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Guessing the output from partial input

A transitive Boolean function f : {−1, 1}n −→ {−1, 1} is given (so that
every bit has the same role), with iid fair random input bits.

Example 1: Majn(ω1, . . . , ωn) := sign
∑n

i=1ωi, with an odd n.

Example 2:
Iterated 3-majority
on n = 3k bits.

Example 3: In critical percolation on the
torus Z2

k, is there a non-contractible cycle?

Q: Is there a small subset U ⊂ [n] s.t. from ωU we can guess the output?
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Guessing the output from partial input

A transitive Boolean function f : {−1, 1}n −→ {−1, 1} is given (so that
every bit has the same role), with iid fair random input bits.

Example 1: Majn(ω1, . . . , ωn) := sign
∑n

i=1ωi, with an odd n. NO!

Example 2:
Iterated 3-majority
on n = 3k bits.
YES! ≈ (5/2)k bits.

Example 3: In critical percolation on the
torus Z2

k, is there a non-contractible cycle?
YES! Exploration interfaces have length k2−δ.

Q: Is there a small subset U ⊂ [n] s.t. from ωU we can guess the output?
One answer: for some functions yes, if we can choose U adaptively.
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Guessing the output from partial input

Adaptive algorithms computing the output by asking few bits, possibly
using extra randomness (also called randomized decision trees), have been
used by P. Hajnal (1991), O’Donnell, Saks, Schramm & Servedio (2005),
Schramm & Steif (2010), Duminil-Copin, Raoufi & Tassion (2019), . . .

Itai Benjamini: what if U has to be given in advance? Are there transitive
functions whose value can be reconstructed from a vanishingly small subset?

|Un|

n
→ 0, but Corr

[
fn(ω), E

[
fn(ω)

∣∣ ωUn

]]
6→ 0 , or even → 1 ?

Version not requiring transitivity: are there any functions fn for
which exist random subsets Un ⊆ [n] with small revealment δU :=
supj∈[n]P

[
j ∈ Un

]
→ 0, but high expected correlation?

If a transitive function fn has a small Un, then it also has a low revealment
random Un: just take a uniform random translate of Un.

3



No sparse reconstruction for iid bits

Theorem (Galicza & P). No sparse reconstruction for any transitive f .
Also, no random sparse reconstruction for any f .

Proof. Fourier spectrum! f̂(S)2 := E
[
f(ω)χS(ω)

]
, χS(ω) :=

∏
i∈S ωi.

Spectral sample: P
[
Sf = S

]
:= f̂(S)2/‖f‖2, used by Garban, Pete &

Schramm (2010) for noise sensitivity of critical planar percolation.

Proof for transitive f :

clue(f |U) :=
Var(E[ f | ωU ])

Var(f)
=

∑
∅6=S⊆U f̂(S)

2

∑
∅6=S⊆[n] f̂(S)

2

= P
[
Sf ⊆ U

∣∣ Sf 6= ∅
]
6 P̃[Xf ∈ U ] ,

where Xf is a uniform random element of Sf conditioned to be non-empty.

P̃[Xf ∈ U ] =
∑

j∈U

P̃[Xf = j] =
|U |

n
.

�
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Entropy proof of small clue

Entropy: H(X) := −
∑

xP[X = x] logP[X = x]. Mutual information:

I(X,Y ) := H(X) +H(Y )−H(X,Y ) = H(X)−H(X |Y ) .

Information-theoretic clue:

clueI(f |U) :=
I(f(ω), ωU)

H(f(ω))
.

For non-degenerate Boolean f , this is small exactly when clue(f |U) is.
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Entropy proof of small clue

Entropy: H(X) := −
∑

xP[X = x] logP[X = x]. Mutual information:

I(X,Y ) := H(X) +H(Y )−H(X,Y ) = H(X)−H(X |Y ) .

Theorem (Galicza & P). For any transitive function f ,

clueI(f |U) :=
I(f(ω), ωU)

H(f)
6

|U |

n
.

Proof. Shearer’s inequality: if X1, . . . , Xn are random variables with any
joint distribution, and {Uj} is a k-cover of [n], then

∑

j

H(XUj
) > kH(X[n]) .

