Non-amenable Poisson Zoo

Gábor Pete

Alfréd Rényi Institute of Mathematics & Technical University, Budapest http://www.math.bme.hu/~gabor

Joint work with Sándor Rokob TU Budapest

Plan of talk

- 1. Definitions and results
- 2. Two pieces of motivation from measurable group theory
- 3. Proof ideas
- 4. What is missing for the main open question

Please interrupt me with questions at any time.

The Poisson Zoo model

Infinite transitive graph G, such as a Cayley graph $G = Cay(\Gamma, S)$.

 $\nu = \nu_o$ is a probability measure on finite rooted lattice animals $o \in H \subset V(G)$, invariant under the automorphisms of G that fix o. **E.g.1.** Ball $B_{\rho}(o)$ of random radius. **E.g.2.** SRW trajectory $(X_i)_{i=0}^{\ell}$ of random length.

Can map by any graph automorphism $\varphi : o \mapsto x$ to get $\nu_x := \varphi_*(\nu_o)$.

Fix intensity $\lambda > 0$, then $N_x \sim \text{Poi}(\lambda)$ iid variables for each $x \in V(G)$, then N_x iid samples from ν_x . What are the clusters in the union?

The Poisson Zoo model

Infinite transitive graph G, such as a Cayley graph $G = Cay(\Gamma, S)$.

 $\nu = \nu_o$ is a probability measure on finite rooted lattice animals $o \in H \subset V(G)$, invariant under the automorphisms of G that fix o. **E.g.1.** Ball $B_{\rho}(o)$ of random radius. **E.g.2.** SRW trajectory $(X_i)_{i=0}^{\ell}$ of random length.

Can map by any graph automorphism $\varphi : o \mapsto x$ to get $\nu_x := \varphi_*(\nu_o)$.

Fix intensity $\lambda > 0$, then $N_x \sim \text{Poi}(\lambda)$ iid variables for each $x \in V(G)$, then N_x iid samples from ν_x . What are the clusters in the union?

Assume that G is unimodular: $|\operatorname{Aut}_x y| = |\operatorname{Aut}_y x|$ for every x, y, or the Mass Transport Principle: $\sum_y f(x, y) = \sum_x f(x, y)$ for invariant functions.

Fact 1. If $m_1 := \mathbf{E}_{\nu}|H| = \infty$, then the union a.s. covers all of G.

Fact 2. If $m_2 := \mathbf{E}_{\nu} |H|^2 < \infty$, then for λ small enough there are only finite clusters, while for λ large enough there are infinite clusters, a.s.

The moment conditions: size-biasing

Fact 1. If $m_1 := \mathbf{E}_{\nu}|H| = \infty$, then the union a.s. covers all of G.

Proof. From MTP, the expected number of animals covering o is $\lambda m_1 = \infty$. But this is a Poisson random variable, so, it is infinite a.s.

Fact 2. If $m_2 := \mathbf{E}_{\nu} |H|^2 < \infty$, then $\lambda_c \in (0, \infty)$ for percolation.

Proof. The expected total size of animals covering o is λm_2 .

For λ small, domination by subcritical branching process.

For λ large, already singletons percolate.

The moment conditions: size-biasing

Fact 1. If $m_1 := \mathbf{E}_{\nu}|H| = \infty$, then the union a.s. covers all of G.

Proof. From MTP, the expected number of animals covering o is $\lambda m_1 = \infty$. But this is a Poisson random variable, so, it is infinite a.s.

Fact 2. If $m_2 := \mathbf{E}_{\nu} |H|^2 < \infty$, then $\lambda_c \in (0, \infty)$ for percolation.

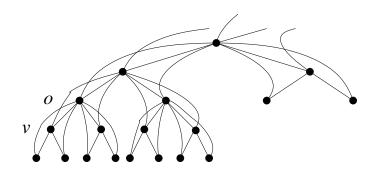
Proof. The expected total size of animals covering o is λm_2 .

For λ small, domination by subcritical branching process.

For λ large, already singletons percolate.

