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1 Introduction

The investigation of elliptic fibrations is an interesting topic of its
own right in differential topology. Since the classification of com-
plex surfaces is quite a new area in differential geometry, the main
result in the study of elliptic fibrations on complex surfaces came
from K. Kodaira [9] in 1963. He gave the complete list of sin-
gular fibers, which can occur in elliptic fibrations. The question,
which combination of these singular fibers are possible on the ratio-
nal elliptic surface, have been answered by U. Persson [14] and
R. Miranda [10]. An interesting feature of this topic is, that el-
liptic fibrations on the rational elliptic surface can be considered
from algebraic geomertic point of view as well. One can construct
elliptic fibrations with certain types of singular fibers via blowing
up pencils on the rational elliptic surface. Showing the existence
of singular fiber combinations in elliptic fibrations this way is pos-
sible, because birational maps between surfaces are composites of
blow ups. However in higher dimension the structure of birational
maps are more complex, which shows the difficulty of this area of
differential geometry.

The classification of complex surfaces, also with fibrations on
rational elliptic surfaces, has connection with many further areas
in geometry. In [4] the authors, R. Gompf and A. Stipsicz, use
the basic concepts of this topic in Kirby calculus. It turns out, that
fibrations with different kind of degenerated fibers are extremally
useful in knot theory or in the construction of exotic smooth struc-
tures on closed 4-manifolds [4], [12], [13], [15]. Moreover the inves-
tigation of fibrations on the rational elliptic surface provides inte-
rest in Hodge theory. Hitchin fibrations on a 2-dimensional moduli
space of irregular Higgs bundles over CP 1 has been shown to be
biregular to the complement of a singular fiber in an elliptic fibra-
tion on the rational elliptic surface (which is diffeomorphic to the
9-fold blow up CP 2#9CP 2 of the complex projective plane), see [6],
[7], [8]. The investigation of these spaces has further applications in
Painlevé equations or in mathematical physics. In these questions
it is very important to show the existence of singular fiber confi-
gurations via explicitly constructing them. All fibrations studied
in this topic arise from blow up of pencils (see [17]), and this is the
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process we will use to construct such fibrations. These construc-
tions of elliptic fibrations with certain types of singular fibers have
been described in the above cited papers, provided by A. Stipsicz,
Sz. Szabó and P. Ivanics, except the case of fibration with sin-
gular fiber I∗1 . The main result of our investigation is the explicit,
algebraic geometric construction of the 13 possible configurations of
elliptic fibrations with I∗1 fiber. These constructions on the Hirze-
bruch surface, and the pencils from which they arise, have not been
described yet. We will show them in the second part of this thesis.

In the first part we describe the most important definitions and
theorems related to elliptic fibrations on the rational surface. In
Section 2 we recall intersection number of analytic subvarieties on
complex manifolds, linear systems (pencils) on manifolds and the
blow up process. We also discuss here the rational, and elliptic
surfaces, and pay special attention to the Hirzebruch surfaces. The
main literature used here is the book Principles of algebraic geom-
etry [5] by P. Griffiths and J. Harris, but also several others
are cited in this Section. Section 3 is about the list and descrip-
tion of types of singular fibers, and their properties. Here we also
introduce, which combinations can occure with an I∗1 type fiber,
based on the paper of A. Stipsicz, Z. Szabó, and Á. Szilárd
[16]. Finally in Section 4, we present our results, i.e. the construc-
tions of rational elliptic surfaces, containing the 13 possible singular
fiber configurations. First we define the method of constructions of
elliptic fibrations through blowing up pencils of elliptic curves on
the second Hirzebruch surface F2, and on CP 2. We detail this in
the above mentioned 13 cases, by choosing the right curves, and
supporting our calculations with figures, illustrating the process.
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2 Preparatory material

In this section we will review those definitions, theorems, examples,
which are necessary to understand the structure of the elliptic fi-
brations we want to describe. Consider this, as a beginning of a
setup, which will lead us to the construction of the fibrations in the
final section. The literature dealing with the topics in this section is
very wide, we will use several books and notes: [1],[2],[3],[4],[5],[11].

2.1 Intersection number and Poincaré duality

For this topological introduction we will use reference [5, Section
0.4], and [2, Section 1.6] Let M be a compact, connected, oriented
real 4-manifold, and S1, S2 ⊂M two piecewise smooth real 2-cycles.

Definition 2.1. i) p ∈ S1 ∩ S2 is a transverse intersection point, if
TpS1 ⊕ TpS2 → TpM is a bijective correspondence.
ii) S1 is transverse with respect to S2, if every p ∈ S1 ∩ S2 is a
transverse intersection point. Notation: S1 t S2

If {e1, e2} is a basis of TpS1, and {e3, e4} is a basis of TpS2, then
transverse intersection at p means, that {e1, e2, e3, e4} is a basis of
TpM .

Definition 2.2. i) If S1 t S2, the intersection index of S1 with S2

at p ∈ S1 ∩ S2, denoted by ιp(S1, S2), is +1, if {e1, e2, e3, e4} is an
oriented basis for TpS1 ⊕ TpS2 = TpM , and −1 if not.
ii) If S1 t S2, the intersection number of the cycles is defined to be

S1 ∩ S2 =
∑

p∈S1∩S2

ιp(S1, S2) ∈ Z.

For the completness of this definition, we need to remark, that
this sum is finite, since S1, S2 are compact, and because of S1 t
S2, the set S1 ∩ S2 is discrete. The main observation is, that the
intersection number S1 ∩ S2 depends only on the homology class
of S1 and S2. That is, if we consider the two homology classes
[S1] = α, [S2] = β ∈ H2(M,Z), we may find C∞ piecwise smooth
cycles S ′1, S

′
2 represeting α, β, and intersecting transversely. Thus

the intersection number defines a bilinear pairing:

H2(M,Z)×H2(M,Z)→ Z,
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called the intersection pairing, denoted by α ∩ β. With this, the
intersection number S1 ∩ S2 makes sense, even if S1 and S2 fail to
meet transversely. It is also true, that α ∩ β is independent of the
choice of the representing cycles.

Theorem 2.3 (Poincaré duality). If M is a compact oriented 4-
manifold, the intersection pairing H2(M,Z)×H2(M,Z)→ Z is uni-
modular, i.e. any group homomorphism H2(M,Z)→ Z is express-
ible as intersection with some α ∈ H2(M,Z), and if α ∈ H2(M,Z)
has intersection number 0 with all classes in H2(M,Z), then α is
the zero class. (We can also write H2(M,Z) ∼= H2(M,Z)∗).

Suppose now, thatM is a compact, oriented, complex 2-manifold,
and S ⊂ M is an arbitrary complex 1-cycle on M . Then the
correspondence in the theorem can be realized, with group homo-
morphsim

∫
S
∈ H2(M,Z)∗:∫
S

: H2(M,Z)→ R, [ω] 7→
∫
S

ω
∣∣
S
.

And the theorem states, that there exists an ηS closed 2-form, such
that ∫

S

ω
∣∣
S

=

∫
M

ω ∧ ηS,

where the cohomology class of ηS is the Poincaré dual of S, and
also called the fundamental class of S. In fact the definition of
intersection number for (possibly singular) analytic subvarieties is
the same as above. (Some difference is, that analytic subvarieties
may intersect with higher multiplicity m ≥ 1 at point p. In such
case, the intersection multiplicity is ιp(S1, S2) = ±m.) Since on
analytic subvarieties there is a natural orientation coming from the
orientation of M , we may observe the following.

Remark 2.4. The intersection index of analytic subvarieties meet-
ing transversely is always positive.

The S ∩ S ∈ Z is called the self-intersection number of S, and
can be computed via

∫
M
ηS ∧ ηS.
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2.2 Line bundles and linear systems

In this Section we will use the setup of [5, Section 1.1]. Some of
the basic concepts of this topic are the projective algebraic vari-
eties, which are defined to be the set of complex zeros of homoge-
nous polynomials in projective space. In general, if M is an n-
dimensional complex manifold, with V ⊆ M (n − 1)-dimensional
analytic subvariety, V is called analytic hypersurface, if there is a
single f holomorphic function, such that for all p ∈ V , in some
neighborhood of p, V can be given as the zero locus of f local
defining function (and all holomorphic g vanishing on V is divisi-
ble by f in some negighborhood of p). Moreover V is said to be
irreducible, if cannot be written as the union of V1, V2 6= V analytic
hypersurfaces.

Definition 2.5. A divisor D on M is the formal linear combination
D =

∑
aiVi of Vi irreducible analytic hypersurfaces, where for all

p ∈M , there is a neighborhood of p, meeting only finitely many Vi.

Remark 2.6. i) There is a natural additive group structure on the
set of divisors in M .
ii) D divisor is called effective, if ai ≥ 0 for all i.

