Sparse reconstruction of Boolean functions in spin systems

Gábor Pete

Alfréd Rényi Institute of Mathematics & Technical University, Budapest http://www.math.bme.hu/~gabor

> Joint work with Pál Galicza Rényi Institute

[arXiv:2010.10483], and in preparation

Guessing the output from partial input

A transitive Boolean function $f : \{-1,1\}^n \longrightarrow \{-1,1\}$ is given (so that every bit has the same role), with iid fair random input bits.

Example 1: $\operatorname{Maj}_{n}(\omega_{1}, \ldots, \omega_{n}) := \operatorname{sign} \sum_{i=1}^{n} \omega_{i}$, with an odd n.

Q: Is there a *small* subset $U \subset [n]$ s.t. from ω_U we can guess the output?

Guessing the output from partial input

A transitive Boolean function $f : \{-1,1\}^n \longrightarrow \{-1,1\}$ is given (so that every bit has the same role), with iid fair random input bits.

Example 1: $\operatorname{Maj}_{n}(\omega_{1}, \ldots, \omega_{n}) := \operatorname{sign} \sum_{i=1}^{n} \omega_{i}$, with an odd n. NO!

Example 2: **Iterated 3-majority** on $n = 3^k$ bits. YES! $\approx (5/2)^k$ bits.

Example 3: In critical percolation on the torus \mathbb{Z}_k^2 , is there a non-contractible cycle? YES! Exploration interfaces have length $k^{2-\delta}$.

Q: Is there a *small* subset $U \subset [n]$ s.t. from ω_U we can guess the output? **One answer:** for some functions *yes*, if we can choose *U* adaptively.

Guessing the output from partial input

Adaptive algorithms computing the output by asking few bits, possibly using extra randomness (also called *randomized decision trees*), have been used by P. Hajnal (1991), O'Donnell, Saks, Schramm & Servedio (2005), Schramm & Steif (2010), Duminil-Copin, Raoufi & Tassion (2019), ...

Itai Benjamini: what if U has to be given *in advance*? Are there transitive functions whose value can be reconstructed from a vanishingly small subset?

$$\frac{|U_n|}{n} \to 0, \text{ but } \operatorname{Corr} \left[f_n(\omega), \ \mathbf{E} \left[f_n(\omega) \mid \omega_{U_n} \right] \right] \not\to 0, \text{ or even } \to 1?$$

Version not requiring transitivity: are there any functions f_n for which exist random subsets $\mathcal{U}_n \subseteq [n]$ with small revealment $\delta_{\mathcal{U}} := \sup_{j \in [n]} \mathbf{P}[j \in \mathcal{U}_n] \to 0$, but high expected correlation?

If a transitive function f_n has a small U_n , then it also has a low revealment random \mathcal{U}_n : just take a uniform random translate of U_n .

No sparse reconstruction for iid bits

Theorem (Galicza & P). No sparse reconstruction for any transitive f. Also, no random sparse reconstruction for any f.

Proof. Fourier spectrum! $\widehat{f}(S)^2 := \mathbf{E} [f(\omega) \chi_S(\omega)], \ \chi_S(\omega) := \prod_{i \in S} \omega_i.$

Spectral sample: $\mathbf{P}[\mathscr{S}_{f} = S] := \widehat{f}(S)^{2}/||f||^{2}$, used by Garban, Pete & Schramm (2010) for noise sensitivity of critical planar percolation.

Proof for transitive f:

$$\begin{aligned} \mathsf{clue}(f \mid U) &:= \frac{\operatorname{Var}(\mathbf{E}[f \mid \omega_U])}{\operatorname{Var}(f)} = \frac{\sum_{\emptyset \neq S \subseteq U} \widehat{f}(S)^2}{\sum_{\emptyset \neq S \subseteq [n]} \widehat{f}(S)^2} \\ &= \mathbf{P}\big[\mathscr{S}_f \subseteq U \mid \mathscr{S}_f \neq \emptyset\big] \leqslant \widetilde{\mathbf{P}}[X_f \in U]\,, \end{aligned}$$

where X_f is a uniform random element of \mathscr{S}_f conditioned to be non-empty.

$$\tilde{\mathbf{P}}[X_f \in U] = \sum_{j \in U} \tilde{\mathbf{P}}[X_f = j] = \frac{|U|}{n}.$$

Entropy proof of small clue

Entropy: $H(X) := -\sum_{x} \mathbf{P}[X = x] \log \mathbf{P}[X = x]$. Mutual information: $I(X, Y) := H(X) + H(Y) - H(X, Y) = H(X) - H(X \mid Y).$

Information-theoretic clue:

$$\operatorname{clue}^{I}(f \mid U) := \frac{I(f(\omega), \omega_U)}{H(f(\omega))}.$$

For non-degenerate Boolean f, this is small exactly when clue(f | U) is.