Cultural remarks:
Follows from submodularity: H(XS∪T ) +H(XS∩T ) 6 H(XS) +H(XT ),

implies Loomis-Whitney Zd isoperimetric inequality: |A|d−1 6
∏d

j=1 |πi(A)|
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Entropy proof of small clue

Theorem (Galicza & P). For any transitive function f ,

clueI(f |U) :=
I(f(ω), ωU)

H(f)
6

|U |

n
.

Proof. From Shearer’s inequality, for n translates of U , forming a |U |-cover,

−
∑

j

H(ωUj
| f(ω)) 6 −|U |H(ω[n] | f(ω)) .

On the other hand, for independent variables:
∑

j

H(ωUj
) =

∑

j

∑

i∈Uj

H(ωi) = |U |H(ω[n]) ,

Altogether:

n I(f(ω), ωU) =
∑

j

I(f(ω), ωUj
) 6 |U | I(f(ω), ω[n]) = |U |H(f) .

�
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Clue and cooperative game theory

Why do we have the same bound |U |/n for two different notions of clue?

Theorem (Galicza & P). For any notion of clue(f |U) that is
supermodular (e.g., the L2-clue and clueI), and clue(f | [n]) = 1 and
clue(f | ∅) = 0, the bound clue(f |U) 6 |U |/n holds for any transitive f .

Proof. Consider Xf distributed according to the Shapley value of the
cooperative game with payoff clue(f |U). �
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What happens for non-iid spins?

Gn finite transitive graphs, often Gn → G locally to an infinite graph.
σ ∈ {−1,+1}V (Gn) translation invariant Markov random field.

E.g., the Ising model at inverse temperature β ∈ (0,∞):

µGn
β (σ) :=

1

ZGn
β

exp
(
− β

∑

(x,y)∈E(Gn)

1σ(x) 6=σ(y)

)
.

Subcritical phase, β < (1−ǫ)βc(Gn): correlations decay fast with distance.
Total magnetization Mn(σ) :=

∑
x∈V (Gn)

σ(x) has SD[Mn] ≍
√
|V (Gn)|.

If Gn → G, often βc(Gn) → βc(G), and unique Gibbs measure on G.

Supercritical phase, β > (1 + ǫ)βc(Gn): correlations do not decay.
Long range order: Mn(σ) ≍ ±|V (Gn)| typically.
More than one Gibbs measure on limiting infinite graph G.

Critical phase, β ∼ βc(Gn), typically: correlations decay, but not fast.√
|V (Gn)| ≪ SD[Mn] ≪ |V (Gn)|.

Unique Gibbs measure on limiting infinite graph G.

9



What happens for non-iid spins?

Gn finite transitive graphs, often Gn → G locally to an infinite graph.
σ ∈ {−1,+1}V (Gn) translation invariant Markov random field.

E.g., the Ising model at inverse temperature β ∈ (0,∞):

µGn
β (σ) :=

1

ZGn
β

exp
(
− β

∑

(x,y)∈E(Gn)

1σ(x) 6=σ(y)

)
.

β = 0.881374 β = 0.9
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Sparse reconstruction in the supercritical phase

Low temperature Ising, β > βc(Z
d). Then µ

Z
d
n

β converges weakly to

(µ+
β + µ−

β )/2, a non-ergodic measure.

Moreover, with probability 1/2, the finite system looks locally like µ+
β , and

with probability 1/2, looks like µ−
β .

So, sparse reconstruction is easy: if |Un| → ∞, then sign
∑

x∈Un
σ(x) tells

us with large probability if we are in µ+
β or µ−

β , hence has clue close to 1
about Maj(σ) := sign

∑
x∈Z2

n
σ(x).

Similar argument for measures on expander graphs Gn with a non-ergodic
limit. However, if the limit is ergodic but non-extremal?

Lemma (Lanford & Ruelle ‘69). For Markov fields, non-extremal ⇔ not
tail-trivial ⇔ spin reconstruction from a large distance.