Two divisors D and D′ are said to be linearly equivalent, if
D′ = D+(f), where (f) = (p)− (z) for the divisor of zeros (z), and
poles (p) of some meromorphic function f on M . Denote by |D|
the set of effective divisors on M , which are all equivalent to D. So
if D′ ∈ |D|, then there is an f , such that D′ = D + (f), and f is
defined up to multiplication with nonzero scalar, since λ(f) = (λf).
Hence |D| is the projective space associated to the vector space of
f meromorphic funtcions: L(f,D) := {f | D + (f) is effective}.
With this notation, |D| can be identified with L(f,D) space.

Definition 2.7. A linear system is a projective subspace of |D|,
for some effective divisor D.

Now let L
π−→ M be a line bundle on M , i.e. vector bundle,

with 1-dimensional fibers (in complex sense). To this belongs {Uα}
open cover of M , and ϕα : π−1(Uα)→ Uα × C local trivializations.
Relative to this, we can define transition functions gα,β : Uα∩Uβ →
Aut(C), by

gα,β(z) = ϕα ◦ ϕ−1β
∣∣
Lz
∈ Aut(C).
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The functions gα,β are clearly holomorphic, nonvanishing, and sat-
isfy for all α, β, γ the cocycle conditions

gα,α = gα,β · gβ,α = gα,β · gβ,γ · gγ,α = id.

Conversely, if we have some collection of {gα,β} functions satisfy-
ing the above conditions, we can construct a line bundle L with
transition functions {gα,β}, by taking the union of all Uα × C, and
identifying the points over Uα ∩ Uβ via the gα,β functions.

If D is a divisor with local defining function {fα} over {Uα}
open cover, then gα,β = fα · f−1β functions clearly satisfy the above
conditions, that is we can associate a D line bundle to D with
transition functions {fα · f−1β }.
Remark 2.8. There is an identification between the L(f,D) vec-
torspace and the Γ(M,D) vectorspace of sections of line bundle D.
Let s0 be a global meromorphic section of D, such that (s0) = D,
then for f ∈ L(f,D): f ↔ f ·s0 ∈ Γ(M,D) gives the identification.

The dimension of a linear system is the dimension of the pro-
jective subspace parametrizing it. Thus the dimension of |D| is
dim(L(f,D))− 1 =dim(Γ(M,D))− 1. The linear system of dimen-
sion 1 is called pencil.

If {Dλ}λ∈CPn is a linear system, then for any λ0, ..., λn ∈ CP n

linearly independent

Dλ0 ∩ ... ∩Dλn =
⋂

λ∈CPn

Dλ.

Definition 2.9. The set of common intersection points of divisors
in a linear system is called the base locus of the system (base points
if they are finitely many).

The following example shows the concrete case, we will use in
Section 4.

Example 2.10. Let D1 = (f1), D2 = (f2) be two linearly equiva-
lent divisors on CP 2 complex 2-manifold. The set

S = {(t1f1 + t2f2) | t = [t1 : t2] ∈ CP 1}

is a complete family of linearly equivalent divisors. The linear sys-
tem S is family of divisors of two parameters, thus it is a pencil
indeed, and the base points are the intersection points D1 ∩D2.
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Theorem 2.11 (Bertini). The generic element of a linear system
is smooth away from the base locus of the system.

The consequence of this theorem, that we will use in Section 4.,
is that if {Dλ}λ∈CP 1 is a pencil with base locus Z, then it gives a
holomorphic mapping M \Z → CP 1, because every point in M \Z
lies on a unique Dλ.

2.3 The blow up process

The blow up process, as an algebraic geometric construction, is
a very useful tool in our hands, to resolve singularities, and in
some sense, the blow up is an ’elementary’ map between complex
surfaces. We devote this section to the definition, some properties,
and examples of the blow up according to [5, Section 1.4 and 4.1],
and [4, Section 2.2].

Denote D ⊆ Cn the disc containing the origin, with euclidean
coordinates (z1, ..., zn). Now consider in D×CP n−1 the submanifold

D̃ = {(z, l) ∈ D × CP n−1|z ∈ Cn incident to l ∈ CP n−1}.

For each z ∈ Cn, there is a unique l ∈ CP n−1, such that the line
determined by l in Cn, goes through z, except the 0 ∈ D. Hence
the projection map

π : D̃ → D (z, l) 7→ z

is an isomorphism away from the origin.

Definition 2.12. The (D̃, π) pair is called the blow up of D in 0.

The definition extends to n-dimensional complex manifold M ,
since some U neighborhood of x ∈M is diffeomorphic to D via the
ϕU map. Now π′ = ϕU ◦ π : D̃ → U , and the restriction of π′ on
D̃ − (π′)−1x yields an isomorphism to U − {x}.

Definition 2.13. (i) The connected sum M̃x = (M − {x})#π′D̃,

together with the natural extension π′ : M̃x →M of the projection
map, is called the blow up of M at x.
(ii) The E = (π′)−1x in M̃x is called the exceptional curve (or
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exceptional divisor) of the blow up.
(iii) The proper transform of V ⊆ M submanifold (or subvariety)

is the closure of the inverse image: Ṽ = (π′)−1(V − {x}).

Remark 2.14. One can easily check, that the blow up M̃x →M is
independent of the coordinates chosen in D.

Again the π′ : M̃x − {(π′)−1x} → M − {x} restriction of the
blow up is an isomorphism, and the point x is where the blow up
is really interesting. That is, the lines passing through x in D are
blown up into disjoint lines, which have distinct intersection points
with E, diffeomorphic to CP n−1. More generally, by blowing up,
we can reduce the number of intersection points of transversally
intersecting complex curves. Now consider how intersection, and
self-intersection numbers change under the blow up process.

Lemma 2.15. Let M = CP 2, with one-point blow up M̃ . Then
the exceptional divisor E in M̃ has self-intersection number −1.

Proof. Let p = 0 ∈ CP 2 the point, which we blow up. Now the
image of p 6= 0 is itself, while the image of p = 0 is E ∼= CP 1 under
the blow up. Let B4

1 = {(z1, z2) ∈ C2||z1|2 + |z2|2 < 1} ⊆ CP 2 open
ball around p = 0, and S3

1 = {(z1, z2) ∈ C2||z1|2 + |z2|2 = 1} its
boundary. Now take two copy of CP 2 \ B4

1 , the second one under
the map

t : C2 → C2, (z1, z2) 7→
1

|z1|2 + |z2|2
(z1, z2).

Thus we can obtain M̃ , as (CP 2 \ B4
1) ∪S1

3
(CP 2 \B4

1). That is,

one inverted copy of CP 2 \ B4
1 (with conjugation, for the sake of

orientation) can be sticked to the other copy along the S3
1 . Thus

the infinite circle CP 1 of the second copy will be placed, where 0
was in the first copy, this will be the exceptional divisor E. Since E
is a line (CP 1 curve), it would have intesection number 1 with any
other line (also with itself), but because of the change of orientation
E will have self-intersection number −1. �

Remark 2.16. In the proof of this lemma we also saw, that the
blow up of CP 2 at one point, is the same, as the connected sum
CP 2#CP 2.
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It is in general also true, that the exceptional divisor of blow up
has self-intersection number −1. Now if D is a divisor on M , with
proper transform D̃ in M̃ , then obviously π∗D ∩ E = 0, because
the preimage of E is a single point (here π∗D is the pullback of the
divisor D). Thus the intersection number:

D̃∩D̃ = (π∗D−E)∩(π∗D−E) = π∗D∩π∗D+E∩E = D∩D−1.

It is important to notice, that if {Dλ}λ is a linear system on

M , then the {D̃λ}λ proper transforms of the Dλ curves on M̃ do
not necessarily form a linear system. It is a linear system, if and
only if the Dλ curves have the same multiplicity in the p base point,
where the blow up happens. If this is not the case, under the proper
transform of linear system, we mean the linear system {Dλ−mE}λ,
where m is the minimum of multiplicities of Dλ curves at p.

The decreasing self-intersection number shows, how blow ups
resolve singularities of curves.

Proposition 2.17. If M is a nonsingular complex surface, and
S ⊂M a (possibly singular) complex curve, then there is a complex

surface M̃ , and π : M̃ →M composition of blow ups, such that the
proper transform S̃ ⊂ M̃ is a smooth complex curve.

The following examples of desingularisation, will be very impor-
tant in the constructions in Section 4.

Example 2.18. S = {[x : y : z] ∈ CP 2|zy2 = x3 + zx2} ⊂ CP 2

is smooth, except at P = [0 : 0 : 1]. This curve is topologically a
sphere, with self-intersection 0, and with one positive double point.
If we blow up at P , the proper transform S̃ will be a nonsingular
sphere (CP 1), with self-intersection −2, because it decreases by 2,
after blowing up a double point. Similarly the exceptional curve E
will be a CP 1, with self-intersection −2, while E and S̃ intersect
each other transversally in two points (see Fig.1). For more details
see [4, Section 2.3].