Entropy proof of small clue

Entropy: $H(X) := -\sum_{x} \mathbf{P}[X = x] \log \mathbf{P}[X = x]$. Mutual information: I(X, Y) := H(X) + H(Y) - H(X, Y) = H(X) - H(X | Y).

Theorem (Galicza & P). For any transitive function f,

$$\operatorname{clue}^{I}(f \mid U) := \frac{I(f(\omega), \omega_U)}{H(f)} \leq \frac{|U|}{n}$$

Proof. Shearer's inequality: if X_1, \ldots, X_n are random variables with any joint distribution, and $\{U_j\}$ is a k-cover of [n], then

$$\sum_{j} H(X_{U_j}) \geqslant k H(X_{[n]}).$$

Cultural remarks:

Follows from submodularity: $H(X_{S\cup T}) + H(X_{S\cap T}) \leq H(X_S) + H(X_T)$, implies Loomis-Whitney \mathbb{Z}^d isoperimetric inequality: $|A|^{d-1} \leq \prod_{i=1}^d |\pi_i(A)|$

Entropy proof of small clue

Theorem (Galicza & P). For any transitive function f,

$$\mathsf{clue}^{I}(f \mid U) := \frac{I(f(\omega), \omega_U)}{H(f)} \leqslant \frac{|U|}{n}$$

Proof. From Shearer's inequality, for n translates of U, forming a |U|-cover,

$$-\sum_{j} H(\omega_{U_{j}} | f(\omega)) \leq -|U| H(\omega_{[n]} | f(\omega)).$$

On the other hand, for independent variables:

$$\sum_{j} H(\omega_{U_j}) = \sum_{j} \sum_{i \in U_j} H(\omega_i) = |U| H(\omega_{[n]}),$$

Altogether:

$$n I(f(\omega), \omega_U) = \sum_j I(f(\omega), \omega_{U_j}) \leq |U| I(f(\omega), \omega_{[n]}) = |U| H(f).$$

7

Clue and cooperative game theory

Why do we have the same bound |U|/n for two different notions of clue?

Theorem (Galicza & P). For any notion of $\operatorname{clue}(f | U)$ that is supermodular (e.g., the L^2 -clue and clue^I), and $\operatorname{clue}(f | [n]) = 1$ and $\operatorname{clue}(f | \emptyset) = 0$, the bound $\operatorname{clue}(f | U) \leq |U|/n$ holds for any transitive f.

Proof. Consider X_f distributed according to the Shapley value of the cooperative game with payoff clue(f | U).

What happens for non-iid spins?

 G_n finite transitive graphs, often $G_n \to G$ locally to an infinite graph. $\sigma \in \{-1, +1\}^{V(G_n)}$ translation invariant Markov random field.

E.g., the Ising model at inverse temperature $\beta \in (0,\infty)$:

$$\mu_{\beta}^{G_n}(\sigma) := \frac{1}{Z_{\beta}^{G_n}} \exp\left(-\beta \sum_{(x,y)\in E(G_n)} \mathbf{1}_{\sigma(x)\neq\sigma(y)}\right).$$

Subcritical phase, $\beta < (1-\epsilon)\beta_c(G_n)$: correlations decay fast with distance. Total magnetization $M_n(\sigma) := \sum_{x \in V(G_n)} \sigma(x)$ has $\mathbf{SD}[M_n] \asymp \sqrt{|V(G_n)|}$. If $G_n \to G$, often $\beta_c(G_n) \to \beta_c(G)$, and unique Gibbs measure on G.

Supercritical phase, $\beta > (1 + \epsilon)\beta_c(G_n)$: correlations do not decay. Long range order: $M_n(\sigma) \simeq \pm |V(G_n)|$ typically. More than one Gibbs measure on limiting infinite graph G.

Critical phase, $\beta \sim \beta_c(G_n)$, **typically**: correlations decay, but not fast. $\sqrt{|V(G_n)|} \ll \mathbf{SD}[M_n] \ll |V(G_n)|$. Unique Gibbs measure on limiting infinite graph G.

