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Gábor Etesi

Budapest University of Technology and Economics
Department of Geometry

HUNGARY

New York City noncommutative geometry seminar
21st October 2020 (online from Budapest)

The universal von Neumann algebra of smooth four-manifolds with an application to gravity Gábor Etesi
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PLAN

* Rapid introduction to smooth 4-manifolds

* Construction of a von Neumann algebra (sketch)

* Construction of a new smooth 4-manifold invariant (sketch)

* Application to quantization of gravity in 4 dimensions (if time
remains)
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Smooth 4-manifolds
The basic problem: Assume that a topological space X admits a
finite dimensional manifold structure. There are two essentially
different possibilities: either X carries a C 0 or topological manifold
structure X or a C∞ or smooth manifold structure M. Given a
toplogical manifold X , can it be refined in a compatible way (i.e.,
“smoothened”) to an M, or equivalently: Does X admit any
compatible smooth structure M (existence)? If yes, is this
structure unique (uniqueness)?

Why is four dimensions so special?

(i) If dimR X 5 3 then X always admits a smooth structure M
which is unique (classical fact);

(ii) If dimR X = 5 and X is compact then it admits at most
finitely (including zero) many different smooth structures
(Sullivan);
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Smooth 4-manifolds Emergence of the II1 hyperfinite factor A new smooth 4-manifold invariant Application to gravity

(iii) If dimR X = 4 then there exists a plethora of smooth
structures and the situation is very complicated (Akbulut,
Donaldson, Freedman, Gompf, Kirby, Taubes,...). It may
happen that: X is compact and not smoothable at all (e.g.
the simply connected space with intersection form E8); it
carries countably infinitely many smooth structures (e.g. the
K3 surface); or we do not know yet how many (the case of
S4); X is not compact and the cardinality of different smooth
structures reaches that of the continuum in ZFC set theory.
Perhaps the most striking phenomenon:

Theorem
Let M be a smooth manifold which is homeomorphic to Rm. Then
M is diffeomorphic to Rm if m 6= 4. If m = 4 then there exist many
non-countable families {R4}, . . . of pairwise non-diffeomorphic
smooth 4-manifolds which are all homeomorphic but not
diffeomorphic to R4 (such an R4 is called a fake or exotic R4). 3
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How to recognize or distinguish smoothness in four dimensions?
(This question is important both mathematically and physically.)
Try to construct computable but sensitive smooth 4-manifold
invariants. Interestingly, four is the dimension of macroscopic
physical space-time and the strongest invariants arrive from
contemporary theoretical particle physics: The Donaldson invariant
(from Yang–Mills or gauge theory) and the Seiberg–Witten
invariant SW (from supersymmetric gauge theory). Why gravity
theories (e.g. general relativity) cannot exhibit smooth invariants?

Remark
Two unsatisfactory properties of the Seiberg–Witten invariant
(roughly): (i) If CP2 denotes the complex projective space then
SW (CP2) = 0; (ii) If # denotes the connected sum operation on
4-manifolds then SW (M#N) = 0. 3
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Emergence of the II1 hyperfinite factor

From the superabundance of smooth 4-manifolds one can destillate
a single von Neumann algebra as follows:

Theorem (Etesi, 2017)

Let M be a connected oriented smooth 4-manifold. Making use of
its smooth structure only, a von Neumann algebra R(M) can be
constructed which is geometric in the sense that it contains a
norm-dense subalgebra of algebraic (i.e., formal) curvature tensors
on M and R(M) itself is a hyperfinite factor of type II1 (hence is
unique up to abstract isomorphism of von Neumann algebras).

The construction is based on three main steps and roughly (i.e.
the technical details are suppressed) looks like this:
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Let M be a connected oriented smooth 4-manifold and consider
T (p,q)M, the bundle of (p, q)-type tensors over M. Among these
bundles ∧2T ∗M ⊂ T (0,2)M, the bundle of 2-forms, is the only one
which admits a natural (i.e. defined without any additional
structure) pairing over M: Given
α, β ∈ Ω2

c(M;C) := C∞c (M;∧2T ∗M ⊗R C) a sesquilinear
non-degenerate indefinite symmetric pairing

〈α, β〉L2(M) :=

∫
M

α ∧ β

exists provided by the orientation and the smooth structure of M
only.
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Smooth 4-manifolds Emergence of the II1 hyperfinite factor A new smooth 4-manifold invariant Application to gravity

