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PREFACE

The scientific study of networks, such as computer networks, biological networks, and social networks, is
an interdisciplinary field that combines ideas from mathematics, physics, biology, computer science, the
social sciences, and many other areas. The field has benefited enormously from the wide range of
viewpoints brought to it by practitioners from so many different disciplines, but it has also suffered
because human knowledge about networks is dispersed across the scientific community and researchers in
one area often do not have ready access to discoveries made in another. The goal of this book is to bring
our knowledge of networks together and present it in consistent language and notation, so that it becomes
a coherent whole whose elements complement one another and in combination teach us more than any
single element can alone.

The book is divided into five parts. Following a short introductory chapter, Part | describes the basic
types of networks studied by present-day science and the empirical techniques used to determine their
structure. Part Il introduces the fundamental mathematical tools used in the study of networks as well as
measures and statistics for quantifying network structure. Part 111 describes computer algorithms for the
efficient analysis of network data, while Part 1V describes mathematical models of network structure that
can help us predict the behavior of networked systems and understand their formation and growth. Finally,
Part V describes theories of processes taking place on networks, such as epidemics on social networks or
search processes on computer networks.

The technical level of the presentation varies among the parts, Part | requiring virtually no mathematical
knowledge for its comprehension, while Parts Il and Il require a grasp of linear algebra and calculus at
the undergraduate level. Parts IV and V are mathematically more advanced and suitable for advanced
undergraduates, postgraduates, and researchers working in the field. The book could thus be used as the
basis of a taught course at more than one level. A less technical course suitable for those with moderate
mathematical knowledge might cover the material of Chapters 1 to 8, while a more technical course for
advanced students might cover the material of Chapters 6 to 14 and selected material thereafter. Each
chapter from Part 11 onward is accompanied by a selection of exercises that can be used to test the reader’s
understanding of the material.

This book has been some years in the making and many people have helped me with it during that time.
I must thank my ever-patient editor Sonke Adlung, with whom | have worked on various book projects for
more than 15 years now, and whose constant encouragement and kind words have made working with him
and Oxford University Press a real pleasure. Thanks are also due to Melanie Johnstone, Alison Lees,
Emma Lonie, and April Warman for their help with the final stages of bringing the book to print.

| have benefited greatly during the writing of this book from the conversation, comments, suggestions,
and encouragement of many colleagues and friends. They are, sadly, too numerous to mention
exhaustively, but special thanks must go to Steve Borgatti, Duncan Callaway, Aaron Clauset, Betsy
Foxman, Linton Freeman, Michelle Girvan, Martin Gould, Mark Handcock, Petter Holme, Jon Kleinberg,
Alden Klovdahl, Liza Levina, Lauren Meyers, Cris Moore, Lou Pecora, Mason Porter, Sidney Redner,
Puck Rombach, Cosma Shalizi, Steve Strogatz, Duncan Watts, Doug White, Lenka Zdeborova, and Bob
Ziff, as well as to the many students, particularly Michelle Adan, Alejandro Balbin, Chris Fink, Ruthi
Hortsch, and Jane Wang, whose feedback helped iron out a lot of rough spots. | would also especially like
to thank Brian Karrer, who read the entire book in draft form and gave me many pages of thoughtful and
thought-provoking comments, as well as spotting a number of mistakes and typos. Responsibility for any
remaining mistakes in the book of course rests entirely with myself, and | welcome corrections from
readers.

Finally, my profound thanks go to my wife Carrie for her continual encouragement and support during
the writing of this book. Without her the book would still have been written but I would have smiled a lot
less.

Mark Newman
Ann Arbor, Michigan
February 24, 2010
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CHAPTER 1

INTRODUCTION

A short introduction to networks and why we study them

A NETWORK is, in its simplest form, a collection of points joined together in pairs by lines. In
the jargon of the field the points are referred to as vertices? or nodes and the lines are referred to as
edges. Many objects of interest in the physical, biological, and social sciences can be thought of as
networks and, as this book aims to show, thinking of them in this way can often lead to new and
useful insights.

We begin, in this introductory chapter, with a discussion of why we are interested in networks

and a brief description of some specific networks of note. All the topics in this chapter are covered
in greater depth elsewhere in the book.

a—— Yerlex

~_ - Edge

A small network composed of eight vertices and ten edges.



WHY ARE WE INTERESTED IN NETWORKS?

There are many systems of interest to scientists that are composed of individual parts or components
linked together in some way. Examples include the Internet, a collection of computers linked by data
connections, and human societies, which are collections of people linked by acquaintance or social
interaction.

Many aspects of these systems are worthy of study. Some people study the nature of the individual
components—how a computer works, for instance, or how a human being feels or acts—while others
study the nature of the connections or interactions—the communication protocols used on the Internet or
the dynamics of human friendships. But there is a third aspect to these interacting systems, sometimes
neglected but almost always crucial to the behavior of the system, which is the pattern of connections
between components.

