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Introduction

In this work we will give an introduction into the theory of probabilistic graphical
models (or simply just graphical models) and show some related algorithms. The
purpose of graphical models is to provide a clearer, computationally more efficient
way to look at multidimensional probability spaces. The aim of these graph-based
representations is to give us a picture about the dependencies and conditional inde-
pendences that hold between the variables.

In the first chapter we introduce the notation and the most important theoretical
background which is needed to understand the rest of the work. We also introduce
here the method of vertex elimination. It is crucial for the characterization of an
important graph property, called chordality, in the third chapter.

In the second chapter we show examples of graphical models and try to point out
connections between the different types. Two of the most commonly used models
are the Bayesian networks and the Markov random fields. We start with Bayesian
networks, which are widely used models in case of directed graph representations.
The main properties of these were summarized in the ’80s by Judea Pearl [16] and
others. Then we continue with Markov random fields (sometimes Markov networks).
These are so common among undirected representations that some use (incorrectly)
the term undirected graphical model for these. The Markov random field was intro-
duced as the general setting for the Ising model, also in the ’80s. We will describe
the log-linear models too, which are not necessary graphical models, but they have
their statistical and information theoretical importance. We also give a brief in-
troduction into multidimensional normal distributions and the Gaussian graphical
models, which are built on them. We stick mainly to discrete variables, however we
close the second and the third chapter with supplements about continuous models,
namely the Gaussian models.

Again, in the third chapter we thoroughly investigate an important graph prop-
erty, called chordality. This is equivalent to the graph being decomposable, which
opens the door to many applications. In Sec. 3.1 we examine equivalences of the de-
composable graph property. Since this is a desired feature of the underlying graph,
in Sec. 3.2 we show commonly used methods to identify these graphs or modify a
given graph in order to get a chordal representation.
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At the same place we also introduce the junction tree structure, which will be
used in Sec. 3.3, where we give a detailed description of the junction-tree algorithm.
This is a specific tree-structure of the cliques of the graph. It applies the belief prop-
agation, also known as sum-product message passing method on the junction tree
structure of the graph. We go through every steps which are needed in the direct
application of the algorithm. The goal of this algorithm is to find marginal distribu-
tions for the variables in a graphical model, possibly after absorbing some evidences.
The marginal distribution of a single variable (without any previous knowledge) is
simply the summation of the joint probability over all other variables, however this
becomes computationally intractable very quickly. This method however makes the
marginalization more effective, but it can only work if the probability distribution is
a Gibbs-distribution with respect to the given graph (this will be introduced in the
context of Markov random fields), and the graph representation of the probability
space is triangulated (chordal), possibly after some modifications.

We show in Sec. 3.3.1 a detailed application based on the stylized example of [14].
Here we use most of the described tools while we apply the junction tree algorithm.

Summarizing, our main purpose is to thoroughly understand the theoretical back-
ground of graphical models, and by examining the decomposable models, pointing
out some connections between these.
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Chapter 1

Notation and background

1.1 Graphical models in general

To be able to characterize these models we will stick to some restrictions on the
notations to avoid misunderstanding. In a graphical model representation of a mul-
tivariate probability space the picture looks more or less like this:

Let G = (V,E) be the graph representation of the desired multivariate proba-
bility space. We work with simple graphs, meaning it has at most one edge for
each vertex-pair and has no vertex linked to itself. There is a one-to-one compliance
between the vertices (V ) and the random variables, therefore we regularly say things
like probability distribution over G or with respect to G. When it does not cause any
confusion sometimes we use the vertex, node and variable words interchangeably.
We try to represent the dependencies between the random variables with edges (E)
in a way that these meet with the specifications of the chosen model.

1. The letters G, V, E will be used only for the graph representation:

(a) G = (V,E) is the graph itself;

(b) V = {v1, v2, . . . , vn} is the set of vertices/nodes (denoted with lower case
letters);

(c) E ⊂ V × V is the set of edges: (i, j) ∈ E or i → j will mean a directed
edge from i to j , meanwhile [i, j] ∈ E or i − j will mean an undirected
edge.

2. To every i ∈ V it belongs a random variable Xi:

(a) The random variables in the probability space are X1, X2, . . . , Xn (de-
noted with upper case letters). For every vertex i ∈ V , Xi is a discrete
(one-dimensional) random variable or (later) continuous real-valued.
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(b) For any subset A = {a1, a2, . . . , am} ⊂ V , XA will denote the following
random vector: XA = X{a1,a2,...am} := (Xa1 , Xa2 , . . . , Xam)

Above Xi takes its values from the finite set Xi (or later Xi can be R), thus XV (or
sometimes just X) will take them from XV :=×n

i=1
Xi and for A ⊂ V respectively.

A possible outcome is sometimes called a configuration or a state.
For a given graph G = (V,E), the subgraph induced by a subset A ⊂ V is as

usual:

G(A) = (A,E(A)), where E(A) = {(x, y) ∈ E or [x, y] ∈ E | x, y ∈ A} .

We shorten the name subgraph induced by a set of vertices to subgraph of vertices,
which again just keeps those vertices and the edges present among them in a given
graph.

Independence does not often occur in complex systems. Conditional indepen-
dence however does often arise and can lead to significant representational and
computational savings. This is a generalization of independence, where two pieces
of a system become independent once we observe a third piece. In the theory of
graphical models the concept of conditional independence plays an important role.
We will walk around this concept first.

Let (X, Y, Z) be a random vector whose coordinates take values from (possible
different) finite sets. We use the conventional short notations for the probability of
a configuration:

pXY(·, ·) = Prob (X = ·, Y = ·) and

pX|Y(·, ·) = Prob (X = · | Y = ·) .

Definition 1.1. We say that

• X and Y are independent if:

– X⊥⊥Y (notation);

– pXY = pX pY;

– pX|Y = pX.

• X and Y are conditionally independent given Z:

– X⊥⊥Y | Z (notation);

– pXY|Z = pX|Z pY|Z;

– pX|YZ = pX|Z.
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In the above definitions and later on as well we mean by the product of functions
the point-wise product of them over the product domain:

pX pY(·, ·) := pX(·) pY(·) ,

and by equality of such functions we mean point-wise equality.
Marginalization is a key concept in multidimensional probability theory. Since

we will confine ourselves mostly to discrete variables in the sequel, thus for a subset
A ⊂ V of the examined variables, the A-marginal of a function fV : XV → R, with
other words its marginalization over V \ A, is the function fA : XA → R below:

fA(xA) :=
∑

yV ∈XV :
yA=xA

fV (yV ) =
∑

xV \A∈XV \A

fX(xA,xV \A), ∀xA ∈ XA .

Note that f is not necessary a probability mass or probability density function.
Briefly, we will use the notation:

fA(xA) :=

∑
V \A

fV

 (xA) ,

or shortly fA :=
∑

V \A fV .

1.2 The vertex elimination process

Algorithms operating on graphical models usually require a special structure from
the underlying graph, the distribution and sometimes an ordering of its vertices,
variables.

In this section we will focus on vertex elimination. This procedure is crucial in
the introduction of perfect elimination orderings, which are necessary in the char-
acterization of chordal graphs and junction trees, which appears in the forthcoming
chapters. This section is based on articles of Rose, Tarjan, Yannakakis and Lueker,
[20, 17]. For us the undirected version of vertex elimination is more important, but
we will have some remarks about the directed case. These will appear separated in
boxes, to avoid confusion.

Definition 1.2. For a graph G = (V,E) with n vertices, an α : V → {1, 2, . . . , n}
bijection is called an ordering of V and Gα = (V,E, α) is called an ordered graph.

As a more convenient notation for any pair of vertices i, j, i <α j will mean that
α(i) < α(j) and similarly min(i, j) will mean α−1(min(α(i), α(j))).
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Definition 1.3. In an ordered graph Gα = (V,E, α) for a given v ∈ V , the set of
monotonely adjacent vertices are:

MAdj(v) = Adj(v) ∩ {x ∈ V | v <α x} ,

where Adj(v) is the neighbors of v:

Adj(v) = {j ∈ V | [v, j] ∈ E} .

Recall that (v, x) ∈ E means v → x, a directed edge. Whereas [v, x] ∈ E means
v − x, an undirected edge. As usual in graph theory we can think of an undirected
edge as an edge directed in both ways (v ↔ x).

Definition 1.4. In a graph G for a vertex v, the deficiency of v is the following
subset of V × V :

D(v) = {(i, j)| {i, j} ⊂ Adj(v), j /∈ Adj(i), i 6= j}

= {(i, j)| v − i, v − j, i 6− j, i 6= j}.

In the directed case it becomes:

D(v) = {(i, j)| v ∈ Adj(i), j ∈ Adj(v), j /∈ Adj(i), i 6= j}

= {(i, j)| i→ v, v → j, i9 j, i 6= j}.

Similarly we can define the monotone deficiency:

Definition 1.5. In an ordered graph Gα for a vertex v, the monotone deficiency
of v is the following subset of V × V :

MD(v) = {(i, j)| {i, j} ⊂ MAdj(v), j /∈ Adj(i), i 6= j}

= {(i, j)| v − i, v − j, i 6− j, i 6= j, v <α min(i, j)}

In the directed case it becomes:

MD(v) = {(i, j)| v ∈ Adj(i), j ∈ Adj(v), j /∈ Adj(i), i 6= j, v <α min(i, j)}

= {(i, j)| i→ v, v → j, i9 j, i 6= j, v <α min(i, j)}.
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Definition 1.6. The v-elimination graph of G is defined as:

Gv = (V \ {v}, E(V \ {v}) ∪D(v))

Note that the v-elimination graph is not equivalent to the graph that we got if
we just simply delete v. The v-elimination ensures that we don’t lose any paths.
In other words it means that we add edges such that the vertices in Adj(v) become
adjacent.

Definition 1.7. For an ordered graph Gα, the elimination process is:

P (Gα) := [G0, G1, . . . , Gn−1],

where G0 = G and Gi = (Gi−1)α−1(i) for i > 0.

Definition 1.8. For an ordered graph Gα, we define its fill-in as:

F (Gα) = ∪n−1
i=1 Di−1(α−1(i)),

where Di−1(α−1(i)) is the deficiency of α−1(i) in Gi−1.

Definition 1.9. The elimination graph of G by ordering α is defined as:

G?
α = (V,E ∪ F (Gα)).

Definition 1.10. For a given graph G, α is a perfect elimination ordering (or
zero fill-in ordering) if and only if F (Gα) = ∅. A graph with such an ordering is
called a perfect elimination graph.

F (Gα) = ∅ means that Di−1(α−1(i)) = ∅ for i ∈ {1, . . . , n− 1}. This means that
along the P (Gα) elimination process:

Gi = G(V \ ∪il=1{α−1(l)})

Definition 1.11. For a given graph G, an α elimination ordering is:

• minimal if @ β ordering s.t. F (Gβ) ⊂ F (Gα),

• minimum if @ β ordering s.t. |F (Gβ)| < |F (Gα)|.

Any elimination graph G?
α is a perfect elimination graph, since α is a perfect

ordering of this graph. Any perfect ordering of a graph is minimum, and any min-
imum ordering is minimal. If a graph is a perfect elimination graph, any minimal
ordering is perfect.

Rose also defines monotone transitivity as follows:
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Definition 1.12. An ordered graph Gα = (V,E, α) is monotone transitive if for
all x ∈ V :

i ∈ MAdj(x), j ∈ MAdj(x) ⇒ i ∈ Adj(j).

This definition is symmetric, it can not be true in a graph which contains only
one-way edges.

Lemma 1.1. For an ordered graph Gα, the followings are equivalent:

• Gα is monotone transitive,

• ∀ v ∈ V : MD(v) = ∅,

• P (Gα) is a perfect elimination process.

Lemma 1.2. An α ordering is perfect if:

i − j, i − k, i <α min(j, k) ⇒ j = k or j − k .

In other words, in a monotone transitive graph, vertex elimination adds no edges.
Monotone transitive graphs can be characterized by their cycle structure and their
minimal separators.