Step 1. Construction of a unital C ∗-algebra over M. Let > be the
adjoint operation on End(Ω2

c(M;C)) formally defined by
〈A>α, β〉L2(M) := 〈α,Aβ〉L2(M) for all α, β ∈ Ω2

c(M;C). Consider
the >-closed space

V (M) :=
{
A ∈ End(Ω2

c(M;C)) | A> ∈ End(Ω2
c(M;C)) exists,

r(A>A) < +∞}

defined by the End(Ω2
c(M;C)) spectral radius

r(B) := sup
λ∈C

{
|λ|
∣∣B − λIdΩ2

c (M;C) ∈ End(Ω2
c(M;C)) is not bijective

}
.

Then
√
r turns out to be a norm and the corresponding completion

of V (M) renders (V (M),>) a C ∗-algebra R(M). This C ∗-algebra
is non-trivial in the sense that R(M) contains the space of all
bounded bundle morphisms i.e.,
C∞(M; End(∧2T ∗M ⊗R C)) ∩ V (M) as well as all orientation
preserving diffeomorphisms of M i.e., Diff+(M). Hence in
particular it possesses a unit 1 ∈ R(M).
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Step 2. Construction of a finite trace von Neumann algebra over
M. Given A ∈ R(M) let [[A]] :=

√
r(A>A) denote its C ∗-algebra

norm from Step 1. This norm on R(M) can be improved to a
Hermitian scalar product ( · , · ) : R(M)×R(M)→ C which in the
usual way looks like

(A,B) :=
1

2

(
[[A + B]]2 − [[A]]2 − [[B]]2

)
+

√
−1

2

(
[[A +

√
−1B]]2 − [[A]]2 − [[

√
−1B]]2

)
rendering R(M) a Hilbert space H (M) with underlying complete
complex vector space isomorphic to R(M). Moreover
R(M) ⊂ B(H (M)) turns out to be a von Neumann algebra with
a functional τ : R(M)→ C given by

τ(A) := (A, 1)

such that τ(AB) = τ(BA) and τ(1) = 1.
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Remark
A peculiarity of four dimensions. The ∗-subalgebra
C∞(M; End(∧2T ∗M ⊗R C)) ⊂ End(Ω2

c(M;C)) of bundle
morphisms contains the space of algebraic (i.e., formal) curvature
tensors on M. E.g. if (M, g) is an oriented Riemannian 4-manifold
then its Riemannian curvature tensor Rg is a member of this
algebra: With respect to the decomposition of 2-forms into their
(anti)self-dual parts it looks like

Rg =

(
1

12Scal + Weyl+ Ric0

Ric∗0
1

12Scal + Weyl−

)
as a map

Rg :
Ω+
c (M;C)⊕

Ω−c (M;C)
−→

Ω+
c (M;C)⊕

Ω−c (M;C)

that is, Rg ∈ C∞(M; End(∧2T ∗M ⊗R C)) indeed. 3

The universal von Neumann algebra of smooth four-manifolds with an application to gravity Gábor Etesi
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Step 3. This von Neumann algebra is approximated by algebraic
curvature tensors over M and is a II1-type hyperfinite factor. The
von Neumann algebra R(M) is geometric in the sense that for
every A ∈ R(M) there exists a sequence
{Ri (A) ∈ C∞(M; End(∧2T ∗M ⊗R C)) ∩ V (M) | i ∈ N} with the
property

lim
i→+∞

[[A− Ri (A)]] = 0

where [[ · ]] is the spectral radius norm for which R(M) is
complete. In particular R(M) contains all bounded complexified
algebraic (i.e., formal) curvature tensors on M. Moreover R(M) is
hyperfinite (essentially because M has a countable basis) and is a
factor (since M is connected) and is of type II1 (from Step 2).
Consequently whatever M was, its R(M) is unique up to abstract
isomorphisms of von Neumann algebras.
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Remark
R(M) as a noncommutative enhancement of M. Take a closed
(i.e. compact without boundary) oriented Riemannian 4-manifold
(M, g) and let ∆ : C∞(M;C)→ C∞(M;C) be the associated
Laplace operator acting on complex-valued functions together with
{e−t∆}t>0 the corresponding heat semigroup. The heat semigroup
is a family of self-adjoint operators possesing a smooth kernel
which means that on all f ∈ L2(M;C) (constructed by the aid of
the metric g) the action of the heat semigroup can be written as