Example 2.19. S = {[x : y : z] ∈ CP 2|zy2 = x3} ⊂ CP 2 is
smooth, except at P = [0 : 0 : 1]. This curve is topologically
a sphere with a cusp singularity at P . Now under the blow up,
the proper transform S̃ will be a smooth line (CP 1), tangent to
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Figure 1: The blow up of the so called fishtail curve (denoted by
I1) at its singular point.

Figure 2: The blow up of the so called cusp curve (denoted by II)
at its singular point.

the exceptional curve E at P (see Fig.2). For more details see [4,
Section 2.3].

Example 2.20. S = {[x : y : z] ∈ CP 2|zy2 = x4} ⊂ CP 2 is
smooth, except at P = [0 : 0 : 1]. This curve is topologically two
spheres (S1, S2) of self-intersection −2, tangent to each other at P .
After blow up at P , the proper transform of the two branches will
meet transversally at some point of the exceptional curve (which
corresponds to their common tangent line at P ). After one more
blow up at P , the second proper transforms will be smooth disjoint
lines (see Fig.3). For more details see [5, Section 4.2].

Figure 3: Evolution of curves under the blow up process.
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2.4 Rational and elliptic surfaces

The literature used in this section can be found at [5, Section 4.2],
[4, Section 3.1], and [1].

Definition 2.21. A rational (or meromorphic) map of a complex
manifold M to CP n is a map f : z 7→ [1 : f1(z) : ... : fn(z)], where
fi-s are global meromorphic functions on M .

Equvivalently, a rational map f : M → CP n is given by a
holomorphic map f : M \ V → CP n defined on the complement
of a subvariety V of codimension 2 or more in M . A rational map
f : M → V to algebraic subvariety V ⊆ CP n, is a rational map
f : M → CP n, whose image is on V . In fact, if {Dλ}λ∈CPn is a
linear system on M with base locus of codimension at least 2, then
the map

f : M → CP n, p 7→ {λ|p ∈ Dλ}
is rational, and well defined away from the base locus of the system.
That is exactly the case in Example 2.10., if D1, D2 divisors are
determined by polynomials p1, p2 on CP 2, with (p1, p2) = 1, what
we will use in Section 4.

Definition 2.22. i) f : M → V rational map is birational, if there
is a rational map g : V → M , such that f ◦ g is the identity as a
rational map, i.e. defined away from a subvariety of codimension
at least 2.
ii) Two algebraic varieties are said to be birational, if there is a
birational map between them.
iii) A variety is said to be rational, if it is birational to CP n.

Remark 2.23. i) Any holomorphic map is clearly rational.

ii) If π : M̃ → M is the blow up of M in some {pi} points, then

the inverse map π−1 : M \ {pi} → M̃ is trivially rational, so π is a
birational isomorphism.

Moreover, if M has complex dimension 2, i.e. M is a complex
surface, then a partial converse of the second point of the remark
is also true.

Theorem 2.24. If M and N are complex algebraic surfaces, and
f : M → N a birational map, then there exists a surface M̃ , and
π1 : M̃ →M , π2 : M̃ → N blow ups, such that f = π2 ◦ π−11 .
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M̃

M N

π1 π2

f

This theorem means, that every birational map is a sequence of blow
ups and blow downs, and on the other hand, for any f : M → N a
birational map, there exists π1 : M̃ →M blow up, such that f ◦ π1
is holomorphic. Consequently, if {Dλ}λ∈CPn is a linear system on

M with isolated base points, then there exists π1 : M̃ → M blow
up, such that the proper transform of the system in M̃ has no base
points. This resolution of base points with blow ups, is what we
will use in Section 4.

Another important question is, whether a curve S ⊂M can be
considered, as an exceptional curve of some blow up, and can be
contracted to a point by blowing down.

Theorem 2.25 (Enriques-Castelnuovo). Let M be an algebraic
surface, S ⊂ M a smooth rational curve, with self-intersection
number −1. Then there exists a smooth algebraic surface N , and
π : M → N map, which is the blow up of N at p ∈ N , and
S = π−1(p).

A smooth rational curve of self-intersection −1 on a surface
is called an exceptional divisor of the first kind. Also a complex
surface is called minimal, if it does not contain rational −1-curve,
so it is not the blow up of any other surface. A minimal model of
complex surface M , is a complex surface M ′, if they are birational,
and M ′ is minimal.

Definition 2.26. M complex surface is called elliptic surface, if
there is a π : M → C holomorphic map to C complex curve, such
that for generic x ∈ C π−1(x) is a smooth elliptic curve.

The π−1(x) preimage is topologically a real 2-torus. The π map
is called elliptic fibration. However a map π : M → C is called
elliptic fibration as well, if each (possibly singular) π−1(x) fiber
”looks like” a fiber in an elliptic surface. Precisely, each π−1(x) has
an U neighborhood, and an orientation preserving diffeomorphism
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ϕ : U → M into M elliptic surface, with ϕ ◦ π = π ◦ ϕ. A map
σ : C →M is called section of the fibration, if σ ◦ π = idC .

Our main interest is in the 9-fold blow up of CP 2, and the 8-fold
blow up of second the Hirzebruch surface (see Section 2.5.), which
provide elliptic fibrations, as we will see at the beginning of Section
4.

2.5 On the Hirzebruch surface

For more details of the setup of this section, see [5, Section 4.3], [4,
Section 3.4], [11] and [3, Section V.4].

Definition 2.27. S rational surface, with {Cλ} pencil of disjoint
irreducible (smooth) rational curves on S is called rational ruled
surface.

If {Cλ} is such a pencil of disjoint smooth rational curves on
S rational ruled surface, then the pencil determines the natural
map p : S → CP 1, called the ruling. In fact, this p : S → CP 1

is a holomorphic fibre bundle over over CP 1, with CP 1 fibers. In
general, if E →M is a holomorphic vector bundle over M complex
manifold, then the associated projective bundle P(E) → M is the
fibre bundle over M, whose fiber over x ∈M is the projective space
P(Ex), associated to the vector space Ex.

Now if L → M line bundle, we can see from the transition
functions, that P(E) = P(E ⊗ L), and conversely if P(E) = P(E ′),
then E ′ = E ⊗ L for some L line bundle over M . Also true, that
any rational ruled surface is of the form P(E) for some E → CP 1

holomorphic 2-rank vector bundle. The following proposition gives
a complete description of such vector bundles.

Proposition 2.28. Any holomorphic vector bundle on CP 1 is a
direct sum of lines bundles.

Let C = CP 1 × C be the trivial line bundle, and let

O(−1) = {(p, z) ∈ CP 1 × C2|p is incident to z}.

be the tautological bundle. Its dual bundle (taking the dual space
fiberwise) is the hyperplane bundle, denoted by O(1). The n-th
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tensor power ofO(1) is denoted byO(n), thus because of the propo-
sition, for any rational ruled surface, and for some n:

P(E) = P(L1 ⊕ L2) = P((L1 ⊗ L∗2)⊕ C) = P(O(n)⊕ C).

Definition 2.29. Fn = P(O(n)⊕C) is the n-th Hirzebruch surface.

Let σ be any holomorphic section of O(n), then Eσ ⊂ Fn is the
image of the (σ, 1) section of O(n) ⊕ C. Particularly E0 is called
the zero section, and obviously Eσ is homologous to E0 for any σ.
The (σ, 0) section of O(n) ⊕ C for any σ, also determines a curve
in Fn away from the zeros of σ, the closure of this curve is the E∞
infinite section of Fn. The E∞ infinite section is independent of
the choice of σ. If F is any fiber of the ruling p : Fn → CP 1, we
may obtain the intersection numbers: E0 · E0 = n, E0 · E∞ = 0,
E0 · Eσ =number of zeros of σ, Eσ · E∞ =number of poles of σ,
E0 · F = E∞ · F = Eσ · F = 1.

One can easily see, that Fn − F − E0 is a C-bundle over CP 1

minus a point, which is isomorphic to C, and therefore is con-
tractible. Thus the second homology group H2(Fn,Z) is gener-
ated by the homology class of F and E0. Since two curves on Fn
are linearly equivalent if and only if they are homologous, we can
write: E∞ ∼ m1E0 + m2F . From the above intersection numbers:
E∞ ∼ E0−nF , and also we can compute E∞ ·E∞ = −n. Similarly
E∞ ∼ E0−mF , where m is the number of poles of σ. From this we
can conclude, that if D 6= E∞ is an irreducible curve on Fn, then
D ·D ≥ 0, thus E∞ is the only irreducible curve on Fn with negative
self-intersection. This shows, that the Fn surfaces are distinct, and
Fn is the unique CP 1 bundle over CP 1 having an irreducible curve
of self-intersection −n. Also true, that the Fn Hirzebruch surfaces
are all obtained from one another by blowing up and down, thus
they are all birational, and since F0 = CP 1×CP 1 is rational, they
are all rational.

Theorem 2.30. Rational surfaces are the blow ups of CP 2 or Fn.

