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Abstract

The study of diagonal self-affine carpets is a main highway in the study of self-affine
sets, since they provide one of the simplest examples of sets with differing box-counting and
Hausdorff dimension. This in general is a rare occurrence ([6]). With separate cylinders, many
previous studies has been done (see [18], [1], [2], [4], [8], [14], [15]), Fraser with Shmerkin ([9])
considered the allowance of some overlapping with the aim of typical type results. To add to
this, we will also allow some overlapping, with the constraint that the projection of the IFS
to the x- and y-axis satisfies the weak separation condition.

In this thesis we provide formula for the Hausdorff and box-counting dimension for diag-
onally aligned self-affine carpets whose projections to the x-, and y-axis satisfying the weak
separation condition, and who have homogeneous contractions along the x- and y-axes. We
also prove various formulas for the upper box-counting dimension in the case when the homo-
geneity of the contractions along the x- and y-axes is not assumed.

1 Introduction

We begin with the basic concepts of fractal geometry.

Definition 1.1 (IFS) Let (X,dist) be a complete metric space. We say that a map S : X → X is
a contraction if there exists λ ∈ (0, 1) such that for any x, y ∈ X : dist(S(x), S(y)) ≤ λ · dist(x, y).
We call a finite collection of contractions F = {S1, S2, . . . , Sd} an Iterated Function System. If X
is an affine space, and F consists of only affinities, then the IFS is called self-affine, in particular
if X = Rd, and Si are similarities, then self-similar.

From now on, we restrict our view to the later case, when X = Rd with the Euclidean distance.
The study of self-affine iterated function systems has been in noticeable focus in the past

decades, whence the understanding of this greatly harder subfield than the self-similar is, is in
constant growth. One of the most basic affinity but not similarity can be believed to be scaling
with different values along different axes. Coupled this with translations, one gets the definition of
the diagonally aligned or diagonal self-affine IFSs.

Definition 1.2 (Diagonally aligned IFS) An IFS F is said to be diagonally aligned or diagonal,
if its functions attain the form

Si(x1, x2) :=

[
ri,1 0
0 ri,2

] [
x1

x2

]
+

[
ti,1
ti,2

]
. (Eq. 1.1)

Obviously one can extend the definition to arbitrary dimensions, but in this paper we focus on R2.

By Hutchinson ([11]) we have that for any IFS there exist a unique non-empty set, denoted by
Λ throughout the paper (with sometimes subscripts), such that Λ =

⋃
S∈F S(Λ). This is called the

attractor. A set is said to be a self-affine/self-similar set if it is an attractor of a self-affine/self-
similar IFS. The study of the attractor is one of the main pillars of research in fractal geometry,
and we aim for that as well. This can be done trough characterizing its dimensions, most notable
of these are the following two, who will be the targets of our paper.

Definition 1.3 (Hausdorff dimension) Define the Hausdorff dimension of a set E in Rd as

dimH(E) := sup
{
s ≥ 0

∣∣ Hs(E) > 0
}

(Eq. 1.2)
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where the s dimensional Hausdorff measure, Hs(.) is defined as follows

Hs(E) := lim
δ→0
Hs

δ(E)

:= lim
δ→0

inf

{∑
i∈I

|Ui|s
∣∣∣∣ |Ui| ≤ δ,

⋃
i∈I

Ui ⊇ E, I is countable

}
.

(Eq. 1.3)

Definition 1.4 (Box-counting dimension) Define the lower and upper box-counting dimension
of a set E in Rd as

dimB(E) := lim sup
δ→0+

logNδ(E)

− log δ
,

dimB(E) := lim inf
δ→0+

logNδ(E)

− log δ
,

(Eq. 1.4)

if the limit exists, where Nδ(E) := min
{
m > 0

∣∣ ∃x1, x2, . . . , xm : E ⊆
⋃m

i=1 B(xi, δ)
}
. In par-

ticular, if the upper and lower box-counting dimension agree, then it is said that the box counting
dimension exists, and is the agreed upon value.

For the basic properties of these dimensions, one may read the book of Falconer ([5]) or take
any introductory fractal geometry course at a university.

1.1 Overview of the various results of the past

To contextualize the statements of our thesis, we begin by a brief introduction of previous advance-
ments regarding special types of diagonal self-affine IFSs, from the perspective of the box-counting
and Hausdorff dimension.

1.1.1 Bedford-McMullen carpets

Diagonally aligned IFS’s were first studied by Bedford ([4]) and McMullen ([18]) separately, who
both studied carpets generated in the following way: let n > m be integers, and R a set of integer
pairs (i, j) such that 0 ≤ i < m, 0 ≤ j < n. Then define the IFS

F :=

{
Si,j(x1, x2) :=

[
1/m 0
0 1/n

] [
x1

x2

]
+

[
i/m
j/n

]}
(i,j)∈R

. (Eq. 1.5)

Denoting the attractor with Λ, they proved:

dimH(Λ) = logm

(∑
i

#
{
j
∣∣ (i, j) ∈ R

}logn m
)

dimB(Λ) = logm

(
#
{
i
∣∣ ∃j : (i, j) ∈ R

})
+ logn

(
#R

#
{
i
∣∣ ∃j : (i, j) ∈ R

}), (Eq. 1.6)

where #A denotes the cardinality of the set A.
The functions are structured by rows of their images of [0, 1]2, these are the level-1 cylinder

rectangles or cylinder rectangles. This ordering by the rows phenomena persist in the area, and
we will see that it is related to the fact that 1/m > 1/n. Now imagine the image of [0, 1]2 by a
high iterate, it will be an “exponentially tall” rectangle. Imaging that we would like to cover this
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Figure 1: A Bedford-McMullen carpet’s second and fourth iteration.

optimally by square-alike objects, we notice that the diversity of the attractor along the y-axis
won’t be relevant.

Kenyon and Peres proved ([12]) the analogous formula in arbitrary dimension, and in [13]
they considered another graph-directed self-affine type construction, not necessarily self-affine but
similarly interesting, and the main theorem of this paper has ideas resembling what we will consider.

Then exploration of the area followed with weakening the assumptions of the grid-like structure,
with firstly letting the uniform scaling factors to differ, while preserving separation amongst the
cylinders rectangles (by separation now think of that any two level-1 cylinder rectangle have
intersection with 0 Lebesgue measure), and after that with assuming even weaker versions of
separations.

1.1.2 Gatzouras-Lalley carpets

Gatzouras and Lalley ([15]) considered a more general case:

F :=

{
Si,j(x1, x2) :=

[
ai,j 0
0 bi

] [
x1

x2

]
+

[
ci,j
di

]}
(i,j)∈R

, (Eq. 1.7)

where 0 ≤ i ≤ m, 0 ≤ j ≤ ni, assuming ai,j < bi < 1 for all pairs,
∑m

i=1 bi ≤ 1,
∑ni

j=1 ai,j ≤ 1
for each i. Also 0 ≤ d1 < · · · < dm < 1 with di+1 − di ≥ bi, 1 − dm ≥ dm and for an i
0 ≤ ci,1 < · · · < ci,ni < 1 with ci,j+1 − ci,j ≥ ai,j and 1− ci,ni ≥ ai,ni .
They proved that if a p ∈ R is defined by

m∑
i=1

bpi = 1 then

m∑
i=1

ni∑
j=1

bpi a
dimB(Λ)−p
i,j = 1 (Eq. 1.8)

and

4



Figure 2: A Gatzouras-Lalley carpet’s second and fourth iteration.

dimH(Λ) = max

{∑
i

∑
j pi,j log pi,j∑

i

∑
j pi,j log ai,j

+

(∑
i

(
∑
j

pi,j) log(
∑
j

pi,j)

)(
1∑

i

∑
j pi,j log bi

− 1∑
i

∑
j pi,j log ai,j

)}
(Eq. 1.9)

where we maximize over the probability distributions on R (= discrete set of pairs). They also
joined the discussion whether the dimB = dimH case is typical, but we will avoid this dispute.
Their formula for the Hausdorff dimension of Λ is not so surprising, since it connects fairly to the
general formula for the Hausdorff dimension of a self-similar measure achieved by Feng-Hu ([7]),
which was inspired by the earlier work of Ledrappier and Young ([16], [17]).

1.1.3 Feng-Wang and Barański carpets

Barański ([1]) considered

F :=

{
Si,j(x1, x2) :=

[
ai 0
0 bj

] [
x1

x2

]
+

[∑i−1
k=1 ak∑j−1
k=1 bk

]}
(i,j)∈R

, (Eq. 1.10)

where 0 ≤ i ≤ n, 0 ≤ j ≤ m and
∑n

i=1 ai =
∑m

j=1 bj = 1.
He derived that

dimB(Λ) = max{d1, d2} where
∑

(i,j)∈R

asxi bd1−sx
j = 1,

∑
i

asxi = 1

∑
(i,j)∈R

a
d2−sy
i b

sy
j = 1,

∑
j

b
sy
j = 1.

(Eq. 1.11)

A more general theorem was proved by Feng-Wang ([8], [2]) about the box-counting dimension:
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Figure 3: A Barański carpet

Theorem 1.1 (Feng-Wang) Given that a diagonally aligned IFS

F :=

{
Si(x1, x2) :=

[
ri,1 0
0 ri,2

] [
x1

x2

]
+

[
ti,1
ti,2

]}
i=1,...,m

(Eq. 1.12)

satisfies the Rectangular Open Set Condition (ROSC), which is that Si([0, 1]
2) ⊂ [0, 1]2 for any i

and Si((0, 1)
2) ∩ Sj((0, 1)

2) = ∅ for any pair i ̸= j, we have that

dimB(Λ) = max{d1, d2} where

m∑
i=1

|ri,1|dimB(Λ)|ri,2|d1−dimB(Λ) = 1

m∑
i=1

|ri,1|d2−dimB(|Λ)|ri,2|dimB(|Λ) = 1

(Eq. 1.13)

where Λ and |Λ are the projections of Λ to the x- and y-axis.

At this point the nexus between these results is not entirely clear, but later, with the introduc-
tion of Hutchinson’s Theorem (1.2) for self-similar sets, it will. We stated the nexus between the
result of Feng, Wang and the result of Barański, because we will also obtain a similar result to the
one Feng and Wang obtained. But by the work of Zerner ([19]) for self-similar sets satisfying the
weak separation condition, we will have the luxury that the dimensions of the projection IFSs are
computable (Theorem 1.5).

Kolossváry in [14] used the method of types to calculate the box-counting dimension of Barański-
like and Gatzouras-Lalley-like carpets (sponges) in arbitrary dimension.

1.1.4 Fraser-Shmerkin carpets

Generalizing these advancements, one would have to open the possibility to some overlaps be-
tween the cylinder rectangles, like what Fraser and Shmerkin did. They considered ([9]) Bedford-
McMullen type construction with the change that they translated the rows vertically by a param-
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Figure 4: A Feng-Wang carpet’s second and fourth iteration.

Figure 5: A Bedford-McMullen carpet’s first and third iteration in the upper row, while in the
lower a perturbed version of it, like what Fraser and Shmerkin considered.
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eter t ∈ [0, 1− 1/m]#{rows}. By this we mean that they considered the IFS:

F :=

{
Si,j(x1, x2) :=

[
1/m 0
0 1/n

] [
x1

x2

]
+

[
ti
j/n

]}
(i,j)∈R

. (Eq. 1.14)

With this they allowed the overlapping of cylinder rectangles, what makes the study generally
more challenging. They proved that unless t is in the set of exceptional parameters E of Hausdorff
dimension #{rows}−1 in the parameter space, we have that the formulas of Bedford and McMullen
work.