E.g., the unique automorphism-invariant random perfect matching on T3 is
ergodic, but non-extremal. Does the approximating random matching on
the 3-regular random graph have (random) sparse reconstruction?
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No sparse reconstruction for subcritical Curie-Weiss

Ising model on the complete graph Kn. Scale β with n:

µKn
β (σ) :=

1

ZKn
β

exp
(
−
β

n

∑

(x,y)∈E(Kn)

σ(x)σ(y)
)
.

Quite analogously to the Erdős-Rényi random graph (via the FK random
cluster representation), phase transition at βc = 1.

For β < βc = 1, one has Mn√
n

d
→ N

(
0, 1

1−β

)
, even a Local CLT.

This can be used to prove that H(σβ
[n]) > n− Cβ, with log2-entropy.

Then, in the proof with Shearer’s inequality,

∑

j

H(σUj
) 6

∑

j

∑

i∈Uj

H(σi) = k n 6 k
(
H(σ[n]) + Cβ

)
,

and we get clueI(f |U) 6 |U |
n

(
1 +

Cβ

H(f)

)
→ 0. �
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Spectral sample for non-iid spins?

Can we define a random set S = Sf , based on clue?

P[S ⊆ U ] :=
∥∥E[ f | σU ]

∥∥2 ,

and then inclusion-exclusion formula:

P[S = S ] :=
∑

T⊆S

(−1)|S|−|T |P[S ⊆ T ] .

Eigenfunctions of Glauber dynamics are typically not indexed by subsets of
bits, hence this would be a different generalization of Fourier transform.

Issue: why would this be non-negative for all S?

Efron-Stein decomposition ‘81: works for arbitrary product measures!

Hence the one-line Small Clue Theorem works.
And this can be used for non-iid!

13



Ising as a factor of iid

A spin system σ on {−1,+1}Z
d
is a factor of iid if there is a measurable

map ψ : [0, 1]Z
d
−→ {−1,+1} such that for ω ∼ Unif[0, 1]Z

d
,

σ(x) = ψ
(
ω(x+ ·)

)
, x ∈ Z

d .

This factor map is finitary if there is a random coding radius R(ω) < ∞
such that R(ω) and ψ(ω) are determined by

{
ω(x) : x ∈ [−R,R]d

}
.

Theorem (vdBerg & Steif ‘99). For β < βc, the unique Ising measure on

Z
d is a finitary factor of Unif[0, 1]Z

d
, coding radius P[R > t ] < exp(−ct).

(Uses exponential convergence of Glauber dynamics, Martinelli & Olivieri
‘94, and “Coupling From The Past” perfect sampling Propp & Wilson ‘96).

At βc: finitary factor, but only with E[Rd ] = ∞ (joint with Peres).

For β > βc: + measure is fiid, but not finitary (uses Marton & Shields ‘94).
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Small clue for FFIID with exponential decay

Theorem (Galicza & P). If σ is a finitary factor of iid on Z
d with

P[R > t ] < exp(−ct), and σn is any version on the torus Z
d
n, then, for

any function fn of the spins, and any random subset with revealment
δUn = o(1/ logd n), independent of σn, we have

E
[
clue(fn | Un)

]
:= E

[
Var(E[ f | σUn ])

Var(fn)

]
→ 0 .

Proof sketch. Take Wn :=
⋃

u∈Un
BC logn(u), with C large enough.

Then ωWn determines σUn with high probability.
But the revealment δWn on ω is still small, hence the clue is small. �

Seems wasteful, because BC logn(u) is the worst case for each u. However:

Example of sharpness.
2n iid copies of ψ on Zn × Z2n.
fn = 1{∃ alternating ± copy}.
Un: 3 consecutive spins in each copy.
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Sparse reconstruction in critical Ising

Critical Ising on Z
d is not a ffiid with finite expected coding volume,

because the susceptibility Sβ :=
∑

x∈Zd Covβ[σ0, σx] is infinite at β = βc.
(Aizenman & Fernandez ‘86, Aizenman, Duminil-Copin & Sidoravicius ’13)

Theorem (Galicza & P). On the tori Z
d
n, d > 2, at βc, the total

magnetization Mn(σ) :=
∑

x∈Zd
n
σx can be reconstructed from some low

revealment subset Un. Also true for Majn(σ) := signMn(σ).