Definition 1.13. A graph G is triangulated if for every cycle C of length k > 3

there is an edge of G joining two nonconsecutive vertices of C. These edges are
called chords of the cycle.

Definition 1.14. A separator of a graph G = (V,E) is a subset S ⊂ V such that
the subgraph G(V \ S) consists of two or more connected components. A minimal
separator is a separator for which any subset of it is not a separator. Similarly,
given a, b ∈ V with a 6− b an a, b-separator is a separator such that a and b are in
distinct components after the separation; and a minimal a, b-separator is a minimal
one of these.

Theorem 1.1. For a graph G = (V,E) the followings are equivalent:

• ∃ α ordering such that Gα is monotone transitive,

• G is triangulated,

• for every non-adjacent x, y ∈ V pair, the minimal separator is a complete
subgraph.
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Finding out if a graph is perfect elimination graph is similar to the problem
of testing a directed graph for transitivity.

Definition 1.15. The transitive closure of a graph G = (V,E) is the graph
G+ = (V,E+), where (i → j) ∈ E+ if and only if i 6= j and there is a path
from i to j in G.

Definition 1.16. A G graph is transitive if G = G+.

Lemma 1.3. For an ordered directed graph G = (V,E, α), (i → j) ∈ E ∪
F (Gα) if and only if there exists a path (i = v0, v1, . . . , vk = j) in G such that:

vl <α min(i, j) for ∀ 0 < l < k.

Lemma 1.4. Let G = (V,E, α) be an ordered graph, where α is a perfect elimination
ordering. For arbitrary x ∈ V let G′ = (V,E∪D(x)). Then α is a perfect elimination
ordering of G′ as well.

Corollary 1.1. If G = (V,E) is a perfect elimination graph, then for any x ∈ V
Gx = (V \ {x}, E(V \ {x}) ∪D(x)) is also a perfect elimination graph.

Corollary 1.2. If G = (V,E) is a perfect elimination graph and ∃ x ∈ V with
D(x) = ∅, then there is a perfect elimination ordering α such that α−1(1) = x.

Similarly as before, F is a minimal fill-in if @ H ⊂ F such that H is a fill-in.

Lemma 1.5. Let G = (V,E) be a perfect elimination graph and let F 6= ∅ be a
fill-in for it. (Note that G′ = (V,E ∪ F ) is also a perfect elimination graph.) Then
∃f ∈ F such that F \ {f} is also a fill-in.

From this lemma the next theorem follows:

Theorem 1.2. Let G = (V,E, α) be an ordered graph. Then α is a minimal elim-
ination ordering if and only if for all f ∈ F (Gα), the graph G?

α − f := (V,E ∪
(F (Gα) \ {f})) is not a perfect elimination graph, F (Gα) \ {f} is not a fill-in.

Theorem 1.3. A graph G is triangulated if and only if it has a perfect elimination
(or zero fill-in) ordering.

Chandran et al. [2] model the set of all perfect elimination orderings of a chordal
graph as the basic words of an antimatroid and use this connection as part of an
algorithm for efficiently listing all perfect elimination orderings of a given chordal
graph.
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Chapter 2

Examples of graphical models

2.1 A directed graphical model: Bayesian network

We speak about a Bayesian network when the graph representation of our multi-
variate probability space is a directed acyclic graph (DAG).

Definition 2.1. A simple directed graph G = (V,E) is called a directed acyclic
graph if there is an ordering σ : V → {1, 2, . . . , n} of the vertices such that for all
(i, j) ∈ E, σ(i) < σ(j), meaning there can not be a directed cycle in G.

Note that for a DAG such an ordering is a topological ordering. Now let
(X1, X2, . . . , Xn) be a random vector whose coordinates take values from (possi-
ble different) finite sets. Then with the well-known chain-rule, the joint probability
can be written as:

pX1X2...Xn = pX1 pX2|X1 pX3|X1X2 . . . pXn|X1...Xn-1 .

Some terms in the above equation become simpler if we know or suppose some con-
ditional independences between certain variables. After the possible simplifications
we can build as DAG as follows, from i = 1 to n:

• assign a vertex to every variable: Xi → vi,

• allow an edge vi → vj if there is a factor of the form pXj|...Xi....

The result of this procedure is always a DAG, however the joint distribution does
not determine the graph uniquely, it depends on the ordering of the variables, and
if the distribution is not strictly positive, then the simplifications are not unique
either.
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Definition 2.2. If we already have a DAG on n vertices, then we say that the
pX1X2...Xn fulfills the directed factorization property if:

pX1X2...Xn =
n∏
i=1

pXi|X1...Xi-1
=

n∏
i=1

pXi|XPar(i)
,

where Par(i) means the parents of vertex i in the DAG:

Par(i) = {j ∈ V | (j, i) ∈ E}

and the ordering of the variables is a topological ordering.

The edges in a BN represent casual dependencies between the variables. Nodes
that are not connected represent variables that are conditionally independent of
each other given the parents of the higher numbered vertex. This property is called
the Directed Local Markov property of the distribution of the random vector
X = (X1, . . . , Xn). More precisely let

Ant(i) = {i− 1, . . . , 1} \ Par(i)

denote the set of anteriors of i (the set of its non-descendants except its parents).
Then the property means that

Xi⊥⊥XAnt(i)|XPar(i) holds ∀ i = 1, . . . , n . (2.1)

I.e. Xi (future) and XAnt(i) (past) are independent conditioned on XPar(i) (present).
This generalizes the fundamental property of Markov-chains, in which case G is just
a directed path.

2.1.1 d-separation and the Bayes-ball algorithm

Bayesian networks encode the conditional independence properties of the probability
space. We can determine if a conditional independence holds in a BN by using a
graph separation criterion called d-separation (see [16] for more details), which
stands for direction-dependent separation.

In a given directed acyclic graph G, two vertices are d-separated by the vertex-
subset S if there is no active path between them. The active paths are those which
are not blocked by S. Note that this blocking is not identical to separation. The
formal definition of active paths and blocking is somewhat complex. In the following
definitions, by path in a DAG we mean, after forgetting the edge directions, an
undirected path. Sometimes these are called chains.
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According to [13], in a DAG, a path from a to b is blocked by S if the path
contains a vertex c such that:

• either c ∈ S, and arrows do not meet (not a sink) at c;

• or c /∈ S, and arrows do meet (sink) at c, or c has no descendants in S.

Descendants of a vertex are those vertices which are reachable from the given vertex
on a directed path. However, an alternative definition is given in [25]. In a DAG, a
path from a to b is active given S if for every vertex c on the path:

• c ∈ S ∪ Par(S) if arrows meet (sink) at c;

• c ∈ V \ S \ {a, b} if it is a transition vertex.

For the terms sink and transition see Fig. 2.1. The Bayes-ball algorithm gives a nice
graphical interpretation.

In [7] it is shown that for every DAG G there exists (can be constructed) a prob-
ability distribution pV which embodies all the conditional independences displayed
in G. Also there is no stronger criterion than d-separation, to check the conditional
independences of a BN:

XA⊥⊥XB | XS ⇔ A and B are d-separated by S .

If the left hand side of the above term is fulfilled for every partitioning of the vertices,
then it is called Directed Global Markov property.

Bayes-ball algorithm

Again, to see if XA⊥⊥XB | XC in a BN for some disjoint subsets A,B,C ⊂ V , we
need to check if every variable in A is d-separated from every vertices in B by the
vertices of C. In other words, we have to check Xa⊥⊥Xb | XC for all a ∈ A and
b ∈ B.

Graphically if we condition on the vertices of C, we shade them in (see the blue
nodes on Fig. 2.2). This is the starting step. Since we have to check paths, we have
to consider how the possible triples of vertices may occur. For this see Fig. 2.1, the
names are from [26].

(transition) (source) (sink)

Figure 2.1: The three types of triples

The Bayes-ball algorithm works as follows: we shade all nodes in C, place balls
at each node in A (or B), let them bounce around according to the ten rules below,
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and then check if any of the balls reach any of the nodes in B (or A). If there is
such a ball we reject the conditional independence, otherwise accept it.

Boundary conditions (the vertex on the right is the leaf)

Conditioned variable on the path

Unconditioned variable on the path

Figure 2.2: The 10 rules of Bayes-ball

Note that balls in this setup can travel opposite to the edge directions. The edge
directions only indicate which rule a ball should follow during its journey.

On Fig. 2.2 the boundary conditions show what happens when a ball reaches
a leaf: it can bounce back (turn arrow) or stuck there (red rectangle). The other
conditions show what happens when a ball tries to pass through a vertex. The red
rectangles mean that a ball is stucked there, can not go further, and the two arrows
mean that a ball can pass through.

2.2 An undirected graphical model: Markov ran-

dom field

If the random variables in the probability space satisfy one of the Markov properties
with respect to some undirected graph then it is called a Markov random field. A
BN is always a DAG, whereas an MRF is undirected and possibly cyclical. There
are different type of Markov properties which can be satisfied.

Definition 2.3. The Global Markov property (GM) of a joint distribution with
respect to an undirected graph G is defined as follows:

XA⊥⊥XB | XS (2.2)

holds for any vertex-subset S separating disjoint vertex-subsets A and B.

Definition 2.4. The Local Markov property (LM) of a joint distribution with re-
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spect to an undirected graph G is defined as

Xi⊥⊥XV \Cl(i) | XAdj(i), ∀ i ∈ V , (2.3)

where Cl(i) = Adj(i) ∪ {i}.

Definition 2.5. The Pairwise Markov property (PM) of a joint distribution with
respect to an undirected graph G holds if

Xi⊥⊥Xj | XV \{i,j}, ∀ i 6= j (∈ V ) . (2.4)

It is easy to see that:

(GM)⇒ (LM)⇒ (PM) .

So the Global Markov property is stronger than the Local Markov property, which
in turn is stronger than the Pairwise one.

These properties are hard to check by definition, but luckily we have a sufficient
and necessary condition for positive probability distributions given by Hammersly
and Clifford. For this we need an extra property.

Definition 2.6. A probability distribution pV is a Gibbs distribution with re-
spect to an undirected graph G if pV factorizes over the cliques (maximal com-
plete subgraphs) of G, more precisely:

pX1...Xn =
1

Z

∏
C∈C

ψC , where: (2.5)

• C = {C ⊂ V : C is a clique of G},

• ψC is a positive (real-valued) function for all C ∈ C over the possible states of
the variables in C,

• Z =
∑

X1

∑
X2
· · ·
∑

Xn

∏
C∈C ψC is a normalizing constant, which is a marginal-

ization of the above product over all possible states (configurations) of the n
variables.

In some literature, e.g. [13], this property is called undirected factorization prop-
erty. The connection with Def. 2.2 will have importance later, for example in
Sec. 3.2.1.

In graph theory the cliques are often the complete subsets of a graph. However
in statistics (and that is the convention we will follow) the cliques are usually the
maximal complete subsets. We will use the above notation C for the set of cliques
over a graph in the sequel.
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The ψC functions are sometimes referred to as factor potentials (if the domain is
not a clique for example) or clique potentials. Sometimes they are defined as they
already include Z. Note that a conflicting terminology is in use: the word potential
is often applied to the logarithm of ψC . It happens because in statistical mechanics,
log(ψC) has a direct interpretation as the potential energy of a configuration over
C. The normalizing constant is sometimes called partition function.

It is also worth noting that these functions can be multiplied together or split
up in different ways. Therefore without loss of generality the above definition can
be restated to include every complete subsets, not just the maximal ones.

Theorem 2.1 (Hammersly–Clifford theorem). A strictly positive probability distri-
bution with respect to an undirected graph G satisfies the PM property if and only if
it is a Gibbs distribution with respect to this G.

The relationship between Markov random fields and Gibbs distributions was
initiated by R. Dobrushin and F. Spitzer in the context of statistical mechanics. The
theorem is named after J. Hammersley and P. Clifford. They proved the equivalence
in [8] in 1971. Their proof is rather complex, here we show an easier one.

