
n − 1

k

)(
k

n − 1

)k (
1 − k

n − 1

)n−1−k

> ak,n · 1√
2π(n − 1)

· 1√(
k

n−1

) (
1 − k

n−1

) ,

where

ak,n = exp
(

1
12(n − 1) − 1

12k
+ 1

360k3 − 1
12(n − 1 − k) + 1

360(n − 1 − k)3

)
.

Then for the sequence

an = exp
(

1
12(n − 1) − 1

12ε1(n − 1) + 1
360(ε2(n − 1))3 − 1

12(1 − ε2)(n − 1) + 1
360((1 − ε1)(n − 1))3

)
we have that

lim
n→∞

an = 1,
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and for any n1 ≤ k ≤ n2

ak,n ≥ an.

Thus after substituting into Equation (10) we get

E(Cn) ≥
n2∑

k=n1

an · 1√
2π(n − 1)

· 1√(
k

n−1

) (
1 − k

n−1

) .

After rearranging

E(Cn)√
n

≥ an ·
√

n − 1
n

· 1√
2π

n2∑
k=n1

1
n − 1 · 1√(

k
n−1

) (
1 − k

n−1

) ,

and taking the limit, the following holds for any 0 < ε1 < ε2 < 1

lim inf
n→∞

E(Cn)√
n

≥ 1√
2π

∫ ε2

ε1

1√
x(1 − x)

dx.

In this case our proof is finished, since

lim inf
n→∞

E(Cn)√
n

≥ lim
ε1→0

lim
ε2→1

1√
2π

∫ ε2

ε1

1√
x(1 − x)

dx = 1√
2π

∫ 1

0

1√
x(1 − x)

dx =
√

π

2 .

■
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5 Outlook

In this short section we provide an outlook about the future researches about the Pólya

Web we plan to do in the near future.

❖ Our first main objective is to prove Conjecture 2.6.3 in order to characterize the

paths of the coupled Pólya Walks with only the coupling of the limiting distributions.

Hopefully this will also bring us closer to give an upper bound in Proposition 4.1.1.

❖ A second goal is to find the ”density” of the all the realizations of the limiting ratios.

Our conjecture is that it follows a path on [0, 1] similar to the curve

1√
x (1 − x)

as seen in Figure 11. Notice that this is not a precise mathematical statement yet.

❖ Finally we wish to project R+ ×R+ on the triangle with edges (0, 0), (1, 0) and (1, 0)

by the following map

(x, y) 7→
(

x

x + y + 1 ,
y

x + y + 1

)
.

By doing so we hope to be able to define and characterize the paths of Dual Pólya

Walks started from ”points at infinity”. This approach also might help in proving

our first goal stated above.

The Pólya Web has turned out to be a rich and interesting object. We are enthusiastic

and determined to continue our research on the topic in the future.
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