They built upon the work of Hochman ([10]), who investigated, in a broader context and
specifically in the self-similar case, the phenomenon of super-exponential concentration of higher
level cylinders. Hochman also re-examined the situation of exact overlaps between cylindrical
rectangles (i.e., Si([0, 1]

2) = Sj([0, 1]
2)). These two phenomena are closely linked to the dimensional

reduction observed in Bedford’s and McMullen’s formulas.

1.2 Self-similar sets as tools

The theory of self-similar sets is well-developed compared to the self-affine case, we only state few
constructions from here.

Theorem 1.2 (Hutchinson, [11]) Given a self-similar IFS of contraction rations {λi}i∈I sat-
isfies the Open Set Condition, we have that

dimH(Λ) = dimB(Λ) = so, (Eq. 1.15)

where so, the so-called similarity dimension is defined implicitly by the equation∑
i∈I

λso = 1. (Eq. 1.16)

From this theorem follows that the Barański case is a consequence of the Feng-Wang Theorem, since
in Barański’s construction the projection IFSs are self-similar and satisfy the Open Set Condition,
that is there exists an open set U such that Si(U) ⊂ U and Si(U) ∩ Sj(U) = ∅ for any i ̸= j. We
will utilize the following theorem:

Theorem 1.3 (Falconer, [5]) Let Λ be a self-similar set, then

dimB(Λ) = dimH(Λ). (Eq. 1.17)

1.2.1 Weak Separation Condition

The case, when the super-exponential concentration of cylinders is forbidden, is called exponential
separation condition. A slightly different condition was introduced earlier by Lau Ngai, what is
called the Weak Separation Condition (or at some occurrences Weak Separation Property), where
not only the at most exponentiality is assumed for the concentration of cylinders, but it needs to
be comparable to the overlapping cylinder rectangle’s length. Generally the WSC may be defined
in many ways, we adopt a topological one.

Definition 1.5 (Weak Separation Condition) We say that a self-similar IFS F satisfies the
WSC, iff the identity map is not an accumulation point of the following group of transformations

H :=
{
S−1
i1
◦ · · · ◦ S−1

ik
◦ Sik+1

◦ · · · ◦ Siℓ

∣∣ Si ∈ F, k ≤ ℓ ∈ N
}

(Eq. 1.18)
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with the metric defined between two similarities

d(f, g) := max
{
|cf − cg|, ∥Of −Og∥, ∥tf − tg∥

}
(Eq. 1.19)

where a similarity h : Rd → Rd has the form h(x) = chOhx + th, where ch ∈ R+, Oh is an
orthogonal matrix, and th ∈ Rd.

Given the WSC we can state the following assertions, but before that, define the Moran cut-set
for a self-similar IFS

{
Si

}
and δ ∈ (0, 1) as

Mδ =
{
Si1 ◦ · · · ◦ Sik

∣∣∣ |(Si1 ◦ · · · ◦ Sik)(Λ)| ≤ δ < |(Si1 ◦ · · · ◦ Sik−1
)(Λ)|

}
(Eq. 1.20)

where we denote a set, E’s diameter by |E|.

Lemma 1.4 (Zerner, [19]) A self-similar IFS {Si}i∈Σ satisfies the WSC if and only if

∃x ∈ Λ ∃ε > 0 ∀δ > 0 ∀Si, Sj ∈Mδ : if (S−1
i Sj)(x) ̸= x =⇒ |(S−1

i Sj)(x)−x| > ε. (Eq. 1.21)

Theorem 1.5 (Zerner, [19]) Given a self-similar IFS {Si}i∈Σ satisfying the WSC, we have that

dimH(Λ) = lim
δ→0

log#{Mδ}
− log δ

. (Eq. 1.22)

Lemma 1.6 (Zerner, [19]) Given a self-similar IFS {Si}i∈Σ satisfying the WSC, we have that
∃n <∞ ∀x ∈ Rd ∀δ > 0 we have that:

#
{
Sj

∣∣ Sj ∈Mδ/|Λ| and Sj(Λ) ∩B(x, δ) ̸= ∅
}
≤ n. (Eq. 1.23)

The WSC is only defined for self-similar sets, since an exact overlap and some rotation could
provide a sufficient series to the identity map. So in this paper we will use the assumption, that
the projections to the coordinate axes, who are one-dimensional, and hence self-similar, attain the
WSC.

2 The setup and results

Let

F :=

{
Si(x1, x2) :=

[
ri,1 0
0 ri,2

] [
x1

x2

]
+

[
ti,1
ti,2

]}m

i=1

(Eq. 2.1)

be an IFS, Λ it’s attractor. Define the projection IFS-s by

F :=
{
Si(x1) := ri,1x1 + ti,1

}m
i=1

|F :=
{
|Si(x2) := ri,2x2 + ti,2

}m
i=1

,
(Eq. 2.2)

denote their attractor by Λ, |Λ respectively. In some cases for convenience we write projj(...) instead
of ... and |... . The case when j = 1 is the projection to the x axis, so proj1 refers to ... . Writing
conv(...) for the convex hull, we assume that [0, 1]2 = conv(Λ) × conv(|Λ), this can be done
without the loss of any generality because if conv(Λ) × conv(|Λ) =: [a1, bb] × [a2, b2] then define
a diagonal affinity A moving [a1, bb]× [a2, b2] into [0, 1]2, then A(Λ) will have self-affine structure
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with generating IFS: F′ := {A ◦ Si ◦ A−1}mi=1, and will have the same Hausdorff dimension, Box-
counting dimension, . . . . We might call this assumption the property that the attractor or the IFS
fills [0, 1]2. Denote

rmax,1 := max
({
|ri,1|}mi=1

)
rmin,1 := min

({
|ri,1|}mi=1

)
rmax,2 := max

({
|ri,2|}mi=1

)
rmin,2 := min

({
|ri,2|}mi=1

)
.

(Eq. 2.3)

Definition 2.1 (Symbolic space) Let Σ denote the set {1, . . . ,m}, for k ∈ N let Σk the set
{1, . . . ,m}k, Σ∞ the set ΣN, and Σ∗ the set

⋃
k∈N Σk. The elements of Σ∞ are the infinite words,

who are denoted by boldface letters such as i, j,k. While finite words in Σ∗ should be denoted by
the style i, j, k. In particular, if we refer to an element in Σ, then we will use i, j, k. The length of
a word is denoted by |i|.

For sufficiently large finite word i = (i1, i2, . . . , i|i|) or for any infinite one, we use the notations:

i|(k,ℓ] := (ik+1, . . . , iℓ)

i− := (i1, . . . , i|i|−1).
(Eq. 2.4)

One can say that i is a prefix of j or j, iff for some ℓ:

i = j|(0,ℓ] or i = j|(0,ℓ]. (Eq. 2.5)

For i = (i1, i2, . . . , i|i|) ∈ Σ∗, then write

ri,1 :=

|i|∏
ℓ=1

riℓ,1 ri,2 :=

|i|∏
ℓ=1

riℓ,2, (Eq. 2.6)

similarly define
Si := Si1 ◦ · · · ◦ Si|i| . (Eq. 2.7)

For i ∈ Σ∞ the pointwise limit of
Si1 ◦ · · · ◦ Sin (Eq. 2.8)

is, by the contracting property, a function mapping the whole R2 to a single point in it, hence one
can define the map π which maps to an infinite word i to the point in R2 where the whole plane
is deformation retracting.

∀i ∈ Σ∞ ∃!π(i) ∈ R2 such that Si : R2 → π(i). (Eq. 2.9)

We say that two functions, Si and Sj are cylinder-disjoint, if

Si

(
(0, 1)2

)
∩ Sj

(
(0, 1)2

)
= ∅. (Eq. 2.10)

Otherwise call them cylinder-intersecting.
We define various sets generated by the functions in the IFS:

△δ :=
{
i ∈ Σ∗ | min{|ri,1|, |ri,2|} ≤ δ < min{|ri−,1|, |ri−,2|}

}
,

△1
δ :=

{
i ∈ △δ

∣∣ |ri,1| > |ri,2|}, △2
δ :=

{
i ∈ △δ

∣∣ |ri,1| ≤ |ri,2|},
S1δ :=

{
Si | i ∈ △1

δ

}
, S2δ :=

{
Si | i ∈ △2

δ

}
,

(Eq. 2.11)

Gn :=
{
Si

∣∣ i ∈ Σn
}
,

|Gn :=
{
|Si

∣∣ i ∈ Σn
}
, Gn :=

{
Si

∣∣ i ∈ Σn
}
,

G1
n :=

{
Si ∈ Gn

∣∣ |ri,1| > |ri,2|}, G2
n :=

{
Si ∈ Gn

∣∣ |ri,1| ≤ |ri,2|}. (Eq. 2.12)
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2.1 Main results

The characterisation of the upper box-counting dimension is not usual. We consider this, since we
expect that the formulas below to explain the box-counting dimension as well, and we expect the
currently assumed condition for the homogeneity of the projection IFSs to be only a technical one.
On the other hand, for the Hausdorff dimension, where we also obtain results with the homogeneity
assumption, we expect the general formulas to be more involved.

We start with the result for the upper box-counting dimension, which compares to the results
of Feng and Wang (compare Eq. 2.15, Eq. 2.16 to Eq. 1.13).

Theorem 2.1 (Upper Box-counting Dimension) Let

F :=

{
Si(x1, x2) :=

[
ri,1 0
0 ri,2

] [
x1

x2

]
+

[
ti,1
ti,2

]}m

i=1

(Eq. 2.13)

be a diagonal self-affine IFS, with attractor filling [0, 1]2 such that the principal projection IFSs,
F :=

{
Si(x1) := ri,1x1+ ti,1

}m
i=1

and |F :=
{
|Si(x2) := ri,2x2+ ti,2

}m
i=1

satisfy the weak separation
condition. Then

1. we have that

dimBΛ = max
j=1,2

lim sup
δ→0

(
log
(
#Sjδ

)
− log δ

+ dimB projj(Λ)

(
1 +

log
(
MdimB projj(Λ){|ri,j | | Si ∈ Sjδ}

)
− log δ

))
(Eq. 2.14)

where Mp(x1, . . . , xn) :=
(

1
n

∑n
i=1 x

p
i

) 1
p

is the power mean.

2. We also have that dimBΛ = max{d1∗, d2∗} where

1 =
∑
Si∈S1δ

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
1
δ , d1∗ := lim sup

δ→0
d1δ

1 =
∑
Si∈S2δ

( |ri,2|
|ri,1|

)dimB proj2(Λ)

|ri,1|d
2
δ , d2∗ := lim sup

δ→0
d2δ .

(Eq. 2.15)

3. Finally: dimBΛ = max{d1∗, d
2

∗} where

1 =
∑

Si∈G1
n

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
1
n , d

1

∗ := lim sup
n→∞

d
1

n

1 =
∑

Si∈G2
n

( |ri,2|
|ri,1|

)dimB proj2(Λ)

|ri,1|d
2
n , d

2

∗ := lim sup
n→∞

d
2

n.