Proof. For the backward direction take an arbitrary i vertex and see the conditional
probability of it given its neighbors:

pXi|XAdj(i)
=

pXCl(i)

pXAdj(i)

=

∑
V \Cl(i)

∏
C∈C

ψC∑
i

∑
V \Cl(i)

∏
C∈C

ψC
=

=

∑
V \Cl(i)

∏
C∈C
i∈C

ψC
∏
C∈C
i/∈C

ψC

∑
i

∑
V \Cl(i)

∏
C∈C
i∈C

ψC
∏
C∈C
i/∈C

ψC
=

∏
C∈C
i∈C

ψC
∑

V \Cl(i)

∏
C∈C
i/∈C

ψC

∑
i

∏
C∈C
i∈C

ψC
∑

V \Cl(i)

∏
C∈C
i/∈C

ψC
=

=

∏
C∈C
i∈C

ψC

∑
i

∏
C∈C
i∈C

ψC
=

∏
C∈C
i∈C

ψC

∑
i

∏
C∈C
i∈C

ψC
·

∏
C∈C
i/∈C

ψC

∏
C∈C
i/∈C

ψC
=

=

∏
C∈C

ψC∑
i

∏
C∈C

ψC
=

pXV

pXV\{i}

= pXi|XV\{i} .

This shows that the LM property is fulfilled, thus PM also.
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For the forward direction let’s take the following construction:

fS(·) :=
∏
A⊂S

(pXA
(·))(−1)|S|−|A|

The domain of fS is of course the possible configurations of the random vector XS.
The exponent is 1 if the difference between the sizes of S and A is even and −1 if
odd. We have to show that:

1. pV(·) =
∏

S⊂V fS(·) for all configurations;

2. fS(·) = 1 if S is not a complete subgraph of G.

Let’s see the first point:∏
S⊂V

fS =
∏
S⊂V

∏
A⊂S

pXA

(−1)|S|−|A|

=
∏
A⊂V

|V |−|A|∏
k=0

pXA
(|V |−|A|k )(−1)k

=
∏
A⊂V

pXA

∑|V |−|A|
k=0 (|V |−|A|k )(−1)k = pV .

The first transformation comes from the fact that A ⊂ S ⊂ V and counting the
possible subsets (S’s) in which theA can be in, separating them by the size (|S|−|A|).
More precisely, the running variable k counts the number of vertices we should add
to A to reach the size of an S, and the binomial coefficient shows the number of such
subsets (S’s). It is a well known trick, actually a consequence of binomial theorem,
that:

n∑
k=0

(
n

k

)
(−1)k = (1− 1)n = 0 ∀ n > 0 .

Using this, the exponent becomes zero for all A ⊂ V except V itself.
For the second point consider an arbitrary S ⊂ V which is not a complete

subgraph. In this case we have a, b ∈ S which are not connected to each other. We
see the following transformations:

fS =
∏
A⊂S

pXA

(−1)|S|−|A|

=
∏

T⊂S\{a,b}

pXT

(−1)|S|−|T | pXT∪{a}
(−1)|S|−|T |−1

pXT∪{b}
(−1)|S|−|T |−1

pXT∪{a,b}
(−1)|S|−|T |−2

=
∏

T⊂S\{a,b}

[
pXT

pXT∪{a,b}

pXT∪{a} pXT∪{b}

](−1)|S|−|T |
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Now we use the following formula:

pXT
(·)

pXT∪{a}(·)
=

∑
a pXa|XT

(·) pXT
(·)

pXa|XT
(·) pXT

(·)
=

∑
a pXa|XT

(·) pXT∪{b}(·)
pXa|XT

(·) pXT∪{b}(·)

=

∑
a pXa|XT∪{b}(·) pXT∪{b}(·)
pXa|XT∪{b}(·) pXT∪{b}(·)

=
pXT∪{b}(·)
pXT∪{a,b}(·)

For the first step we used the Bayes-theorem. In the second step we could simplify
the the ratio by pXT

since it is independent of the running variable a, but instead we
just switch to pXT∪{b} . The next identity is true because a and b are conditionally
independent given T (using PM property). By the above formula we can see that
every terms in the product is 1, thus the second point is proved. Therefore we have
a factorization over the complete subsets, which can be easily grouped to have a
factorization over the cliques.

At this point we have that under the condition of Thm. 2.1:

(GM)⇒ (LM)⇒ (PM)⇔ Gibbs w.r.t G .

Actually it can be shown that any Gibbs distribution with respect to a graph G ful-
fills the GM property. Therefore under the condition of Thm. 2.1 the four condition
becomes equivalent:

(GM)⇔ (LM)⇔ (PM)⇔ Gibbs w.r.t G .

In general the potentials do not have a probabilistic interpretation, but we can say
something like: values (configurations) with higher potential are more probable.

If we don’t have a graph representation yet, but we know that our joint distri-
bution factorizes over some subsets of the variables:

pV := pX1...Xn =
1

Z

∏
A⊂{X1,...Xn}

ψA , (2.6)

then we can easily create a graph G by assigning each variable of the probability
space to a vertex (as usual) and to every available ψA we place a clique over the
vertices assigned to the variables in A. By this method pV will be trivially a Gibbs
distribution over the graph G created.
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2.3 A discrete MRF: Graphical log-linear models

2.3.1 Contingency tables

The observations for the components of the random vector XV = (X1, . . . , Xn) can
be collected and stored in a so-called contingency table structure. The entries
are coming from the sample space (state space) XV = X1 × · · · × Xn as before.
These possible n-tuples x = (x1, . . . , xn) ∈ X are called cells. Altogether there are∏n

i=1 |X | cells. Under contingency table we understand the cells and cell counts,
N(x) for all x ∈ X , where the non-negative integer N(x) is the number of observa-
tions for the random vector X = (X1, . . . , Xn) that fall in the cell x out of the total
m observations. In other words, m is the sample size and m =

∑
x∈X N(x). When

m is kept fixed, the joint distribution of a cell count, N(x) as random variable, is
multinomial with parameters m and pV(x), x ∈ X :

Prob (N(x) = cx , x ∈ XV ) =
m!∏

x∈XV
cx!

∏
x∈XV

pV(x)cx . (2.7)

In the most simple saturated model, the parameters are only constrained by the
sampling procedure. Under multinomial sampling the ML-estimate of the parame-
ters is obtained by equating the count N(x) to the multinomial expectationm·pV(x),
hence p̂V(x) = N(x)

m
for all x ∈ XV , which is the empirical distribution.

With some restrictions on the marginal distributions we can define more special
models. We can define marginals for the contingency table similarly as for the
subset of variables earlier. The A-marginal of the contingency table corresponding
to a given subset of the variables XA = {Xi : i ∈ A}, with A ⊂ V , is given by the
marginal cell counts as:

N(xA) =
∑

x′∈XV :
x′A=xA

N(x′) =
∑

xV \A∈XV \A

N(xA,xV \A) ∀ xA ∈ XA =×
i∈A
Xi .

Therefore theA-marginal counts form a |A|-dimensional contingency table of
∏

i∈A |Xi|
cells, and there are

(
n
|A|

)
possible |A|-dimensional marginals (|A| = 1, . . . , n). Like-

wise, the A-marginal distribution of the {pV(x) : x ∈ XV } distribution is defined as
earlier:

pA(xA) =
∑

x′∈XV :
x′A=xA

pV(x′) =
∑

xV \A∈XV \A

pV(xA,xV \A) ∀ xA ∈ XA .
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2.3.2 The log-linear model

Given a set Γ := {A : A ⊂ V } called generating class, we can define the log-
linear model as follows:

ln pV(x) = f0 +
∑
A∈Γ

fA(xA) , (2.8)

where the individual terms represent interactions (fA : XA → R functions) corre-
sponding to A ∈ Γ. fA depends on x only through it’s A-marginal xA, and the
constant term f0 corresponds to ∅ ∈ Γ (it also fits into the forthcoming hierarchical
structure of Γ). This is in accord with the potential representation of the previous
section, see Eq. 2.6.

Hierarchical log-linear models

We can consider the hierarchical log-linear models, where the following restriction
on the generating class holds:

A ∈ Γ and A′ ⊂ A ⇒ A′ ∈ Γ ∀ A ∈ Γ ,

and some normalizing conditions are also needed (see [5]).
Note that any generating class of a log-linear model can be extended to meet

the above condition by introducing constant interaction functions for the missing
subsets. Therefore it is enough to consider those elements of a generating class which
are not contained by an other one. These are called maximal interactions and from
now on a generating class Γ will be defined by these only.

If pV obeys a hierarchical log-linear model, it means that it can be constructed as
the product of functions defined on its lower dimensional marginals up to a certain
dimension. In other words, the product contain all the lower order interactions and
main effects of the maximal interactions we wish to study.

In a special class of hierarchical log-linear models, the graphical ones, the gen-
erating class is specified with only the maximal interaction sets:

C = {C |C is a clique of the underlying graph} ,

thus Γ = C. In this case, there is another equivalent form of Eq. (2.8) that uses an
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exponential parameterization and shows that we are in exponential family:

pV(x) = pθ(x) = exp

{∑
C∈C

〈θC · IC〉(x)− Z(θ)

}

= exp

{∑
C∈C

∑
yC∈XC

θC,yC
· IC,yC

(x)− Z(θ)

}
.

Here θ = {θC : C ∈ C} is the canonical parameter, where

θC = {θC,yC
, yC ∈ XC} ∈ R|XC |

is a vector, and so θ is a
∑

C∈C |XC |-dimensional vector, which dimension is usually
less than |XV | =

∏n
i=1 |Xi|.

The canonical statistic IC also takes values in {0, 1}|XC | for all C ∈ C. In fact,
the IC ’s are multiple indicator functions consisting of usual indicator functions of
all possible states in XC . More exactly,

IC = {IC,yC
, yC ∈ XC} ∈ R|XC |,

where IC,yC
(x) is 1 if xC = yC and 0 otherwise. Obviously 〈., .〉 denoted the usual

inner product in the above finite-dimensional spaces. Z(θ) is the log-partition func-
tion, which does not depend on x ∈ XV . In accord with Eq. (2.8):

fC(x) := fC(xC) =
∑

yC∈XC

θC,yC
· IC,yC

(x) = 〈θC , IC〉 .

In exponential family, the sum of the canonical statistics over the sample, i.e. the
frequencies of the cells within the cliques:

N(yC) =
m∑
i=1

IC,yC
(x(i)) ,

are the sufficient statistics entering into the estimation of the mean value parameters
(here m denotes the sample size).

The mean value parameters (in other words, moment parameters) are the expec-
tations of the cell counts:

µ(x) := E(N(x)) .

In regular exponential families, there is a one-to-one correspondence between the
mean value and the canonical parameters, see [23]. Further, the ML-estimate of the
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mean value parameters come from the moment-matching equations

µ(xC) = N(xC), xC ∈ XC , C ∈ C .

This system of equations is solved by the Iterative Proportional Scaling algorithm
of page 24.

Graphical log-linear models

Again, our log-linear model is hierarchical, so it suffices to store only the maximal
interactions of the generating class Γ. Further we assume that each variable is
included in at least one interaction, in other words, all main effects are present:
∪A∈Γ = V .

To characterize this subclass, the following hypergraph notions are useful. The
generating class Γ uniquely defines the following hypergraph H:

• the vertices correspond to the variables and constitute the vertex set V =

{1, . . . , n} as before,

• the hyperedges are the elements of the maximal interactions of Γ.

As the model is hierarchical, the subsets of the maximal interactions are also inter-
actions (elements of Γ), but they are not hyperedges in H.

The interaction graph GH = (V,E) corresponding to H, or equivalently, to
the hierarchical log-linear model with generating class Γ, is defined in the obvious
way: its vertex set is again V , and two vertices are connected if and only if they are
together in at least one interaction.

Note that different hierarchical models may have the same interaction graph.
However there is a class of models where there is a one-to-one correspondence be-
tween the model and its interaction graph. Therefore the interaction graph is capable
to describe such a model.