(e−t∆f )(x) =

∫
M

kM(t; x , y)f (y)dy

where kM(t; x , y) is a smooth real function of t > 0 and x , y ∈ M.
continued...
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...continued
Therefore the assignment

x 7−→ kM
(
t
2 ; x , ·

)
Id∧2T∗M⊗RC for all x ∈ M and fixed t > 0

gives rise to a map iM,t : M → R(M). By a result of
Bérard–Besson–Gallot this map is in fact a (non-canonical)
continuous embedding of M into a Cartan subalgebra of R(M)
such that

i∗M,t( · , · ) = g + t
3

(
1
2Scal− Ric

)
+ O(t2) as t ↓ 0

where ( · , · ) is the scalar product on R(M) (viewed as H (M)).
Moreover the image iM,t(M) ⊂ R(M) can be regarded as an orbit
of Diff+(M) ⊂ Inn(R(M)). 3
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Smooth 4-manifolds Emergence of the II1 hyperfinite factor A new smooth 4-manifold invariant Application to gravity

A new smooth 4-manifold invariant

The rich representation theory of the II1 hyperfinite factor allows
one to construct a smooth invariant as well:

Theorem (Etesi, 2017)

Let M be a connected oriented smooth 4-manifold and R(M) its
von Neumann algebra as before. Then R(M) admits a
representation on a certain separable Hilbert space K (M) over M
such that the unitary equivalence class of this representation is
invariant under orientation-preserving diffeomorphisms of M.
Consequently the Murray–von Neumann coupling constant of this
representation gives rise to a smooth invariant γ(M) ∈ [0, 1). It
behaves like γ(M \ Y ) = γ(M) under excision of homologically
trivial submanifolds and
γ(M#N) = (γ(M) + γ(N))/(1 + γ(M)γ(N)) under connected
sum.
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Again very roughly the construction goes as follows:

First recall that if R is a II1 hyperfinite factor and H is a (left)
R-module then there exists a map dimR : H → [0,+∞) called the
R-dimension or the Murray–von Neumann coupling constant of the
(left) R-module H . It is a unitary invariant of the representation
and gives rise to an isomorphism between equivalnce classes of
(left, not necessarily irreducible) R-modules and [0,+∞).

Then, essentially using the standard GNS technique only, out of M
and R(M) and H (M) as before, one constructs a Hilbert space
{0} j K (M) $ H (M) and a representation ρM of R(M) on this
Hilbert space. If PM : H (M)→ K (M) is the orthogonal
projection then PM ∈ R(M) and dimR(M) K (M) = τ(PM) ∈ [0, 1)
hence is an invariant of the representation. Finally putting

γ(M) := τ(PM)

we obtain a smooth invariant of M itself.
The universal von Neumann algebra of smooth four-manifolds with an application to gravity Gábor Etesi
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The Hilbert space K (M) arises as follows. Consider M and its
R(M) as before. The previous Hilbert space completion H (M) of
R(M) carries a left action πM of R(M) by multiplication hence
H (M) is in fact the unique standard left R(M)-module (therefore
dimR(M) H (M) = 1). Pick a pair (Σ, ω) consisting of an
(immersed) closed oriented surface Σ # M and a (not necessarily
compactly supported!) 2-form ω ∈ Ω2(M;C) which is also closed
i.e., dω = 0. Consider the continuous C-linear functional
FΣ,ω : R(M)→ C by continuously extending the geometric map

A 7−→ 1

2π
√
−1

∫
Σ

Aω

from V (M) to R(M). Let {0} j IΣ,ω j R(M) be the closure in
the norm [[ · ]] on R(M) of the subset of elements A ∈ R(M)
satisfying FΣ,ω(A>A) = 0. In fact obviously {0} $ IΣ,ω and it is a
left-multiplicative ideal for all pairs (Σ, ω).
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One can show furthermore that either IΣ,ω $ R(M) (i.e. is not
trivial) and is essentially independent of (Σ, ω) if FΣ,ω(1) 6= 0 or
IΣ,ω = R(M) (i.e. trivial) hence independent of (Σ, ω) if
FΣ,ω(1) = 0. Exploiting R(M) ∼= H (M) as complete complex
vector spaces put

K (M) := (I⊥Σ,ω, ( · , · )|I⊥Σ,ω
)

and define ρM : R(M)→ B(K (M)) to be

ρM :=

{
πM |K (M) on K (M) 6= {0} if possible (then τ(PM) 6= 0),
πM |K (M) on K (M) = {0} otherwise (then τ(PM) = 0).