Importance of unimodularity:

Downwards random path with random length $\mathbf{P}[\mathcal{L} = \ell] \simeq \ell^{-3}$. $m_1 < \infty, m_2 = \infty$, but expected total length of paths covering a vertex is finite.



In Euclidean spaces

Gouéré '08: balls in \mathbb{R}^d with random radii: $m_1 < \infty \implies \lambda_c \in (0, \infty)$ Ráth-Rokob '22:

- **1.** The above implies the same for balls in \mathbb{Z}^d by a simple coupling.
- **2.** In \mathbb{Z}^d , $d \ge 5$, random length SRW trajectories (worms):

 $m_{2-\epsilon} = \infty \implies \lambda_c = 0$, i.e., percolation at arbitrarily low density.

Much more precisely, $\mathbf{P}[\mathcal{L} = \ell] \simeq \frac{(\log \log \ell)^{\epsilon}}{\ell^3 \log \ell}$ for any $\epsilon > 0$ is enough.

But maybe $m_2 = \infty$ is enough?

In Euclidean spaces

Gouéré '08: balls in \mathbb{R}^d with random radii: $m_1 < \infty \implies \lambda_c \in (0, \infty)$ Ráth-Rokob '22:

1. The above implies the same for balls in \mathbb{Z}^d by a simple coupling.

2. In \mathbb{Z}^d , $d \ge 5$, random length SRW trajectories (worms):

 $m_{2-\epsilon} = \infty \implies \lambda_c = 0$, i.e., percolation at arbitrarily low density.

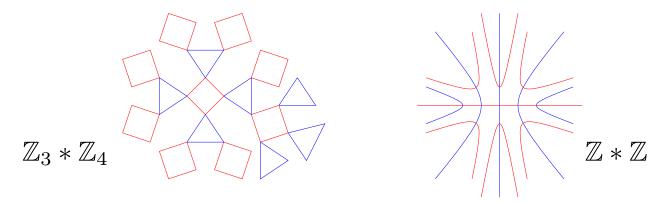
Much more precisely, $\mathbf{P}[\mathcal{L} = \ell] \simeq \frac{(\log \log \ell)^{\epsilon}}{\ell^3 \log \ell}$ for any $\epsilon > 0$ is enough. But maybe $m_2 = \infty$ is enough?

So, balls and worms are pretty much on the two extremes.

How about **non-amenable** $\left(\frac{|\partial S|}{|S|} > c \ \forall S\right)$ groups, to make things simpler? Should we care?

On non-amenable graphs

Theorem 1. If Γ is a non-amenable free product of unimodular transitive graphs, then ANY ν with $m_2 = \infty$ satisfies $\lambda_c = 0$.



Theorem 2. If Γ is ANY nonamenable unimodular transitive graph, and the lattice animals are worms (simple random walk trajectories of random length) with $m_2 = \infty$, then $\lambda_c = 0$.

In particular, if $m_1 < \infty$ and λ is small, then we have infinite clusters, despite having arbitrarily low total density.

Question. If Γ is ANY nonamenable unimodular transitive graph, then ANY ν with $m_2 = \infty$ satisfies $\lambda_c = 0$?

Other low density FIID percolations with ∞ clusters

A site percolation σ on a group Γ is a factor of IID (FIID) process if there is a measurable coding map $\psi : [0,1]^{\Gamma} \longrightarrow \{0,1\}$, or $[0,1]^{E(\Gamma,S)} \longrightarrow \{0,1\}$ for some generating system S, such that for ω iid Unif[0,1] input,

$$\sigma(x) = \psi(\omega(x \cdot)), \quad x \in \Gamma.$$

E.g.1. Consider Bernoulli percolation on a Cayley graph of Γ at $p = p_c + \epsilon$. Assuming $\theta(p_c) = 0$, true for non-amenable groups (BLPS '99), density of infinite clusters is small. Delete all finite clusters.

E.g.2. Take iid Unif[0, 1] labels on the edges $E(\Gamma, S)$. The Wired Minimal Spanning Forest is by deleting the edge with the largest label in every cycle, possible through infinity. This is infinitely many 1-ended trees for any non-amenable group Γ . Prune the leaves, repeatedly, a 1000 times.