What happens for non-iid spins?

 G_n finite transitive graphs, often $G_n \to G$ locally to an infinite graph. $\sigma \in \{-1, +1\}^{V(G_n)}$ translation invariant Markov random field.

E.g., the Ising model at inverse temperature $\beta \in (0,\infty)$:

$$\mu_{\beta}^{G_n}(\sigma) := \frac{1}{Z_{\beta}^{G_n}} \exp\left(-\beta \sum_{(x,y)\in E(G_n)} \mathbf{1}_{\sigma(x)\neq\sigma(y)}\right).$$

Sparse reconstruction in the supercritical phase

Low temperature Ising, $\beta > \beta_c(\mathbb{Z}^d)$. Then $\mu_{\beta}^{\mathbb{Z}_n^d}$ converges weakly to $(\mu_{\beta}^+ + \mu_{\beta}^-)/2$, a non-ergodic measure.

Moreover, with probability 1/2, the finite system looks locally like μ_{β}^+ , and with probability 1/2, looks like μ_{β}^- .

So, sparse reconstruction is easy: if $|U_n| \to \infty$, then $\operatorname{sign} \sum_{x \in U_n} \sigma(x)$ tells us with large probability if we are in μ_{β}^+ or μ_{β}^- , hence has clue close to 1 about $\operatorname{Maj}(\sigma) := \operatorname{sign} \sum_{x \in \mathbb{Z}_n^2} \sigma(x)$.

Similar argument for measures on expander graphs G_n with a non-ergodic limit. However, if the limit is ergodic but non-extremal?

Lemma (Lanford & Ruelle '69). For Markov fields, non-extremal \Leftrightarrow not tail-trivial \Leftrightarrow spin reconstruction from a large distance.

E.g., the unique automorphism-invariant random perfect matching on \mathbb{T}_3 is ergodic, but non-extremal. Does the approximating random matching on the 3-regular random graph have (random) sparse reconstruction?

No sparse reconstruction for subcritical Curie-Weiss

Ising model on the complete graph K_n . Scale β with n:

$$\mu_{\beta}^{K_n}(\sigma) := \frac{1}{Z_{\beta}^{K_n}} \exp\left(-\frac{\beta}{n} \sum_{(x,y)\in E(K_n)} \sigma(x)\sigma(y)\right).$$

Quite analogously to the Erdős-Rényi random graph (via the FK random cluster representation), phase transition at $\beta_c = 1$.

For
$$\beta < \beta_c = 1$$
, one has $\frac{M_n}{\sqrt{n}} \stackrel{d}{\rightarrow} N\left(0, \frac{1}{1-\beta}\right)$, even a Local CLT.

This can be used to prove that $H(\sigma_{[n]}^{\beta}) \ge n - C_{\beta}$, with \log_2 -entropy. Then, in the proof with Shearer's inequality,

$$\sum_{j} H(\sigma_{U_{j}}) \leqslant \sum_{j} \sum_{i \in U_{j}} H(\sigma_{i}) = k \, n \leqslant k \left(H(\sigma_{[n]}) + C_{\beta} \right),$$

and we get $\operatorname{clue}^{I}(f \mid U) \leqslant \frac{|U|}{n} \left(1 + \frac{C_{\beta}}{H(f)} \right) \to 0.$

Spectral sample for non-iid spins?

Can we define a random set $\mathscr{S} = \mathscr{S}_f$, based on clue?

$$\mathbf{P}[\mathscr{S} \subseteq U] := \left\| \mathbf{E}[f \mid \sigma_U] \right\|^2,$$

and then inclusion-exclusion formula:

$$\mathbf{P}[\mathscr{S} = S] := \sum_{T \subseteq S} (-1)^{|S| - |T|} \mathbf{P}[\mathscr{S} \subseteq T]$$

Eigenfunctions of Glauber dynamics are typically not indexed by subsets of bits, hence this would be a different generalization of Fourier transform.

Issue: why would this be non-negative for all S?

Efron-Stein decomposition '81: works for arbitrary product measures!

Hence the one-line Small Clue Theorem works. And this can be used for non-iid!

