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Introduction

Modeling algebraic objects is an essential ingredient of free-form surface visualization and nu-
merical simulations. Therefore various methods exist to approximate or to isolate the solution
set of algebraic systems [3, 4, 5]. They are using symbolic, numeric or combined techniques
in order to compute the solutions. We present here a technique to generate bounding regions
for one- or zero-dimensional solution sets of multivariate polynomial systems.

The problem:
Find the intersection of algebraic hyper-surfaces defined by m polynomial equations
in an axis-aligned box Ω







f1(x) = 0,
...

fm(x) = 0,
x ∈ Ω = ×n

i=1[αi, βi] ⊂ R
n.

The zero set of f1, ...fm:

Z(f1, ...fm) = {x : ∀i = 1, . . . ,m fi(x) = 0} ∩ Ω.

We consider the cases when Z has dimension zero or one.

Subdivision technique

Subdivision algorithms are based on the “divide and conquer” paradigm. These algorithms
decompose the problem into several sub-problems. The decomposition terminates if suitable
approximating primitives can be generated in each sub-problem. We use techniques, which
compute in axis-aligned boxes and provide information only about the solution set in this
computational domain.

Main ingredients of subdivision algorithms:

• exclusion test: detect sub-domains without solution
→֒ reject or subdivide the domain

• inclusion test: detect sub-domains with certain type
of solution sets
→֒ further approximation or subdivide the domain

• termination criterion

Essential tool: The multivariate polynomials are given by their Bernstein-Bézier tensor-
product representation with respect to the domain Ω ⊂ R

n. This representation form
provides stable computations and simple error bounds.

Fat arcs and spheres

We combine the standard subdivision technique with a local bounding region generation
method. Fat arcs as bounding primitives were introduced by Sederberg [6]. They consist
of an approximating circular arc with some finite thickness. We generalize this definition in
order to bound implicitly defined curves and surfaces.

Definition: A fat arc/sphere is defined by a circular arc/spherical patch (median
arc/sphere) S ⊂ R

n and a thickness ̺ ∈ R.

F(S, ̺) = {x : ∃x0 ∈ S, |x− x0| ≤ ̺} ∩ Ω.

Computation with arcs and spheres has several advantages. Our aim was to exploit these
advantages for bounding region generation and real-root approximation.

Main advantages of arcs and spheres:

• higher convergence rate

• exact parametric and implicit representation form

• simple computations (solving linear and quadratic equations) to find intersections

• simple offset generation

Bounding regions

In order to generate fat arcs/spheres as bounding primitives we reformulate the algebraic
system. A new set of polynomials F̂ = {f̂1, . . . , f̂m} is computed. Each polynomial has a
special Hessian-matrix in the center of the computational domain. Therefore the quadratic
Taylor-expansion of the polynomial f̂i is the equation of a sphere

si = T 2
c
(f̂i).

Algebraic curve approximation

•A median arc is defined by

S = {x : i = 1 . . . n− 1, si(x) = 0} ∩ Ω

to approximate the algebraic set Z ∩ Ω.

• In order to compute the fat arc thickness we bound the
one-sided Hausdorff-distance of the curves on the domain:

HDΩ(Z ,S) ≤ ̺.

Real root approximation

•A median sphere is defined by

Si = {x : si(x) = 0} ∩ Ω

to approximate the zero set of each new polynomial f̂i.

•We bound the distance of the polynomials using the
Bernstein–Bézier-norm:

δi = d(f̂i, si) = ‖f̂i(x)− si(x)‖
Ω

BB
.

•The min-max box around the intersection of the fat
spheres bounds the algebraic set.

Theorem:

(a) Fat arcs converge with order three to single segments of regular curves.

(b) Fat sphere generation as domain reduction technique generates sub-domains, which
converge with order three to single roots.

Numerical experiments indicate that fat sphere generation combined with iterative subdivi-
sion provide super-linear convergence rate to double roots of a polynomial system.

Root finding: examples and application

ε = 0.1 ε = 0.01 ε = 0.001
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Application in 3d - Ordinary

singularities

Conclusion

We presented a new family of algorithms to approximate implicitly defined algebraic curves
and real roots of polynomial systems. These methods are based on the geometrical properties
of polynomial systems. They generate sequences of bounding regions, which converge with
order three to the regular solution set of a multivariate polynomial system.
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