This theorem might complete our picture of rational surfaces,
and shows that the minimal model of each rational surface is CP 2

or Fn. This also proves our claim, that the rational elliptic surface
can be obtained as the blow up of CP 2 or Fn.



17

A different point of view on the Hirzebruch surfaces shows, how
we will construct curves and pencils on them. Let C[u] and C[v−1]
be polynomial rings with generators u and v−1. Their spectra (set
of all their prime ideals) S1 = Spec(C[u]) and S2 = Spec(C[v−1])
can be obtained as subsets in CP 1. Hence if we consider S1 ×CP 1

and S2×CP 1 with gluing identification (u, 1)↔ (v−1, v−1), we get
exactly the compactification of the hyperplane line bundle O(1).
This is indeed a C bundle over CP 1, i.e. this is a line bundle over
CP 1. The n-th tensor power of O(1), denoted by O(n), can be
obtained with gluing map (u, 1)↔ (v−1, v−n). Now

A0 =
⊕
n≥0

O(n)

is a graded algebra over the polynomial ring. We can also glue its
projectivizations over C[u] and C[v−1] rings, by identifying the 0-th
element of the first direct sum with the k-th element of the second
direct sum. Hence we obtain the k-th Hirzebruch surface.

The canonical bundle of CP 1 is the line bundle K = O(−2). If
D is a divisor of total length 4, for example D = t1 + 2t2 + t3, then
by adding D to the canonical bundle: K(D) ∼= O(2). Furthermore
O(4) ∼= O(2)⊗2 ∼= K⊗2(2D), where the sections of K⊗2(2D) (or
double sections of K(D)) are called meromorphic quadratic differ-
entials, and can be given by homogenous degree-4 polynomials over
CP 1. For example:

- The polynomial u4, as a section of O(4) provides two sections
in O(2), which are tangent to each other over [0 : 1] ∈ CP 1.
See Example 2.20.

- The polynomial u2v2, as a section of O(4) provides two sec-
tions in O(2), which intersect each other transversally over
[0 : 1], [1 : 0] ∈ CP 1.

- The polynomial u2v(u + v), as a section of O(4) provides
a double section of O(2), which has a node singularity over
[0 : 1] ∈ CP 1. See Example 2.18.

- The polynomial u3v, as a section of O(4) provides a double
section of O(2), which has a cusp singularity over [0 : 1] ∈
CP 1. See Example 2.19.
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3 Singular fibers in elliptic fibrations

Consider f : M → CP 1 elliptic fibration, with Ft = f−1(t) singular
fiber for t ∈ CP 1. If we restrixt the fibration to a small circle (which
contains no more singular fiber) around t, then by traversing along
this circle we get a diffeomorphism of the typical fiber T 2 torus.

Definition 3.1. The Γ1 group of orientation preserving homeo-
morphisms of the torus, up to isotopy and conjugation, is called
the mapping class group of the torus.

Here under isotopy we mean ht : T 2 → T 2 homotopy, such
that ht(T

2) is diffeomorphic to T 2 for all t. Thus each singular
fiber in the fibration determines an element in the mapping class
group, which is called the mondoromy of the singular fiber. The Γ1

mapping class group has presentation

Γ1 = 〈a, b|aba = bab, (ab)6 = 1〉.

The symbols a and b can be interpreted as Dehn twists around
the T1, T2 cycles of the torus, thus providing self-homeomorphisms.

There is also a map sending a to

(
1 1
0 1

)
, and b to

(
1 0
−1 1

)
, which

provides an isomorphism ϕ : Γ1 → SL2(Z).

Figure 4: a,b) T1, T2 cycles on the torus c) The Dehn twists of the
torus shows the integer matrix correspondence.

This way, the monodromy of singular fibers can be given by 2×2
integer matrices. We assume, that the fibration we investigate are
relatively minimal, that is, no fiber contains an embedded sphere
with self-intersection -1, because such sphere could be blown down,
without changing the structure of the fibration. We also assume,
that the fibration contains no multiple fibers, equivalently the fibra-
tion admits section (see [16, Prop. 2.1]). Accordingly the fibrations
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we consider, all originate from pencil by blow ups, thus all admit
sections.

There is a method for construct fibration, based on the mon-
dromies of singular fibers. This construction differs from the ones,
we will apply in Section 4, however it shows, what kind of configu-
rations of singular fibers can occur. Suppose, that ω is a word in Γ1,
which is a composition of 12 right-handed Dehn twists ω1, ..., ω12

around the T1, T2 cycles (ωi ∈ {a, b}). Now if

ω = ω1 · · ·ω12 = (ω1 · · ·ωi1)(ωi1+1 · · ·ωi2) · · · (ωik+1 · · ·ω12) = 1

satisfies, and (ωij+1 · · ·ωij+1
) are conjugate to the monodromies of

Fj (j = 1, ..., k) singular fibers, then there is a fibration on the
rational elliptic surface with singular fibers F1, ..., Fk. For more
details see [16, Section 2.2].

3.1 Classification of elliptic singular fibers

The singular fibers in elliptic fibrations have been classified by Ko-
daira in [9], providing the following theorem.

Theorem 3.2 (Kodaira). A singular fiber of a locally holomorphic
elliptic fibration without multiple fibers is one of the following types:
In (n ≥ 1), II, III, IV, I∗n (n ≥ 0), Ẽ6, Ẽ7, Ẽ8.

In the following we will review the most important topological
datas of the singular fibers of this list. See [16, Section 2.1].

In-fibers (n ≥ 1). The I1 fiber (also called fishtail corresponds
to the complex curve described in Example 2.18. For n ≥ 2, the
fiber In is the chain of n spheres of self-intersection -2 along a
circle, where each one intersects transversally in a unique point the
neighbouring spheres (which are connected by and edge on the chain
graph). The monodromy of In is conjugate to an, or in matrix form

to

(
1 n
0 1

)
. The monodromy of I1 is also conjugate to b, which can

be easily seen from the matrix form of the monodromy. The Euler
characteristics χ(In) = n, and one can conclude, that the generic
elliptic fibration on CP 2#9CP 2 contains 12 fishtail fibers.

Type II fiber. This fiber (also called cusp) corresponds ex-
actly to Example 2.19, and has monodromy conjugate to ba, or to
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1 1
−1 0

)
. It has Euler characteristic 2, so one can obtain at most

six of them in elliptic fibration on CP 2#9CP 2.

Figure 5: Singular fibers types III (a) and IV (b).

Type III fiber. This fiber is topologically the union of two
spheres of self-intersection -2, tangent to each other in a unique

point. The monodromy of this fiber is aba = bab or

(
0 1
−1 0

)
,

while χ(III) = 3.
Type IV fiber. Topologically this fiber is the union of three

spheres of self-intersection -2, intersecting each other transversally
in a unique point. Thus its Euler characteristic equals to 4, and its

mondoromy is conjugate to baba, or in matrix terms to

(
0 1
−1 −1

)
.

I∗
n-fibers (n ≥ 0). The structure of these fibers can be de-

scribed with chain graphs on Figure 6.

Figure 6: Chain diagram of fibers In (a) and I∗n (b).

Here the vertices denote (-2)-spheres, while two vertices are con-
nected with an edge, if the spheres intersect each other. The num-
bers on the vertices denote homological multiplicity of the spheres.

The monodromy of the I∗n fibers are (ab)3an, or

(
−1 −n
0 −1

)
. Since

the fiber I∗n contains n+ 5 spheres, we can see χ(I∗n) = n+ 6.
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The Ẽ6, Ẽ7, Ẽ8 fibers. These singular fibers are the least in-
teresting for us, so we will omit their description. We focus on
fibrations with singular fiber I∗1 , which has Euler characteristics

7, while Ẽ6, Ẽ7, Ẽ8 fibers has Euler characteristics 8, 9, 10. This
shows, that I∗1 can not appear with any of these fibers in fibration
on CP 2#9CP 2, because χ(CP 2#9CP 2) = 12.

3.2 Possible singular fiber combinations with I∗1

The monodromy of I∗1 is (ab)3b, hence from the expression

1 = (ab)6 = (ab)3b(ababa)

we can see, that the other singular fibers next to I∗1 have to pro-
vide the word of monodromies ababa = aabaa (since bab = aba),
according to the construction described above. Now we can obtain
the following possibilities: a + baba a fishtail and a type IV fiber,
a + bab + a two fishtails and a type III fiber, aba + ba a type III
fiber and a cusp, a + ba + ba a fishtail and two cusps, aa + ba + a
an I2 fiber, a cusp and a fishtail, aa + b + aa two I2 fibers and a
fishtail, a+ a+ ba+ a a cusp with three fishtails, aa+ b+ a+ a an
I2 fiber with three fishtails, and a+ a+ b+ a+ a five fishtails.

