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Abstract

In this paper we prove a theorem on initial data for general relativity. The result presents
a “rigidity phenomenon” caused by the sign of the scalar curvature.

More precisely, we claim that for a non-vacuum, asymptotically flat initial data set if
the spatial metric has everywhere non-positive scalar curvature then the extrinsic curvature
cannot be compactly supported.
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1 Introduction

According to our experiences there are several different gravitational configurations in our phys-
ical world. Therefore if general relativity is a correct theory of gravitational phenomena (at
least at low energies) then it is important to know whether or not these various patterns can
be modeled in general relativity i.e., Einstein equations provide enough solutions for describing
many different gravitational fields. Unfortunately or fortunately Einstein equations form an ex-
traordinary difficult system of nonlinear partial differential equations for the four dimensional
Lorentzian metric mainly because of the rich self-interactions of the gravitational field; hence in
general it is a hard job to write down explicit solutions in this theory. Therefore all methods
which prove at least the existence of solutions are very important. From this viewpoint, the
Cauchy problem or initial value formulation of general relativity is maybe the most powerful
method to generate plenty of solutions.

As it is well-known, the initial value formulation gives rise to a correspondence between
globally hyperbolic space-times and gravitational initial data. Maybe we can say without an
exaggeration that the class of globally hyperbolic space-times is the most important class of
space-times from the physical point of view. Consequently the initial data formulation provides
not only many but also physically relevant solutions. The constraint equations between initial
data are in the focal point of the initial data formulation. The question is whether or not these
constraint equations are easier to solve than the original Einstein equation itself making the
method effective. Of course, the answer is typically yes.

This motivates the serious efforts made in order to understand the structure and provide so-
lutions of constraint equations. Far from being complete we just mention the early works of Lich-
nerowicz [16], Choquet-Bruhat et al. [2][3][6] , Fisher-Marsden [8], Christodoulou-Kleinerman([7].
These works mainly deal with the analytical properties of the solutions. Witt proved the ex-
istence of solutions on a general three-manifold [20]. More recently, in a sequence of papers
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Isenberg, Moncrief, Choquet-Bruhat and York proved the existence of solutions under milder
and milder assumptions, cf. e.g. [12][4][14][5].

The constraint equations involve the scalar curvature of the metric on the underlying Cauchy
surface which is a three dimensional smooth manifold. Various properties of the solutions depend
crucially on the scalar curvature, especially on its sign. But we know that in the problem of
describing the sign of the scalar curvature, especially on a compact manifold, one encounters the
topology of the space. Parallelly to the investigations of solutions of the constraint equations
by physicist and mathematicians, mathematicians proved remarkable results on the properties
of the scalar curvature of Riemannian manifolds. By an early general result of Kazdan and
Warner [15] we know that for compact manifolds of dimension greater than two there is no
constraint on the scalar curvature if there is at least one point where it is negative. This shows
that it is easy to construct manifolds with negative scalar curvature. If we wish to construct
manifolds with non-negative scalar curvature however, we have to face various obstacles coming
from the topology of the underlying manifold. We just mention two basic examples. By results
of Lichnerowicz and Hitchin, on spin manifolds it is often impossible to construct metrics of
positive scalar curvature because of a subtle topological invariant, the so-called A-genus [11][17].
Moreover, in three dimensions, the size of the fundamental group provides another obstruction
for positive scalar curvature by results of Gromow-Lawson [9] and Schoen—Yau [18]. An excellent
survey on this branch of differential geometry is [1].

These observations make it not surprising that the topology of the Cauchy surface has a
strong influence on the properties of initial data on it. The goal of this paper is to understand
this link a bit better.

Our paper is organized as follows. The motivation is a result of Witt [20]: he proved that every
connected, oriented three-maifold with an end admits asymptotically flat initial data (M, g, k).
These asymptotically flat data are typically non-vacuum and are not maximal slices i.e., the
resulting Cauchy surfaces are generally not space-like submanifolds of identically zero extrinsic
curvature k. Hence, two natural questions arise. First, what are the conditions on the complete
Riemannian manifold (M, g) which can carry a vacuum, asymptotically flat initial data set?
Recently it has been proved by Isenberg, Mazzeo and Pollack that every punctured n-manifold
can carry an asymptotically Euclidean vacuum solution of the Einstein constraint equations [13].