The choice is unambigously determined by the topology of M and
in the first case γ(M) = τ(PM) 6= 0 while γ(M) = τ(PM) = 0 in
the second case.
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Some properties of the invariant:

Let M,N be connected, oriented smooth 4-manifolds.

(i) (Reversing orientation.) γ(M) = γ(M);

(ii) (Excision.) Let ∅ j Y ⊂ M be a submanifold so that
M \ Y j M is connected and the embedding i : M \ Y → M
induces an isomorphism i∗ : H2(M \ Y ;Z)→ H2(M;Z) on the
2nd homology. Then γ(M \ Y ) = γ(M);

(iii) (Gluing.) The smooth invariant of the connected sum M#N
satisfies

γ(M#N) =
γ(M) + γ(N)

1 + γ(M)γ(N)
.

The universal von Neumann algebra of smooth four-manifolds with an application to gravity Gábor Etesi
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Some calculations with the invariant:

(i) γ(S4) = 0, γ(R4) = 0 and γ(R4) = 0 for all fake R4’s;

(ii) Take x ∈ [0, 1) and put

R0(x) := 0,R1(x) := x , . . . ,Rk(x) :=
x+Rk−1(x)
1+xRk−1(x) , . . . and put

y := γ(CP2) = γ(CP2) 6= 0. Then for every connected,
simply connected, closed 4-manifold M there exists a number
n ∈ {0} ∪ N such that γ(M) = Rn(y). (Proof: For every pair
(M,N) of connected, simply connected closed 4-manifolds
there exist integers k1, l1 and k2, l2 such that
M#k1CP2#l1CP2 ∼= N#k2CP2#l2CP2. Then put M
arbitrary and N := S4 and apply the gluing principle.) For
instance γ(CP1 × CP1) = γ(CP1×̃CP1) = R2(y) = 2y

1+y2

and γ(K3standard) = R22(y).

Interesting question: What is the numerical value of y ∈ (0, 1)?
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Application to gravity

So far the mathematical construction was:

M 6∼= N 6∼= . . . =⇒ R(M) ∼= R(N) ∼= . . .

i.e. out of any possible connected smooth 4-manifold a unique (a
II1 hyperfinite factor) von Neumann algebra has been constructed;
all smooth 4-manifolds are embedded into it and this algebra is
moreover generated by algebraic curvature tensors.

Let us symbolically, formally, etc. reverse this: Consider an
abstractly given II1 type hyperfinite factor and regard it as the
collection of “all possible 4-spaces, curvature tensors, etc.”:

R =⇒ M 6∼= N 6∼= . . .
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We can declare the existence of a quantum theory with properties:

(i) R is its algebra of observables, interpreted as curvature
tensors in a 4 dimensional gravity theory;

(ii) The unique standard left R-module H is its state space and
the standard representation π : R→ B(H ) is its unique
quantum representation (in the sense of Haag) corresponding
to a unique infinite temperature phase (in the sense of KMS
theory) of the theory (because H comes from the unique
tracial state τ on R);

(iii) The various R-modules ρM : R→ B(K (M)),
ρN : R→ B(K (N)),... are its various classical
representations corresponding to non-unique spontaneously
broken finite temperature phases (because the K (M)’s come
from various non-tracial states FΣ,ω on R);
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(iv) The unique finite trace τ on R can be used to calculate the
expectation value τ(AB) of an observable A ∈ R in a state
B ∈H ∼= R (e.g. syntactically i.e. formally-mathematically if
(M, g) is a space-time then its expectation value in another
space-time state (N, h) is τ(RgRh) ∈ C and is correctly
defined; we expect that in a quantum theory of gravity such
formal expectation values acquire even meanining i.e. appear
at the semantical i.e. experimental-physical level of the theory
as well);
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(v) Dynamics is provided by the Tomita–Takesaki modular
Hamiltonians ∆ in the various phases i.e. representations. In
the unique quantum i.e. tracial or infinite temperature phase
∆ = 1 hence the dynamics is trivial; in the various classical
i.e. non-tracial or finite temperature phases ∆ 6= 1 hence the
dynamics is non-trivial. Thermodynamical origin of time?
(von Weizsäcker 1939, Connes–Rovelli 1994)

Further details to be worked out...
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See also:

http://www.math.bme.hu/∼etesi/publ.html

Thank you!
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