E.g.3. Random interlacements (PPP of bi-infinite SRW trajectories) at low intensity. FIID by Borbényi-Ráth-Rokob '21.

These constructions inherently give ∞ many ∞ clusters.

One motivation: measurable cost

$$\begin{split} \mathsf{cost}(\Gamma,S) &:= \frac{1}{2} \inf \Big\{ \mathbf{E}_{\mu}[\deg(o)] : \mu \text{ is an invariant probability measure} \\ & \text{ on connected spanning subgraphs of } \mathsf{Cay}(\Gamma,S) \Big\}. \end{split}$$

 $\operatorname{cost}^*(\Gamma, S) := \frac{1}{2} \inf \left\{ \mathbf{E}_{\mu}[\operatorname{deg}(o)] : \mu \text{ is a FIID measure} \\ \text{ on connected spanning subgraphs of } \operatorname{Cay}(\Gamma, S) \right\}.$

Obvious: $\operatorname{cost}^*(\Gamma, S) = 1 - \frac{1}{|\Gamma|}$ for finite Γ , while $\operatorname{cost}(\Gamma, S) \ge 1$ for $|\Gamma| = \infty$.

Ornstein-Weiss '87, BLPS '99: $cost^*(\infty \text{ amenable}, S) = 1$. Can construct an FIID spanning tree with one or two ends.

Gaboriau '00: $cost(F_d, S) = cost^*(F_d, S) = d$ for free groups.

If Γ has infinitely many ends, then $cost(\Gamma, S) > 1$.

Gaboriau '98: $cost^*(\Gamma_1 \times \Gamma_2, S) = 1$ if either group is infinite.

The fixed price 1 question

Question (Gaboriau '02). Take infinite $\operatorname{Cay}(\Gamma, S)$ with no non-constant harmonic functions with finite Dirichlet energy, $\sum_{x \sim y} |h(x) - h(y)|^2 < \infty$. (This does not depend on the generating set S. Equiv to $\operatorname{WUSF} = \operatorname{FUSF}$.) Does $\operatorname{cost}(\Gamma, S) = 1$ hold? Or even $\operatorname{cost}^*(\Gamma, S) = 1$?

The fixed price 1 question

Question (Gaboriau '02). Take infinite $\operatorname{Cay}(\Gamma, S)$ with no non-constant harmonic functions with finite Dirichlet energy, $\sum_{x \sim y} |h(x) - h(y)|^2 < \infty$. (This does not depend on the generating set S. Equiv to $\operatorname{WUSF} = \operatorname{FUSF}$.) Does $\operatorname{cost}(\Gamma, S) = 1$ hold? Or even $\operatorname{cost}^*(\Gamma, S) = 1$?

A famous test case was Kazhdan (T) groups. Hutchcroft-P. '20 proved $cost(\Gamma, S) = 1$, but not a FIID construction.

HP'20 constructed a Sparse Unique Cluster, a unique infinite cluster with arbitrarily small density, which implies cost = 1. Is there a FIID SUC?

Fraczyk-Mellick-Wilkens '23+: $cost^* = 1$ for higher rank Lie groups and products of trees. But no FIID SUC yet.

I am pretty sure that $\mathbb{F}_d \times \mathbb{Z}$ has an FIID SUC, as a Poisson Zoo, but even this has not been checked. Other examples?

Another motivation: indistinguishability

An invariant percolation has indistinguishable infinite clusters if they agree on every translation invariant property (e.g., one-ended, transient, $p_c < 1$).

Lyons-Schramm '99: insertion tolerant percolations on unimodular transitive graphs have indistinguishability.

Chifan-loana '10: for any FIID percolation, there are at most countably many distinguishable non-hyperfinite cluster types.

An invariant percolation cluster is δ -non-hyperfinite if any invariant deletion of at most δ density of the edges still gives infinite clusters.

Csóka-Mester-P.: For any FIID percolation on trees, there are at most $K(\delta) < \infty$ many distinguishable δ -non-hyperfinite cluster types. Equiv, any FIID percolation with δ -non-hyperfinite clusters has density $\ge \epsilon(\delta)$. Proof uses entropy inequalities, from counting in random regular graphs.