(Eq. 2.16)

Remark: As mentioned above, both dimB proj1(Λ) = dimB(Λ) and dimB proj2(Λ) = dimB(|Λ)
can be calculated by the theorem of Zerner.
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Assume that the generating functions only differ by the translations, and not by the contracting
ratios among the x-, and y-axis. Then without the loss of any generality we will assume |r1| < |r2|.
Looking at the expression Gatzouras and Lalley obtained, we expect the general case for the
Hausdorff dimension to be not straight forward from the proof, what we will present, although
many ideas generalise well.

Theorem 2.2 (Box-counting Dimension) Let

F :=

{
Si(x1, x2) :=

[
r1 0
0 r2

] [
x1

x2

]
+

[
ti,1
ti,2

]}m

i=1

(Eq. 2.17)

be a diagonal self-affine IFS, with attractor filling [0, 1]2 such that the principal projection IFSs,
F :=

{
Si(x1) := r1x1 + ti,1

}m
i=1

and |F :=
{
|Si(x2) := r2x2 + ti,2

}m
i=1

satisfy the weak separation
condition. Then the box-counting dimension exists. Furthermore, W.L.O.G. assuming |r1| < |r2|

dimB(Λ) = − lim
n→∞

1

n

{
log
(
#|Gn

)
log |r2|

(
1− log |r2|

log |r1|

)
+

log
(
#Gn

)
log |r1|

}

= dimB(|Λ)
(
1− log |r2|

log |r1|

)
− lim

n→∞

1

n

log
(
G∗

n

)
log |r1|

.

(Eq. 2.18)

For the statement concerning about the Hausdorff dimension, classify the elements of Gn with
respect to their projections into |Gn:

Gn =
⋃

|Si∈|Gn

R|Si
, where R|Si

:=
{
Sj ∈ Gn

∣∣ |Sj = |Si

}
. (Eq. 2.19)

Theorem 2.3 (Hausdorff Dimension) Let

F :=

{
Si(x1, x2) :=

[
r1 0
0 r2

] [
x1

x2

]
+

[
ti,1
ti,2

]}m

i=1

(Eq. 2.20)

be a diagonal self-affine IFS, with attractor filling [0, 1]2 such that the principal projection IFSs,
F :=

{
Si(x1) := r1x1 + ti,1

}m
i=1

and |F :=
{
|Si(x2) := r2x2 + ti,2

}m
i=1

satisfy the weak separation
condition. W.L.O.G. suppose that |r1| < |r2|. Then

dimH(Λ) = lim
n→∞

{
− 1

n
log|r2|

{ ∑
|Si∈|Gn

(#R|Si
)log|r1| |r2|

}}
. (Eq. 2.21)

In the next section we present two examples, and then we present the proofs, which take many
ideas from the mentioned paper of Gatzouras and Lalley ([15]), as well as adopts some ideas of
Zerner ([19]).

2.2 Examples

In general, the presented formulas can be challenging to compute, but with some ingenuity, many
man made examples can be solved. We present one example dedicated to the box-counting dimen-
sion, and one to the Hausdorff.
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1
3

1
4

( 7
16 ,

2
9 )

( 1016 ,
4
9 )

F :=
{
S1, S2, S3, S4

}
,

S1 :=

[
1/4 0
0 1/3

] [
x1

x2

]
,

S2 :=

[
1/4 0
0 1/3

] [
x1

x2

]
+

[
3/16
2/9

]
,

S3 :=

[
1/4 0
0 1/3

] [
x1

x2

]
+

[
6/16
4/9

]
,

S4 :=

[
1/4 0
0 1/3

] [
x1

x2

]
+

[
3/4
2/3

]
,

|F :=
{
|S1, |S2, |S3, |S4

}
,

|S1 := x/3,

|S2 := x/3 + 2/9,

|S3 := x/3 + 4/9,

|S4 := x/3 + 2/3.

Figure 6: The first example.

2.2.1 First example

Consider the IFS defined in figure 6.

Remark 1 The dimension defining structure of Λ is bipartite:

• It has exact overlaps on all levels after 1, but these are generated only by 2 equalities: S14 =
S21 and S24 = S31.

• |Λ has additional exact overlaps, generated by the equality: |S34 = |S41.

For proving that the projections satisfy the WSC either use Lemma 4.5.2 and Theorem 4.4.10
from [3] or remembering Lemma 1.4 observe the following: |Gns are the Moran cut-sets of |Λ by
the homogeneous contractions. If we let n ∈ N+, |Si, |Sj ∈ |Gn be such that |Si(x) ̸= |Sj(x), then∣∣(|S−1

i ◦ |Sj)(x)− x
∣∣ > ε ⇐⇒

∣∣|Sj(x)− |Si(x)
∣∣ > ε ·

(1
3

)n
(Eq. 2.22)

holds with x = 0 and any ε < 2
3 , since cylinders at the same level either completely overlap, or

overlap with the intersection being 1
3 of the whole length of the cylinders. Precisely

∣∣|Sj(0)− |Si(0)
∣∣ = ∣∣∣ n−1∑

k=0

ak
3k
−

n−1∑
ℓ=0

bℓ
3ℓ

∣∣∣ ≥ ∣∣∣ap
3p
− bp

3p

∣∣∣ ≥ 2

3
·
(1
3

)n
, (Eq. 2.23)

where ak, bℓ ∈ {0, 2
9 ,

4
9 ,

2
3}, and p = sup

{
k ∈ {1, . . . , n}

∣∣ ak ̸= bk
}
exists since |Si(0) ̸= |Sj(0).

13



The same obviously holds for Λ with x again being 0 and ε < 3
4 . Now for Theorem 2.2 it is

enough to compute the quantities

log
(
#|Gn

)
n

,
log
(
#Gn

)
n

. (Eq. 2.24)

For the growth rate of Gn and |Gn we notice is that the cylinders form two type of objects a
disjoint cylinder square, and the 3 overlapping one building some kind of stair. Call these two
constellations type 1 and type 2. Now we can see that a type produces after one iteration exactly
one type 1 and a type 2, while a type 2 gives rise in the next level to a type 1 and 3 type 2. Hence,

#Gn =
[
1 0

] [1 1
1 3

]n [
1
3

]
. (Eq. 2.25)

where the left vector is for the initial square, and the right vector finally decomposes the con-
stellations into not entirely overlapping n-th level cylinders. Therefore by the Perron-Frobenius

Theorem
log
(
#Gn

)
n is log(λ), where λ is the largest eigenvalue, 2+

√
2 of the matrix in the middle.

For |Gn recognise that

#|Gn = 3#|Gn−1 + 1, |G0 = 1 =⇒ |Gn =

n∑
i=0

3i (Eq. 2.26)

and hence
log
(
#|Gn

)
n = log 3 (which agrees with the observation that |Λ = [0, 1], and hence

dimB(|Λ) = 1, and r2 = 1/3). We conclude that

dimB(Λ) = − lim
n→∞

1

n

{
log
(
#|Gn

)
log |r2|

(
1− log |r2|

log |r1|

)
+

log
(
#Gn

)
log |r1|

}

=
log 3

log 3

(
1− log 3

log 4

)
+

log(2 +
√
2)

log 4
= 1.093295401221 . . .

(Eq. 2.27)

2.2.2 Second example

Consider the example presented in figure 7. With a similar method as used in the first example,
one can prove that the x and y projections attain the WSC.
For the Hausdorff dimension we use

dimH(Λ) = lim
n→∞

{
1

n
log3

{ ∑
|Si∈|Gn

(#R|Si
)log4 3

}}
. (Eq. 2.28)

Using the symbolic notation, and Remark 1 with equation (4.62) from [3] we have the bijection

|Gn ←→ Γn :=
{
i = (i1i2 . . . in) ∈ {1, 2, 3}n

∣∣∣ ∀k = 1, . . . , n− 1 : ikik+1 ̸= 13
}
. (Eq. 2.29)

For |S ∈ |Gn, and |S ←→ i, then let (#R|Si
)log4 3 be denoted by Ri. Then∑

|Si∈|Gn

(#R|Si
)log4 3 =

∑
i∈Γn

Ri =
∑
i∈Γn

in=1

Ri +
∑
i∈Γn

in=3

Ri +

n−1∑
k=1

∑
i∈Γn

in=2
in−1=2

...
in−k+2=2
in−k+2 ̸=2

Ri

=: a
(n)
0 + a

(n)
1 +

n−1∑
k=1

a
(n)
k+1

(Eq. 2.30)
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1
3

1
4

( 12 ,
2
9 )

F :=
{
S1, S2, S3

}
,

S1 :=

[
1/4 0
0 1/3

] [
x1

x2

]
,

S2 :=

[
1/4 0
0 1/3

] [
x1

x2

]
+

[
1/4
2/9

]
,

S3 :=

[
1/4 0
0 1/3

] [
x1

x2

]
+

[
3/4
2/3

]
,

|F :=
{
|S1, |S2, |S3

}
,

|S1 := x/3,

|S2 := x/3 + 2/9,

|S3 := x/3 + 2/3.

Figure 7: The second example.

where the last line defined a
(n)
i i ∈ {0, 1, . . . , n} in order. Let a

(n)
i := 0 for i > n, and denote

a(n) :=
(
a
(n)
0 , a

(n)
1 , a

(n)
2 , . . .

)
∈ RN. Let α = log4 3. Notice that

dimH(Λ) = lim
n→∞

{
1

n
log3 ∥a(n)∥1

}
, (Eq. 2.31)

where ∥.∥1 is the usual 1-norm of real sequences. The decomposition of a(n) may seem ad hoc, now
we show what it represents: if i ∈ Γn ends with 1 or 3, then the restriction, that 13 cannot occur,
means that for any j ∈ {1, 2, 3} we have Rij = Ri. On the other hand, if i ends with exactly ℓ 2s,
then Ri2 = Ri3 = Ri, but Ri1 = (ℓ+ 1)α ·Ri, since

|Si22...221 = |Si22...213 = |Si22...133 = · · · = |Si13...333 (Eq. 2.32)

while Si22...221, Si22...213, Si22...133, . . . , Si13...333 are ℓ+1 different functions, if in i22 . . . 221 the 1
in the end was preceded by exactly ℓ 2s. Therefore

a
(n)
0 =

∑
i∈Γn

in=1

Ri =
∑
i∈Γn

in=1
in−1=1

Ri +
∑
i∈Γn

in=1
in−1=3

Ri +

n−1∑
k=1

∑
i∈Γn

in=1
in−1=2

...
in−k+1=2
in−k ̸=2

Ri

= a
(n−1)
0 + a

(n−1)
1 +

n−1∑
k=1

(k + 1)αa
(n−1)
k+1

(
+ 0 disguised as

∞∑
k=n

(k + 1)αa
(n−1)
k+1

)
.

(Eq. 2.33)
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Similarly

a
(n)
1 =

∑
i∈Γn

in=3

Ri =
∑
i∈Γn

in=3
in−1=1

Ri +
∑
i∈Γn

in=3
in−1=3

Ri +

n−1∑
k=1

∑
i∈Γn

in=3
in−1=2

...
in−k+1=2
in−k ̸=2

Ri

= 0 + a
(n−1)
1 +

n−1∑
k=1

a
(n−1)
k+1

(
+ 0 disguised as

∞∑
k=n

a
(n−1)
k+1

)
.

(Eq. 2.34)

Next
a
(n)
2 =

∑
i∈Γn

in=2
in−1 ̸=2

Ri = a
(n−1)
0 + a

(n−1)
1 ,

(Eq. 2.35)

while for j ∈ {3, . . . , n}:

a
(n)
j =

∑
i∈Γn

in=2
in−1=2

...
in−j+2=2
in−j+1 ̸=2

Ri =
∑
i∈Γn−1

in−1=2
in−2=2

...
in−j+2=2
in−j+1 ̸=2

Ri = a
(n−1)
j−1 .