Definition 2.7. The hierarchical log-linear model with generating class Γ is graph-
ical if the hyperedges in the hypergraph H defined above are identical to the cliques
of the interaction graph GH .

For example, when the generating class is

Γ = {{1, 2}, {2, 3}, {1, 3}}, (2.9)

then the interaction graph has the clique {1, 2, 3}, which is not an interaction. So our
log-linear model is not a graphical interaction model. However, when the generating
class is

Γ′ = {{1, 2, 3}}, (2.10)
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then the interaction graph has the clique {1, 2, 3} and it is an interaction in Γ′ so
our log-linear model is a graphical interaction model.

Note that model (2.9) corresponds to the Ising model on 3 vertices. When more
than 3 vertices, define the Ising model, then the cliques are indeed the vertex-pairs,
so those constitute the generating class at the same time.

Theorem 2.2 (see [18]). The distribution pV obeying the hierarchical log-linear
model with generating class Γ defines an MRF if and only if the log-linear model is
graphical.

Decomposable log-linear models

In most of the applications we have a contingency table of large size. Even in case
of binary variables, there are 2n cells. However there are models where the ML-
estimate of the cell probabilities under the model’s assumptions can be given by
explicit formulas. These models can be characterized by the special dependency
structure of the variables when we build a graph or hypergraph on them. These are
the decomposable models.

Definition 2.8. The hierarchical log-linear model with generating class Γ is decom-
posable if its interaction graph is decomposable.

Definition 2.9. The graph G is decomposable if it is either a complete graph or
its vertices can be partitioned into disjoint subsets V = A ∪B ∪ C such that

• G(C) (the subgraph induced by the vertices in C) is a complete subgraph;

• C separates A from B (in other words, C is a vertex cut-set between A and
B: after removing the vertices of C the vertices of A and B will be in separate
components);

• the subgraphs G(A ∪ C) and G(B ∪ C) are both decomposable.

Proposition 2.1 (see [18]). A log-linear model is graphical whenever it is decom-
posable.

Again, in case of contingency tables the graphical log-linear models coincide with
the MRFs. However, the decomposable models are proper subsets of these. In [5] the
authors show examples of graphical interaction models that are not decomposable.

Note that some authors call the decomposable models Markov, as here the chain
of the cliques behaves like a Markov chain. It is misleading since that special Markov
chain property is stronger than the condition for being an MRF.
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C1 = {1, 2, 3, 4}

1 2

4 3

(a)

C1 = {1, 3, 4}
C2 = {2, 3, 4}
C3 = {3, 4, 5}

1 4

2 3

5

(b)

C1 = {1, 2}
C2 = {1, 3}
C3 = {2, 4}
C4 = {2, 5}
C5 = {3, 4}
C6 = {3, 5}

1 2

4 3

5

(c)

C1 = {1, 2, 5}
C2 = {2, 3, 5}
C3 = {3, 4, 5}
C4 = {4, 1, 5}

1 2

4 3

5

(d)

Figure 2.3: Examples of graphical log-linear models and their maximal interactions

The concept of decomposability will be much more important in Sec. 3.1, where
we show that this graph property is equivalent to chordality (see Def. 1.13), which
is useful in many applications.

On Fig. 2.3 we can see some examples: (a) and (b) are decomposable, (c)
and (d) are not. One may think that (d) is decomposable as well, but it is not:
{1 − 2 − 3 − 4} is a chordless 4-cycle in it.

2.3.3 Iterative proportional scaling

In hierarchical log-linear models, the mean value parameters, thus the cell prob-
abilities are estimated based on the clique frequencies, and are obtainable by the
Iterative Proportional Scaling (IPS) algorithm, see [22] and [13] or [4] for an infor-
mation theoretic view. The goal of this algorithm is to make the clique probabilities
equal to the corresponding relative frequencies, for all cliques.

Recall that
{ N(xC) : xC ∈ XC , C ∈ C }

is a sufficient statistic for the canonical parameters of the log-linear model. Moreover,
as we are in exponential family, the C-marginals of the ML-estimates (µ̂()’s) of the
mean value parameters (µ()’s) are equal to their relative frequencies

µ̂(xC) = N(xC), x ∈ XC , C ∈ C .

To solve the system of equations

µ(xC) = N(xC), xC ∈ XC , C ∈ C,

we have to recursively adjust the above marginal counts going through the cliques
in a cyclic iteration that finds the fixed point of the mapping T = TC1 . . . TCk

(here
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k is the cardinality of C), where

TCi
µ(t)(x) = µ(t)(x)

N(xCi
)

µ(t)(xCi
)
, i = 1, . . . , k ∀x ∈ XV .

So starting from some µ(0)() defined for all x ∈ XV , the iteration is

µ(t+1)(x) = Tµ(t)(x), x ∈ XV .

In [18] it is proved that if N(xC) > 0 and µ(0)(xC) > 0, for all x ∈ XV and for all
C ∈ C, then the sequence µ(t)(x) converges as t→∞, for all x ∈ XV .

With the additional condition, that µ(0)(xA) = N(xA) can not hold for A /∈ C,
the sequence µ(t)(x) converges to the theoretically guaranteed unique ML-estimate
of the mean value parameter µ(x):

µ(t)(x)→ µ̂(x) as t→∞, ∀x ∈ X

or equivalently µ(t)(x)
m
→ p̂(x), where m is the sample size.

The proof is based on information divergence minimization, see [18, 22]. The
additional condition excludes the possibility that some extra subset of variables is
added to the prescribed set of interactions (which are the cliques). In particular,
the cell frequencies do not provide a good starting, as they belong to the satu-
rated model. The suggested starting is the uniform distribution over the cells, i.e.,
µ(0)(x) = m

|XV |
, where of course |XV | is the total number of the cells.

Note that the same idea is hidden behind the so-called covariance selection
method in the Gaussian case, see Sec. 2.4.

In general, in hierarchical log-linear models, we cannot give the ML-estimate of
the mean value parameters in explicit form, this is why the above infinite iteration
is needed that converges to this estimate. However, when the log-linear model is
decomposable, we have the ML-estimate in explicit form, and in accord with this,
we can construct an iteration that converges in two runs. The iteration facilitates
the quick computation of the clique marginals. This is the junction-tree algorithm
of Sec. 3.3.

2.4 A continuous MRF: Gaussian graphical models

2.4.1 Partitioned covariance matrices and partial correlations

In this section we consider the multivariate normal distribution. Let X ∼ Nn(µ,Σ)

be from now on an n-dimensional normal random vector with expectation (vector)
µ and positive definite (notation: > 0), symmetric n×n covariance matrix Σ. Note
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that this distribution belongs to the exponential family with canonical parameter
(Σ−1,Σ−1µ). The also positive definite, symmetric matrix K := Σ−1 of entries kij

is called concentration matrix, and its zero entries indicate conditional indepen-
dences between two components of X, conditioned on the remaining components.
This is supported by the following facts, where the initial setup is that we take the
disjoint partitioning A ∪B of the n variables, where |A| = p and |B| = q.

Proposition 2.2 (see [1]). Let the n×n covariance matrix Σ > 0 be partitioned as

Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
,

where ΣAA, ΣBB are covariance matrices of XA and XB, where ΣAB = ΣT
BA is their

cross-covariance matrix. Then the symmetric matrix Σ−1 > 0 has the following
partitioned form:

Σ−1 =

(
Σ−1
A|B −Σ−1

A|BΣABΣ−1
BB

−Σ−1
BBΣBAΣ−1

A|B Σ−1
BB + Σ−1

BBΣBAΣ−1
A|BΣABΣ−1

BB

)
,

where
ΣA|B := ΣAA −ΣABΣ−1

BBΣBA .

Further, Σ > 0 is equivalent to the fact that both ΣBB and ΣA|B are regular (invert-
ible) matrices (actually they are positive definite).

Theorem 2.3. Let (XT
A,X

T
B)T ∼ Np+q(µ,Σ) be a random vector, where the expec-

tation µ and the covariance matrix Σ are partitioned (with block sizes p and q) in
the following way:

µ =

(
µA

µB

)
, Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Then the random vector XA conditioned on XB = xB has the conditional distribution
of Np(ΣABΣ−1

BB(xB − µB) + µA,ΣA|B).

Note that the conditional covariance matrix ΣA|B does not depend on the value
xB of the condition XB. Further, for the conditional expectation, which is the
expectation of the conditional distribution, we get that

E(XA | XB = xB) = ΣABΣ−1
BB(xB − µB) + µA .

Therefore,
E(XA|XB) = ΣABΣ−1

BB(XB − µB) + µA

which is a linear function of the coordinates of XB. In the p = q = 1 case, it is
called regression line, while in the p = 1, q > 1 case, regression plane.
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Summarizing, in case of the multidimensional normal distribution, the regression
functions are linear functions of the variables in the condition, which fact has im-
portant consequences in the multivariate statistical analysis. Since µ is just a shift,
in the following parts we will assume µ = 0, i.e. the variables are mean centered.

Theorem 2.4. Let X = (X1, . . . , Xn)T ∼ Nn(0,Σ) be a random vector, and let
V := {1, . . . , n} denote the index set of the variables, n ≥ 3. Assume that Σ is
positive definite. Then

rXiXj |XV \{i,j} =
−kij√
kiikjj

i 6= j,

where rXiXj |XV \{i,j} denotes the partial correlation coefficient between Xi and Xj

after eliminating the effect of the remaining variables XV \{i,j}. Further,

kii =
1

Var(Xi | XV \{i})
i = 1, . . . , n ,

is the reciprocal of the conditional (residual) variance of Xi conditioned on the other
variables XV \{i}.

Definition 2.10. Let X ∼ Nn(0,Σ) be random vector with positive definite Σ.
Consider the regression plane

E(Xi | XV \{i} = xV \{i}) =
∑

j∈V \{i}

βji·V \{i} · xj, j ∈ V \ {i} ,

where xj’s are the coordinates of xV \{i}. Then we call the coefficient βji·V \{i} the
partial regression coefficient of Xj when regressing Xi with XV \{i}, j ∈ V \ {i}.

Theorem 2.5. Consider the above setting. The following is true:

βji·V \{i} = −kij
kii
, j ∈ V \ {i} .

Corollary 2.1. An important consequence of Thm. 2.4 and Thm. 2.5 is that

βji·V \{i} = rXiXj |XV \{i,j}

√
kjj
kii

= rXiXj |XV \{i,j}

√
Var(Xi | XV \{i})

Var(Xj | XV \{j})
, ∀j ∈ V \ {i} .

The formula is analogous to the one used in unconditioned regression. Therefore
if we do a regression of Xi with the other variables, only the Xj variables whose
partial correlation with Xi (after eliminating the effect of the remaining variables)
is not 0 enter into the regression.
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Testing hypotheses about partial correlations.

For i 6= j we want to test the hypothesis:

H0 : rXiXj |XV \{i,j} = 0 .

I.e., that Xi and Xj are conditionally independent conditioned on the remaining
variables. Equivalently, H0 means that βij|V \{i} = 0, βji|V \{j} = 0, or simply kij =

kji = 0. Note that Σ > 0 is assumed.
To test H0 in some form, several exact tests are known that are usually based

on likelihood ratio tests. The following test uses the empirical partial correlation
coefficient, denoted by r̂XiXj |XV \{i,j} , and the following statistic is based on it:

B = 1− (r̂XiXj |XV \{i,j})
2 =

|SV \{i,j}| · |SV |
|SV \{i}| · |SV \{j}|

,

where S is the sample size times the empirical covariance matrix of the variables in
the subscript (its entries are the product-moments).

It can be proven that under H0 the test statistic

T =
√
m− n ·

√
1

B
− 1 =

√
m− n ·

|r̂XiXj |XV\{i,j}|√
1− (r̂XiXj |XV \{i,j})

2

is Student’s t distributed with m−n degrees of freedom. Therefore we reject H0 for
large values of T .