Every non-amenable group? Idea from Hutchcroft: in Gromov-Osajda monsters, low density Poisson Zoo of expanders could be a counterexample.

Proof ideas for free products

Idea: use the free product structure, virgin territories, lots of independence, to find a branching exploration process $(E_n)_{n \ge 0}$ with large mean offspring inside the cluster.

Large mean should come from $\mathbf{E}[\text{total size of animals covering } o] = \infty$.

Proof ideas for free products

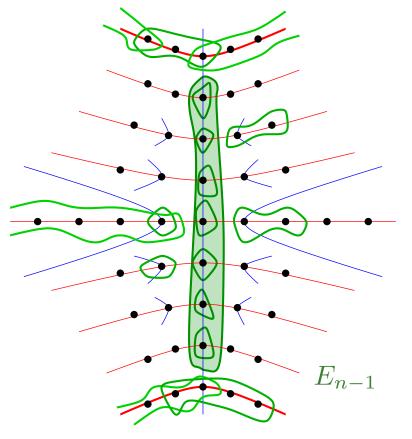
Idea: use the free product structure, virgin territories, lots of independence, to find a branching exploration process $(E_n)_{n \ge 0}$ with large mean offspring inside the cluster.

Large mean should come from $\mathbf{E}[\text{total size of animals covering } o] = \infty$.

However, **an issue:** the two factors in $\Gamma_1 * \Gamma_2$ may behave differently.

E.g., in $\mathbb{Z} * \mathbb{Z}$, the animal measure ν extends only in the red direction.

Depending on \mathbf{E}_{n-1} , maybe only a small part of its boundary is virgin territory for growth.



Proof ideas for free products

Idea: use the free product structure, virgin territories, lots of independence, to find a branching exploration process $(E_n)_{n \ge 0}$ with large mean offspring inside the cluster.

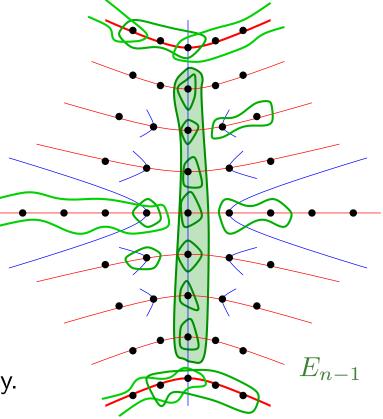
Large mean should come from $\mathbf{E}[\text{total size of animals covering } o] = \infty$.

However, **an issue:** the two factors in $\Gamma_1 * \Gamma_2$ may behave differently.

E.g., in $\mathbb{Z} * \mathbb{Z}$, the animal measure ν extends only in the red direction.

Depending on \mathbf{E}_{n-1} , maybe only a small part of its boundary is virgin territory for growth.

Solution: use sprinkling to reach virgin territory. This has a probability cost, but compared to the infinite mean, it is OK.



Proof ideas for worms

Random walk capacity: $\operatorname{cap}(K) := \sum_{x \in S} \operatorname{deg}(x) \mathbf{P}_x[\tau_K^+ = \infty]$ $:= \inf \left\{ \frac{1}{2} \sum_{x \sim y} |f(x) - f(y)|^2 : f \ge \mathbf{1}_K \right\}.$

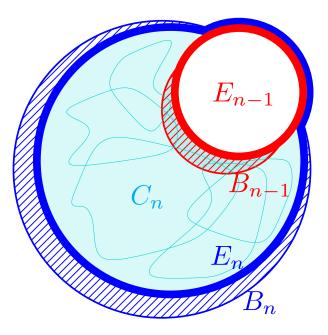
Lemma. If G is non-amenable, then $cap(K) \simeq |K|$ for any finite K.

Proof ideas for worms

Random walk capacity: $\operatorname{cap}(K) := \sum_{x \in S} \operatorname{deg}(x) \mathbf{P}_x[\tau_K^+ = \infty]$ $:= \inf \left\{ \frac{1}{2} \sum_{x \sim y} |f(x) - f(y)|^2 : f \ge \mathbf{1}_K \right\}.$

Lemma. If G is non-amenable, then $cap(K) \asymp |K|$ for any finite K.

