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Plan of talk

1. What is cost?

2. What are Kazhdan (T) groups?

3. Infinite Kazhdan groups have cost 1.

4. Open problems.

Please interrupt me with questions at any time.
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Measurable cost

Group Γ, generating set S.

cost(Γ) := 1
2 inf

{

Eµ[deg(o)] : µ is an invariant probability measure

on connected spanning graphs on Γ
}

.

cost(Γ, S) := 1
2 inf

{

Eµ[deg(o)] : ... subgraphs of Cay(Γ, S)
}

.

(

Also cost
(

Γ y (X,Σ, µ)
)

and cost
(

Γ y (X,Σ, µ), S
)

, where we want a
measurable spanning (sub)graphing of the orbit-equivalence relation of the
probability measure preserving (p.m.p.) action. The above costs are the
infimal costs over all actions.

)

Defined by Levitt ‘95, studied extensively by Gaboriau ‘98 onwards.
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Measurable cost: examples

Example 0. On any finite group, any connected spanning graph has at
least |Γ| − 1 edges, achieved, e.g., by the uniformly random spanning tree
UST of Cay(Γ, S), hence cost(Γ, S) = 1− 1

|Γ|.

Example 1. cost(∞ amenable, S) = 1.

Follows from Ornstein-Weiss ‘87, saying that all pmp actions of all amenable
groups are orbit equivalent to each other. Simple proof by Benjamini-
Lyons-Peres-Schramm ‘99. Assume finitely generated, for simplicity.

Take Følner sequence Fn in Cay(Γ, S) such that |∂EFn|
|Fn| → 0 fast.

Delete the boundary edges of each xFn with probability 1/|Fn|, for each n.
P[ o is not separated from ∞ at stage n ] 6 (1− 1/|Fn|)

|Fn| ∼ 1/e.
P[ o is not separated from ∞ ] = 0.

The probability of any edge to be deleted is
∑

n
|∂EFn|
|Fn| < ǫ.

In each finite component, take UST. Add back the ∂E(xFn) edges.
Connected, with average degree < 2 + ǫdegS(o).
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Measurable cost: examples

Example 2. Free groups cost(Fd) = d Gaboriau ‘98.

So cost shows that there exist orbit-inequivalent actions.

Example 3. cost(Γ× Z) = 1 for any finitely generated Γ.

Proof. Bernoulli(ǫ) percolation on edges of Cay(Γ, S). Plus full Z copies.

Example 4. cost(SL(n,Z), S) = 1 for n > 3, with the usual generating set
where “generators commute with each other in a connected manner”.
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Cost, first ℓ2-Betti number, FUSF

Cost is not always easy to determine. Cohomology is often easier.

Gaboriau ‘02: cost(Γ) > 1 + β
(2)
1 (Γ), where two probabilistic definitions:

β
(2)
1 (Γ) = von Neumann dimension of space of harmonic functions f :

Γ −→ R with finite Dirichlet energy
∑

(x,y)∈E |f(x)− f(y)|
2 <∞.

Or, for the Free Uniform Spanning Forest, E
[

degFUSF(o)
]

= 2 + 2β
(2)
1 (Γ),

in any Cayley graph.

The FUSF is the limit of UST along any exhaustion by finite subgraphs.

Question (Gaboriau ‘02). Is there = always? E.g., for Kazhdan groups,

where β
(2)
1 (Γ) = 0 is known from Bekka-Valette ‘97, do we have cost = 1?

IF there is a way to add an invariant ǫ-density bond percolation to the FUSF
so that it becomes connected, then Yes.

In Kazhdan groups, adding Bernoulli(ǫ) does not work.
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Kazhdan’s property (T) definitions

Definition 1 (Kazhdan ‘67). A topological group Γ has property (T) iff
every unitary representation ρ : Γ −→ U(H) on a real or complex Hilbert
space H has a spectral gap:

if there are no non-zero invariant vectors (fixed by all g ∈ Γ), then
there is some κ > 0 and a compact K ⊂ Γ such that for every nonzero
v ∈ H exists k ∈ K with ‖ρ(k)v − v‖ > κ‖v‖.