(Eq. 2.36)

From these we conclude that

a(n) = La(n−1) = · · · = Ln(1, 1, 1, 0, 0, . . . ) = Ln+1(0, 1, 0, . . . ) (Eq. 2.37)

where we define the operator L : RN → RN as

L =



1 1 2α 3α 4α 5α · · ·
0 1 1 1 1 1 · · ·
1 1 0 0 0 0 · · ·
0 0 1 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
...

...
...

...
...

...
. . .


. (Eq. 2.38)

Lemma 2.4 There exists a unique ∞ > λ∗ > 1 such that there is a ∈ RN with positive entries,
a0, a1, a2 ≥ 1 and with La = λ∗a. Furthermore

λ∗ =
1

λ∗ − 1

∞∑
k=2

kα(λ∗)2−k +
(λ∗)2

(λ∗ − 1)3
. (Eq. 2.39)

Lemma 2.5 1
n log ∥a(n)∥1 → log λ∗, and hence

dimH(Λ) =
log λ∗

log 3
. (Eq. 2.40)
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Proof of Lemma 2.4:
Let a ∈ RN be such as in the statement, then we will arrive to an equation unequally solved by

a λ∗. We assume
∞∑
k=2

kαak <∞ (Eq. 2.41)

so that λ∗ <∞. Suppose La = λa, λ ∈ (1,∞), then

∀k ≥ 3 : λak = Lak = ak−1 =⇒ ak = λ2−ka2 (Eq. 2.42)

λa1 = La1 = a1 +

∞∑
k=2

ak = a1 +

∞∑
k=2

λ2−ka2 = a1 + a2
λ

λ− 1
=⇒ a1 = a2

λ

(λ− 1)2
. (Eq. 2.43)

Finally

λa0 = La0 = a0 + a1 +
∞∑
k=2

kαak = a0 + a2
λ

(λ− 1)2
+

∞∑
k=2

kαλ2−ka2

=⇒ a0 =
1

λ− 1

( λ

(λ− 1)2
+

∞∑
k=2

kαλ2−k
)
a2

(Eq. 2.44)

and

λa2 = La2 = a0 + a1, a1 = a2
λ

(λ− 1)2
(Eq. 2.45)

implies that

λ =
1

λ− 1

( λ

(λ− 1)2
+

∞∑
k=2

kαλ2−k
)
+

λ

(λ− 1)2
=

1

λ− 1

∞∑
k=2

kαλ2−k +
λ2

(λ− 1)3
. (Eq. 2.46)

On λ ∈ (1,∞) the left-hand side of Eq. 2.46 strictly increases from 1 to ∞ continuously, while the
right-hand size decreases continuously from ∞ to 0, proving that Eq. 2.46 is solved by a unique λ∗

on (1,∞).
Proof of Lemma 2.5:

Let M ∈ N+, define LM : RM → RM as (L ◦projM )|M , where projM is the projection of RN to
the subspace spanned by the first M coordinates. Then LM can be represented as the non-negative,
irreducible aperiodic, M by M matrix:

LM =



1 1 2α 3α · · · (M − 2)α (M − 1)α

0 1 1 1 · · · 1 1
1 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0
0 0 0 0 · · · 1 0


. (Eq. 2.47)

By the Perron-Frobenius Theorem ∃! λM > 0 s.t. limn→∞
1
n log ∥Ln

Mv∥1 = log λM for any 0 ̸= v ∈
RM with non-negative entries, and there is a v∗ ∈ RM with positive entries such that LMv∗ =
λMv∗. Therefore, with computations like Eq. 2.42–Eq. 2.46 we have:

∀k ∈ [3,M − 1] : λMv∗k = v∗k−1 =⇒ v∗k = λ2−k
M v∗2 (Eq. 2.48)
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λMv∗1 = v∗1 +

M−1∑
k=2

v∗k = v∗1 +

M−1∑
k=2

λ2−k
M v∗2 =⇒ v∗1 = v∗2

1

λM − 1

M−1∑
k=2

λ2−k
M . (Eq. 2.49)

Finally

λMv∗0 = v∗0 + v∗1 +

M−1∑
k=2

kαv∗k =⇒ v∗0 =
( 1

(λM − 1)2

M−1∑
k=2

λ2−k
M +

1

λM − 1

M−1∑
k=2

kαλ2−k
M

)
v∗2

(Eq. 2.50)
and

λMv∗2 = v∗0 + v∗1 , v∗1 = v∗2
1

λM − 1

M−1∑
k=2

λ2−k
M (Eq. 2.51)

implies that

λM =
1

v∗2
(v∗0 + v∗1) =

λM

(λM − 1)2

M−1∑
k=2

λ2−k
M +

1

λM − 1

M−1∑
k=2

kαλ2−k
M . (Eq. 2.52)

From Eq. 2.46 and Eq. 2.52 we have that limM→∞ λM = λ∗, and ∥Ln−1a(1)∥1 ≥ ∥Ln−1
M a(1)|M∥1

follows inductively on n, remembering that all entries of a(1) are non-negative. Whence

lim inf
n→∞

1

n
log ∥Ln−1a(1)∥1 ≥ log λM −→ log λ∗. (Eq. 2.53)

Finally let a ∈ RN be such that La = λ∗a, a0, a1, a2 ≥ 1 and the rest of the entries of a are positive.
Then

∥Ln−1a(1)∥1 ≤ ∥Ln−1a∥1 = (λ∗)n−1∥a∥1 (Eq. 2.54)

hence

lim sup
n→∞

1

n
log ∥Ln−1a(1)∥1 ≤ log λ∗ (Eq. 2.55)

which with Eq. 2.53 proves the statement. Finally Eq. 2.46 lets us to numerically express some digits
of the Hausdorff dimension:

dimH(Λ) = log3 2.8960013515886529426596184724862681808317981559701975298582 . . .

= 0.967885533595539319438037445903385862252724017052009287837 . . . .
(Eq. 2.56)

3 Upper box-counting dimension in the general case (thm
2.1)

Recall the definitions:

△δ :=
{
i ∈ Σ∗ | min{|ri,1|, |ri,2|} ≤ δ < min{|ri−,1|, |ri−,2|}

}
Sδ :=

{
Si

∣∣ i ∈ △δ

}
△1

δ :=
{
i ∈ △δ

∣∣ |ri,1| > |ri,2|}
△2

δ :=
{
i ∈ △δ

∣∣ |ri,2| ≥ |ri,1|}
(Eq. 3.1)
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where for j = (j1, . . . , jk−1, jk) we have defined j− as (j1, . . . , jk−1). Now

Nδ(Λ) = Nδ(
⋃

i∈△δ

Si(Λ)) (Eq. 3.2)

and even
Nδ(Λ) = Nδ(

⋃
Si∈Sδ

Si(Λ)) (Eq. 3.3)

where for each function we choose one representative i ∈ Σ∗. This holds by the fact that △δ is
a cut-set, meaning that for any i ∈ Σ∞ has a unique prefix i in △δ. Therefore the set in Nδ()
remains the same. But notice that the number of elements in Sδ may be lower than in △δ, which
in the limit will be the enforcer for the dimension to drop from the values the formula of Bedford
and McMullen would assign. Next define

S1δ :=
{
Si | i ∈ △1

δ

}
S2δ :=

{
Si | i ∈ △2

δ

} (Eq. 3.4)

and
|S2δ :=

{
|Si ∈ |F

∣∣ Si ∈ S2δ
}

S2δ :=
{
Si ∈ F

∣∣ Si ∈ S2δ
}
.

(Eq. 3.5)

Then
Nδ(

⋃
Si∈Sδ

Si(Λ)) = Nδ(
⋃

j∈{1,2}

⋃
Si∈Sjδ

Si(Λ)). (Eq. 3.6)

Whence we may conclude the (finite) stability of the upper box-counting dimension:

max
j∈{1,2}

{
Nδ(

⋃
Si∈Sjδ

Si(Λ))
}
≤ Nδ(

⋃
j∈{1,2}

⋃
Si∈Sjδ

Si(Λ)) ≤

≤ Nδ(
⋃

Si∈S1δ

Si(Λ)) +Nδ(
⋃

Si∈S2δ

Si(Λ)) ≤ 2 · max
j∈{1,2}

{
Nδ(

⋃
Si∈Sjδ

Si(Λ))
}
. (Eq. 3.7)

Therefore

dimBΛ = lim sup
δ→0

logNδ(Λ)

− log δ
= lim sup

δ→0

logNδ(
⋃

j∈{1,2}
⋃

Si∈Sjδ
Si(Λ))

− log δ

= lim sup
δ→0

logmaxj∈{1,2}

{
Nδ(

⋃
Si∈Sjδ

Si(Λ))
}

− log δ

= max
j∈{1,2}

{
lim sup

δ→0

logNδ(
⋃

Si∈Sjδ
Si(Λ))

− log δ

}
,

(Eq. 3.8)

where we used that

∀i : lim sup
δ

a
(i)
δ ≤ lim sup

δ
max

i
a
(i)
δ =⇒ max

i
lim sup

δ
a
(i)
δ ≤ lim sup

δ
max

i
a
(i)
δ (Eq. 3.9)

and we can take a sufficient subsequence of maxi a
(i)
δ , say δk such that the lim sup realises over it,

then there is an index j such that maxi a
(i)
δk

= a
(j)
δk

for infinitely many k, and hence

∃j : lim sup
δ

max
i

a
(i)
δ = lim sup

k
max

i
a
(i)
δk

= lim sup
k

a
(j)
δk
≤ max

i
lim sup

δ
a
(i)
δ . (Eq. 3.10)
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Now we proved

Lemma 3.1

dimBΛ = max
j∈{1,2}

{
lim sup

δ→0

logNδ(
⋃

Si∈Sjδ
Si(Λ))

− log δ

}
, (Eq. 3.11)

Eq. 3.11 lets us focus on Nδ(
⋃

Si∈S1δ
Si(Λ)) and Nδ(

⋃
Si∈S2δ

Si(Λ)) individually. Notice that S2δ is

defined to be slightly more general, and hence we massage this one while constantly monitoring
that for S1δ the same would work as well.

3.1 Upper and lower bounds

We start with an easy upper bound:

Nδ(
⋃

Si∈S2δ

Si(Λ)) ≤
∑
Si∈S2δ

Nδ(Si(Λ)), (Eq. 3.12)

which will work.
Towards the lower bound we construct:

M̃1
δ :=

{
j ∈ Σ∗ ∣∣ ∣∣Sj(Λ)

∣∣ ≤ δ <
∣∣Sj−(Λ)

∣∣} =
{
j ∈ Σ∗ ∣∣ |rj,1| ≤ δ < |rj−,1|

}
M1

δ :=
{
Sj = Sj1 ◦ . . . ◦ Sjk

∣∣ j = (j1, . . . , jk) ∈ M̃1
δ

}
M̃2

δ :=
{
j ∈ Σ∗ ∣∣ ∣∣|Sj(|Λ)

∣∣ ≤ δ <
∣∣|Sj−(|Λ)

∣∣} =
{
j ∈ Σ∗ ∣∣ |rj,2| ≤ δ < |rj−,2|

}
M2

δ :=
{
Sj = Sj1 ◦ . . . ◦ Sjk

∣∣ j = (j1, . . . , jk) ∈ M̃2
δ

}
.