Not trivially, but we can also notice, that aabaa = a3(a−1baa) =
a3(ba)a

−1
shows that an I3 fiber and a cusp, ababa = (ababa−1)aa2 =

(bab)aa2 shows that a type III fiber and an I2 fiber, aabaa =
aaaaa−2ba2 = a4(b)a

−2
shows that an I4 fiber and a fishtail, while

aabaa = aaaa−1baa = a3(b)a
−1
a shows that an I3 fiber and two

fishtails can be also obtained in the fibration containing I∗1 fiber.
Finally I5 and I2 + I3 can be still set out from the letters next

to I∗1 fiber, but the existence of these fibrations are excluded (see
[16, Section 3]). And one can see, that there is no more possibility.

I4 + I1 IV + I1 I3 + 2I1 I3 + II
III + I2 III + II III + 2I1
2I2 + I1 I2 + II + I1 I2 + 3I1
2II + I1 II + 3I1 5I1

Table 1: Possible singular fibers next to I∗1
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4 Pencils and fibrations with fiber I∗1

In this Section we will give explicit constructions of elliptic fibra-
tions with fiber-type I∗1 on the Hirzebruch surface F2, and on CP 2

in some cases. The method will be similar as in the previous works
in this topic [16], [6], [7], [8]. It will go as follows.

First we describe the CP 2-case. Let p1 and p2 be two homoge-
nous degree-3 polynomials in three variables, and their zero-sets
two cubic curves C1 and C2 on the surface. Consider the pencil
(see Section 2.2) generated by p1, p2:

{pt = t1p1 + t2p2 | t = [t1 : t2] ∈ CP 1}

and complex curves Ct defined by its elements. The intersection
points of these curves are the base points of the pencil, as we de-
fined earlier: Z(p1, p2) = {P ∈ CP 2|p1(P ) = p2(P ) = 0}. We
suppose that (p1, p2) = 1, so that we have fintely many base points.
According to Bézout-theorem, C1 and C2 have 9 intersection points
counted with multiplicity, since p1, p2 are cubics. Counting them
without multiplicity, we get the number of base points: k ≤ 9. The
map

π : CP 2 \ Z(p1, p2)→ CP 1, P 7→ [p1(P ) : p2(P )]

is well-defined, and holomorphic. Now consider the resolution of the
indeterminacy of π, which is a 9-fold blow up of CP 2 in the k base
points: in each point a number of infinitely close blow ups, equal to
the multiplicity of the intersection of C1 and C2 is in that base point.
Thus the map π extends on the exceptional curves of the blow ups,
and we get a π : CP 2#9CP 2 → CP 1 holomorphic fibration, whose
generic fibers are biregular to cubic curves, hence the generic fiber
is a smooth elliptic curve (i.e. a torus). One can easily see, that if
all fibers were smooth tori, then χ(CP 2#9CP 2) = 0, but it equals
to 12 (see Section 2.4). This shows the existence of singular fibers
in this construction, now our job is to choose the polynomials p1, p2
properly, in order to get the desired combination of singular fibers.

The construction of the elliptic fibrations on the second Hirze-
bruch surface F2 (see Section 2.5) will be similar, yet a little bit
different. Similarly we pick two curves on the surface denoted
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by C0, C∞, and consider the pencil, that they generate. Precisely
C0 = C(q), and C∞ = 2σ∞ + F1 + 2F2 + F3 (denoted as divi-
sors). Here F1, F2, F3 are fibers of the ruling p : F2 → CP 1, and
C(q), σ∞ are sections of the ruling. The σ∞ is infinity section,
that is we choose the infinity point in each CP 1 fiber of the ruling:
σ∞ = {[1x : 0x]|x ∈ CP 1}, where x parametrizes the underly-
ing CP 1. The C(q) is disjoint from σ∞, and will be provided by
the solutions of the equation C(q) = ζ2 − p∗q, for the pullback of
q degree-4 homogenous polynomial in the homogenous coordinates
[u : v] on CP 1, as a section of O(4)→ CP 1 holomorphic bundle (see
Section 2.5). Here we use the identification O(2)⊗O(2) ∼= O(4), to
get a section of the bundle O(2) → CP 1. This is necessary to get
the wanted I∗1 fiber after the blow ups, as we will see later. Thus
we take those ζ ∈ O(2), which satisfy ζP ⊗ ζP = C(q)P over each
P ∈ CP 1. This way we get σ1, σ2 components of the section C(q),
which are sections in O(2), if q is a complete square, or one double
section in O(2), if q is not a complete square.

We need to check, that the two curves C0, C∞ are homologous,
and hence there is a pencil of curves containing both. All the com-
ponents C(q), Fi are diffeomorphic to CP 1, hence they can be rep-
resented with a single element in H2(F2,Z), which is generated by
[C(q)], [F ]. Obviously [F1] = [F2] = [F3] =: [F ], and there is a li-
near connenction between σ0 section of the ruling, F and σ∞, (and
thus between their homology classes), as we saw in Section 2.5.
This looks like: [σ∞] = [σ0]− 2[F ]. By computing the intersection
number of both sides with [σ0], we can conclude that [σ0]

2 = 2.
Hence [C0] = [C(q)] = 4[F ] + 2[σ∞] = [C∞], shows that the two
curves are homologous.

In some cases we have to construct more than two singular fibers
in the fibration, so we need more curves than C0, C∞ to describe
these cases. To this end, we need the following lemma (see [6]).

Lemma 4.1. Let C ′ and C ′′ two homologous curves in F2, inter-
secting each other in points P1, ..., Pk, with multiplicities n1, ..., nk,
satisfying:

∑k
i=1 ni = 8. Let C be a complex curve in F2 homo-

logous to C ′ and C ′′, passing through P1, ..., Pk, intersecting C ′ in
these points with multiplicities n1, ..., nk. Then C lies in the pencil
generated by C ′ and C ′′.
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Proof. Pick any point P on C different from P1, ..., Pk. There
exists a unique Ct element of the pencil

{Ct = t1C
′ + t2C

′′ | t = [t1 : t2] ∈ CP 1}

going through P . Also
∑k

i=1 ni = 8 is the self intersection number
of C. Let Ct intersect C with multiplicity N in P . But then the
intersection number of C and Ct is: N +

∑k
i=1 ni > 8. This can

only occur, if C = Ct, and C lies in the pencil. �

We will apply this lemma in some cases with C ′ = C0 = C(q),
C ′′ = C∞ and in other cases with C ′ = C(q1), C

′′ = C(q2), where
q1, q2 are two different homogenous degree-4 polynomials. The
points P0, ..., Pk will be the base points of the pencil generated by
the two curves. That means, we have to apply 8 blow ups in the
base points (perhaps some of them infinitely close, if ni > 1), in or-
der to resolve indeterminacy. Similarly to the CP 2-case, to invoke
the combination of singular fibers we want, our job is to choose ho-
mogenous degree-4 polynomials q1, q2, and arrange the base points
P0, ..., Pk properly. Let us see the details.

4.1 The construction of the fibrations

We will go through the 13 cases listed in Table 1, the configurations
containing I∗1 as one of the singular fibers in elliptic fibration on
the rational elliptic surface, and give the promised examples of the
pencils, providing these singular fiber configurations.

Case 1. (fibration with an I4 fiber) Such a fibration can be obtained
simply by a proper geometric arrangement of two curves, generating
the pencil, thus we will describe the CP 2-case first. Let C1 = l1+2l2
(denoted red on the pictures), two lines in CP 2, one of them with
multiplicity 2, intersecting each other in P . Let C2 = L1 +L2 +L3

(denoted blue on the pictures), three lines, L1 passing through P ,
and L2, L3 intersecting each other on l1, but not in P . Consider the
pencil generated by these cubic curves, and blow up the projective
plane at the base points. To see what happens, we describe this in
details.
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Figure 7: Step 1 of Case 1

Since H2(CP 2,Z) ∼= Z, de-
note its generator with h. This
means, h = [H] is the class of
the generating hyperplane H in
CP 2. From Bézout-theorem the
intersection numbers: C1 ∩H =
C2 ∩H = 3, hence [C1] = [C2] =
3h in the homology group. First
apply the blow up at point P .

Figure 8: Step 2 of Case 1

The proper transforms of the
curves C1, C2 will be C1 + aE1,
C2 + bE1 for some a, b. The in-
tersection number of the excep-
tional curve E1 with C̃1 is 3 (be-

cause [C1] = 3h), and with C̃2 is
1 (because [L1] = h, and L2, L3

don’t go through P ).

The self-intersection number of the exceptional curve is always
-1 (see Section 2.3). Thus by taking the intersection number of

both sides of [C̃1] = [C1] + a[E1] with [E1], we get

3 = [C̃1] · [E1] = [C1] · [E1] + a[E1][E1] = 0− a,
1 = [C̃2] · [E1] = [C2] · [E1] + a[E1][E1] = 0− b,

so a = −3, b = −1, and the homology classes of the proper trans-
forms C̃1, C̃2 will be 3h−3e, 3h−e, where e represents the homology
class of the exceptional divisor of the blow up. Thus in the proper
transform of the pencil, the exceptional divisor will appear in the
fiber of C1 with multiplicity 2, as we saw in Section 2.3. Now apply
4 blow ups at the 4 denoted points in Figure 8.