If a countable group has (T), then it is finitely generated, and every finite
generating set S works as K above.

Kazhdan proved that SL(n,R) for n > 3 has (T), extended this to every
lattice in them (such as SL(n,Z)), and concluded that all these lattices are
finitely generated.
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Kazhdan’s property (T) definitions

Definition 2 (Connes-Weiss ‘80). Whenever Γ y (X,Σ, µ) is an ergodic
p.m.p. action on a probability space (i.e., every Γ-invariant A ∈ Σ is trivial,
µ(A) ∈ {0, 1}), it is also strongly ergodic: every asymptotically invariant
An (i.e., µ

(

An△g
−1(An)

)

→ 0 for every g ∈ Γ) is asymptotically trivial:
µ(An)

(

1− µ(An)
)

→ 0.

Definition 3 (Glasner-Weiss ‘97). The set Erg(Γ y {0, 1}Γ) of
ergodic random 2-colorings of Γ is closed in the weak∗ topology within
Inv(Γ y {0, 1}Γ). In particular, p δall 0 + (1 − p) δall 1 cannot be locally
approximated by ergodic 2-colorings:

For every ǫ > 0 and finite generating set S, there is a δ > 0 such that
whenever σ : Γ −→ {0, 1} is an ergodic invariant random 2-coloring of the
vertices with distribution µ, with marginals ǫ < µ(σ(g) = 1) < 1− ǫ, then,
for every s ∈ S, we have µ

(

σ(g) = σ(gs)
)

< 1− δ.

The equivalence of Def 1, Def 2, Def 3 is similar to the equivalence of the
spectral and isoperimetric definitions of being an expander graph.
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Kazhdan’s property (T) examples

Example 0. Finite groups.

Example 1. Infinite amenable groups are not. Because:

Let (ωv)v∈Γ be an iid Bernoulli(1/2) coloring.
Let Fn be a good Følner set. Let σn(x) := Maj

{

ωv : v ∈ xFn

}

.

Example 2. The free groups are not.

One colouring. F2 −→ Z surjection by forgetting one generator. Now pull
back the Følner Majority colouring of Z.

Another colouring. Take Bernoulli(1− ǫ) bond percolation. Colour each
cluster by flipping a fair coin. There are infinitely many infinite clusters,
hence this is ergodic (Lyons-Schramm ‘99), for any ǫ > 0. But take ǫ→ 0.

Example 3. SL(n,Z), n > 3, yes.
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The cost of Kazhdan groups

Theorem (Hutchcroft-P ‘20). In any infinite Kazhdan group Γ, any finite
generating set S, we have cost(Γ, S) = 1.

Step 1 (reduction). If there exists, for any ǫ > 0, an invariant ǫ-density
site percolation with a unique infinite cluster, then cost(Γ, S) = 1.

Step 2 (a strange construction). For any p ∈ (0, 1), an iterative sequence
of invariant site percolations µn that converge weakly to p δall 0+(1−p) δall 1.

Step 3 (ergodicity). If every cluster of µn−1 has “zero frequency”, then
µn is ergodic.

• In a Kazhdan group, there is some µN that is not ergodic (Step 2).

• Hence µN−1 has a cluster of positive frequency. There can be only
finitely many clusters of largest frequency — choose one, get unique
infinite cluster at density 6 p (by Step 3).

• This was for any p ∈ (0, 1). So Step 1 finishes the proof. �
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Step 1 (reduction)

Let η be the ǫ-density infinite cluster. Let η1 be the vertices at distance 1
from η, and ηk+1 be the vertices at distance 1 from ηk.

From each vertex in ηk+1, take one random edge to ηk.