Secondly, if (M, g, k) is a non-vacuum, asymptotically flat initial data set with M being a
non-maximal slice, in what extent is it non-maximal? In other words what are the conditions
on a Riemannian manifold (M, g) for its extrinsic curvature in the Cauchy development to be
compactly supported at least? This problem is the subject of our paper. We will see that if
(M, g) is a complete Riemannian-manifold whose scalar curvature is everywhere non-positive,
then the extrinsic curvature k£ is never compactly supported.

2 Background material

First let us introduce some notations. Let W be a smooth manifold. We will call a tensor field
T of type (m,n) over W if it is a smooth section of the bundle

TrIW =TW ... TWRT'W®... T*W.

Remember that an initial data set for general relativity is a triple (M, g, k), where M is a
(not necessarily compact) connected, oriented, smooth three-manifold, g = (g;;) is a smooth,
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complete Riemannian metric on M i.e. a non-degenerate smooth symmetric tensor field of type
(0,2) on M while k = (k;;) is a smooth, symmetric tensor field on M also of (0, 2)-type. These
fields must satisfy the following constraint equations [10][19]:

sg — | k|2 + tr’k = 16m7p,

div(k — (trk)g) = 8nJ, (1)
p=|J]g=0.
Here s, is the scalar curvature of the metric g and | - |, denotes various norms given by the

induced scalar product on T M, e.g. |k|? = (k,k) = kijk". The operator tr : 7™M M —
Tm=1n=1) M is the trace or contraction with respect to the metric, e.g. trk = k%. For the sake
of simplicity in the second equation we also denote by g and & the (1, 1)-tensors with respect to
the metric g (i.e. g = (¢%), k¥ = (k%) in the second equation). The linear differential operator
div : C®(TUHM M) — C®(T%™ M) is the covariant divergence, defined by

divT := tr(VT)

where T is a tensor field of (1,n)-type and V is the Levi—-Civitd covariant derivative of the
metric g. The smooth function p : M — R is the energy-density, and the smooth covector field
J € C®(T*M) with |[J[2 = (J,J) = J;J' is interpreted as the momentum-density of matter.

Supposing the energy- and momentum-densities correspond to classical non-dissipative matter
sources or vacuum (J = 0, p = 0), the coupled Einstein-equations can be used to evolve the initial
data set (M, g, k) into a (globally hyperbolic) smooth space-time (N, h) where N = M x R and
M is a Cauchy surface in N; furthermore h|y; = g and k is the second fundamental form or
extrinsic curvature of M in (N, h) [10] [19].

Also remember that an open, connected, oriented three-manifold M has an end F C M
if there is a compact set C C M such that M \ C = E and one can find a diffeomorphism
¢ : Sy % (0,00) = E where S is a compact, oriented surface of genus g. An initial value data set
(M, g, k) is called asymptotically flat along E if M has an end E = 5% x (0, 00) and one can find
a coordinate system along S? x (0,00) such that the following asymptotical fall-off conditions
hold for the complete metric g and the field £ (r parameterizes R):

¢*(9le)ij = 6ij + O(1/r), ¢*(k|r)i; = O(1/r?),
0*(9|r)ij = O(1/r?), 0,0* (k)i = O(1/r?), (2)

010kd*(9|E)ij = 0(1/7“3)-

Notice that the definition of a manifold with an end does not exclude the possibility that M
still has a boundary. However geodesic completeness of g requires that this extra boundary must
be empty, in other words M is diffeomorphic to the punctured manifold M \ {*} where M is a
connected, compact, oriented three-manifold without boundary. Moreover geodesic completeness
implies the Heine-Borel property, namely talking about “compact sets” is the same as talking
about “bounded and closed sets” in M (with respect to the metric).

Finally, the support of a tensor field T' € C'*° (T(m’")W) is the closed set

supp T = {x € W | T(z) # 0}.

After this background material, we can present our theorem.
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3 Rigidity for non-vacuum initial data

Now we prove a theorem which states that on open Riemannian manifolds with everywhere
non-positive scalar curvature the extrinsic curvature field of a non-vacuum initial data cannot
be compactly supported i.e. it has a “tail” at infinity although this tail may have sufficiently
fast fall-off to make such an initial data still asymptotically flat. The proof of this theorem is
elementary but analytic in its nature as consequence of using arbitrary matter fields. It is based
on the following idea.