(Eq. 3.13)

Then let
M1

δ :=
{
S
∣∣ S ∈M1

δ

}
, M2

δ :=
{
S
∣∣ S ∈M2

δ

}
|M1

δ :=
{
|S
∣∣ S ∈M1

δ

}
, |M2

δ :=
{
|S
∣∣ S ∈M2

δ

}
.

(Eq. 3.14)

HereM1
δ and |M2

δ are subsets of the usual Moran covers of the projection IFSs, but the rest aren’t.
Fortunately, they can be covered by not too many Moran covers. Let’s study △2

δ :

i ∈ △2
δ =⇒ |ri,1| ≤ δ < |ri−,1| =⇒ Si ∈M1

δ =⇒ S2δ ⊆M
1
δ . (Eq. 3.15)

Here we can use Lemma 1.6, since F is assumed to satisfy the WSP and hence ∃n < ∞ ∀x ∈
R ∀δ > 0 :

#
{
Si ∈M

1
δ

∣∣ Si(Λ) ∩ [x− δ, x+ δ] ̸= ∅
}
≤ n (Eq. 3.16)

from where

#
{
Si ∈ S

2
δ

∣∣ Si(Λ) ∩ [x− δ, x+ δ] ̸= ∅
}
≤ #

{
Si ∈M

1
δ

∣∣ Si(Λ) ∩ [x− δ, x+ δ] ̸= ∅
}
≤ n.
(Eq. 3.17)

In other words: for any interval [x− δ, x+ δ] only n many Si(Λ) can intersect it, where Si ∈ S
2
δ .

This implies that any δ length interval may only cover n many cylinders at most. Whence

n ·Nδ

( ⋃
Si∈S2δ

Si(Λ)
)
≥
∑

Si∈S2δ

Nδ

(
Si(Λ)

)
. (Eq. 3.18)

For the other projection we only have

i ∈ △2
δ =⇒ δ < |ri−,2|, |ri,1| ≤ |ri,2| =⇒ max{|ri,1|, δrmin,2} ≤ |ri,2|

=⇒ δ ·max{rmin,1, rmin,2} ≤ |ri,2|
(Eq. 3.19)
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|ri,2| ≤ (rmax,2)
|i|

(rmin,1)
|i| ≤ |ri,1| ≤ δ

}
=⇒ |ri,2| ≤ (rmax,2)

log(δ)
log(rmin,1) = δ

log(rmax,2)

log(rmin,1) . (Eq. 3.20)

Hence we have

i ∈ △2
δ =⇒ Si ∈

h2⋃
k=h1

M2
(rmax,2)k

=⇒ |S2δ ⊆
h2⋃

k=h1

|M2
(rmax,2)k

(Eq. 3.21)

where

h1 :=
⌊ log(δ)

log(rmin,1)

⌋
, h2 :=

⌈ log(δ ·max{rmin,1, rmin,2})
log(rmax,2)

⌉
=
⌈ log(δ)

log(rmax,2)
+

log(max{rmin,1, rmin,2})
log(rmax,2)

⌉
.

(Eq. 3.22)

Now Lemma 1.6 gives the system |F an m < ∞ such that for each any x ∈ R for any k: [x −
(rmax,2)

k, x + (rmax,2)
k] might only cut into at most m-many |Si(|Λ), where |Si ∈ |M2

(rmax,2)k
.

Therefore at most (m(h2 − h1))-many |Si(|Λ) from
{
|Si(|Λ)

∣∣ |Si|S2δ(|Λ)
}
⊆
{
|Si(|Λ)

∣∣ |Si ∈⋃h2

k=h1
|M2

(rmax,2)k

}
can cut into [x − (rmax,2)

h2 , x + (rmax,2)
h2 ]. This means that any length δ

interval can only cover at most (m(h2 − h1)
δ

2(rmax,2)h2
)-many |Si(|Λ), where |Si is from |S2δ . Then

m(h2 − h1)
δ

2(rmax,2)h2
·Nδ(

⋃
|Si∈|S2δ

|Si(|Λ)) ≥
∑

|Si∈|S2δ

Nδ(|Si(|Λ)). (Eq. 3.23)

Now using the two projections:

Nδ(
⋃

Si∈S2δ

Si(Λ)) ≥
1

n
· 2(rmax,2)

h2

δm(h2 − h1)
·
∑
Si∈S2δ

Nδ(Si(Λ)). (Eq. 3.24)

Substituting the values h1 and h2

Nδ(
⋃

Si∈S2δ

Si(Λ)) ≥
2

nm
· (rmax,2)

⌈
log(δ·max{rmin,1,rmin,2})

log(rmax,2)

⌉
(
⌈ log(δ·max{rmin,1,rmin,2})

log(rmax,2)

⌉
−
⌊ log(δ)
log(rmin,1)

⌋
)δ
·
∑
Si∈S2δ

Nδ(Si(Λ))

≥ 2

nm
· (rmax,2)

log(δ·max{rmin,1,rmin,2})
log(rmax,2)

+1

(
log(δ·max{rmin,1,rmin,2})

log(rmax,2)
− log(δ)

log(rmin,1)
+ 2)δ

·
∑
Si∈S2δ

Nδ(Si(Λ))

=
2

nm
· (rmax,2) · δ ·max{rmin,1, rmin,2}
(
log(δ·max{rmin,1,rmin,2})

log(rmax,2)
− log(δ)

log(rmin,1)
+ 2)δ

·
∑
Si∈S2δ

Nδ(Si(Λ))

=
2

nm
· (rmax,2) ·max{rmin,1, rmin,2}

log(δ)
log(rmax,2)

+
log(max{rmin,1,rmin,2})

log(rmax,2)
− log(δ)

log(rmin,1)
+ 2
·
∑
Si∈S2δ

Nδ(Si(Λ)).

(Eq. 3.25)

Using once L’Hopital’s rule, and elementary analysis one can derive that

lim
δ→0

log

(
2

nm ·
(rmax,2)·max{rmin,1,rmin,2}

log(δ)
log(rmax,2)

+
log(max{rmin,1,rmin,2})

log(rmax,2)
− log(δ)

log(rmin,1)
+2

)
− log δ

= 0
(Eq. 3.26)

and then from Eq. 3.12 and Eq. 3.25 we conclude the statement
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Lemma 3.2

lim sup
δ→0

logNδ(
⋃

Si∈S2δ
Si(Λ))

− log δ
= lim sup

δ→0

log
∑

Si∈S2δ
Nδ(Si(Λ))

− log δ
. (Eq. 3.27)

3.2 To the atomic level!

Now we need to estimate the covering of one Si(Λ) for i ∈ △2
δ . We certainly have |ri,1| ≤ δ,

whence:
Nδ(Si(Λ)) =: Nδ×δ(Si(Λ))

= NS−1
i (δ×δ)(Λ)

= NS−1
i (δ×δ)([0, 1]× |Si(|Λ))

= Nδ·|ri,1|−1×δ·|ri,2|−1([0, 1]× |Si(|Λ))
= Nδ·|ri,2|−1(|Λ)

(Eq. 3.28)

where we abuse the notation Na(b) to mean the optimal covering of the set b wherever it is by
copies of a (we use this only here and nowhere else).

Figure 8: visualizing the argument for a fixed cylinder and three δ by δ square transforming

1

1
|ri,2|

|ri,1|

δ

1

δ · |ri,1|−1

δ · |ri,2|−1

δ · |ri,2|−1

S−1
i

proj2

Si([0, 1]
2) S−1

i (δ × δ)

[0, 1]× (|Si)
−1(δ)

For self-similar sets, and in particular for |Λ and, Λ the box-counting dimension exists ([5]). There-
fore

dimB(|Λ) = lim
δ→0

logNδ(|Λ)
− log δ

(Eq. 3.29)
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meaning that ∀ε ∃Γ = Γ(ε) > 0 such that ∀δ ≤ Γ we have:

logNδ(|Λ)
− log δ

∈
(
dimB(|Λ)− ε, dimB(|Λ) + ε

)
Nδ(|Λ) ∈

(
δ− dimB(|Λ)+ε, δ− dimB(|Λ)−ε

)
.

(Eq. 3.30)

This alone wouldn’t be enough because as δ approaches 0, the value of δ · |ri,2|−1 may not converge,
but rather cycle back every so often. Luckily, we have that for i ∈ △2

δ : δ · |ri,2|−1 ≤ δ · (δ ·
max{rmin,1, rmin,2})−1 = min{r−1

min,1, r
−1
min,2}. Therefore

Lemma 3.3 For any ε > 0, there is a c = c(ε) > 0 such that for any i ∈ △2
δ we have

Nδ(Si(Λ)) ∈
(
c−1 ·

( δ

|ri,2|

)− dimB(|Λ)+ε

, c ·
( δ

|ri,2|

)− dimB(|Λ)−ε)
. (Eq. 3.31)

To see this we only need to derive an appropriate c:

sup
i∈△2

δ

{
Nδ·|ri,2|−1(|Λ)(
δ

|ri,2|

)− dimB(|Λ)−ε

}
= max

{
1, sup

i∈△2
δ
,δ·|ri,2|−1>Γ

{
Nδ·|ri,2|−1(|Λ)(
δ

|ri,2|

)− dimB(|Λ)−ε

}}

= max
{
1, sup

i∈△2
δ
,δ·|ri,2|−1>Γ

{
Nδ·|ri,2|−1(|Λ)

( δ

|ri,2|
)dimB(|Λ)+ε

}}
≤ max

{
1, NΓ(|Λ) · (min{r−1

min,1, r
−1
min,2})

dimB(|Λ)+ε
}
=: c1

(Eq. 3.32)

inf
i∈△2

δ

{
Nδ·|ri,2|−1(|Λ)(
δ

|ri,2|

)− dimB(|Λ)+ε

}
= min

{
1, inf

i∈△2
δ
,δ·|ri,2|−1>Γ

{
Nδ·|ri,2|−1(|Λ)(
δ

|ri,2|

)− dimB(|Λ)+ε

}}

= min
{
1, inf

i∈△2
δ
,δ·|ri,2|−1>Γ

{
Nδ·|ri,2|−1(|Λ)

( δ

|ri,2|
)dimB(|Λ)−ε

}}
≥ min

{
1, N

min{r−1
min,1,r

−1
min,2}

(|Λ) · (Γ)dimB(|Λ)+ε
}
=: c2

(Eq. 3.33)

c := max{c1, c−1
2 }. (Eq. 3.34)

3.3 Bounds arriving at once

Remembering Eq. 3.27, we use Eq. 3.31 and Eq. 3.20:

lim sup
δ→0

log
(∑

Si∈S2δ
Nδ(Si(Λ))

)
− log δ

≤ lim sup
δ→0

log
(∑

Si∈S2δ
c ·
(

δ
|ri,2|

)− dimB(|Λ)−ε
)

− log δ

≤ lim sup
δ→0

log c

− log δ
+ lim sup

δ→0

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ) · δε(

log(rmax,2)

log(rmin,1)
−1)
)

− log δ

≤ lim sup
δ→0

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ)

)
− log δ

+ ε

(
1− log(rmax,2)

log(rmin,1)

)
(Eq. 3.35)
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similarly

lim sup
δ→0

log
(∑

Si∈S2δ
Nδ(Si(Λ))

)
− log δ

≥ lim sup
δ→0

log
(∑

Si∈S2δ
c−1 ·

(
δ

|ri,2|
)− dimB(|Λ)+ε

)
− log δ

≥ lim inf
δ→0

log c−1

− log δ
+ lim sup

δ→0

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ) · δ−ε(

log(rmax,2)

log(rmin,1)
−1)
)

− log δ

≥ lim sup
δ→0

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ)

)
− log δ

− ε

(
1− log(rmax,2)

log(rmin,1)

)
.