Ising as a factor of iid

A spin system σ on $\{-1,+1\}^{\mathbb{Z}^d}$ is a **factor of iid** if there is a measurable map $\psi : [0,1]^{\mathbb{Z}^d} \longrightarrow \{-1,+1\}$ such that for $\omega \sim \text{Unif}[0,1]^{\mathbb{Z}^d}$,

$$\sigma(x) = \psi(\omega(x+\cdot)), \quad x \in \mathbb{Z}^d.$$

This factor map is **finitary** if there is a random coding radius $R(\omega) < \infty$ such that $R(\omega)$ and $\psi(\omega)$ are determined by $\{\omega(x) : x \in [-R, R]^d\}$.

Theorem (vdBerg & Steif '99). For $\beta < \beta_c$, the unique **lsing** measure on \mathbb{Z}^d is a finitary factor of $\text{Unif}[0, 1]^{\mathbb{Z}^d}$, coding radius $\mathbf{P}[R > t] < \exp(-ct)$.

(Uses exponential convergence of Glauber dynamics, Martinelli & Olivieri '94, and "Coupling From The Past" perfect sampling Propp & Wilson '96).

At β_c : finitary factor, but only with $\mathbf{E}[R^d] = \infty$ (joint with Peres).

For $\beta > \beta_c$: + measure is fiid, but not finitary (uses Marton & Shields '94).

Small clue for FFIID with exponential decay

Theorem (Galicza & P). If σ is a finitary factor of iid on \mathbb{Z}^d with $\mathbf{P}[R > t] < \exp(-ct)$, and σ_n is any version on the torus \mathbb{Z}_n^d , then, for any function f_n of the spins, and any random subset with revealment $\delta_{\mathcal{U}_n} = o(1/\log^d n)$, independent of σ_n , we have

$$\mathbf{E}\big[\operatorname{clue}(f_n \,|\, \mathcal{U}_n)\big] := \mathbf{E}\left[\frac{\operatorname{Var}(\mathbf{E}[f \mid \sigma_{\mathcal{U}_n}])}{\operatorname{Var}(f_n)}\right] \to 0\,.$$

Proof sketch. Take $\mathcal{W}_n := \bigcup_{u \in \mathcal{U}_n} B_{C \log n}(u)$, with C large enough. Then $\omega_{\mathcal{W}_n}$ determines $\sigma_{\mathcal{U}_n}$ with high probability. But the revealment $\delta_{\mathcal{W}_n}$ on ω is still small, hence the clue is small.

Seems wasteful, because $B_{C \log n}(u)$ is the worst case for each u. However:

 $f_n = \mathbf{1} \{ \exists \text{ alternating } \pm \text{ copy} \}.$ \mathcal{U}_n : 3 consecutive spins in each copy.

Sparse reconstruction in critical Ising

Critical Ising on \mathbb{Z}^d is not a ffiid with finite expected coding volume, because the **susceptibility** $S_{\beta} := \sum_{x \in \mathbb{Z}^d} \operatorname{Cov}_{\beta}[\sigma_0, \sigma_x]$ is infinite at $\beta = \beta_c$. (Aizenman & Fernandez '86, Aizenman, Duminil-Copin & Sidoravicius '13)

Theorem (Galicza & P). On the tori \mathbb{Z}_n^d , $d \ge 2$, at β_c , the total magnetization $M_n(\sigma) := \sum_{x \in \mathbb{Z}_n^d} \sigma_x$ can be reconstructed from some low revealment subset \mathcal{U}_n . Also true for $\operatorname{Maj}_n(\sigma) := \operatorname{sign} M_n(\sigma)$.

Proof sketch. $\operatorname{Var}_{\beta_c}[M_n(\sigma)] = n^d S_{\beta_c,n}$, and $S_{\beta_c,n} \to S_{\beta_c} = \infty$, hence $1 \gg \delta_n \gg 1/S_{\beta_c,n}$ will make $\operatorname{Corr}_{\beta_c}\left[M_n(\sigma), \sum_{u \in \mathcal{B}(\delta_n)} \sigma_u\right] \to 1$. \Box

In particular, on \mathbb{Z}_n^2 , revealment $\delta_{\mathcal{U}_n} \gg n^{-7/4}$ is enough for magnetization.