Exploration process: Animals of size at most R. E_0 is the union of animals covering o. $B_{n-1} := \partial E_{n-1} \setminus \partial E_{n-2}$ C_n is the growth through B_{n-1} , avoiding E_{n-1} . $E_n := E_{n-1} \cup C_n$.



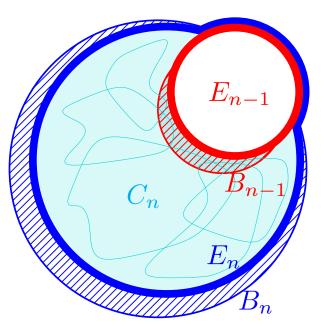
Proof ideas for worms

Random walk capacity: $\operatorname{cap}(K) := \sum_{x \in S} \operatorname{deg}(x) \mathbf{P}_x[\tau_K^+ = \infty]$ $:= \inf \left\{ \frac{1}{2} \sum_{x \sim y} |f(x) - f(y)|^2 : f \ge \mathbf{1}_K \right\}.$

Lemma. If G is non-amenable, then $cap(K) \simeq |K|$ for any finite K.

Exploration process: Animals of size at most R. E_0 is the union of animals covering o. $B_{n-1} := \partial E_{n-1} \setminus \partial E_{n-2}$ C_n is the growth through B_{n-1} , avoiding E_{n-1} . $E_n := E_{n-1} \cup C_n$.

If $|E_{n-1}| > \vartheta_R |E_{n-2}|$ with ϑ_R large, then $|B_{n-1}|$ is large, and choosing R large, get large 1st and small 2nd moment for $|C_n|$, so also $\mathbf{P}[|E_n| > \vartheta_R |E_{n-1}| | \mathcal{F}_{n-1}] > 1 - \frac{A_R}{|E_{n-1}|}$.



Altogether, $\mathbf{P}[|E_n| > \vartheta_R |E_{n-1}| \text{ for } n = 1, 2, ...] > 0$, with ϑ_R large.

Open: general shapes, general groups?

We need a general capacity notion that measures how a given set $K = E_{n-1}$ can be touched from outside by copies of the animals.

Open: general shapes, general groups?

We need a general capacity notion that measures how a given set $K = E_{n-1}$ can be touched from outside by copies of the animals.

E.g., if the animals are balls of random radius, then, if

$$|\partial_{\leqslant r}K| \ge c \cdot |B_r| \cdot |K| \qquad \forall r, \forall K \tag{(*)}$$

for some absolute constant c > 0, then the second proof works.

This (*) does not hold in $\mathbb{T}_k \times \mathbb{T}_k$, for instance.

It holds in hyperbolic space \mathbb{H}^d , $d \ge 2$, hence the 2nd moment version of Gouéré's theorem seems to hold (Elias-P-Rokob, in preparation).

Does it hold for all Gromov-hyperbolic, or even statistically Gromov-hyperbolic groups (for most triples in a large ball, the triangle is δ -thin)?

Open: general shapes, general groups?

We need a general capacity notion that measures how a given set $K = E_{n-1}$ can be touched from outside by copies of the animals.

E.g., if the animals are balls of random radius, then, if

$$|\partial_{\leqslant r}K| \ge c \cdot |B_r| \cdot |K| \qquad \forall r, \forall K \tag{(*)}$$

for some absolute constant c > 0, then the second proof works.

This (*) does not hold in $\mathbb{T}_k \times \mathbb{T}_k$, for instance.

It holds in hyperbolic space \mathbb{H}^d , $d \ge 2$, hence the 2nd moment version of Gouéré's theorem seems to hold (Elias-P-Rokob, in preparation).

Does it hold for all Gromov-hyperbolic, or even statistically Gromov-hyperbolic groups (for most triples in a large ball, the triangle is δ -thin)?

Even if (*) does not hold, could it hold for "typical" $K = E_{n-1}$?

Thank you for your attention!