Similarly to the previous step, after the blow up at l1 ∩L2 ∩L3,
the proper transforms will be l1 − E2 and L2 + L3 − 2E2 (because
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l1 ∩E2 = 1 and (L2 +L3)∩E2 = 2), representing homology classes
h − e and 2h − 2e, so E2 will appear in the fiber of L2, L3 (and
hence the fiber of C2), with multiplicity 1.

Figure 9: Step 3 of Case 1

At the point l2 ∩ L3, the proper
transforms will be 2l2−2E3 (be-
cause l2 has multiplicity 2), and
L3 − E3, with homology classes
2h− 2e and h− e, so E2 joins to
the fiber of l2 (which is the fiber
of C1), with multiplicity 1. And
the same with l2 ∩ L2 and E4.

At the point L1∩E1 the line E1 has multiplicity 2, while L1 has
multiplicity 1, so the curve E5 joins to the fiber of C1, with multi-
plicity 1. Finally apply 4 more blow ups, at the 4 denoted points.
One can see, that the new exceptional curves will be sections:

Figure 10: Step 4 of Case 1

At each of the 4 base points
the intersecting curves have mul-
tiplicity 1, so they represent
h ∈ H2(CP 2#9CP 2,Z), and
their proper transforms repre-
sent h − e, thus the exceptional
curves si, (i = 1, 2, 3, 4) (denoted
grey), won’t appear in any of the
fibers, they will be sections.

Consider the fibers of C1 (red), and C2 (blue) in Figure 10. We
can see, that the first one is of type I∗1 , the second one is of type I4.
We applied 9 blow ups on CP 2, so we got the fibration CP 2#9CP 2

with fiber-types I∗1 , I4, and necessarily a further I1 fishtail fiber by
the classification of possible combinations.

This looks very similar on the Hirzebruch surface: consider
C∞, C0 as the generators of the pencil, where C∞ as above, and
C0 has two components σ1, σ2, which are sections of the ruling, and
intersect each other once on F1 and once on F3 (see Fig. 11). Such
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C0 can be obtained e.g. with q(u, v) = u2v2 as section of O(4), and
thus F1 and F3 are over the points [1 : 0], [0 : 1] ∈ CP 1, where the
two components of q(u, v) = u2v2 intersect each other. In order
to get the desired geometric arrangement, it is importatnt, that
multiplicity-2 fiber F2 is not over these points.

Figure 11: The two diagrams show the pencils before and after the
8 blow ups on F2.

With blow ups at F1 ∩ σ1 ∩ σ2 and F3 ∩ σ1 ∩ σ2 we get the
exceptional curves E1, E2 in the fiber of C0, and after two more
blow ups the sections s1, s2. At each of F2∩σ1 and F2∩σ2 we need
two blow ups as well, to see the exceptional divisors E3, E4, and
the sections s3, s4 also. These steps can be checked by very similar
homological computations, as above. See the final arrangement in
Figure 11 (right), and notice, that the red fiber is of type I∗1 , while
the blue one is of type I4. Thus we got an elliptic fibration on
the 8-fold blow up of F2 (which is a rational elliptic surface), with
singular fibers I∗1 , I4, and necessarily with an I1 (because of the list
of possible combinations).

Case 2. (fibration with a type IV fiber) This case is very similar
to the previous one: the right arrangement of the generators of the
pencil will guarantee the existence of the corresponding fiber types
(first on CP 2, and on F2 as well). Let C1 = l1 + 2l2 as in Case 1,
and let C2 = L1 +L2 +L3, three lines in CP 2 going through a same
point, while L1 goes through P = l1 ∩ l2 (see Fig. 12 left). We will
give just a rough sketch of the steps of the blow up processes at
the base points, because the guiding homological computations are
very similar to Case 1.

First blow up at P , this concerns the same lines as in Case 1, so
the result will be the same. The exceptional divisor E1 will appear
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in the fiber of C1 with multiplicity 2. Now apply 5 blow ups at the
5 denoted points in Figure 12 (right).

Figure 12: The first two steps of the blow ups on CP 2 in Case 2.

After blow up at l2∩L2, the proper transforms will be l2 +aE2,
and L2 + bE2, for exceptional curve E2, and for some a, b. The
intersection numbers of E2 with the proper transform of l2 is 2,
because l2 has multiplicity 2, and thus the intersection number of E2

with the proper transform of L2 is 1. The intersection number of E2

with l2, L2 is 0, and with itself is -1. So a = −2, b = −1, and hence
the homology classes represented by the two proper transforms, will
be 2h− 2e2, h− e2 ∈ H2(CP 2#2CP 2,Z). The comparison with the
homology classes before the blow up shows, that E2 will appear in
the fiber of C1, with multiplicity 1.

The same calculation holds for l2 ∩ L3 and L1 ∩ E1, while at
l1∩L2 and l1∩L3 the multiplicity of the intersecting lines coincide,
so the exceptional curves will be s1, s2 sections (see Fig. 13 left).

Figure 13: The remainig steps of the blow ups on CP 2 in Case 2.

Finally if we apply the 3 blow ups denoted on the left diagram
in Figure 13, then we get the s3, s4, s5 sections, in the same way,
as in the previous step. We can see the result after the 9 blow
ups on the right diagram in Figure 13. The red fiber is of type
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I∗1 , while the blue one is of type IV , exactly what we wanted. By
the classification, there must be one more fishtail, i.e. an I1 type
fiber in this configuration, so we described the I∗1 + IV + I1 case on
CP 2#9CP 2.

On the Hirzebruch surface set C∞ as earlier, while C0 a section
of O(4). The two components σ1, σ2 are sections of the ruling, and
they are tangent to each other at a point of F1. For example let
q(u, v) = u4, it has two component, tangent to each other over
[0 : 1] ∈ CP 1, set the fiber F1 over this point.

Figure 14: The pencil on F2 is generated by the red C∞, and blue
C0 curves.

It is also important that the tangential point is not on the F2

multiplicity 2 fiber. After blowing up in this base point, because of
the tangency, the curve C0 will not fall apart, but with the excep-
tional curve the σ1, σ2 will provide three lines passing through one
point, this is how the fiber type IV appears (see Example 2.20).
One can easily check, that after the 8 blow ups, we will get the
same arrangement, as in the CP 2-case.

In the remaining cases we need a slighltly different point of view,
than in the previous ones. We have to specify more than one sin-
gular fiber-type next to the I∗1 , so we attack the problem from two
sides. First we do, what we did in Case 1,2: determine a geometric
arrangement of two curves (C0, C1 in CP 2, and C0 = C(q0), C∞ in
F2), the generators of a pencil, which contains I∗1 , and a certain sin-
gular fiber coming from the arrangement. We will not give details,
just give the beginning position of the curves, because the homo-
logical computations go the same as earlier. On the other hand, we
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consider two curves C0 = C(q0), C1 = C(q1) in F2, and investigate
the pencil, which they generate. We settle the polynomilas q0, q1,
so that the pencil contains the wanted singular fibers, and satisfy
the conditions of Lemma 4.1. So the pencils generated by C0, C∞
and C0, C1 are the same, and we see the existence of two different
types of singular fiber next to I∗1 . This also shows, that we will be
more focus on the Hirzebruch surface case in the latters.

Case 3. (fibration with an I3 fiber) In CP 2, C1 is again the union
of two lines l1, l2, the second one with multiplicity two, while C2

is the union of three lines: L1 passing through l1 ∩ l2, and L2, L3

intersecting each other in a generic point (which is not on L1 and on
any li). On F2 consider two sections σ1, σ2 of the ruling, intersecting
each other in F1 (which has multiplicity 1), and in a further point,
which is not on the chosen F2, F3 fibers. One can easily check, that
after the blow ups, these pencils will have an I3 fiber next to the
I∗1 .

Figure 15: The diagram depicts two pencils (one in CP 2 and the
other one in F2) giving fibrations with an I∗1 fiber and an I3 fiber.

Besides these two singular fibers, the fibration on the rational
elliptic surface admits further singular fiber: either a cusp (II), or
two fishtails (2I1). Distinguish these two cases in the following.

a) (I∗1 + I3 + 2I1) Consider the pencil generated by C(q0), C(q1),
where q0(u, v) = u2v2, and q1(u, v) = v(u + v)(u + αv)2, two
sections of O(4), for some α ∈ C×. The first one is a complete
square, so the equation ζ ⊗ ζ = q0 over each point of CP 1

defines two components σ1, σ2, which are sections of O(2).
The two components intersect each other transversally over
[0 : 1], [1 : 0], this corresponds to the picture above. The
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second polynomial isn’t a complete square, so the equation
ζ ⊗ ζ = q1 defines a double section, with nodal point over [u :
v] = [−α : 1]. The base points of the pencil are determined
by the equation

u2v2 = v(u+ v)(u+ αv)2.