Outdegree is 1. So expected indegree is also 1. Altogether 2 + ǫ degS(o).
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Step 2 (a strange construction)

• µ1 is Bernoulli(p) site percolation.

• Given µi, keep each cluster only with some probability q, independently.
This is the q-thinned percolation measure µq

i .

• Take two independent copies, and take their union. This is µi+1.

The q-thinning reduces the density, taking the union of two increases it.

With q = q(p) = 1−√
1−p

p
, the density remains p in each iteration.

And µi(two neighbours agree)→ 1 as i→∞. So µi → pδall 0+(1−p)δall 1.
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Step 3 (ergodicity)

This proof is inspired by Lyons-Schramm ‘99.

Lemma (LS‘99). For any invariant site percolation on any Cayley graph,
for simple random walk (Xn)n>0 started at any vertex X0 = v,

freq(C) := lim
N→∞

1

N

N−1
∑

n=0

1{Xn∈C}

exists and is independent of v, for every percolation cluster C.

Proposition. For any ergodic site percolation µ on any Cayley graph, if
freq(C) = 0 for every cluster C, then the q-thinned measure µq is ergodic.

Idea of proof. freq(C) = 0 ∀C implies that, for every r > 0,

lim
N→∞

1

N

N−1
∑

n=0

P

(

B(X0, r)←→ B(Xn, r)
)

= 0,

and thus infx,y∈Γ µ
(

B(x, r) ←→ B(y, r)
)

= 0, which implies that the
q-thinning in B(x, r) and B(y, r) are getting independent. �
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Step 3 (ergodicity)

We are not done yet: ergodicity of µq does not imply ergodicity of µq⊗µq.

(E.g., . . . 1010 . . . or . . . 0101 . . . with probability 1/2 each. In two
independent copies, “agreeing” is an invariant event of probability 1/2.)

However, µ1 is Bernoulli percolation, not just ergodic, but weakly mixing
⇐⇒ µ1 ⊗ µ1 is ergodic ⇐⇒ µ⊗k

1 is ergodic for any k > 2.

Version of Proposition: if µi ⊗ · · · ⊗ µi is ergodic for µi that has zero
frequencies, then µq

i ⊗ · · · ⊗ µ
q
i is also ergodic.

µ⊗2
i ergodic =⇒ µ⊗4

i ergodic =⇒ (µq
i )

⊗4 ergodic =⇒ µ⊗2
i+1 ergodic.

So, on a Kazhdan group, there is µn−1 that has a cluster with positive
frequency. �
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Open questions

Problem 1. Can we get a small density unique infinite cluster in a factor
of iid way?

A random coloring σ : Γ −→ {0, 1} is a factor of iid if there is a measurable
map ψ : [0, 1]Γ −→ {0, 1} s.t., for ω ∼ Unif[0, 1]Γ, σ(x) = ψ

(

ω(x+ ·)
)

.

If yes, then the group has fixed price 1, because Abért-Weiss ‘13 says these
have the highest cost.

Problem 2. Is the cost of any group Γ realized inside any Cayley graph?

Problem 3. Our iterative process seems to condensate into a unique infinite
cluster also on Z

3, but not on Z
2. Why?

Wild guess: transient graphs without non-constant HD functions are exactly
those where free effective resistances between vertices remain bounded.
If this implied condensation, then β

(2)
1 = 0 would imply cost = 1.
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Open questions

P-Timár ‘21 proved that, surprisingly, FUSF is disconnected in some Cayley
graph of the virtually free group Fk × Zk9 (and connected in some other).

Problem 4. Here, is the independent union of FUSF and Bernoulli(ǫ) bond
percolation connected, for any ǫ > 0? If not, is there a general invariant
way?

This would kill only Gaboriau’s proposed strategy to prove cost = 1 + β
(2)
1 ,

not the statement, since cost(Fk×H) = 1+ k−1
|H| and β

(2)
1 (Fk×H) = k−1

|H| .
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