The pattern of connections in a given system can be represented as a network, the components of the
system being the network vertices and the connections the edges. Upon reflection it should come as no
surprise (although in some fields it is a relatively recent realization) that the structure of such networks,
the particular pattern of interactions, can have a big effect on the behavior of the system. The pattern of
connections between computers on the Internet, for instance, affects the routes that data take over the
network and the efficiency with which the network transports those data. The connections in a social
network affect how people learn, form opinions, and gather news, as well as affecting other less obvious
phenomena, such as the spread of disease. Unless we know something about the structure of these
networks, we cannot hope to understand fully how the corresponding systems work.

A network is a simplified representation that reduces a system to an abstract structure capturing only the
basics of connection patterns and little else. Vertices and edges in a network can be labeled with additional
information, such as names or strengths, to capture more details of the system, but even so a lot of
information is usually lost in the process of reducing a full system to a network representation. This
certainly has its disadvantages but it has advantages as well.

The most common network variants are discussed in detail in Chapter 6.

Scientists in a wide variety of fields have, over the years, developed an extensive set of tools—
mathematical, computational, and statistical—for analyzing, modeling, and understanding networks. Many
of these tools start from a simple network representation, a set of vertices and edges, and after suitable
calculations tell you something about the network that might well be useful to you: which is the best
connected vertex, say, or the length of a path from one vertex to another. Other tools take the form of
network models that can make mathematical predictions about processes taking place on networks, such
as the way traffic will flow over the Internet or the way a disease will spread through a community.
Because they work with networks in their abstract form, these tools can in theory be applied to almost any
system represented as a network. Thus if there is a system you are interested in, and it can usefully be
represented as a network, then there are hundreds of different tools out there, already developed and well
understood, that you can immediately apply to the analysis of your system. Certainly not all of them will
give useful results—which measurements or calculations are useful for a particular system depends on
what the system is and does and on what specific questions you are trying to answer about it. Still, if you
have a well-posed question about a networked system there will, in many cases, already be a tool available
that will help you address it.

Networks are thus a general yet powerful means of representing patterns of connections or interactions
between the parts of a system. In this book, we discuss many examples of specific networks in different
fields, along with techniques for their analysis drawn from mathematics, physics, the computer and
information sciences, the social sciences, biology, and elsewhere. In doing so, we bring together a wide
range of ideas and expertise from many disciplines to give a comprehensive introduction to the science of
networks.



SOME EXAMPLES OF NETWORKS

One of the best known and most widely studied examples of a network is the Internet, the
computer data network in which the vertices are computers and the edges are physical data
connections between them, such as optical fiber cables or telephone lines. Figure 1.1 shows a
picture of the structure of the Internet, a snapshot of the network as it was in 2003, reconstructed
by observing the paths taken across the network by a large number of Internet data packets
traveling between different sources and destinations. It is a curious fact that although the Internet is
a man-made and carefully engineered network we don’t know exactly what its structure is, since it
was built by many different groups of people with only limited knowledge of each other’s actions
and little centralized control. Our best current data on its structure are derived from experimental
studies, such as the one that produced this figure, rather than from any central repository of
knowledge or coordinating authority.

We look at the Internet in more detail in Section 2.1.

There are a number of excellent practical reasons why we might want to study the network
structure of the Internet. The function of the Internet is to transport data between computers (and
other devices) in different parts of the world, which it does by dividing the data into pieces or
packets and shipping them from vertex to vertex across the network until they reach their intended
destination. Certainly the structure of the network will affect how efficiently it accomplishes this
function and if we know the network structure we can address many questions of practical
relevance. How should we choose the route by which data are transported? Is the shortest route
always necessarily the fastest? If not, then what is, and how can we find it? How can we avoid
bottlenecks in the traffic flow that might slow things down? What happens when a vertex or an
edge fails (which they do with some regularity)? How can we devise schemes to route around such
failures? If we have the opportunity to add new capacity to the network, where should it be added?

Knowledge of Internet structure also plays a central role in the development of new
communications standards. New standards and protocols are continually being devised for
communication over the Internet, and old ones are revised. The parameters of these protocols are
tuned for optimal performance with the structure of the Internet in mind. In the early days of the
network, rather primitive models of network structure were employed in the tuning process, but as
better structural data become available it becomes possible to better understand and improve
performance.



Figure 1.1: The network structure of the Internet. (See Plate | for color version.) The vertices



in this representation of the Internet are “class C subnets”—groups of computers with similar
Internet addresses that are usually under the management of a single organization—and the
connections between them represent the routes taken by Internet data packets as they hop between
subnets. The geometric positions of the vertices in the picture have no special meaning; they are
chosen simply to give a pleasing layout and are not related, for instance, to geographic position of
the vertices. The structure of the Internet is discussed in detail in Section 2.1. Figure created by the
Opte Project (www.opte.org). Reproduced with permission.

A more abstract example of a network is the World Wide Web. In common parlance the words
“Web” and “Internet” are often used interchangeably, but technically the two are quite distinct.
The Internet is a physical network of computers linked by actual cables (or sometimes radio links)
running between them. The Web, on the other hand, is a network of information stored on web
pages. The vertices of the World Wide Web are web pages and the edges are “hyperlinks,” the
highlighted snippets of text or push-buttons on web pages that we click on to navigate from one
page to another. A hyperlink is purely a software construct; you can link from your web page to a
page that lives on a computer on the other side of the world just as easily as you can link to a
friend down the hall. There is no physical structure, like an optical fiber, that needs to be built
when you make a new link. The link is merely an address that tells the computer where to look
next when you click on it.