The roots of this are [u : v] = [1 : 0], [u1 : 1], [u2 : 1], [u3 : 1],
where u1, u2, u3 are the roots of the cubic equation

u2 = (u+ 1)(u+ α)2.

First of all, consider the two intersection points of σ1, σ2:
[1 : 0] is a base point (the fiber F1 lies above it in the above
picture), while [0 : 1] is not (ui = 0 is not a root of the
equation), so we will blow up the I2 type fiber at one of the
intersection points, hence it evolves to an I3 type fiber. Se-
cond, q1 provides an I1 fiber with node over [−α : 1], and we
do not blow up over this point, since it is not a base point
(α 6= 0), so the I1 type fiber remains in the pencil. And
third, the pencil must have its base points on the Hirzebruch
surface over three different points. That is, because the in-
tersection points of C(q0), C(q1) must coincide with the inte-
section points of C(q0), C∞, in order to satisfy Lemma 4.1.
It means, that the equation u2 = (u + 1)(u + α)2 must have
only two different roots (e.g. u2 = u3). We can provide it, by
choosing an α, such that the discriminant of the polynomial
(u+ 1)(u+ α)2 − u2 is 0.

∆u(α) = −4α5 + 13a4 − 32a3,

and the equation ∆u(α) = 0, has roots α± = 13
8
± 7
√
7i

8
besides

α = 0. One can easily check, that (u+ 1)(u+ α±)2 − u2 = 0
has two different u1, u2 roots, so with α = α+ or α = α−, we
can guarantee the conditions of Lemma 4.1, and we have the
freedom, to place F2, F3 fibers over [u1 : 1], [u2 : 1]. Because of
Lemma 4.1, the curves C(q0), C(q1), C∞ are in the same pen-
cil, which contains fiber types I∗1 , I3, I1, and thus necassarily
one more I1.
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(b) (I∗1 + I3 + II) Similarly to case a), let q0(u, v) = u2v2, and
q1(u, v) = v(u + αv)3. As above, over [u : v] = [1 : 0] will be
a base point, becasue it is a solution of the equation u2v2 =
v(u + αv)3, but [u : v] = [0 : 1] is not, so the singular fiber
determined by q0 will be an I3 after the blow ups. The singular
fiber determined by q1 is a cuspidal curve, with singularity
over [−α : 1], and it isn’t a base point, so the II type fiber
remains in the pencil. Similarly to case a), the equation u2 =
(u + α)3 must have two different u1, u2 roots, which we can
be ensured by setting the discriminant of (u+ α)3 − u2 to 0.

∆u(α) = 4α3 − 27a4 = 0,

which has non-zero root α = 4
27

. So if F1, F2, F3 are above
[0 : 1], [u1 : 1], [u2 : 1] in CP 1, and if q0(u, v) = u2v2, and
q1(u, v) = v(u+ 4

27
v)3, then C(q0), C(q1), C∞ are in the same

pencil, which contains fiber types I∗1 , I3, II.

Case 4. (fibration with a type III fiber) Here C1 = l1 + 2l2 as
usual, while C2 in the pencil on CP 2 now consists of two curves:
L1 line and Q quadric, where L1 passes through l1 ∩ l2, and Q is
tangent to L1 (in a point, different from l1 ∩ l2), and intesects l1, l2
in two-two general points (see Figure 16). On F2 let C∞ be as usual,
while let C(q0) = Σ be a cuspidal curve, with a cusp point on the
fiber F1. This is now a double section of O(4).

Figure 16: Continuing with the same conventions as earlier, the
two diagram shows the pencils, which yield fibrations with I∗1 and
III fibers in CP 2 and in F2).

We will get the I∗1 fiber from the red curves, and easy to see the
presence of III type fiber, since the tangency is already given in
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CP 2 between L1 and Q, and in F2, we will blow up the cuspidal
curve at its cusp point, so it will yield two tangent lines. There
are three possibilities of the further singular fibers: an I2 fiber, or
a cusp (II), or two fishtails (2I1), let’s see them.

a) (I∗1 + III + I2) Take q0(u, v) = u(u + v)3, and q1(u, v) =
4u2v(u + v) degree-4 polynomials. The base points of the
pencil they generate, are [u : v] = [0 : 1], [−1 : 1], [1 : 1],
because v = 0 is not a solution, so we can take v = 1, and now
the equation 4u2(u+ 1) = u(u+ 1)3 has three different roots
(u = −1, 0, 1). This means, that we implement blow up over
[−1 : 1], where C(q0) has the cusp singularity, and over [0 : 1]
as well, where C(q1) has the node singularity. Hence the C(q0)
cuspidal curve will turn to an III type fiber, and the C(q1)
nodal curve will turn to an I2 fiber. None of q0, q1 are complete
squares, so they will determine double sections in O(4), with
pairs of base points over [0 : 1], [−1 : 1], [1 : 1] ∈ CP 1, and
we have to consider the fibers F1, F2, F3 over these points. It
is important, that the 2-multiplicity fiber F2 must be over
[1 : 1], becasue over [0 : 1], and [−1 : 1] we need exactly
one-one blow up, to ensure the fibers we described above. By
Lemma 4.1, we can see a pencil resulting fibration with fiber
types I∗1 , III, and I2.

b) (I∗1 + III + 2I1) By taking polynomials q0(u, v) = vu3, and
q1(u, v) = vu(u + v)2, we can see, that C(q0), and C(q1) are
cuspidal and nodal curves, similarly as in the previous case.
The difference is, that now we don’t blow up over the point
[−1 : 1], where C(q1) has its nodal point, so this curve remains
a fishtail fiber in the pencil. That is, because the base points
are [u : v] = [1 : 0], [0 : 1], and [−1

2
: 1], since the solutions of

u2 = (u+ 1)2 is only −1
2
. The curve C(q0) has its cusp point

over [0 : 1] ∈ CP 1, so after the blow up, it will evolve to an
III type fiber. Similarly to case a), if we consider the fibers
F1, F2, F3 on F2 over [1 : 0], [0 : 1], [−1

2
: 1] (by watching that

the multiplicity-2 fiber F2 is not over [0 : 1], where the cuspi-
dal singularity turns to two tangent lines under the blow up
process), then Lemma 4.1 shows the pencil containing singu-
lar fibers I∗1 , III, I1, and also one more I1 type fiber, dictated
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by the classification of possible configurations.

c) (I∗1 + III + II) Now consider the two cuspidal curves C(q0),
C(q1), where q0(u, v) = vu3, and q1(u, v) = u(u + αv)3, for
some α ∈ C×. Their cusp points are over [0 : 1], [−α : 1]. The
pencil they generate, has base point over [0 : 1], but not over
[−α : 1], if α 6= 0, that is the first curve will yield an III type
fiber after the blow ups, while the second curve remains an II
type fiber in the pencil. Both curves provide double sections
in O(4), and their pencil shall have its base points over three
different points, so that C∞, which gives the I∗1 fiber, is in
the pencil of C(q0) and C(q1). To guarantee this, we have to
choose the parameter α the way, that u2− (u+α)3 = 0 cubic
equation has only two different roots (over [u : v] = [1 : 0] is
no base point, so we can assume v = 1). The discriminant of
this cubic is

∆u(α) = 4α3 − 27a4 = 0,

so if α = 4
27

, then the equation has two different roots (u1, u2)
as we saw earlier. Choose this value for α, and lay Fi-s over
[0 : 1], [u1 : 1], [u2 : 1] (F2 is not over [0 : 1] similarly to
the previous cases), then this configuration will lead to pencil
with fibers I∗1 , III, II.

Case 5. (fibration with an I2 fiber) The pencil providing an I∗1 and
an I2 fiber on CP 2 can be seen in Figure 17.

Figure 17: The pencil gives rise to a fibration with I∗1 and I2 singular
fibers on CP 2.

The red curve C1 is the same as earlier, while C2 is the union
of L1 line passing through l1 ∩ l2, and Q general positioned quadric
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curve, transverse to L1. These two transverse curves (blue) will
yield the I2 fiber after the blow ups, and the red curve will yield
the I∗1 fiber as usual. On the Hirzebruch surface the situation is
more complicated, since there is two possibilities to arrange curves,
so that their pencil admits these two singular fibers (see Figure 18).

Figure 18: Both of this pencils give rise to fibration with I∗1 and I2
fibers in F2.

