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Plan of talk

1. Definitions and results

2. Two pieces of motivation from measurable group theory

3. Proof ideas

4. What is missing for the main open question

Please interrupt me with questions at any time.
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The Poisson Zoo model

Infinite transitive graph G, such as a Cayley graph G = Cay(Γ, S).

ν = νo is a probability measure on finite rooted lattice animals o ∈ H ⊂
V (G), invariant under the automorphisms of G that fix o. E.g.1. Ball
Bρ(o) of random radius. E.g.2. SRW trajectory (Xi)

ℓ
i=0 of random length.

Can map by any graph automorphism ϕ : o 7→ x to get νx := ϕ∗(νo).

Fix intensity λ > 0, then Nx ∼ Poi(λ) iid variables for each x ∈ V (G),
then Nx iid samples from νx. What are the clusters in the union?
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The Poisson Zoo model

Infinite transitive graph G, such as a Cayley graph G = Cay(Γ, S).

ν = νo is a probability measure on finite rooted lattice animals o ∈ H ⊂
V (G), invariant under the automorphisms of G that fix o. E.g.1. Ball
Bρ(o) of random radius. E.g.2. SRW trajectory (Xi)

ℓ
i=0 of random length.

Can map by any graph automorphism ϕ : o 7→ x to get νx := ϕ∗(νo).

Fix intensity λ > 0, then Nx ∼ Poi(λ) iid variables for each x ∈ V (G),
then Nx iid samples from νx. What are the clusters in the union?

Assume that G is unimodular: |Autxy| = |Autyx| for every x, y, or the
Mass Transport Principle:

∑

y f(x, y) =
∑

x f(x, y) for invariant functions.

Fact 1. If m1 := Eν|H| = ∞, then the union a.s. covers all of G.

Fact 2. If m2 := Eν|H|2 < ∞, then for λ small enough there are only
finite clusters, while for λ large enough there are infinite clusters, a.s.
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The moment conditions: size-biasing

Fact 1. If m1 := Eν|H| = ∞, then the union a.s. covers all of G.

Proof. From MTP, the expected number of animals covering o is λm1 = ∞.
But this is a Poisson random variable, so, it is infinite a.s.

Fact 2. If m2 := Eν|H|2 <∞, then λc ∈ (0,∞) for percolation.

Proof. The expected total size of animals covering o is λm2.

For λ small, domination by subcritical branching process.

For λ large, already singletons percolate.
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The moment conditions: size-biasing

Fact 1. If m1 := Eν|H| = ∞, then the union a.s. covers all of G.

Proof. From MTP, the expected number of animals covering o is λm1 = ∞.
But this is a Poisson random variable, so, it is infinite a.s.

Fact 2. If m2 := Eν|H|2 <∞, then λc ∈ (0,∞) for percolation.

Proof. The expected total size of animals covering o is λm2.

For λ small, domination by subcritical branching process.

For λ large, already singletons percolate.

Importance of unimodularity:

Downwards random path
with random length P[L = ℓ ] ≍ ℓ−3.
m1 <∞, m2 = ∞, but expected total
length of paths covering a vertex is finite.

o

v
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In Euclidean spaces

Gouéré ‘08: balls in R
d with random radii: m1 <∞ =⇒ λc ∈ (0,∞)

Ráth-Rokob ‘22:

1. The above implies the same for balls in Z
d by a simple coupling.

2. In Z
d, d > 5, random length SRW trajectories (worms):

m2−ǫ = ∞ =⇒ λc = 0, i.e., percolation at arbitrarily low density.

Much more precisely, P[L = ℓ ] ≍ (log log ℓ)ǫ

ℓ3 log ℓ
for any ǫ > 0 is enough.

But maybe m2 = ∞ is enough?
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In Euclidean spaces

Gouéré ‘08: balls in R
d with random radii: m1 <∞ =⇒ λc ∈ (0,∞)

Ráth-Rokob ‘22:

1. The above implies the same for balls in Z
d by a simple coupling.

2. In Z
d, d > 5, random length SRW trajectories (worms):

m2−ǫ = ∞ =⇒ λc = 0, i.e., percolation at arbitrarily low density.

Much more precisely, P[L = ℓ ] ≍ (log log ℓ)ǫ

ℓ3 log ℓ
for any ǫ > 0 is enough.

But maybe m2 = ∞ is enough?

So, balls and worms are pretty much on the two extremes.

How about non-amenable (|∂S|
|S| > c ∀S) groups, to make things simpler?

Should we care?
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On non-amenable graphs

Theorem 1. If Γ is a non-amenable free product of unimodular transitive
graphs, then ANY ν with m2 = ∞ satisfies λc = 0.

Z3 ∗ Z4 Z ∗ Z

Theorem 2. If Γ is ANY nonamenable unimodular transitive graph, and
the lattice animals are worms (simple random walk trajectories of random
length) with m2 = ∞, then λc = 0.