By using the initial data set (M, g, k) and the assumption that suppk is compact, we construct
another “universal” initial data set (M, g, ¢g) where ¢ : M — R is a compactly supported at least
once continuously differentiable (or C'-) function on M (with a little more effort this function
could be smoothened but we do not need this). However this leads us to a contradiction if the
scalar curvature of g is non-positive everywhere. In other words, we deform the original initial
data set into a standard one whose properties are easier to understand.

Theorem (Rigidity for non-vacuum initial data). Let (M, g) be a connected, oriented, com-
plete Riemannian three-manifold with an end S*x (0,00) &2 E C M. Suppose the scalar curvature
sq of g is non-positive everywhere and there is a non-vacuum initial data set (M, g, k) on it which
s asymptotically flat along the end E. Then supp k is non-compact.

Proof. Since the scalar curvature is non-positive, the set supp s, consists of the closure
of those points where s, is negative. Then the first and third (in)equalities of (1) show that
supp sy C suppk therefore if the scalar curvature is negative everywhere the statement is trivially
true, consequently we may assume that supp s, C M. In the same fashion, since (M, g,k) is
a non-vacuum data set, there is a point xy € M such that p(zo) # 0. This yields supp p # 0.
Being the scalar curvature non-positive, via the first and third (in)equalities of (1) again we have
k(xo) # 0 i.e., supp p C supp k. Therefore if the energy density is supported everywhere the
theorem is again trivially valid consequently we may assume supp p C M. Consider a subset
C C M such that supp s, C C and supp p C C and suppose the decomposition M = C'U E' is
valid where E denotes the end of M. Consequently by the structure of M we may assume that
C is compact. This shows that there is a constant

0 < a:=sup (—|k(z)[] + tr’k(z)) < oc.
zeC
The constraint equations (1) can be rewritten as follows by using the decomposition of & into
trace- and tracefree parts k = ¢g + ky and noticing that < ¢g, kg >= 0:
59+ 6> = 16mp + | ko2,

div(—2pg) = 87 J — divky,

p=|Jg=0.

Consider a triple (M, g, pg) where ¢ : M — R is a C'-function. Hence this triple is a weak
initial data set if it obeys the constraint equations with “energy density” p + (1/167)|ko|? and
“current” J — (1/8m)divky (here by “weak” we mean that the initial data set in question is not
smooth, only C* for some k € N). However these modified matter has to satisfy the dominant
energy condition

1 1
ko2 > | = —divk
P+ 16 0'—"—‘ g o

9
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yielding a first order partial differential inequality for the unknown function ¢:

1
105+ 60%) > [del, 3)

Assume ) # supp k C M 1is compact i.e., the theorem is not true. In this case we construct a
compactly supported function ¢, out of the original data (M, g, k) such that (M, g, pg) is a weak
initial data set. We achieve this in three steps.

(i) Construction of ¢ in the compact interior of M. Let us identify the end E C M with
S? x (R* \ {0}). By assumption supp k is compact in M consequently there is an R; € R*
satisfying S* X (R, 00) ¢ supp k. Note that this is possible only if s¢]g2x(r,,00) = 0. We can take
the choice C := M \ (8% x (R;,00)) for the compact set used in the definition of the constant a.
We construct the function ¢ in C as follows:

o(z) := —va, ze€C.

In other words ¢ is a constant negative function on M except the infinite tube S? X (Ry, 00).
Note that with this function (3) is trivially satisfied in C because (M, g, k) is an initial data set
on C.