On the left picture C0 is a nodal curve, with F3 going through
its node point. This means, that we blow up the blue curve at its
node, so it will became an I2 singular fiber. On the right picture
there are two sections of the ruling: σ1, σ2, and the Fi-s do not go
through the intersection points of the two section. So the σ1, σ2,
as two components of a curve, produce an I2 fiber, which do not
change under the blow ups. As usual, in both pictures the red C∞
curve provides the I∗1 fiber. There are three cases for the further
singular fibers: one more I2 and an I1, or a cusp and a fishtail
(II + I1), or three fishtails (3I1).

a) (I∗1 + 2I2 + I1) In this case, we will refer to the left picture
of Figure 18, and consider q0(u, v) = u2v(u + v) polynomial,
and C(q0) curve with node point over [0 : 1] ∈ CP 1. On the
other hand taking q1(u, v) = uv2(3u−v), the curve C(q1) has
a node over [1 : 0] ∈ CP 1. We can see, that both [0 : 1], and
[1 : 0] are solutions of u2v(u + v) = uv2(3u − v), so they are
base points of the pencil, which C(q0), C(q1) generate. Thus
both nodal curves will became an I2 fiber after blowing up at
their node points. Besides these two, the further base points
are determined by the solution of u(u + 1) = 3u − 1, which
has only one root, u = 1. So by setting F2 multilicity-2 fiber
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over [1 : 1], and F1, F3 fibers over [0 : 1], [1 : 0], we can apply
Lemma 4.1, which shows us a pencil with singular fibers I∗1
and two I2. There is only one possible configuration with
these fibers, the I∗1 + 2I2 + I1 one, exactly what we wanted.

b) (I∗1 + I2 + II + I1) If q0(u, v) = u2(u + v)(u + αv) for some
α ∈ C×, and q1(u, v) = uv3, the curves C(q0), C(q1) are a
nodal and a cuspidal curve. Although C(q0) has its node over
[0 : 1], which is a base point, so this curve will yield an I2
fiber after the blow ups. The C(q1) curve has its cusp over
[1 : 0], which isn’t a base point, so this curve will provide a
type II fiber in the pencil. Similarly to the earlier cases, we
need to set α the way, that u(u+1)(u+α) = 1 cubic equation
has two different solutions. Check its discriminant:

∆u(α) = α4 + 2α3 − 5α2 − 6α− 23,

and we can compute, that ∆u(α) = 0 satisfies for example if

α = 1
2
(−1−

√
13 + 16

√
2), and the above equation has exactly

two u1, u2 solutions. With this α-value, the pencil contains
I2 and II fibers, and I∗1 by the C∞ curve, if F1 is over [0 : 1],
and F2, F3 are over [u1 : 1], [u2 : 1]. The pencil with I∗1 , I2, II
fibers has necessarily an I1 as well, by the classification.

c) (I∗1 + I2 + 3I1) The a)- and b)-cases correspond to the left
diagram of Figure 18, with C0 double section of O(4) on the
Hirzebruch surface. This case corresponds to the right di-
agram of Figure 18, by choosing q0(u, v) = u2v2, which has
two components σ1, σ2 as sections of O(2). Let q1(u, v) =
(u+αv)2(u+v)(u−v), hence C(q1) is a nodal curve. One can
easily see, that neither of [0 : 1], [1 : 0], the intersection points
of the components of C(q0), nor [−α : 1], where C(q1) has its
node, determines base points of the pencil (α 6= 0). The base
points can be found by solving u2 = (u + α)2(u + 1)(u − 1)
degree-4 equation (v 6= 0, so assume v = 1). We need to find
an α, such that the below discriminant of the equation is 0.

∆u(α) = 16α8 − 96α6 − 240α4 − 128α2,

which is zero e.g. if α = 2
√

2. One can easily check, that with
this value the above equation has 3 different roots u1, u2, u3,
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thus F1, F2, F3 must be above [u1 : 1], [u2 : 1], [u3 : 1] points
in CP 1 to satisfy the conditions of Lemma 4.1. All together,
we got a pencil with singular fibers of type I∗1 , I2, I1. The
problem is, that there are more possible configurations with
these fibers, for example the a)- and b)-cases are such. In
order to find out, what configuration we get with these curves,
consider the general element of the pencil.

qλ = λ0q0 + λ1q1 = λ0u
2 + λ1(u+ 2

√
2)2(u+ 1)(u− 1),

where λ = [λ0 : λ1] ∈ CP 1 the parameter of the pencil, and
we take v = 1. This is the general fiber of the fibration
determined by the pencil, which is a singular fiber, if the
discriminant the polynomial is 0. The discriminant of the
general element is

∆u(λ0, λ1) = 8
√

2λ30λ1 + 97λ20λ
2
1 + 232

√
2λ0λ

3
1 + 196λ41.

For example, if λ1 = 0, then the discriminant is 0, and we
get the C(q0) singular fiber of type I2. Besides this, we can
assume, that λ1 = 1, hence the discriminant is

∆u(λ0) = 8
√

2λ30 + 97λ20 + 232
√

2λ0 + 196.

This is a cubic polynomial, and one can easily check, that it
is general, i.e. it has three distinct roots. This means, that
next to the I∗1 and I2 fibers, there must be three more singular
fibers in the pencil, so it can be only the I∗1 + I2 + 3I1 case (in
the other cases with I∗1 and I2, there are only 2 more singular
fibers).

The three remaing cases are the most general ones, i.e. the
involved cusp and fishtail fibers do not require special position with
respect to the C∞ curve on F2, while in the previous cases, there
needed to be a Fi fiber going through the singular points of these
curves. For this general positions see Figure 19 (cusp case left,
fishtail case right). This also means, that we will not apply any
blow up over the cuspidal or nodal points, therefore the II and
I1 singular fibers will directly appear in the pencils, independently
from the implemented blow ups. With this arrangement we can



38

only ensure the existence of one-one II or I1 fiber next to I∗1 , but
these fiber types appear in many configurations. So we will have
similar arguments as in Case 5 c), with respect to the number of
singular fibers in the pencil, from which we can conclude the certain
combination of singular fibers.

Figure 19: In the following cases the cuspidal and nodal curves will
have general position in the pencil on the Hirzebruch surface.

Case 6. (fibration with one or two II type fibers)

a) (I∗1 + 2II + I1) In order to provide two cusp singularities,
consider the polynomials q0(u, v) = u3v, and q1(u, v) = (u +
1)3(u + αv). It’s easy to see, that the base points of the
pencil generated by C(q0), C(q1) can be found by solving
u3 = (u + 1)3(u + α), and points [0 : 1], [−1 : 1] (where the
cusp singularities are) are not among them. This corresponds
to the above description. The discriminant of the equation is

∆u(α) = −27α4 + 162α3 + 27α2 + 90α− 23,

which is zero e.g. at the value α = 3
2

+
√

3− 1
6

√
153 + 100

√
3.

Choosing this value for α, the pecil will have its base points
over three different points of CP 1, thus we can arrange the
C∞ curve the way, that it appears in the pencil. This pencil
now gives rise to singular fibers I∗1 , and two II-type fibers,
and by the list of possible configuration this can be only the
I∗1 + 2II + I1.

b) (I∗1 + II + 3I1) This case will go just the same, as we de-
scribed before the beginning of Case 6. A nodal and a cuspidal
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curve is determined by the homogenous degree-4 polynomi-
als q0(u, v) = u3v, and q1(u, v) = (u + αv)2(u + v)(u − v)
(α ∈ C×), which generate a pencil with II, and I1 fibers.
Similarly to the previous cases, we need to settle α, so that
u3 = (u + α)2(u + 1)(u − 1) has three different roots. Its
discriminant is

∆u(α) = 20α3− 167α4 + 132α5− 296α6 + 48α7 + 4α8− 16α9.

We can numerically compute, that if α ≈ 0.129214, then it
is zero, and then the above equation has three different solu-
tion. We get a fibration with I∗1 , II, I1 fibers, hence we still
have to enumerate the other singularities in the pencil, by
investigating its general element. For λ = [λ0 : λ1] ∈ CP 1

parameter

qλ = λ0q0 + λ1q1 = λ0u
3 + λ1(u+ α)2(u+ 1)(u− 1),

has the following discriminant (we can assume λ1 = 1)

∆u(λ0) = λ4027α4 + λ30(−180α5 − 4α3)+

+λ20(4α
8 − 296α6 − 140α4) + λ0(16α9 − 48α7 + 48α5 − 16α3).

Substituting the numerical α ≈ 0.129214 value, we get a
degree-4 polynomial in λ0, and one can easily check with the
help of computer, that it has four different roots (which is
not surprising, because that is the general case). This shows,
that the pencil now has 4 singular fibers next to I∗1 , one of
them is a cusp, and one of them is a fishtail, and by browsing
the list of possible configuration, we can notice, that only the
I∗1 + II + 3I1 have these features.

Case 7. (fibration with five I1 fibers) This case goes the same, as
the previous one, the difference is, that here we choose two general
nodal curves, and

q0(u, v) = u2v(u+ v)

q1(u, v) = (u+ αv)2(u+ 2v)(u− v)

polynomials providing them. Now we will omit the tidious, com-
puter supported computations, which show, that for α ≈ −3.25852,
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the base points of the pencil are over three distinc CP 1 points (and
none of them is such, where the curves have their node points). By
investigating the discriminant of the qλ general element of the pencil
(which we will now also omit, becasue it is just the same as in the
previous computation), we can see that there are five more singular
fibers next to I∗1 , so it can be only the I∗1 + 5I1 configuration.
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