Proof sketch. Varβc[Mn(σ)] = ndSβc,n, and Sβc,n → Sβc = ∞, hence

1 ≫ δn ≫ 1/Sβc,n will make Corrβc

[
Mn(σ),

∑
u∈B(δn)

σu

]
→ 1. �

In particular, on Z
2
n, revealment δUn ≫ n−7/4 is enough for magnetization.

On the other hand, δUn ≪ n−15/8 is not enough for any odd function.
Simple but inspiring proof for magnetization by Christophe Garban:

Couple σn and σ̃n by sampling an FK-representation ωn, then same ± spins
on ωn-clusters intersecting Un, while independent spins on the other clusters.
Thus σUn = σ̃Un, but Cov[Mn(σn),Mn(σ̃n)] 6 |Un|E

[
|Clustero|

2
]
.
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From strong spatial mixing to sparse reconstruction

A Markov random field {−1, 1}Z
d
has strong spatial mixing if for any finite

box V , given two boundary configurations σ∂V and σ̃∂V that differ only at
a single vertex v ∈ ∂V , for any radius R, the conditional distributions inside
V satisfy

dTV

(
σV \BR(v), σ̃V \BR(v)

)
6 exp(−cR).

Ising on Z
d, d 6 2, all β < βc, Martinelli, Olivieri & Schonmann ‘94 and

Alexander ‘98 together imply SSM. For d > 3, small enough β, follows from
Stroock & Zegarlinski ‘92 or Marton ‘19.

Blanca, Caputo, Sinclair & Vigoda ‘19 proved that SSM implies a uniformly
positive spectral gap for certain block dynamics (e.g., for Swendsen-Wang).
Inspired by this, and the previous proof of Christophe:

Theorem (Galicza & P). For any SSM Markov field on {−1, 1}Z
d
, for any

function fn and any random subset with revealment δUn → 0, independent
of σn, we have E

[
clue(fn | Un)

]
→ 0.
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From strong spatial mixing to sparse reconstruction

Proof sketch. Block Glauber dynamics σ 7→ σU , where U is sampled, then
σU gets fixed and σ

Zd
n\U gets resampled from the conditional distribution.

Enough to prove that spectral gap of this chain is close to 1 if δU is small.

Take 1 ≪ L := (1/δ)1/(d+1) logd/(d+1)(1/δ) ≪ n,
let L be a randomly shifted hyperplane sublattice of
mesh size L, and let H be L together with all the
inner boxes that intersect U .

Enough: spectral gap of σ 7→ σH is close to 1.

Path coupling method of Bubley & Dyer ‘97: whenever σ and σ̃ differ only
at a single vertex v ∈ Z

d
n, if E

[
dHamming

(
σH, σ̃H) ]

< ǫ, then OK.

If v ∈ H◦, with prob O(δLd), error remains 1.
If v ∈ ∂H, with prob O(1/L), error propagates to O(Rd + e−cRLd) spins.
If v ∈ Z

d
n \ H, error becomes 0.

Choose R with logL≪ R≪ L1/d. �

18



Open problems on sparse reconstruction

1. Subcritical Ising on Z
d
n, d > 3, all β < βc: shave off the logd n.

2. Critical Ising Z
2
n: what is the exact sparse reconstruction threshold?

3. In reasonable spin systems, if total magnetization cannot be sparse
reconstructed (finite susceptibility), then nothing can?

For instance, if σ is a finitary fiid system with finite expected coding volume,
then susceptibility is finite. If σn is a sequence of finite systems such that,
with probability tending to 1, at every vertex the finitary factor works, then
there is never sparse reconstruction in σn?

4. Possible example for sparse reconstruction but not for magnetization: +
phase of supercritical Ising on Z

2
n.

5. Balázs Szegedy: does every fiid system have a trivial sparse tail? Would
imply no sparse reconstruction for local functions. (E.g., in the almost
perfect matching example earlier.)

True for amenable transitive graphs, by using entropy.

19