(ii) Construction of ¢ along an annulus in E. Consider an inner point zy € C' C M where
p(xo) > 0 and k(zo) # 0. There is an open (geodesic) ball B.(x¢) C M of radius € > 0 such that
PlB.(zo) > 0 and k|p,(4) # 0. Consider the annulus U, := Bc(zo) \ Bz (z0) = S? x [§,¢]. Take
another constant R, < Ry < oo and the diffeomorphism

2t — ¢

IB : UE — 52 X [RlaRZ]: Ty = (p7 t) — (pa Rl + (RZ - Rl)) = (p7 Ir)

where p € 52 and the point z; € U, is identified with (p,t) € S x [£,¢]. Here S? x [Ry, Ry] is
also an annulus in the tube E. By assumption g is asymptotically flat i.e., the function y/g'' > 0
is bounded consequently there is a constant

0<b:=sup+/g'(r) < o0
TEM

(here 2! = r). Choose a smooth function v : [R;, R)] — R~. Viewing it as a function on
S? x [Ry, Ry] (i.e. a function depending only on r), one obtains the estimate

by = [V g y'| = |dyl, (4)
where prime denotes differentiation with respect to r. Now we define ¢ as follows:

—Va if t = 2,
Y(B(xy)) == { arbitrary but the derivative of ¢ is small if ¢ € (£,¢),
0 ift=e.

In this definition the smallness of 1)’ means the following. Consider a differentiable curve =y :
[5,€] = U. given by

t— x4 = (@g + Asin(Ry — Ry)t, ¢z + Asin(Ry — Ry)t, t) i
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This is a high-speed curve because it oscillates rapidly inside B. (o). More precisely, for its speed
|¥(t)|g ~ R — Ry is valid (dot denotes differentiation with respect to ¢). We can take a choice
for the point zy and the amplitude A, the initial phases O: and ¢: of the curve v such that

@ (k)3 + 2k(a) ) (3(0) ~ ~(Ro — Rr) <0

holds for each t € [%, 5}. Then we suppose

167

=t (YR @) G0), @) 6)

0< wl(ﬁ(xt)) < min (—m

We emphasize that the right hand side of (5) is independent of the quantity Ry — R; by con-
struction of the curve 7.

It is also clear that such a function exists if Ry is suitable large: let @ be an arbitrary smooth,
negative-valued function ¢ : S* x [Ry, Ry] — R with initial value ¢(p, R;) = ¥(8(zz)) = —/a.
Suppose there is an interval [R, R+ T| C [Ry, Ry| such that ¢’ obeys (5) but there is a constant
¢ > 0, independent of Ry — Ry, with ¢'(p,r) > cif r € [R, R+ T|]. In this case we can estimate
for large R; and R, as follows:

RAT

$(p, B) > —a + / d(p, ) (8'(a))dr =

R

—Va+ / Y (p,r) (g“(p, r)+ A%(gu(p, r)+g"(p, 7)) cos %(7‘ + Rz)) dr >

RAT

—\/E+% / Y'(p,r)dr > —V/a+ %
R

In other words if T that is, Ry — R; is sufficiently large we can achieve that ¢ (p, Re) = 0. We
choose ¢ on S? x [R;, R,] to be the v just constructed.

It is not difficult to check that ¢ obeys (3) in S? x [R;, Ry]. Indeed, by the definition of the
constant a we have

o(p, R) = p(B(x3) = —Va < —/~ |k (z3)

2
, Tk (zg) .

Taking suitable large R; and R,, exploiting the decay of the metric g and using (5) this implies
that for each t € [%, 5] we have

T

wm%»=wnm=—¢ay/w@MMﬂm»@:

Ry

r

—Va+ / ¢ (p. 0) (g”(p, o)+ A%(g”’(p, 0) + 9" (p, 0)) cos %(Q + Rz)) do <
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~va+2 [ o= —va+ T [ paar <

—/= |k (5)]

Consequently

+ tr?k (z¢) /d \/—|k($7)|§ + tr2k(x7)) (F(r))dr = —\/—|k(a:t)|3 + tr2k(xy).

0 (B(w1)) = — k()| + trk(z).

Therefore, since s,(8(x;)) =0 and 0 > s4(z;), we can write

i (s4(B(x2)) + 60°(B(x1))) = §W(ﬁ(»’ﬂt)) > sg(@1) — [k(ze)[g + tr*k(z:) = 16mp(:).

2
Moreover, also by (5), we have for the same z; € U, that 16mp(x;) > by¢'(B(x)). This gives rise
to our key inequality

29 (B(a) > b (5() ©

showing via (4) that (3) is again satisfied in the annulus S? x [R;, Ry).
(iii) Construction of ¢ along the remaining part of the infinitely long tube in M. Finally,
define
o(x):=0 ifzeS?x[Ry,00).