2.4.2 The model and the covariance selection

Let again XV ∼ Nn(µ,Σ) be an n-dimensional normal random vector. We can form
a graph G on the vertex/variable-set V , where V corresponds to the components of
XV and the edges are drawn according to the rule:

[i, j] ∈ E ⇔ kij 6= 0 , ∀ i 6= j .

This is calledGaussian graphical model. In applications (when Σ−1 is unknown)
we use the empirical partial correlation coefficients, and based on them, the above
exact test of Sec. 2.4.1 to check whether they significantly differ from 0 or not.
If we put zeros (based on the test results) into the no-edge ij positions of the
inverse covariance matrix, we can fit a so-called covariance selection model. The
restricted covariance matrix is denoted by Σ∗. With the help of the concentration
matrix K = Σ−1 ({kij}) and the vector h = Kµ ({hi}), the log-density of X has
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the following form:

ln f(x) = c− 1

2

∑
i∈V

kiix
2
i +

∑
i∈V

hixi −
∑
i 6=j

kijxixj ,

where c is a normalizing constant. Compared to the log-linear model of Sec. 2.3.2,
the log-density is additively decomposed as:

• quadratic main effects with coefficients −1
2
kii,

• linear main effects with coefficients hi,

• quadratic interactions with coefficients −kij.

Notice that the interaction terms of the highest order involve pairs of variables,
and there are no terms involving groups of variables with more than two elements.
The hyperedges are usual edges. This is in contrast to the discrete case and it
follows that within the normal distributions there are no hierarchical interaction
models which are not graphical. So it is an MRF.

Covariance selection model

Given a G undirected graph and a sample (of more than n elements), we want to
fit now a Gaussian distribution so that Xi is conditionally independent of Xj given
the remaining variables, denoted by Xi⊥⊥Xj | XV \{i,j}, whenever there is no edge
between i and j in G. This is the Pairwise Markov property of Eq. 2.4, which
is equivalent to the Local and Global Markov properties since we have a positive
distribution.

That is, we want to estimate the mean value parameters (µ and Σ) from the
i.i.d. sample X1, . . . ,Xm ∼ Nn(µ,Σ) (again m > n), such that the concentration
matrix (K) has zero entries in the no-edge positions: kij = 0 when [i, j] /∈ E.

This can be done by the covariance selection model. It can be proven (see
Thm. 5.3 of [13]) that under this model the ML-estimate of the parameters are:
µ̂ = X = 1

m

∑m
i=1 Xi and that of the restricted covariance matrix Σ∗ = {σ∗ij}n1 can

be calculated as follows. We estimate the entries in the edge-positions as in the
saturated model (no restrictions):

σ̂∗ij =
1

m
sij ∀ [i, j] ∈ E ,

where S = {sij}n1 =
∑m

k=1(Xk − X)(Xk − X)T . The other entries (in the no-
edge positions) of Σ∗ are free, but after taking K∗ = {k∗ij}n1 = Σ∗−1 with these
undetermined entries, we get the same number of equations for them from k∗ij = 0

whenever [i, j] /∈ E. To do so, there are numerical algorithms at our disposal, for
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instance, the iterative proportional scaling (see [13]). Actually the equations can
be stated for the cliques, and instead of the m > n condition m > c would suffice,
where c is the cardinality of the largest clique.
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Chapter 3

Chordality and decomposable
graphical models

In this chapter we will focus on chordality and graphical models with decomposable
graph representation. In Sec. 3.1 we examine equivalences of chordality. In Sec. 3.2
we show commonly used methods, usually preprocesses, used for such models. In
Sec. 3.3 we give a detailed description of the junction-tree algorithm. The goal of
this algorithm is to find marginal distributions for the variables in a graphical model,
possibly after absorbing some evidence. This algorithm makes the marginalization
more effective. We need two things to be able to construct a junction tree and use
the algorithm:

• the probability distribution is a Gibbs-distribution with respect to the given
graph G;

• the graph representation of the probability space (G) is triangulated, possibly
after some modifications.

It basically applies the belief propagation, also known as sum-product message pass-
ing method on a modified graph structure called junction tree. It utilizes the fact
that the belief propagation results in exact marginals for tree factor graphs, and
with a proper scheduling, it terminates in two steps.

3.1 Triangulated graphs

Recall that a simple undirected graph G = (V,E) is triangulated (or chordal) if
every cycle with more than 3 vertices has a chord. Just by inspection it is hard to
tell if a graph is triangulated or not. Luckily there are several properties which are
equivalent to the graph being triangulated.

Proposition 3.1. The following are all equivalent for a graph G:
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• G is triangulated;

• G is decomposable;

• the vertices of G have a perfect elimination ordering (or perfect number-
ing);

• the cliques of G have a junction tree structure;

• the cliques of G enjoy the running intersection property (RIP);

• the cliques of G fulfill Sundberg’s criterion;

• G is recursively simplicial;

• there is a numbering of the vertices in which order the adjacency matrix of G
contains a reducible zero pattern.

Before the proof we need to define the above terms. Recall that a perfect
elimination ordering of the vertices in a graph is such that for each vertex v the
neighbors of it that come later in the ordering form a complete subgraph. It is often
called simply a perfect numbering. Now see the other terms.

Definition 3.1. A graph G has a junction tree structure if the cliques of G can be
represented with a tree graph, where every node corresponds to one clique of G and
for any pair of cliques Ci, Cj, every clique on the (unique) path connecting them in
this tree contains Ci ∩ Cj.

This structure is also called clique tree, join tree or tree decomposition.

Definition 3.2. A graph G enjoys the running intersection property (RIP) if
there is an ordering of the cliques of G (C1, . . . , CK) such that:

• Hj−1 = C1 ∪ · · · ∪ Cj−1 and Cj is a decomposition of G for all j, i.e. Sj =

Hj−1 ∩ Cj is a separator,

• Rj = Cj \ Sj is called the j’th residual,

• S1 = ∅ and R1 = C1;

Note that in some literature the above sequence of cliques is called the junction
tree. Indeed, it gives a tree structure in the sense that we can represent this with a
graph, where every vertex represents a clique and the edges represent the separators
between them. In this case it is also worth noting that not every pairwise separator
is represented, however some are represented with multiplicity.
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Definition 3.3. A graph G fulfills Sundberg’s criterion if there is an ordering of
the maximal cliques of G (C1, . . . , CK) such that:

• Cj and Hj+1 = Cj+1 ∪ · · · ∪ CK is a decomposition of G for all j, i.e. Sj =

Cj ∩Hj+1 is a separator,

• Sk = ∅ and Rk = Ck,

Note that the above ordering [19] is a reversed RIP ordering.

Definition 3.4. A vertex is simplicial in a graph if its neighbors form a complete
subgraph. A graph is recursively simplicial if it contains a simplicial vertex and
when it is removed the remaining subgraph is recursively simplicial.

Note that if for a vertex i, Adj(i) is a complete subgraph then Adj(i) ∪ {i} is a
complete subgraph as well.

Definition 3.5. The adjacency matrix of graph G contains a reducible zero pat-
tern if there is a numbering of the vertices such that:

• if we denote with IG0 = {(i, j) | i < j, (i, j) ∈ V ×V, AGi,j = 0} the coordinate-
pairs where the upper part of adjacency matrix (AG) has zero elements, then
for each (i, j) ∈ IG0 and every h ∈ {1, 2, . . . , i− 1} it is true that (h, i) ∈ IG0 or
(h, j) ∈ IG0 or both.

Proof. We will not prove every direction.
triangulated ⇒ decomposable:
We can prove by induction that every chordal graph with n vertices is decom-

posable. This is trivially true for n = 1. Suppose that it is true for any n, then by
following argument it is true for a graph G with n+ 1 vertices:

1.: If G is complete, it is decomposable by definition, so suppose that G is not
complete.

2.: Since G is not complete, V contains a, b that are not neighbors. Let S ⊂ V

be a minimal set that separates a from b. Note that S can be empty. Let A be the
subset of V \ S connected to a by some path in V \ S, and let B be the remainder,
B = V \S \A, then S separates A from B in G. Therefore we have V as the disjoint
union V = A ∪ S ∪B, where S separates A from B in G and A, B are nonempty.

3.: We show that S is complete. Assume that S has cardinality at least 2,
otherwise it is trivially complete. For any two distinct nodes u, v in S, there are
paths (u, a1, . . . , ak, v) and (u, b1, . . . , bl, v) with ai ∈ A , bi ∈ B and k, l ≥ 1. Since
S is a minimal set that separates a from b , there must be a path from a to u and
from a to v, since the absence of one of these paths would imply that S was not
minimal. Now we have to see that u and v are neighbors. Take the path from u to v
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through A with minimal length, and similarly the path from u to v through B also
with minimal length. This pair of paths forms a cycle, which must have a chord.
The chord has to be between u and v since the minimality of the paths implies that
the chord cannot be between vertices that are both in A, nor can it be between
vertices that are both in B . And because S separates A from B the chord cannot
be between a vertex in A and one in B.

4.: The subgraphs induced by A∪S and B ∪S are chordal. Since if one of these
subgraphs contains a chordless cycle, then so does G.

5.: By the inductive hypothesis, these subgraphs are strictly smaller than G and
hence decomposable.

decomposable ⇒ recursively simplicial:
We can prove by induction that every decomposable graph with n vertices is

recursively simplicial. This is trivially true for n = 1.
1.: Since G is decomposable it contains a simplicial vertex. For this, we can

prove by induction the that any decomposable graph is either complete or has two
nonadjacent simplicial vertices which is a stronger statement. This is trivially true
for graphs with |V | = 1, and for the induction step, we notice that any decomposable
G is either complete, or V can be decomposed as sets A, S,B. If A∪ S is complete,
then any a ∈ A is simplicial. Otherwise the subgraph induced by A ∪ S has two
non-adjacent simplicial nodes, by the inductive hypothesis. Since S is complete, one
of these must be in A. Similarly, there is a simplicial b ∈ B.

2.: Since G is decomposable the subgraph corresponding to a subset of the
vertices is decomposable. Again, we can prove this by induction. It is trivially true
for graphs with |V | = 1. For the induction step, the result is trivially true if G is
complete, otherwise we consider the usual decomposition of V into A, S,B, where
S is complete and A∪S and S ∪B are decomposable. By the inductive hypothesis,
removing a node from S leaves A∪S and S∪B decomposable. Removing a node from
A leaves S ∪B unchanged, and either leaves A empty, in which case the remaining
subgraph, S ∪ B , is decomposable, or leaves A ∪ S decomposable by the inductive
hypothesis. Thus, the subgraph that remains when we remove a simplicial vertex v
from a decomposable G is also decomposable.

recursively simplicial ⇒ ∃ junction tree:
We can prove by induction that every recursively simplicial graph with n vertices

has a junction tree. This is trivially true for n = 1. Take a simplicial vertex v from
G , and let G′ be the subgraph that remains when we remove v. By the inductive
hypothesis, G′ has a junction tree T ′, and this can be extended to give a junction
tree for G. To see this, let C ′ be a clique in T ′ containing all neighbors of v in G . If
C ′ is precisely the set of neighbors of v , then we can add v to C ′ to give a junction
tree for G. It contains all cliques, and v is not in any other clique, so the junction
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tree property is trivially satisfied. If not, that is, if C ′ contains the neighbors of v
as a proper subset, then we add a new clique containing v and its neighbors to T ′,
with an edge to C ′. Since v is in no other clique and C \ {v} is a subset of C ′, this
is a junction tree for G.
∃ junction tree ⇒ triangulated:
We can prove by induction that the statement is true for junction trees with

k nodes. If the clique tree has only one node, then G is complete, hence chordal.
Assuming that the statement is true for some value of k, consider a graph with a
junction tree T containing k+1 nodes. Fix a leaf C of T , and let C ′ be the neighbor
of C in T , and let T ′ be the tree that remains when C is removed.