In particular, if m1 < ∞ and λ is small, then we have infinite clusters,
despite having arbitrarily low total density.

Question. If Γ is ANY nonamenable unimodular transitive graph, then
ANY ν with m2 = ∞ satisfies λc = 0?
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Other low density FIID percolations with ∞ clusters

A site percolation σ on a group Γ is a factor of IID (FIID) process if there
is a measurable coding map ψ : [0, 1]Γ −→ {0, 1}, or [0, 1]E(Γ,S) −→ {0, 1}
for some generating system S, such that for ω iid Unif[0, 1] input,

σ(x) = ψ
(

ω(x·)
)

, x ∈ Γ .

E.g.1. Consider Bernoulli percolation on a Cayley graph of Γ at p = pc+ ǫ.
Assuming θ(pc) = 0, true for non-amenable groups (BLPS ‘99), density of
infinite clusters is small. Delete all finite clusters.

E.g.2. Take iid Unif[0, 1] labels on the edges E(Γ, S). The Wired Minimal
Spanning Forest is by deleting the edge with the largest label in every
cycle, possible through infinity. This is infinitely many 1-ended trees for any
non-amenable group Γ. Prune the leaves, repeatedly, a 1000 times.

E.g.3. Random interlacements (PPP of bi-infinite SRW trajectories) at low
intensity. FIID by Borbényi-Ráth-Rokob ‘21.

These constructions inherently give ∞ many ∞ clusters.
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One motivation: measurable cost

cost(Γ, S) := 1
2 inf

{

Eµ[deg(o)] : µ is an invariant probability measure

on connected spanning subgraphs of Cay(Γ, S)
}

.

cost∗(Γ, S) := 1
2 inf

{

Eµ[deg(o)] : µ is a FIID measure

on connected spanning subgraphs of Cay(Γ, S)
}

.

Obvious: cost∗(Γ, S) = 1− 1
|Γ| for finite Γ, while cost(Γ, S) > 1 for |Γ| = ∞.

Ornstein-Weiss ‘87, BLPS ‘99: cost∗(∞ amenable, S) = 1.
Can construct an FIID spanning tree with one or two ends.

Gaboriau ‘00: cost(Fd, S) = cost∗(Fd, S) = d for free groups.

If Γ has infinitely many ends, then cost(Γ, S) > 1.

Gaboriau ‘98: cost∗(Γ1 × Γ2, S) = 1 if either group is infinite.

7



The fixed price 1 question

Question (Gaboriau ‘02). Take infinite Cay(Γ, S) with no non-constant
harmonic functions with finite Dirichlet energy,

∑

x∼y |h(x)− h(y)|2 <∞.
(This does not depend on the generating set S. Equiv to WUSF = FUSF.)

Does cost(Γ, S) = 1 hold? Or even cost∗(Γ, S) = 1?
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The fixed price 1 question

Question (Gaboriau ‘02). Take infinite Cay(Γ, S) with no non-constant
harmonic functions with finite Dirichlet energy,

∑

x∼y |h(x)− h(y)|2 <∞.
(This does not depend on the generating set S. Equiv to WUSF = FUSF.)

Does cost(Γ, S) = 1 hold? Or even cost∗(Γ, S) = 1?

A famous test case was Kazhdan (T) groups. Hutchcroft-P. ‘20 proved
cost(Γ, S) = 1, but not a FIID construction.

HP‘20 constructed a Sparse Unique Cluster, a unique infinite cluster with
arbitrarily small density, which implies cost = 1. Is there a FIID SUC?

Fra̧czyk-Mellick-Wilkens ‘23+: cost∗ = 1 for higher rank Lie groups and
products of trees. But no FIID SUC yet.

I am pretty sure that Fd × Z has an FIID SUC, as a Poisson Zoo, but even
this has not been checked. Other examples?
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Another motivation: indistinguishability

An invariant percolation has indistinguishable infinite clusters if they agree
on every translation invariant property (e.g., one-ended, transient, pc < 1).

Lyons-Schramm ‘99: insertion tolerant percolations on unimodular transitive
graphs have indistinguishability.

Chifan-Ioana ‘10: for any FIID percolation, there are at most countably
many distinguishable non-hyperfinite cluster types.

An invariant percolation cluster is δ-non-hyperfinite if any invariant deletion
of at most δ density of the edges still gives infinite clusters.

Csóka-Mester-P.: For any FIID percolation on trees, there are at most
K(δ) <∞ many distinguishable δ-non-hyperfinite cluster types. Equiv, any
FIID percolation with δ-non-hyperfinite clusters has density > ǫ(δ).
Proof uses entropy inequalities, from counting in random regular graphs.

Every non-amenable group? Idea from Hutchcroft: in Gromov-Osajda
monsters, low density Poisson Zoo of expanders could be a counterexample.
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Proof ideas for free products

Idea: use the free product structure, virgin territories, lots of independence,
to find a branching exploration process (En)n>0 with large mean offspring
inside the cluster.