Again, (3) is trivially valid.

Consider the function ¢ : M — R~ defined through (i)-(iii). This is a continuous negative
function on M and is compactly supported: it is equal to zero for all » > R, and equal to the
constant —+/a if < R;. Its derivative is also compactly supported in S? x [R;, Ry] and is
positive. Moreover ¢ can be adjusted to be C' on M (note that ¢ is smooth except the junction
points): it is clearly C! at r = R, by (6). However, by exploiting the freedom in the construction
of ¢ in the inner points of the annulus, we can deform it to be C' at r = R; as well (i.e., we may
assume that ¢'(p,7) — 0 as r — R;). In this way we have constructed a weak C' initial data
set (M, g, pg) (with a little effort we could smooth this data but we do not need this).

The compactly supported ¢ depends nontrivially only on r with (p,r) = B(x;) € S x [R1, Ry]
and satisfies the ordinary differential inequality (6). Now we demonstrate that it is impossible.
Dividing by ¢ and taking reciprocies in (6) we get

1\ 2 !
(ﬁ) <3
© 2b
L ‘/390
2b —
< R

By integrating the left inequality from R; to r > we arrive at the following estimate:

which is nothing but

| /\

logva — \/g/\/sd(p, 0) do < log(—¢(p,7))-
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At this point we have used the inequality

r Ry
0< /\/90’(;0,9) dQS/x/@D’(p,Q) do < o0
Ry Ry

for the non-negaitve function ¢’. This shows that the logarithm of ¢ is bounded from below.
However being ¢ compactly supported, log(—¢(p,r)) is unbounded, as r approaches Rs. Conse-
quently the last but one inequality shows a contradiction yielding our original assumption, that
supp k is compact, was wrong. We finished the proof. &

Remarks. 1.We would like to summarize here how the original initial data (M, g, k) was used in
the construction because apparently its behaviour has been taken into account only in a particular
small ball B.(zy). But in fact the construction is sensitive for the global characteristics of the
original initial data. In step (i) we considered (M, g, k) in the whole interior C' by exploiting the
existence of the constant a which is in some sense the maximum of £ in the whole compact C.
This enabled us to “pump up” the original initial data in C' into a standard one which corresponds
to the extremal point(s) of the original extrinsic curvature in some sense. Concerning part (iii),
we have seen in the beginning of the proof that the only interesting possibility for our would-be
initial data with compactly supported extrinsic curvature was the case where both the scalar
curvature and energy-density were compactly supported. Consequently all fields in the initial
data vanish along the tube for very large r yielding the hypothetical initial data did not carry
“information” along an infinitely long part of the end E. This is in accordance with the fact that
our adjusted universal initial data (M, g, pg) was also trivial on this portion. Finally, part (ii)
which is the descending regime, is nothing but a magnification of the behaviour of (M, g, k) in a
small ball where matter is present via the diffeomorphism 5. Indeed this small ball is responsible
for the details of the fall-off of ¢ (we could have used equally well any other ball) however the
fact that this function can vanish within a finite distance, is again guaranteed by the global
properties of the original would-be initial data set: namely the only interesting case was when
all fields were compactly supported.

2. Note that even if supp k is non-compact the non-vacuum data (M, g, k) may be asymptoti-
cally flat, as it is shown by Witt [20] who constructs non-vacuum, asymptotically flat initial data
for every three-manifold with an end. But the above theorem is sharp in the following sense. If
we allow for a Riemannian manifold (M, g) to have positive scalar curvature in a suitable region
in M, it is possible to construct non-vacuum asymptotically flat initial data with compactly
supported second fundamental form. An example is the Tolman—Bondi solution. This is because
in this case the key inequality (6) can be written in the form

%(39 + 6902) > by
with s, > 0 in the positive scalar curvature regime and it may have compactly supported solu-
tions. But if s, is still negative somewhere, then k is non-zero in that point, consequently the
initial surface is not a maximal slice in this case.

3. Notice that the above considerations do not remain valid for vacuum wnitial data. For
example, the Schwarzschild space-time has initial data with non-positive scalar curvature (namely
it is identically zero) but the extrinsic curvature of the initial surface is compactly supported
(namely identically zero i.e., the initial surface is a maximal slice).
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