1.: If C ⊆ C ′, then T ′ is a junction tree for G.
2.: On the other hand, if C ∩ C ′ ⊆ C, removing the nonempty set R = C \ C ′

from V leaves a subgraph G′ that is chordal. To see this, notice that R has an empty
intersection with every clique in T ′. It is easy to see that T ′ is a junction tree for
G′ , and so G′ is chordal.

3.: It follows that G contains no chordless cycles. Indeed, if a cycle is entirely in
G′, it is not chordless. If the cycle is entirely in the complete subgraph defined by
C , it is not chordless. If the cycle intersects R , C ∩ C ′ and V \ C, then since the
subgraph defined by C ∩ C ′ is complete, the cycle has a chord.

recursively simplicial ⇔ ∃ perfect elimination ordering:
Define a simplicial vertex sequence as an ordering of the vertices of G that ex-

hibits the recursively simpliciality of the graph. As we progressively remove the
nodes in this order, the next node in the order is simplicial in the remaining sub-
graph. The same ordering is also a perfect elimination ordering trivially and vice
versa.

Sundberg’s criterion ⇔ running intersection property:
As noted before the two ordering is trivially the reversed of one another.
∃ perfect elimination ordering ⇒ RZP in an ordering:
The condition of reducible zero pattern can be translated as follows: under a

given ordering of the vertices if i9 j for some i < j, then h9 i or h9 j (or both)
for all h < i. It is easy to see that from a perfect elimination ordering 1, 2, . . . , n we
can read out a RIP ordering of the cliques as:

Residuals perfect elimination ordering
R1 = C1 n, n− 1, . . . , n− |C1|+ 1,

R2 = C2 \ S2 n− |C1|, . . . , n− |C1| − |C2 \ S2|+ 1,

. . . . . .
Rk = Ck \ Sk |Ck \ Sk|, . . . , 1
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Now we check the RZP condition for the given perfect ordering by separating the
cases based on the indicated RIP ordering.

If i ∈ C1, then @j > i such that i9 j. X
If i ∈ Cl \Sl for an arbitrary l ∈ {2, 3, . . . , k}, then for a j > i the following cases

are possible:

• j ∈ Cl \ Sl, so i→ j; X

• j ∈ Cm \ Sm for an m < l and i→ j, so j ∈ Sl, because that separates Cl \ Sl
from the union of the previous cliques; X

• j ∈ Cm \ Sm for an m < l and i9 j:

– If m = l − 1, meaning j ∈ Cl−1 \ Sl−1, then j /∈ Sl, because i→ s for all
s ∈ Sl, so h9 j for all h < i, because Sl is a separator. X

– If m < l− 1, then h9 j for all h < i, because Sl is separator and for all
s ∈ Sl j > s > i. X

Here we proved more. Not just that the existence of a perfect ordering guarantees
RZP, but a perfect ordering is also a suitable ordering for a RZP.

3.2 Methods to achieve chordality and to work with

such graphs

There are steps which are necessary before we can use the forthcoming junction-tree
algorithm. These steps are useful in case of other algorithms, which operate on
undirected or chordal graphs, or use the cliques or junction tree structure:

1. Moralization: if the graph is directed;

2. Triangulation: to make the graph chordal;

3. Clique-identification: easy for chordal graphs;

4. Junction tree construction.

We can start for example with a BN or an MRF, but similar steps, maybe some
additional ones, are necessary in other cases.
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3.2.1 Moralization

Moralization is needed if initially we had a directed graphical representation, for
example a Bayesian network. We will discuss this. In other directed cases we work
similarly, but mostly lean on expert judgment.

The factors of a Bayesian network are marginal or conditional probabilities, so
these are also potential functions in the sense described earlier on page 16. Therefore
a directed factorization is also an undirected factorization (with Z = 1 normaliza-
tion constant). Each vertex subset consists of a variable and its parents from the
Bayesian network. We can transform a Bayesian network into a Markov random
field by connecting (marrying) its parents for each variable and then dropping the
edge directions. By the moralization there will be conditional independences in the
(original) BN model that are not represented by the (new) MRF model.

(a) (b) (c)

Figure 3.1: Moralization

3.2.2 Triangulation

As mentioned above some algorithms can be used on chordal graphs only. At this
point, if we are lucky we already have a triangulated graph. Otherwise we can
triangulate (fill-in) the graph, for which procedure there are several methods. We
will describe one possible way. For more details on fill-in go back to page 8.

In [21] next to the Maximal Cardinality Search (discussed in Sec. 3.2.3) other
issues are also discussed, for example a fill-in procedure for undirected graphs which
are not triangulated. The fill-in procedure transforms the arbitrary undirected graph
into a chordal one. Finding a fill-in is easy, finding an optimal or minimal fill-in
however is a computationally hard problem.

Based on an arbitrary ordering of a graph we can get a fill-in as follows: starting
from vertex 1, connect the neighbors of it (with each other) which are not already
connected, take the next vertex and connect the higher numbered neighbors of it
(with each other) which are not already connected, repeat this step until vertex n.
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This method produces a triangulated graph for which the ordering of the vertices
used during the triangulation is suitable to use in the junction tree construction
since it is a perfect ordering in the new graph. Note however that this fill-in is really
not optimal, and rejects possible numerous conditional independence assumptions.

Note that fill-in can also be defined for directed graphs, see e.g. [20]. The process
of triangulation is called fill-in in [14] and [22] as well. For more details see Sec. 1.2
again.

3.2.3 Junction tree construction

A cluster tree of a graph G is a tree whose nodes represent some vertex-subsets
of G with the property that if a vertex (of G) is in two distinct nodes of the tree,
then the variable must be in every node (again these are vertex-subsets of G) on
the path between the two nodes. Also, for every edge of G, there must be a node
which contains both endpoints. This is in line with our earlier definition of the
junction tree. By this we mean that the cluster tree whose nodes are the cliques of
the (previously) triangulated moral graph will be our junction tree.

The junction tree construction is done based on a perfect ordering of the vertices.
There are numerous algorithms to find a perfect ordering of the vertices in a graph,
see [12].

To get the cliques of the triangulated graph and construct a junction tree based
on a perfect ordering 1, 2, . . . n− 1, n we proceed as follows, based on [24]:

1. Take the vertex labeled 1 and its neighbors and let them be M1.

2. Take the vertex labeled i and its neighbors labeled later (j > i) and let them
be Mi for all i = 2, 3, . . . .

3. Since the input was a perfect ordering, everyMi defined the above way will be
a complete subgraph, so we throw away those which are not cliques, i.e. those
which are contained by an "earlier" one.

4. We sort (relabel) the remained Mi’s (now truly cliques) based on their in-
dex i decreasingly to get a RIP-ordering, or increasingly to get a Sundberg’s
ordering.

Let the ordering of the cliques Ck, Ck−1, . . . , C1 (of course k < n since a chordal
graph can contain only that many cliques) be the above described one, which fulfills
the running intersection property. This ordering gives us a junction tree, see [13,
14]. The separators are given by intersections specified in the definition. Note again
that not every pairwise clique-intersections are present as separators, however some
of them are present with multiplicity.
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Since this ordering is perfect, it is also true that for all non-adjacent x, y ∈ V
pair the minimal separator is a complete subgraph, see Thm. 1.1. Let’s denote our
cliques with C1, C2, . . . , Ck.

Again, the perfect ordering of the vertices is translated to a λ ordering of the
cliques. For this λ ordering

Cλ(i) ∩ (
⋃

j:λ(j)<λ(i)

Cλ(j)) = Cλ(i) ∩ Cλ(j∗) = Sλ(i)

for a λ(j∗) < λ(i), for any i. A junction tree is easily constructed by attaching Cλ(i)
to any Cλ(j∗) satisfying the above. Although j∗ may not be uniquely determined,
Sλ(i) is. Indeed, the Sλ(i) sets are minimal complete separators.

Notice that now we have an ordering of the vertices (1, 2, . . . n) where the parti-
tioning of them (by the RIP ordering of the cliques) comes as:

Ck, Ck−1 \ Ck, . . . , C2 \ C3, C1 \ C2 .

We can get a partitioning

Ck \ Sk, Sk, Ck−1 \ Ck \ Sk−1, Sk−1, . . . , S2, C1 \ C2

by simply permuting the labels of the vertices party-by-part in the order k, k −
1, . . . 1; first in Ck and so on where it is necessary. This relabeling will not hurt
the junction tree structure and it is an other perfect ordering of the vertices, see
Fig. 3.2. It gives us a more causal way to look at the vertices, for example we can
form a DAG in this modified perfect ordering on the skeleton of G, j → i if i < j.
This way we can think of the labels as ages.

Ck

Ck−1 \ Ck

...

C2 \ C3

C1 \ C2

Ck \ Sk
Sk

Ck−1 \ Ck \ Sk−1

Sk−1

...
S3

C2 \ C3 \ S2

S2

C1 \ C2

Figure 3.2: Junction tree reordering
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Maximum Cardinality Search

It is crucial to find a perfect elimination ordering and there are many ways to find
one. A method, called Maximal cardinality search (MCS) was first described by
Tarjan and Yannakakis in [21]. The algorithm is as follows:

Number the vertices from n to 1 in decreasing order. As the next vertex to
number, select the vertex adjacent to the largest number of previously numbered
vertices, breaking ties arbitrarily.

Lemma 3.1. Let α be an ordering of a chordal graph G. It is perfect if it has the
following property:

i <α j <α k, [i, k] ∈ E, [j, k] /∈ E ⇒ ∃x ∈ V s.t. j <α x, [j, x] ∈ E, [i, x] /∈ E

Theorem 3.1. Any ordering generated by MCS has the property in the previous
lemma, thus it is a perfect ordering if G is chordal.

In other words, if we have a chordal graph, and we know that it is a chordal
graph, then an ordering generated by the MCS is a perfect elimination (or zero-
fill-in) ordering. The question is: We got an ordering α from the fairly simple
MCS-algorithm, but is our graph chordal at all?

From Prop. 3.1 it is clear that chordality is equivalent to the existence of a
perfect elimination/ zero fill-in/ monotone transitive ordering. So we just have to
check whether our so obtained ordering α is perfect or not.

On smaller examples it is an easy task that can be achieved by simple eliminating
the vertices in the given order by hand. On larger examples however it is time-
consuming. Luckily the problem has many solutions implemented in linear (as in
|V |+ |E|) time. Here we recommend a method which was presented in the original
paper for vertex elimination [20].

Definition 3.6. Let G?
α = (V,E∪F (Gα)) be an elimination graph as defined earlier.

For any vertex v let f(v) be the follower of v, which is the vertex of smallest number
that is both adjacent to v in G?

α and has a number larger than that of v:

f(v) := min(MAdj(v)) .

We define f i(v) for i ≥ 0 as f 0(v) = v, f i+1(v) = f(f i(v)).

Lemma 3.2. If [v, w] ∈ E ∪ F (Gα) and v <α w, then ∃ i ≥ 1 such that f i(v) = w.

Theorem 3.2. [v, w] ∈ E ∪F (Gα) for some v <α w pair if and only if ∃ x ∈ V s.t.
[x,w] ∈ E and f i(x) = v for some i ≥ 0.

This Theorem leads to an algorithm to find the fill-in:
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• We process the vertices of Gα = (V,E, α) from 1 to n.

• First for a vertex w let A(w) := {v ∈ V | [v, w] ∈ E and v <α w} be the
smaller numbered neighbors.

• Repeat the following step: Select v ∈ A(w) s.t. f(v) is already computed
(f(v) <α w) and f(v) /∈ A(w). Add this f(v) to A(w).

• Now on the reconstructed A(w) let f(v) := w for those v ∈ A(w) which for
we did not calculated f(v) yet.

If we only want to test for zero fill-in, we can restate the algorithm as follows.
Compute f(v) for every vertex v. For every [v, w] ∈ E s.t. v <α w verify that either
(f(v), w) ∈ E or f(v) = w.

Generalization for hypergraphs

A hypergraph H = (V,E) consists of a set of vertices V and a set of (hyper)edges
E, each (hyper)edge is a subset of V. The (primal) graph GH of a hypergraph H is
the graph whose vertices are those of H and whose edges are the vertex pairs [v, w]

such that v and w are in a common edge of H. (See [21].)