(Eq. 3.36)

Observe that ε was arbitrary, hence:

Lemma 3.4

lim sup
δ→0

log
(∑

Si∈S2δ
Nδ(Si(Λ))

)
− log δ

= lim sup
δ→0

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ)

)
− log δ

. (Eq. 3.37)

This can be reorganised to:

log
(∑

Si∈S2δ

(
δ

|ri,2|
)− dimB(|Λ)

)
− log δ

=
log#S2δ
− log δ

+
log
(

1
#S2δ

∑
Si∈S2δ

( |ri,2|
δ

)dimB(|Λ)
)

− log δ

=
log#S2δ
− log δ

+
log
(
δ− dimB(|Λ) · 1

#S2δ

∑
Si∈S2δ

|ri,2|dimB(|Λ)
)

− log δ

=
log#S2δ
− log δ

+ dimB(|Λ)

(
1 +

logMp

{
|ri,2|

∣∣ Si ∈ S2δ
}

− log δ

) (Eq. 3.38)

where we have the power mean

Mp(x1, . . . , xn) :=
( 1
n

n∑
i=1

xp
i

) 1
p

(Eq. 3.39)

with exponent p = dimB(|Λ) ∈ [0, 1] and with n = #S2δ . Using Eq. 3.11, Eq. 3.27 and Eq. 3.37 (in order)
conclude

dimBΛ = lim sup
δ→0

logNδ(Λ)

− log δ
= max

j∈{1,2}

{
lim sup

δ→0

logNδ(
⋃

Si∈Sjδ
Si(Λ))

− log δ

}

= max
j∈{1,2}

{
lim sup

δ→0

(
log#Sjδ
− log δ

+ dimB projj(Λ)

(
1 +

logMdimB projj(Λ)

{
|ri,j |

∣∣ Si ∈ Sjδ
}

− log δ

))}
(Eq. 3.40)

which is the first part of Theorem 2.1.
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3.4 Secondary formula

Now we can achieve a formula complimenting that Feng and Wang obtained (Eq. 1.13). For δ > 0
define d1δ , d

2
δ , d

1
∗, d

2
∗ with the following equations:

1 =
∑
Si∈S1δ

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|d
1
δ , d1∗ := lim sup

δ→0
d1δ

1 =
∑
Si∈S2δ

( |ri,2|
|ri,1|

)dimB(|Λ)

|ri,1|d
2
δ , d2∗ := lim sup

δ→0
d2δ .

(Eq. 3.41)

Then

1 =
∑
Si∈S1δ

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|d
1
δ ≤

∑
Si∈S1δ

|ri,1|dimB(Λ) · (δrmin,2)
− dimB(Λ) · δd

1
δ

≤
∑
Si∈S1δ

( δ

|ri,1|

)− dimB(Λ)

· r− dimB(Λ)
min,2 · δd

1
δ

(Eq. 3.42)

hence taking the logδ−1 of both sides, using techniques from Eq. 3.38

d1δ ≤
log#S1δ
− log δ

+ dimB(Λ)

(
1 +

logMdimB(Λ)

{
|ri,1|

∣∣ Si ∈ S1δ
}

− log δ

)
+ dimB(Λ)

log rmin,2

log δ
(Eq. 3.43)

and similarly

1 =
∑
Si∈S1δ

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|d
1
δ ≥

∑
Si∈S1δ

|ri,1|dimB(Λ) · δ− dimB(Λ) · (δrmin,2)
d1
δ

≥
∑
Si∈S1δ

( δ

|ri,1|

)− dimB(Λ)

· rd
1
δ

min,2 · δ
d1
δ

(Eq. 3.44)

which implies

d1δ ≥
log#S1δ
− log δ

+ dimB(Λ)

(
1 +

logMdimB(Λ)

{
|ri,1|

∣∣ Si ∈ S1δ
}

− log δ

)
− d1δ

log rmin,2

log δ
(Eq. 3.45)

so

d1δ

(
1 +

log rmin,2

log δ

)
≥ log#S1δ
− log δ

+ dimB(Λ)

(
1 +

logMdimB(Λ)

{
|ri,1|

∣∣ Si ∈ S1δ
}

− log δ

)
. (Eq. 3.46)

For S2δ and d2δ the same can be done. Both
log rmin,2

log δ and
log rmin,1

log δ goes to 0 as δ approaches 0, hence
remembering Eq. 3.40 we got:

dimB(Λ) = max{d1∗, d2∗}. (Eq. 3.47)
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3.5 Tertiary formula

The sets S1δ and S2δ are uncomfortable to compute, but we will show that a similar formula is true
with the level-n functions instead. Recall

Gn :=
{
Si | i ∈ Σn

}
G1

n :=
{
Si ∈ Gn | |ri,1| ≥ |ri,2|

}
G2

n :=
{
Si ∈ Gn | |ri,1| < |ri,2|

}
.

(Eq. 3.48)

Then define

1 =
∑

Si∈G1
n

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|d
1
n , d

1

∗ := lim sup
n→∞

d
1

n

1 =
∑

Si∈G2
n

( |ri,2|
|ri,1|

)dimB(|Λ)

|ri,1|d
2
n , d

2

∗ := lim sup
n→∞

d
2

n.

(Eq. 3.49)

To see that they also give the Box-dimension, for any η ∈ [rmax,2, 1) we have:

d1∗ = inf

{
α > 0

∣∣∣∣∣ lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|α
)1/k

< 1

}
(Eq. 3.50)

and

d
1

∗ = inf

{
α > 0

∣∣∣∣∣ lim sup
n→∞

( ∑
Si∈G1

n

( |ri,1|
|ri,2|

)dimB(Λ)

|ri,2|α
)1/n

< 1

}
. (Eq. 3.51)

Indeed, the first equality holds by the following observations: For any α > d1∗ there exists ε > 0,
there is a k0 > 0 for which any k > k0 satisfies α−ε > d1ηk (we will have the hierarchy: α > α−ε >

d1ηk), and therefore by the definition of d1ηk , and using: |ri,2| ≤ ηk we will have

lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|α
)1/k

< η−ε · lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|α
)1/k

= lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|αη−εk

)1/k

≤ lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|α−ε

)1/k

≤ lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|
d1

ηk

)1/k

= 1.

(Eq. 3.52)
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For the other way, let ∀α ≤ d1∗ we have that ∀k0 > 0 ∃k > k0 such that α ≤ d1ηk and now( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|α
)1/k

≥

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|
d1

ηk

)1/k

= 1.

(Eq. 3.53)

In the cases of α > d
1

∗, and α < d
1

∗ one can do the same. Next, we show that these two sums differ
only by a subexponential amount. Observe

Si ∈ S1ηk =⇒ r
|i|
min,2 ≤ |ri,2| ≤ ηk < |ri−,2| ≤ r

|i|−1
max,2

=⇒ |i| · log rmin,2

log η
≥ k, (|i| − 1) · log rmax,2

log η
≤ k

=⇒ |i| ≥ k · log η

log rmin,2
, |i| ≤ k · log η

log rmax,2
+ 1.

(Eq. 3.54)

Therefore for any d∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d ≤
∑

Si∈G1

k
log η

log rmin,2

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d+

· · ·+
∑

Si∈G1

k
log η

log rmax,2
+1

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d (Eq. 3.55)

now

lim sup
k→∞

( ∑
Si∈S1

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/k

≤ lim sup
k→∞

( k log η
log rmax,2

+1∑
n=k log η

log rmin,2

∑
Si∈G1

n

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/k

≤ lim sup
k→∞

((
− k

log η

log rmin,2
+ k

log η

log rmax,2
+ 1
) k log η

log rmax,2
+1

max
n=k log η

log rmin,2

∑
Si∈G1

n

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/k

(Eq. 3.56)

remembering the definition of d
1

∗, and using that limk→∞ k1/k = 1 we can observe that the above

equation is not greater than one, for any d > d
1

∗. Therefore,

d
1

∗ ≥ d1∗. (Eq. 3.57)

For the opposite direction, we proceed similarly. Observe

Si ∈ G1
n =⇒ ηkrmin,2 < |ri,2| ≤ rnmax,2, rnmin,2 ≤ |ri,2| ≤ ηk

=⇒ k < n · log rmax,2

log η
− log rmin,2

log η
, k ≥ n · log rmin,2

log η
.

(Eq. 3.58)
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Then for any d

∑
Si∈Gn

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d

≤
η

⌊
n

log rmax,2
log η

−
log rmin,2

log η

⌋∑
k=
⌈
n

log rmin,2
log η

⌉ ∑
Si∈S

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d (Eq. 3.59)

therefore

lim sup
n→∞

( ∑
Si∈Gn

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/n

≤ lim sup
n→∞

(⌊n log rmax,2
log η

−
log rmin,2

log η

⌋∑
k=
⌈
n

log rmin,2
log η

⌉ ∑
Si∈S

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/n

≤ lim sup
n→∞

(
an ·

⌊
n

log rmax,2
log η

−
log rmin,2

log η

⌋
max

k=
⌈
n

log rmin,2
log η

⌉ ∑
Si∈S

ηk

( |ri,1|
|ri,2|

)dimB proj1(Λ)

|ri,2|d
)1/n

(Eq. 3.60)

where an :=
⌊
n

log rmax,2

log η − log rmin,2

log η

⌋
−
⌈
n

log rmin,2

log η

⌉
, but still lim supn→∞ a

1/n
n = 1. Again assigning

any d > d1∗, we achieve that by the definition of d1∗ the above equation is bounded by 1, and hence

d
1

∗ ≥ d1∗ (Eq. 3.61)

whence
d
1

∗ = d1∗ (Eq. 3.62)

as stated. A mirror computation shows the d
2

∗ = d2∗ case.

4 Box-counting dimension in the homogeneous case (thm
2.2)

Assume, as in the theorem, that for any i ∈ Σ: ri,1 = r1, ri,2 = r2. Suppose that |r1| < |r2|. Now
from 2.1 with the use of |ri,1| ≤ δ < |ri−,1| ≤ |ri,1| · r−1

min,1 we can conclude

dimB(Λ) = lim sup
n→∞

log
(∑

Si∈Gn

( |r1|
|r2|
)−n dimB(|Λ)

)
−n log |r1|

= lim sup
n→∞

log
(( |r1|

|r2|
)−n dimB(|Λ)

#Gn

)
−n log |r1|

=
log
(( |r1|

|r2|
)− dimB(|Λ)

)
− log |r1|

+ lim sup
n→∞

log
(
#Gn

)
−n log |r1|

= dimB(|Λ)
(
1− log |r2|

log |r1|

)
+ lim sup

n→∞

log
(
#Gn

)
−n log |r1|

.

(Eq. 4.1)
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For the lim inf we will consider subsystems, define one n-th level strongly separated sub-self-affine
set (nothing stops us from abbreviating it by SSSSAS), G∗

n with the following algorithm:

• Factorise Gn :

Gn =
⋃

|Si∈|Gn

R|Si
,where R|Si

:=
{
Sj ∈ Gn

∣∣ |Sj = |Si

}
. (Eq. 4.2)

• For each R|Si
let R∗

|Si
be a maximal populous subset such that functions in it are cylinder-

disjoint.