On the other hand, $\delta_{\mathcal{U}_n} \ll n^{-15/8}$ is *not* enough for *any odd* function. Simple but inspiring proof for magnetization by Christophe Garban:

Couple σ_n and $\tilde{\sigma}_n$ by sampling an FK-representation ω_n , then same \pm spins on ω_n -clusters intersecting \mathcal{U}_n , while independent spins on the other clusters. Thus $\sigma_{\mathcal{U}_n} = \tilde{\sigma}_{\mathcal{U}_n}$, but $\operatorname{Cov}[M_n(\sigma_n), M_n(\tilde{\sigma}_n)] \leq |\mathcal{U}_n| \operatorname{\mathbf{E}}[|\operatorname{Cluster}_o|^2].$

From strong spatial mixing to sparse reconstruction

A Markov random field $\{-1,1\}^{\mathbb{Z}^d}$ has **strong spatial mixing** if for any finite box V, given two boundary configurations $\sigma_{\partial V}$ and $\tilde{\sigma}_{\partial V}$ that differ only at a single vertex $v \in \partial V$, for any radius R, the conditional distributions inside V satisfy

$$d_{\mathrm{TV}}\left(\sigma_{V\setminus B_R(v)}, \ \tilde{\sigma}_{V\setminus B_R(v)}\right) \leqslant \exp(-cR).$$

Ising on \mathbb{Z}^d , $d \leq 2$, all $\beta < \beta_c$, Martinelli, Olivieri & Schonmann '94 and Alexander '98 together imply SSM. For $d \geq 3$, small enough β , follows from Stroock & Zegarlinski '92 or Marton '19.

Blanca, Caputo, Sinclair & Vigoda '19 proved that SSM implies a uniformly positive **spectral gap** for certain block dynamics (e.g., for Swendsen-Wang). Inspired by this, and the previous proof of Christophe:

Theorem (Galicza & P). For any SSM Markov field on $\{-1,1\}^{\mathbb{Z}^d}$, for any function f_n and any random subset with revealment $\delta_{\mathcal{U}_n} \to 0$, independent of σ_n , we have $\mathbf{E}[\operatorname{clue}(f_n | \mathcal{U}_n)] \to 0$.

From strong spatial mixing to sparse reconstruction

Proof sketch. Block Glauber dynamics $\sigma \mapsto \sigma^{\mathcal{U}}$, where \mathcal{U} is sampled, then $\sigma_{\mathcal{U}}$ gets fixed and $\sigma_{\mathbb{Z}_n^d \setminus \mathcal{U}}$ gets resampled from the conditional distribution. Enough to prove that spectral gap of this chain is close to 1 if $\delta_{\mathcal{U}}$ is small.

Take $1 \ll L := (1/\delta)^{1/(d+1)} \log^{d/(d+1)}(1/\delta) \ll n$, let \mathcal{L} be a randomly shifted hyperplane sublattice of mesh size L, and let \mathcal{H} be \mathcal{L} together with all the inner boxes that intersect \mathcal{U} .

Enough: spectral gap of $\sigma \mapsto \sigma^{\mathcal{H}}$ is close to 1.

Path coupling method of Bubley & Dyer '97: whenever σ and $\tilde{\sigma}$ differ only at a single vertex $v \in \mathbb{Z}_n^d$, if $\mathbf{E} \left[d_{\text{Hamming}} \left(\sigma^{\mathcal{H}}, \tilde{\sigma}^{\mathcal{H}} \right) \right] < \epsilon$, then OK.

If $v \in \mathcal{H}^{\circ}$, with prob $O(\delta L^{d})$, error remains 1. If $v \in \partial \mathcal{H}$, with prob O(1/L), error propagates to $O(R^{d} + e^{-cR}L^{d})$ spins. If $v \in \mathbb{Z}_{n}^{d} \setminus \mathcal{H}$, error becomes 0. Choose R with $\log L \ll R \ll L^{1/d}$.

Open problems on sparse reconstruction

1. Subcritical Ising on \mathbb{Z}_n^d , $d \ge 3$, all $\beta < \beta_c$: shave off the $\log^d n$.

2. Critical Ising \mathbb{Z}_n^2 : what is the exact sparse reconstruction threshold?

3. In reasonable spin systems, if total magnetization cannot be sparse reconstructed (finite susceptibility), then nothing can?

For instance, if σ is a finitary fiid system with finite expected coding volume, then susceptibility is finite. If σ_n is a sequence of finite systems such that, with probability tending to 1, at every vertex the finitary factor works, then there is never sparse reconstruction in σ_n ?

4. Possible example for sparse reconstruction but not for magnetization: + phase of supercritical Ising on \mathbb{Z}_n^2 .

5. Balázs Szegedy: does every fiid system have a trivial sparse tail? Would imply no sparse reconstruction for local functions. (E.g., in the almost perfect matching example earlier.)

True for amenable transitive graphs, by using entropy.