Definition 3.7. A hypergraph H is conformal if every complete subgraph of GH

is contained in a (hyper)edge of H, or equivalently if every clique of its primal graph
is a hyperedge.

Definition 3.8. A hypergraph H is acyclic if H is conformal and GH is triangulated
(chordal).

Theorem 3.3. A hypergraph H is acyclic if and only if either of the following
conditions holds:

1. All vertices of H can be deleted by repeatedly applying the two operations below:

(a) erase a vertex that occurs in only one edge,

(b) erase an edge that is contained in another edge.

2. There is a forest F (called join forest) such that its vertices are the edges of
H and for every v vertex of H the subgraph of F is connected, which subgraph
is induced by the vertices of F (edges of H) that contain v.

The second condition is again the so-called running intersection property. It can
be restated as: there is a forest F such that its vertices are the edges of H and if
we take any vertex-pair of F in which both vertices contain a given vertex v of H,
then there is a (unique) path in F between these pair on which every vertex contain
v as well.
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Maximum Cardinality Search on hypergraphs

Number the vertices from n to 1 in decreasing order. As the next vertex to number,
select any unnumbered vertex in an edge of H containing as many numbered vertices
as possible, breaking ties arbitrarily. (See [21].)

Theorem 3.4. Let H be an acyclic hypergraph. Any ordering generated by a MCS
on H can be generated by a MCS on GH .

During a MCS of a hypergraph (H-MCS), we call an edge exhausted if all ver-
tices contained in it are already numbered and nonexhausted otherwise. If R is a
nonexhausted edge containing as many numbered vertices as possible and we num-
ber a vertex in R, then if R is still nonexhausted it still contains as many numbered
vertices as possible. Therefore after selecting a nonexhausted edge having as many
numbered vertices as possible, we can number all of its unnumbered vertices consec-
utively before selecting another edge. This is a consequence and/or a rephrasing of
the H-MCS. This way it is called the restricted form of maximum cardinality search
(R-MCS).

The H-MCS facilitates testing GH for chordality and H for conformity.A H-
MCS gives an (α) ordering of the vertices of H (or GH respectively to the above
theorem) from n to 1 and in parallel a (β) ordering of the edges of H (we assign
the number to an edge as soon as it becomes exhausted) from 1 to k (let k be the
number of edges in H). We can extend this β ordering to the vertices as follows:
β(v) := min{β(R) | R is an edge in H, v ∈ R}

Note that i <β j implies i >α j. Finally we compute a (γ) ordering of the edges
of H as

γ(R) := max{β(v)|v ∈ R and β(v) < β(R)} .

(If β(v) = β(R) for all v ∈ R then γ(R) is undefined.)

Theorem 3.5. A hypergraph H is acyclic if and only if for each i ∈ {1, . . . k} (k
is the number of edges in H) and each edge R of H s.t. γ(R) = i it is true that
R ∩ {v ∈ V | β(v) < i} ⊂ β′(i).

Maximal weight spanning tree

If the cliques of the graph G are already known, then another construction of a
Junction-tree follows from the so-called cluster graph (see [22]) of G: Let the cliques
be the nodes. Connect two nodes with an edge if they intersect. Take all pair-wise
separators (intersections) between the cliques and assign the cardinality of these as
weights to the edges. The so obtained weighted cluster graph usually contains cycles.
We can find the maximal weight spanning tree of this cluster graph with usual
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algorithms of Kruskal, Prim. Wainwright in [22] states that any maximal weight
spanning tree (there can be more than one) of the cardinality weighted clique graph
is a junction tree (clique tree) for the original graph.

This is a similar idea as when we have a joint distribution, and we want to find
a tree-structured graph that defines an MRF over it. In this case one can use the
Chow–Liu algorithm of [3]. Based on the empirical probabilities (estimated from
the sample) of the vertices and vertex-pairs (edges), the likelihood of the spanning
tree over the vertices is maximal if the mutual information between the vertices
is maximal. Note that it is also the Kullback–Leibler distance between the joint
distribution of the vertex-pairs (edge-distribution) and the one based on independent
attachment of the vertices (with their probabilities). As the maximization is over
spanning trees, we need the Kruskal and Prim algorithms to find the maximum,
and going through all possible spanning trees is time-consuming. The algorithm
theoretically applicable to junction trees (with cliques as vertices and separators as
edges), but to run the algorithm for all possible clique structures would increase the
computational time enormously.

3.3 Belief propagation on junction trees

In 1988, Lauritzen and Spiegelhalter in [14] proposed an alternative approach for
computing marginals which (unlike Pearl’s method in [16]) applies to any Bayesian
network. It is the L–S version of the so-called junction tree algorithm. Sometimes
the junction tree algorithm is called Lauritzen–Spigelhalter algorithm. Afterwards
Jensen et al. proposed a modification of the Lauritzen–Spiegelhalter method, see [10,
11]. We call this modified version the HUGIN-algorithm since this was implemented
in HUGIN, a software tool developed by the same group. The two versions are more
or less the same. A detailed comparison can be found in [15].

We apply the algorithm on the nodes of the junction tree together with their
separators. However the separators are explicitly used only in the HUGIN version
and their initialized potentials are 1.

Let A and B be two consecutive cliques, and S be the separator between them.
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Then denoting by ∗ the newly updated potential, the algorithm is:

message of A ψ∗S =
∑
XA\S

ψA ψ∗A := ψA

B receives the message ψ∗B = ψB ·
ψ∗S
ψS

message of B ψ∗∗S =
∑
XB\S

ψ∗B ψ∗∗B := ψ∗B

A receives the message ψ∗∗A = ψ∗A ·
ψ∗∗S
ψ∗S

It is however only two lines if we don’t store the separators (in other words, we don’t
calculate with them explicitly) as in the original (L–S) version of the algorithm:

B receives the message of A ψ∗B = ψB ·
∑
XA\S

ψA ψ∗A :=
ψA∑

XA\S
ψA

A receives the message of B ψ∗∗A = ψ∗A ·
∑
XB\S

ψ∗B ψ∗∗B := ψ∗B

These equations hold for any state-configurations xA, xS, xB within the cliques.
This algorithm is actually the so-called belief propagation algorithm, or its

other name is sum-product algorithm. The local consistency is guaranteed which
means that after one back and forth step, we have

∑
XA\S

ψ∗∗A =
∑
XA\S

ψ∗A
ψ∗∗S
ψ∗S

=
ψ∗∗S
ψ∗S

∑
XA\S

ψ∗A

=
ψ∗∗S
ψ∗S

∑
XA\S

ψA =
ψ∗∗S
ψ∗S

ψ∗S = ψ∗∗S =
∑
XB\S

ψ∗B =
∑
XB\S

ψ∗∗B .

So
∑

y∈XB\S
ψ∗∗B (xS,y) =

∑
y∈XA\S

ψ∗∗A (xS,y) holds, which means local consistency.
What happens when we have a tree of cliques instead of only a pair? We can

achieve global consistency, meaning that all cliques containing variable Xi agree on
its marginal pXi

by utilizing the junction tree structure and running the messaging
passing scheme in an appropriate order.

To find all clique potentials, we can run the algorithm for example in the RIP
ordering C1, . . . , Ck of the cliques. In the first backward run we start at Ck, and
via the separators, end at C1, called the root. The message passing is based on the
parent-child connections in the junction tree, but the order of the updating (in the
first run) is the reversed RIP ordering. Mostly C1 is called the root, but the usage
of this name is inconsistent in the literature. The potential of C1 obtained in the
first run is already the clique potential, so if we are interested only in this, we can
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terminate the algorithm here.
To obtain all the clique potentials, we have to run the algorithm again, that is

make a forward run in the RIP ordering.
Above we used the knowledge of an appropriate ordering of the cliques. However

there is an other approach which takes into consideration the tree structure more
soundly.

The protocol in one sentence: a clique can send a message to its neighbour
only when it has received messages from all of its other neighbours. This protocol
maintains consistency. We designate one (any) node of junction tree as root. First
we pass messages inward to the root, and then backward out to the leaves. Making
the updates by the RIP ordering looks more linear, but mainly because of the
multiplicity of some separators, it actually works the same way. Fig. 3.3 shows an
example, to have a better understanding of the two stages.

root

→
←

→
←
←

→

→
←

→ →

(message receiving)

root

←
→

←
→
→

←

←
→

← ←
(message sending)

Figure 3.3: The two main stages of the belief propagation on a more complex junc-
tion tree with a designated root

At the end we have the marginals for every cliques, and for the separators, if
we stored those too. In the L–S version we can compute the marginal for a single
variable from any clique marginal that contains the variable. Since it is more efficient
to compute the marginal from a smaller clique, we will do so from a smallest clique
that contains the variable. In the HUGIN version the separator potentials are also
stored, so we can search for a smallest separator which contains the variable as well.
Of course, this strategy ignores the computational cost of identifying a smallest
clique (and/or separator).

Evidences

Note that authors differ on what they call evidences. Lauritzen in [13] refers to
the message receiving/sending process as evidence absorption/distribution, others
however by evidence mean the a priori knowledge of the outcome of some variables
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of the examined probability space. The common way to deal with these evidences
is the following: at every node where we have observation of a variable (from data),
we take appropriate slice of the potential.

For example we know that Xi = xi, call it evidence e. In this case we take all
cliques which contain Xi and modify their initial potentials to:

φeC(xC\{i}) := φC(xC\{i},xi) , where φeC : XC\{i} → R .

This way we reduce the original graph. Usually the models are built in a way that
evidences occur only at simplicial nodes. Therefore the graph will not fall apart or
have a drastically new structure by this reduction.

3.3.1 A stylized example

Now comes an example, to see a hypothetical application of the algorithm. The
following textbook example appears in many places, for more details see [13] or [14].

We assume the directed graph structure of Fig. 3.4 (an assumed casual network
based on some expert knowledge) of the binary variables {a, s, t, l, e, b, x, d}. Their
output is yes or no. It is a stylized example based on a really complex database. We
also assume that this is a graphical representation of a Bayesian network, therefore
the conditional independence structure of the example is encoded in this, see Sec. 2.1.

On the second picture we applied moralization and included an additional edge
(the red one) to achieve a triangulated graph representation. A Maximal Cardinality
Search gave us, starting the algorithm from vertex a, the ordering in the subscript.
Based on this we found the cliques and ordered them, now they fulfill the running
intersection property. This is a on the third graph.

The other input for the algorithm is a conditional probability table, for example
we know the values of the below functions:

pa, pt|a︸ ︷︷ ︸
φC1

, ps, pl|s, pb|s︸ ︷︷ ︸
φC4

, pe|lt︸︷︷︸
φC2

, px|e︸︷︷︸
φC6

, pd|eb︸︷︷︸
φC5

.

These are known (conditional) probabilities, or can be estimated empirically. Here
we already assigned some potentials to multiplication of given (conditional) proba-
bilities. To this table it was easy to assign most of the potentials. However we did
not assigned anything to φC3 . In a case like this, it can be any non-zero constant
function, e.g. one. Based on these we defined our potential functions which satisfy
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a s

t l b

e

x d

(the initial casual network)

a8 s3

t7 l6 b4

e5

x1 d2

(moral graph with fill-in edge +
possible MCS-ordering)

C1 = {a, t}
C2 = {t, l, e}
C3 = {l, e, b}
C4 = {l, b, s}
C5 = {e, b, d}
C6 = {e, x}

a s

t l b

e

x d

(the clique structure in the RIP order)

• a: visit to Asia? (y/n)

• s: smoking? (y/n)

• t: tuberculosis? (y/n)

• l: lung cancer? (y/n)

• e: tuberculosis or
lung cancer? (y/n)

• b: bronchitis? (y/n)

• x: positive X-ray? (y/n)

• d: dyspnoea? (y/n)

Figure 3.4: The L-S example

the undirected factorization property of Def. 2.6:

pV =
1

Z

6∏
i=1

φCi
, where Z =

∑
V

6∏
i=1

φCi
.