• Now define |G∗
n ⊂ |Gn iteratively: Order the elements of |Gn with the values #R∗

|Si
, then

continuously remove maximal elements (whose #R∗
|Si

are maximal) from |Gn, adding them

to |G∗
n iff their respective |Si is cylinder-disjoint from those who correspond to the ones

added before to |G∗
n.

• Finally

G∗
n :=

⋃
|Si∈|G∗

n

R∗
|Si

. (Eq. 4.3)

G∗
n is another diagonal IFS, we let Λn denote its attractor. Trivially (since G∗

n ⊂ Gn) Λn ⊂ Λ for
any n, consequently

dimB(Λ) ≥ dimB(Λn) (Eq. 4.4)

for any n ∈ N \ {0}. We have that G∗
n is sufficiently large, since using twice Lemma 1.6 we have

#G∗
n ≤ #Gn = #

{ ⋃
|S∈|Gn

R|S

}
≤ C ·#

{ ⋃
|S∈|Gn

R∗
|S

}
≤ |C · C ·#

{ ⋃
|S∈|G∗

n

R∗
|S

}
= |C · C ·#G∗

n, (Eq. 4.5)

where the constants |C and C depend only on |Λ and on Λ. One particular reason why we needed
to construct G∗

n is that this IFS satisfies the ROSC. Now using Theorem 1.1, we get that

dimB(Λn) = max{d1, d2} where
∑

Si∈G∗
n

|r1|n dimB(Λ)|r2|nd1−n dimB(Λ) = 1 (Eq. 4.6)

∑
Si∈G∗

n

|r1|nd2−n dimB(|Λ)|r2|n dimB(|Λ) = 1. (Eq. 4.7)

Observe that we in fact do not need to figure out whether d1 or d2 is larger, since from Eq. 4.7 we
obtain:

d2 = d2(n) = dimB(|Λ)
(
1− log |r2|

log |r1|

)
− 1

n

log
(
G∗

n

)
log |r1|

, (Eq. 4.8)

and now circling back with Eq. 4.4 and Eq. 4.5:

dimB(Λ) ≥ dimB(Λ) ≥ dimB(Λn) = dimB(Λn) ≥ d2(n) −→ dimB(Λ). (Eq. 4.9)

Finally utilizing Theorem 1.5 and Theorem 1.3

dimB(|Λ) = dimH(|Λ) = − lim
n→∞

1

n

log
(
#|Gn

)
log |r2|

, (Eq. 4.10)

from where one can conclude the statement of the theorem.
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5 Hausdorff dimension in the homogeneous case (thm 2.3)

We again assume that for any i ∈ Σ : ri,1 = r1, ri,2 = r2. Suppose |r1| < |r2| without loss of
generality. We will use the following pair of statements:

Theorem 5.1 (L.S. Young, Theorem 1.4.20 in [3]) Let A be measurable with µ(A) > 0. Sup-
pose that

∀x ∈ A : a ≤ lim inf
r→0

logµ(B(x, r))

log r
≤ b. (Eq. 5.1)

Then
a ≤ dimH(A) ≤ b. (Eq. 5.2)

Lemma 5.2 (Volume Lemma, Theorem 1.9.5 in [3]) Let µ be a Borel, probability measure
in Rd, such that

µ(∀) x : a ≤ lim
r→0

logµ(B(x, r))

log r
≤ b (Eq. 5.3)

then
a ≤ dimH(µ) ≤ b, (Eq. 5.4)

where µ(∀) x means: for µ-almost all x. In particular, if µ(∀) x ∈ Λ : limr→0
log µ(B(x,r))

log r = d,

then dimH(µ) = d.

The plan is the following:

• We will construct a series of measures supported inside the attractor, of whose Hausdorff
dimensions can be lower bounded by the Volume Lemma.

• We will use Young’s theorem to get an upper bound for the Hausdorff dimension of the
attractor.

• Finally, we will observe that the achieved series of lower bounds converge to the upper bound
with the use of the assumed weak separation condition.

5.0.1 Approximate squares

The value lim infr→0
log µ(B(x,r))

log r is called local dimension, and it suggests to investigate how for
an arbitrary x ∈ Λ a small neighbourhood surrounding it looks like. For this, we define, for δ > 0,
the symbolic approximate square: approximate, because we let k, ℓ be such that |r1|k ≤ δ < |r1|k−1

and |r2|ℓ ≤ δ < |r2|ℓ−1. Explicitly k = k(δ) := ⌈log|r1| δ⌉ and ℓ = ℓ(δ) := ⌈log|r2| δ⌉. Then

Bδ(i) :=
{
j ∈ Σ∞

∣∣∣ i|(0,k] = j|(0,k]
}⋂{

j ∈ Σ∞
∣∣∣ |Sj|(0,ℓ]([0, 1]) = |Si|(0,ℓ]([0, 1])

}
=
{
j
∣∣∣ i and j have the same letters untill k steps

}
⋂{

j
∣∣∣ Si([0, 1]

2), Sj([0, 1]
2) are in the same row in the ℓ-th step

} (Eq. 5.5)

is called a symbolic approximate square, its image trough π is to be called an approximate square.
The second set in the intersection can be characterized as the set of js such that

∑ℓ
i=k+1 tii,2 ·|r2|i =∑ℓ

i=k+1 tji,2 · |r2|i, which means that from the k + 1-th to the ℓ-th level their y coordinate wise
translation agrees with the one for i, we denote this by ti|(k,ℓ],2 = tj|(k,ℓ],2.

One similarly can define the n-symbolic approximate squares, Bn
δ (i), who take k and ℓ to be

multiples of n (k(δ) := n⌈logr1(δ)/n⌉, ℓ(δ) := n⌈logr2(δ)/n⌉).
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5.1 Lower bound

The measures who will provide the lower bound will arise as a self-affine measures of a large enough
separated subsystem. For this let G∗

n be an n-th level strongly separated sub-self-affine set (defined
in Eq. 4.3).

Define a self-affine measure on it: Let pn be a probability vector of length mn, weighting the
elements of Σn in a way that if Si /∈ G∗

n, then pi := 0, and if Si = Sj then only the lexicographically

smallest can have weight. Define νpn
on Σn∗ :=

⋃
m∈N

({
1, . . . ,m

}n)m
: for i ∈ Σn∗ let νp(i) :=∏|i|

i=1 pii , then by Kolmogorov’s existence theorem we can extend this to a measure on Σ∞
n . Let

µn be the push-forward measure of this extended measure: µn = µpn = π∗νpn .
We have that dimH(Λn) ≥ dimH(µn) for any particular choice of pn, so we will use the Volume

Lemma (5.2) to lower bound dimH(µn), and then maximize the given formula in pn to achieve the
sufficiently large lower bound.

To relate the measure of a Euclidean ball and of an approximate square we have the following
lemma:

Lemma 5.3 Assuming µn is not supported in a line segment, we have that

µn

(
π(i)

∣∣∣ B(π(i), δ|r1|n√log|r1|n δ) ∩ Λn ⊂ π
(
Bn

δ (i)
)
for all δ sufficiently small

)
= 1. (Eq. 5.6)

The proof can be found in [15] with the address Lemma 3.2. The assumption restricting µn from
being supported in a line segment will be satisfied with the general assumption that the original
IFS fills [0, 1]2, and with the choice of pn we will achieve from the maximization at the end of this
section.

In essence, the Lemma lets us to cover a Euclidean ball’s intersection with the attractor by an
approximate square, with only experiencing a subexponential price, which gets eliminated as we
take limr→0. Precisely: given that µn is not supported only on a line segment, by the Lemma 5.3
we have that for r sufficiently small (i.e. νn(∀)i ∃ro = ro(i) ∀r < r0)

µn

(
B
(
π(i), r|r1|n

√
log|r1|n r)) ≤ µn

(
π
(
Bn

r (i)
))

(Eq. 5.7)

for µn(∀) i, and by the separation of the cylinder rectangles in the constructed Λns we have that

µn

(
π
(
Bn

r (i)
))

= νpn

(
Bn

r (i)
)

(Eq. 5.8)

for i such that π(i) ∈ Λn and for any δ = |r2|N , N ∈ N (the existence of the limit will reason the
ability to use a subsequence). Also

lim
r→0

log r

log
(
r|r1|n

√
log|r1|n r) = 1. (Eq. 5.9)

For i such that π(i) ∈ Λn, we have an explicit formula for the symbolic measure of a symbolic
approximate square

νpn
(Bn

r (i)) =

( k(r)
n −1∏
i=0

pi|(i·n,(i+1)·n]

)( ℓ(r)−k(r)
n −1∏
i=0

∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n]
,2

pj

)
(Eq. 5.10)
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Finally |r2|ℓ ≤ δ < |r2|ℓ−1 means that ℓ(r) log |r2| ≤ log r < log(|r2|ℓ(r) · 1
|r2| ), and hence

lim
r→0

log r

ℓ(r) log |r2|
= 1. (Eq. 5.11)

Out of all of these we get that

lim
r→0

logµn(B(π(i), r))

log r
≥ lim

r→0

log(νpn
(Bn

r (i)))

ℓ(r) log |r2|
. (Eq. 5.12)

Now calculate!

log(νpn
(Bn

r (i)))

ℓ(r) log |r2|
=

=
log
(∏ k(r)

n −1
i=0 pi|(i·n,(i+1)·n]

)
ℓ(r) log |r2|

+

log

(∏ ℓ(r)−k(r)
n −1

i=0

∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n],2
pj

)
ℓ(r) log |r2|

=

∑ k(r)
n −1

i=0 log
(
pi|(i·n,(i+1)·n]

)
ℓ(r) log |r2|

+

∑ ℓ(r)−k(r)
n −1

i=0 log

(∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n],2
pj

)
ℓ(r) log |r2|

=
1

n

k(r)

ℓ(r)

1
k(r)
n

∑ k(r)
n −1

i=0 log
(
pi|(i·n,(i+1)·n]

)
log |r2|

+
1

n

(
1− k(r)

ℓ(r)

) 1
ℓ(r)−k(r)

n

∑ ℓ(r)−k(r)
n −1

i=0 log

(∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n],2
pj

)
log |r2|

(Eq. 5.13)
Following by the Strong Law of Large Numbers, we have that:

lim
r→0

(
1

k(r)
n

k(r)
n −1∑
i=0

log
(
pi|(i·n,(i+1)·n]

))
=
∑
i∈Σn

pi log pi =: A (Eq. 5.14)

lim
r→0

(
1

ℓ(r)−k(r)
n

ℓ(r)−k(r)
n −1∑
i=0

log

( ∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n]
,2

pj

))

=
∑
i∈Σn

pi log

( ∑
j∈Σn: ti,2=tj,2

pj

)
=: B (Eq. 5.15)

also

lim
r→0

(
k(r)

ℓ(r)

)
=

log |r2|
log |r1|

. (Eq. 5.16)
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Hence

lim
r→0

logµn(B(π(i), r))

log r
≥ 1

n

(
A

log |r1|
+
(
1− log |r2|

log |r1|

) B

log |r2|

)
(Eq. 5.17)

for any i such that π(i) is in Λn. This is still dependent on the choices of pi, but can be maximized
using for example the Lagrange multiplier method.