Large mean should come from
E[total size of animals covering o] = ∞.
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Proof ideas for free products

Idea: use the free product structure, virgin territories, lots of independence,
to find a branching exploration process (En)n>0 with large mean offspring
inside the cluster.

Large mean should come from
E[total size of animals covering o] = ∞.

However, an issue: the two factors
in Γ1 ∗ Γ2 may behave differently.

E.g., in Z ∗ Z, the animal measure
ν extends only in the red direction.

Depending on En−1, maybe only a small part
of its boundary is virgin territory for growth.

En−1
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Proof ideas for free products

Idea: use the free product structure, virgin territories, lots of independence,
to find a branching exploration process (En)n>0 with large mean offspring
inside the cluster.

Large mean should come from
E[total size of animals covering o] = ∞.

However, an issue: the two factors
in Γ1 ∗ Γ2 may behave differently.

E.g., in Z ∗ Z, the animal measure
ν extends only in the red direction.

Depending on En−1, maybe only a small part
of its boundary is virgin territory for growth.

En−1Solution: use sprinkling to reach virgin territory.
This has a probability cost, but compared to
the infinite mean, it is OK.

10



Proof ideas for worms

Random walk capacity: cap(K) :=
∑

x∈S deg(x)Px[ τ
+
K = ∞ ]

:= inf
{

1
2

∑

x∼y |f(x)− f(y)|2 : f > 1K

}

.

Lemma. If G is non-amenable, then cap(K) ≍ |K| for any finite K.
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Proof ideas for worms

Random walk capacity: cap(K) :=
∑

x∈S deg(x)Px[ τ
+
K = ∞ ]

:= inf
{

1
2

∑

x∼y |f(x)− f(y)|2 : f > 1K

}

.

Lemma. If G is non-amenable, then cap(K) ≍ |K| for any finite K.

Exploration process: Animals of size at most R.
E0 is the union of animals covering o.
Bn−1 := ∂En−1 \ ∂En−2

Cn is the growth through Bn−1, avoiding En−1.
En := En−1 ∪ Cn.

En−1

Bn−1Cn

En

Bn
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Proof ideas for worms

Random walk capacity: cap(K) :=
∑

x∈S deg(x)Px[ τ
+
K = ∞ ]

:= inf
{

1
2

∑

x∼y |f(x)− f(y)|2 : f > 1K

}

.

Lemma. If G is non-amenable, then cap(K) ≍ |K| for any finite K.

Exploration process: Animals of size at most R.
E0 is the union of animals covering o.
Bn−1 := ∂En−1 \ ∂En−2

Cn is the growth through Bn−1, avoiding En−1.
En := En−1 ∪ Cn.

En−1

Bn−1Cn

En

Bn

If |En−1| > ϑR|En−2| with ϑR large,
then |Bn−1| is large, and choosing R large,
get large 1st and small 2nd moment for |Cn|, so
also P

[

|En| > ϑR|En−1|
∣

∣Fn−1

]

> 1− AR
|En−1|

.

Altogether, P
[

|En| > ϑR|En−1| for n = 1, 2, . . .
]

> 0, with ϑR large.
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Open: general shapes, general groups?

We need a general capacity notion that measures how a given setK = En−1

can be touched from outside by copies of the animals.
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Open: general shapes, general groups?

We need a general capacity notion that measures how a given setK = En−1

can be touched from outside by copies of the animals.

E.g., if the animals are balls of random radius, then, if

|∂6rK| > c · |Br| · |K| ∀r,∀K (∗)

for some absolute constant c > 0, then the second proof works.

This (∗) does not hold in Tk × Tk, for instance.

It holds in hyperbolic space H
d, d > 2, hence the 2nd moment version of

Gouéré’s theorem seems to hold (Elias-P-Rokob, in preparation).

Does it hold for all Gromov-hyperbolic, or even statistically Gromov-
hyperbolic groups (for most triples in a large ball, the triangle is δ-thin)?
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Open: general shapes, general groups?

We need a general capacity notion that measures how a given setK = En−1

can be touched from outside by copies of the animals.

E.g., if the animals are balls of random radius, then, if

|∂6rK| > c · |Br| · |K| ∀r,∀K (∗)

for some absolute constant c > 0, then the second proof works.

This (∗) does not hold in Tk × Tk, for instance.

It holds in hyperbolic space H
d, d > 2, hence the 2nd moment version of

Gouéré’s theorem seems to hold (Elias-P-Rokob, in preparation).

Does it hold for all Gromov-hyperbolic, or even statistically Gromov-
hyperbolic groups (for most triples in a large ball, the triangle is δ-thin)?

Even if (∗) does not hold, could it hold for “typical” K = En−1?
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Thank you for your attention!
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