Now Z = 1 since we started with a directed factorization of the distribution, see
Def. 2.2. Our goal is to modify these potentials to get the marginal probabilities.
The belief propagation goes as follows if C1 is the root:

• C1 wants to send its message, but will not do it until it receives it from C2;

• C2 behaves the same way, it waits for C3;

• C3 has two other neighbors, so it waits for C4 and C5 as well;

• C4 does not have other neighbors, so it can already send its message;
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• C5 however waits for C6;

• C6 is like C4, so it can send its message right away.

The process works based on the junction tree structure, see Fig. 3.5 where it can be
followed. Thus the two run of the message-passing goes as:

1. message receiving: C6 → C5 → C3, C4 → C3, C3 → C2 → C1

2. message sending: C1 → C2 → C3, C3 → C4, C3 → C5 → C6

a, t t, l, e l, e, b

l, b, s

e, b, d e, x

t l, e

l, b

e, b

e

Figure 3.5: Junction tree structure based on the MCS-numbering

We used the HUGIN version of the algorithm. First we checked the results by
taking the (conditional) probabilities as parametric functions, see Tab. 3.1. Note
that here we extensively used the Bayes-theorem, and conditional independence
assumptions which can be read from the original BN with e.g. the algorithm of
Sec. 2.1.1. This way we got more compact forms for some potentials and at the end
the results are clearer.

Tab. 3.3 at the end of this section, shows the numerical results. To keep the
table readable, some trivial steps are omitted. We used an easier notation for the
state spaces: iĵ means that i = yes and j = no. Others accordingly. These numbers
are based on the stylized conditional probability table of Tab. 3.2, which appeared
in [14]. Here we used the notation: pi|̂j := Prob (i = yes | j = no).
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A φA φ∗A φ∗∗A
S1 = ∅ 1 1 1

C1 = {a, t} pa · pt|a = pat pat ·1 = pat pat

S2 = {t} 1
∑

l,e pel|t = 1
∑

a pat = pt

C2 = {t, l, e} pe|lt pe|lt · pl /1 = pel|t pel|t · pt /1 = pelt

S3 = {l, e} 1
∑

b plb = pl

∑
t pelt = pel

C3 = {l, e, b} 1 (1 · 1/1) · plb /1 = plb plb · pel / pl = pleb

S4 = {l, b} 1
∑

s plbs = plb

∑
e pleb = plb

C4 = {l, b, s} ps · pl|s · pb|s = plbs plbs · plb / plb = plbs

ps · plb|s = plbs

S5 = {e, b} 1
∑

d pd|eb = 1
∑

l pleb = peb

C5 = {e, b, d} pd|eb pd|eb ·1/1 = pd|eb pd|eb · peb /1 = pdeb

S6 = {e} 1
∑

x px|e = 1
∑

b,d pdeb = pe

C6 = {e, x} px|e px|e px|e · pe /1 = pxe

Table 3.1: Symbolic results

a: pa =.01
t: pt|a =.05

pt|â =.01
l: pl|s =.10

pl|̂s =.01
e: pe|lt =1

pe|l̂t =1
pe|̂lt =1
pe|̂l̂t =0

b: pb|s =.60
pb|̂s =.30

s: ps =.50
d: pd|eb =.90

pd|eb̂ =.70
pd|êb =.80
pd|êb̂ =.10

x: px|e =.98
px|ê =.05

Table 3.2: Fictional conditional probability table

After the algorithm finishes, we can easily calculate marginals for an arbitrary
vertex. On Fig. 3.6 we can see the marginal probabilities for the variables. Again,
these are binary variables, so we just denoted the probability of positive (yes) output.
Next to the graph, for every variable, we denoted the smallest clique or separator
which induce the marginal. Note that if we would have got the results from the
L–S version of the algorithm, then we could not use the separators in this marginal-
ization step, since those potential would not have been stored. This shows the
computational advantage of the HUGIN version.

We also validated the results with an R script, where we used the gRain package
of Søren Højsgaard, see [9].
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pa(y) =
.0100

ps(y) =
.5000

pt(y) =
.0104

pl(y) =
.0550

pb(y) =
.4500

pe(y) =
.06484

px(y) =
.11030

pd(y) =
.43598

• C1 → pa **

• S2 → pt

• S3 or S4 → pl

• S6 → pe

• S4 or S5 → pb

• C4 → ps **

• C5 → pd

• C6 → px

**Note that these marginals already appeared in the

conditional probability table.

Figure 3.6: Marginal probabilities of the variables

A XA φA φ∗A φ∗∗A

S1 ∅ 1 1 1
C1 at .0005 .0005× 1 = .0005 .0005

at̂ .0095 .0095× 1 = .0095 .0095
ât .0099 .0099 .0099
ât̂ .9801 .9801 .9801

S2 t 1 .055 + 0 + .945 + 0 = 1 .0005 + .0099 = .0104

t̂ 1 .055 + 0 + 0 + .945 = 1 .0095 + .9801 = .9896

C2 tle 1 1× .055 = .055 .055× .0104/1 = .00057

tlê 0 0× .055 = 0 0× .0104/1 = 0

tl̂e 1 1× .945 = .945 .945× .0104/1 = .00983

tl̂ê 0 0 0
t̂le 1 .055 .055× .9896/1 = .05443

t̂lê 0 0 0
t̂l̂e 0 0 0
t̂l̂ê 1 .945 .945× .9896/1 = .93517

S3 le 1 .0315 + .0235 = .055 .00057 + .05443 = .055

lê 1 .0315 + .0235 = .055 0 + 0 = 0

l̂e 1 .4185 + .5265 = .945 .00983 + 0 = .00983

l̂ê 1 .4185 + .5265 = .945 0 + .93517 = .93517

C3 leb 1 1× 1× .0315 = .0315 .0315× .055/.055 = .0315

leb̂ 1 1× 1× .0235 = .0235 .0235× .055/.055 = .0235

lêb 1 1× 1× .0315 = .0315 .0315× 0/.055 = 0
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lêb̂ 1 1× 1× .0235 = .0235 .0235× 0/.055 = 0

l̂eb 1 1× 1× .4185 = .4185 .4185× .00983/.945 = .00435

l̂eb̂ 1 1× 1× .5265 = .5265 .5265× .00983/.945 = .00548

l̂êb 1 1× 1× .4185 = .4185 .4185× .93517/.945 = .41415

l̂êb̂ 1 1× 1× .5265 = .5265 .5265× .93517/.945 = .52102

S4 lb 1 .0300 + .0015 = .0315 .0315 + 0 = .0315

lb̂ 1 .0200 + .0035 = .0235 .0235 + 0 = .0235

l̂b 1 .2700 + .1485 = .4185 .00435 + .41415 = .4185

l̂b̂ 1 .1800 + .3465 = .5265 .00548 + .52102 = .5265

C4 lbs .0300 .0300 .0300× .0315/.0315 = .0300

lbŝ .0015 .0015 .0015× .0235/.0235 = .0015

lb̂s .0200 .0200 .0200
lb̂ŝ .0035 .0035 .0035

...

...
l̂bs .2700 .2700 .2700
l̂bŝ .1485 .1485 .1485
l̂b̂s .1800 .1800 .1800
l̂b̂ŝ .3465 .3465 .3465

S5 eb 1 .9 + .1 = 1 .0315 + .00435 = .03585

eb̂ 1 .7 + .3 = 1 .0235 + .00548 = .02898

êb 1 .8 + .2 = 1 0 + .41415 = .41415

êb̂ 1 .1 + .9 = 1 0 + .52102 = .52102

C5 ebd .9 .9× 1/1 = .9 .9× .03585/1 = .03227

ebd̂ .1 .1× 1/1 = .1 .1× .03585/1 = .00359

eb̂d .7 .7 .7× .02898/1 = .02029

eb̂d̂ .3 .3 .3× .02898/1 = .00869

êbd .8 .8 .33132
êbd̂ .2 .2 .08284
êb̂d .1 .1 .05210
êb̂d̂ .9 .9 .46892

S6 e 1 .98 + .02 = 1 .03227 + .00359 + .02029 + .00869

= .06484

ê 1 .05 + .95 = 1 .33132 + .08284 + .05210 + .46892

= .93516

C6 ex .98 .98 .98× .06484/1 = .06354

ex̂ .02 .02 .02× .06484/1 = .00130

êx .05 .05 .05× .93516/1 = .04676
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êx̂ .95 .95 .95× .93516/1 = .88840

Table 3.3: Numerical results

3.4 Decomposable Gaussian graphical models

Decomposability has some advantages in Gaussian framework as well. If the Gaus-
sian graphical model is decomposable (its concentration graph G is decomposable),
then the cliques form a junction tree structure as before. Again denote with C the
set of the cliques and with S the set of their separators in a junction tree of G.

In such case a factorization of the density is achievable:

f(x) =

∏k
j=1 fCj

(xCj
)∏k

j=2 fSj
(xSj

)
=

∏
C∈C fC(xC)∏

S∈S fS(xS)ν(S)
, x ∈ Rn . (3.1)

In the above equation the marginalization over a subset of variables is in line with
the discrete case, just in this case instead of summation we integrate.

There are also exact tests for decomposable Gaussian models (see [13]). The ML-
estimator of the concentration matrix K can be calculated based on the product
moment estimators applied for subsets of the variables, corresponding to the cliques
and separators. First introduce the simpler form for K, see [13]:

K = Σ−1 =
∑
C∈C

[KC ]V −
∑
S∈S

[KS]V =
∑
C∈C

[Σ−1
C ]V −

∑
S∈S

[Σ−1
S ]V ,

where [KC ]V denotes the n× n matrix containing the entries of K in the |C| × |C|
block corresponding to C, and otherwise zeros. Further,

|Σ| =
∏

C∈C |ΣC |∏
S∈S |ΣS|

.

Let m be the sample size for the underlying n-variate normal distribution, and
assume that m > n. For any clique C ∈ C let [SC ]V denote m times the empirical
covariance matrix corresponding to the variables {Xi : i ∈ C} complemented with
zero entries to have an n × n (symmetric, positive semidefinite) matrix. Likewise
for any separator S ∈ S in the junction tree, let [SS]V denote m times the empirical
covariance matrix corresponding to the variables {Xi : i ∈ S} complemented with
zero entries to have an n × n (symmetric, positive semidefinite) matrix. Then the
ML-estimator of the mean vector is the sample average (as usual), while the ML-
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estimator of the concentration matrix is

K̂ = m

{∑
C∈C

[S−1
C ]V −

∑
S∈S

[S−1
S ]V

}
, and |K̂| = mn ·

∏
S∈S |SS|∏
C∈C |SC |

.

Here the structure ofK imitates the junction tree structure, through reducible zero
patterns, see Def. 3.5. Since decomposable models provide the Markov property
through a chain, another factorization also holds:

f(x) =
k∏
i=1

fCi
(xRi

| xSi
) (3.2)

in the RIP ordering of the cliques, residuals, and separators. According to [6, 19],
the same can be done for all members of the exponential family.
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Conclusion

Now we have a really complex picture about graphical models. We started with
assigning graph vertices to random variables of a probability space, and connected
them based on conditional independence assumptions. By introducing more and
more models we gained a broad knowledge about the Bayesian networks, Markov
random fields and Gaussian graphical models. The detailed study of decomposable
models and the belief propagation on these can help us when we start to examine
even more complex models.

By noticing the many overlaps among the fairly different structures, we can have
the impression that it is possible to build more general models. There are already
models which unite directed and undirected representations. One of these are the so-
called regression graph models, for details see [27]. It is possible to build graphical
models around conditional Gaussian distributions. In these spaces Gaussian and
discrete variables appear mixed. Lauritzen in [13] writes about these as well.

Our long-term goal is to build new models and algorithms for more general mixed
models by utilizing the junction tree structure, and by applying non-parametric
statistical methods. We hope that we can contribute to the theory and application
of graphical models.
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