For a fix n let pi,j be pi iff Si ∈ G∗
n is the j’th cylinder rectangle in the i’th row in Λn, and i

is the lexicographically smallest among those, then

F (p) :=
1

n

∑
i

∑
j pi,j log pi,j

log |r1|

+
1

n
(
∑
i

(
∑
j

pi,j) log(
∑
j

pi,j))
( 1

log |r2|
− 1

log |r1|

)
+ λ(

∑
i

∑
j

pi,j − 1) (Eq. 5.18)

is our Lagrangian. Differentiate it to get

∂(F (p))

∂pk,l
=

1

n

1

log |r1|
(log pk,l + 1) +

1

n

∂

∂pk,l
(
∑
i

(
∑
j

pi,j) log(
∑
j

pi,j))
( 1

log |r2|
− 1

log |r1|

)
+ λ

=
1

n

1

log |r1|
(log pk,l + 1) +

1

n

( 1

log |r2|
− 1

log |r1|

)( ∂

∂pk,l
((
∑
j

pk,j) log(
∑
j

pk,j))
)
+ λ

=
1

n

1

log |r1|
(log pk,l + 1) +

1

n

( 1

log |r2|
− 1

log |r1|

)( ∂

∂pk,l
(
∑
j

pk,j) log(
∑
j

pk,j)

+ (
∑
j

pk,j)
∂

∂pk,l
log(

∑
j

pk,j)
)
+ λ

=
1

n

1

log |r1|
(log pk,l + 1) +

1

n

( 1

log |r2|
− 1

log |r1|

)(
log
∑
j

pk,j + 1
)
+ λ

(Eq. 5.19)
hence

∂(F (p))

∂pk,l
= 0 ⇐⇒ log pk,l + log|r2| |r1|+ (log

∑
j

pk,j)(log|r2| |r1| − 1) + λn log r1 = 0

⇐⇒ pk,l =
(
∑

j pk,j)
(1−log|r2| |r1|)

|r1|λn+1/ log |r2|
.

(Eq. 5.20)

Now one can deduce that pk,ℓ is the same for functions having cylinders rectangles in the same
row. Denote the measure on the i’th row by pi, and the number of cylinder rectangles in the i’th
row by ni, then

pk :=
∑
ℓ

pk,ℓ = nkpk,1 = nk

(
∑

j pk,j)
(1−log|r2| |r1|)

|r1|λn+1/ log |r2|
= nk

(pk)
(1−log|r2| |r1|)

|r1|λn+1/ log |r2|
, (Eq. 5.21)

using that
∑

k pk = 1

pk =
n
log|r1| |r2|
k∑
ℓ n

log|r1| |r2|
ℓ

, pk,l =
1

nk

n
log|r1| |r2|
k∑
ℓ n

log|r1| |r2|
ℓ

=
n
log|r1| |r2|−1

k∑
ℓ n

log|r1| |r2|
ℓ

. (Eq. 5.22)
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Using these, and the notation: K :=
∑

ℓ n
log|r1| |r2|
ℓ

lim
r→0

logµ(B(π(i), r))

log r
≥ 1

n

(∑
k

∑
ℓ pk,ℓ log pk,ℓ
log |r1|

+
(
1− log |r2|

log |r1|

)∑
k pk log pk
log |r2|

)

=
1

n

(∑
k

∑
ℓ pk,ℓ

(
(log|r1| |r2| − 1) log nk − logK

)
log |r1|

+
(
1− log |r2|

log |r1|

)∑
k pk

(
log|r1| |r2| log nk − logK

)
log |r2|

)
=

1

n

(
(log|r1| |r2| − 1)

∑
k pk log nk

log |r1|
− logK

log |r1|

+
(
1− log |r2|

log |r1|

)∑
k pk log|r1| |r2| log nk

log |r2|
−
(
1− log |r2|

log |r1|

) logK

log |r2|

)
= − 1

n

logK

log |r2|
(Eq. 5.23)

and then with the Volume Lemma (5.2) we obtain

Lemma 5.4

∀n : dimH(Λ) ≥ −
1

n
log|r2|

( ∑
|Si∈|G∗

n

(
#R∗

|Si

)log|r1| |r2|
)
. (Eq. 5.24)

5.2 Upper bound

As mentioned before, we will use Young’s theorem to deduce a sufficient series of upper bounds.
This requires one to lower bound the measure of arbitrary small balls around ALL the points of
the attractor. This means the measures µn are insufficient, since they leave many functions, and
hence many points in Λ, measureless. To combat this, we only change them a little.

Let ηn = ηpn be defined with weight distribution on Σn, such that if for i, j ∈ Σn we have
that Si = Sj, then only the lexicographically smallest word can have weight, extended it by the
Kolmogorov extension theorem to infinite words. This again is a self affine measure respective to
Σn, which in general could not necessarily be derived from a measure defined on Σ, and then
extended to Σn as a product measure. Denote ϱn = ϱpn

= π∗ηpn
its push forward. Now we have

that for any j ∈ Σ∞ there is an i ∈ Σ∞ with π(i) = π(j) such that

ϱpn(B(π(j),
√
2r)) ≥ ϱpn(B

n
r (i))

≥
( k(r)

n −1∏
i=0

pi|(i·n,(i+1)·n]

)( ℓ(r)−k(r)
n −1∏
i=0

∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n]
,2

pj

)
. (Eq. 5.25)

Now choose the weights exactly as in the lower bound: For a fix n let pi,j be pi iff Si ∈ Gn is the
j’th cylinder rectangle in the i’th row in Λn, and i is the lexicographically smallest among those,
then choose

pk,l =
1

nk

n
log|r1| |r2|
k∑
ℓ n

log|r1| |r2|
ℓ

=
n
log|r1| |r2|−1

k∑
ℓ n

log|r1| |r2|
ℓ

(Eq. 5.26)

where ni denotes the number of cylinder rectangles from G in the i’th row, and where the sum∑
ℓ n

log|r1| |r2|
ℓ is as in the lower bound. With this we have that
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( k(r)
n −1∏
i=0

pi|(i·n,(i+1)·n]

)( ℓ(r)−k(r)
n −1∏
i=0

∑
j∈Σn: ti|(i·n,(i+1)·n],2

=tj|(0,n]
,2

pj

)

=

(∏ k(r)
n −1

i=0 n(i|(i·n,(i+1)·n])
log|r1| |r2|−1

)(∏ ℓ(r)
n −1

i=
k(r)
n

n(i|(i·n,(i+1)·n])
log|r1| |r2|

)
(∑

ℓ n
log|r1| |r2|
ℓ

) ℓ(r)
n

(Eq. 5.27)

where for j ∈ Σn we define n(j) the number of cylinder rectangles in the same row as Sj. Then

log ϱpn
(Bn

r (j))

ℓ(r) log |r2|
≤
( log|r1| |r2| − 1

ℓ(r) log |r2|

) k(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n]) +
( log|r1| |r2|
ℓ(r) log |r2|

)

·

ℓ(r)
n −1∑

i=
k(r)
n

log n(i|(i·n,(i+1)·n])−
( ℓ(r)

nℓ(r) log |r2|

)
log
∑
ℓ

n
log|r1| |r2|
ℓ

= − 1

n

(
log|r2|

∑
ℓ

n
log|r1| |r2|
ℓ

)
+

1

ℓ(r)

[
1

log |r1|

ℓ(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])

− 1

log |r2|

k(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])

]

= − 1

n

(
log|r2|

∑
ℓ

n
log|r1| |r2|
ℓ

)
+

1

log |r1|

[
1

ℓ(r)

ℓ(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])

− log |r1|
log |r2|

k(r)

ℓ(r)

1

k(r)

k(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])

]

(Eq. 5.28)

finally we have that k(r)/ℓ(r)→ log |r1|/ log |r2| and

lim sup
r→∞

1

ℓ(r)

ℓ(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])−
1

k(r)

k(r)
n −1∑
i=0

log n(i|(i·n,(i+1)·n])

= log lim sup
r→∞

(∏ ℓ(r)
n −1

i=0 n(i|(i·n,(i+1)·n])
)1/ℓ(r)

(∏ k(r)
n −1

i=0 n(i|(i·n,(i+1)·n])
)1/k(r) = 0. (Eq. 5.29)

Indeed, suppose that the right above lim sup < 1, then use the following lemma:

Lemma 5.5 Given {an}n∈N, a sequence of real numbers, and c > 1 if lim supn→∞ a⌈cn⌉/an < 1
then lim inf an = 0.

One proves this by letting the fraction sequence be at most ε ∈ (0, 1) for all n after a sufficiently
large N , and then for a large M writing aM as the product of aN and an increasing number of
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elements in the fraction sequence who all can be bound by ε-s. Then with

ak(r) :=
( k(r)

n −1∏
i=0

n(i|(i·n,(i+1)·n])
)1/k(r)

, c := log |r1|/ log |r2| (Eq. 5.30)

the assumption that the lim sup < 1 (i.e. in Eq. 5.29 we have < 0) forwarded by the lemma gives
that for any i

lim inf
r→0

ak(r) = 0 while contrary to that: ak(r) ≥ 1. (Eq. 5.31)

Hence the formula in Eq. 5.29 must hold with = 0. Therefore

lim inf
r→0

log ϱpn
(Bn

r (j))

ℓ(r) log |r2|
≤ − 1

n

(
log|r2|

∑
ℓ

n
log|r1| |r2|
ℓ

)
. (Eq. 5.32)

Finally using Young’s theorem and reformulating it to match the style of the lower bound:

Lemma 5.6

∀n : dimH(Λ) ≤ −
1

n
log|r2|

( ∑
|Si∈|Gn

(
#R|Si

)log|r1| |r2|
)
. (Eq. 5.33)

The not too tired reader may recognise that this method of just substituting the guessed measure
would have worked for the lower bound as well, but building up the proof like that would have left
no sign of how the sufficient measure may arise from the setup.

5.3 Assembling the bounds

We restate Lemma 1.6 as

• ∃ |C <∞ ∀x ∈ R ∀δ > 0 we have that:

#
{
|Sj ∈ |Gℓ(δ)

∣∣∣ |Sj(Λ) ∩B(x, δ) ̸= ∅
}
≤ |C, (Eq. 5.34)

• ∃ C <∞ ∀x ∈ R ∀δ > 0 we have that:

#
{
Sj ∈ Gk(δ)

∣∣∣ Sj(Λ) ∩B(x, δ) ̸= ∅
}
≤ C, (Eq. 5.35)

in particular

• ∃ |C <∞ ∀n ∈ N \ {0} ∀|Si ∈ |Gn we have that:

#
{
|Sj ∈ |Gn

∣∣∣ |Sj([0, 1]) ∩ |Si([0, 1]) ̸= ∅
}
≤ |C, (Eq. 5.36)

• ∃ C <∞ ∀n ∈ N \ {0} ∀Si ∈ Gn we have that:

#
{
Sj ∈ Gn

∣∣∣ Sj([0, 1]) ∩ Si([0, 1]) ̸= ∅
}
≤ C. (Eq. 5.37)
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Finally using these as in the previous theorems∑
|Si∈|Gn

(
#R|Si

)log|r1| |r2| ≤
∑

|Si∈|Gn

(
C ·#R∗

|Si

)log|r1| |r2| ≤ C log|r1| |r2| · |C ·
∑

|Si∈|G∗
n

(
#R∗

|Si

)log|r1| |r2|

(Eq. 5.38)
and hence we have

dimH(Λ) = lim
n→∞

− 1

n
log|r2|

( ∑
|Si∈|Gn

(
#R|Si

)log|r1| |r2|
)

(Eq. 5.39)

as stated in the theorem.
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