The World Wide Web is discussed in more detail in Section 4.1.

Abstract though it may be, the World Wide Web, with its billions of pages and links, has proved
enormously useful, not to mention profitable, to many people, and the structure of the network of
links is of substantial interest. Since people tend to add hyperlinks between pages with related
content, the link structure of the Web reveals something about the content structure. What’s more,
people tend to link more often to pages that they find useful than to those they do not, so that the
number of links pointing to a page can be used as a measure of its usefulness. A more
sophisticated version of this idea lies behind the operation of the popular Web search engine
Google, as well as some others.

The mechanics of Web search are discussed in Section 19.1.

The Web also illustrates another concept of network theory, the directed network . Hyperlinks
on the Web run in one specific direction, from one web page to another. Given an appropriate link
on page A, you can click and arrive at page B. But there is no requirement that B contains a link
back to A again. (It may contain such a link, but there is no law that says that it must and much of
the time it will not.) One says that the edges in the World Wide Web are directed, running from
the linking page to the linked.

Social networks are discussed in more depth in Chapter 3.

Moving away from the technological realm, another type of network of scientific interest is the
social network. A social network is, usually, a network of people, although it may sometimes be a
network of groups of people, such as companies. The people or groups form the vertices of the
network and the edges represent connections of some kind between them, such as friendship
between individuals or business relationships between companies. The field of sociology has
perhaps the longest and best developed tradition of the empirical study of networks as they occur
in the real world, and many of the mathematical and statistical tools that are used in the study of
networks are borrowed, directly or indirectly, from sociologists.

Figure 1.2 shows a famous example of a social network from the sociology literature, Wayne
Zachary’s “karate club” network. This network represents the pattern of friendships among
members of a karate club at a north American university. The network was constructed by direct
observation of interactions between the club’s members. As is typical of such studies the network



is small, having, in this case, only 34 vertices. Network representations of the Internet or the
World Wide Web, by contrast, can have thousands or millions of vertices. In principle there is no
reason why social networks cannot be similarly large. The entire population of the world, for
example, can be regarded as a very large social network. But in practice social network data are
limited to relatively small groups because of the effort involved in compiling them. The network of
Fig. 1.2, for instance, was the product of two years of observations by one experimenter. In recent
years a few larger social networks have been constructed by dint of enormous effort on the part of
large groups of researchers. And online social networking services, such as Facebook or instant
message “buddy lists,” can provide network data on a previously unreachable scale. Studies are
just beginning to emerge of the structure and properties of these larger networks.

Figure 1.2: Friendship network between members of a club. This social network from a study
conducted in the 1970s shows the pattern of friendships between the members of a karate club at
an American university. The data were collected and published by Zachary [334].

Neural networks are discussed in Section 5.2 and food webs in Section 5.3

A third realm in which networks have become important in recent years is biology. Networks
occur in a number of situations in biology. Some are concrete physical networks like neural
networks—the networks of connections between neurons in the brain—while others are more
abstract. In Fig. 1.3 we show a picture of a “food web,” an ecological network in which the
vertices are species in an ecosystem and the edges represent predator-prey relationships between
them. That is, pairs of species are connected by edges in this network if one species eats the other.
The study of food webs forms a substantial branch of ecology and helps us to understand and
quantify many ecological phenomena, particularly concerning energy and carbon flows in
ecosystems. Food webs also provide us with another example of a directed network, like the World
Wide Web discussed previously. The edges in a food web are asymmetric and are conventionally
thought of as pointing from the prey to the predator, indicating the direction of the flow of energy
when the prey is eaten. (This choice of direction is only a convention and one could certainly make
the reverse choice. The important point is the asymmetry of the predator-prey interaction.)
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Figure 1.3: The food web of Little Rock Lake, Wisconsin. (See Plate Il for color version.) This
elegant picture summarizes the known predatory interactions between species in a freshwater lake
in the northern United States. The vertices represent the species and the edges run between
predator-prey species pairs. The vertical position of the vertices represents, roughly speaking, the
trophic level of the corresponding species. The figure was created by Richard Williams and Neo
Martinez [209].

Biochemical networks are discussed in detail in Section 5.1.

Another class of biological networks is that of biochemical networks, such as metabolic
networks, protein-protein interaction networks, and genetic regulatory networks. A metabolic
network, for instance, is a representation of the chemical reactions that fuel cells and organisms.
The reader may have seen the wallcharts of metabolic reactions that adorn the offices of some
biochemists, incredibly detailed maps with hundreds of tiny inscriptions linked by a maze of
arrows.2 The inscriptions—the vertices in this network—are metabolites, the substrates and
products of metabolism, and the arrows—directed edges—are reactions that turn one metabolite
into another. The depiction of reactions as a network is one of the first steps towards making sense
of the bewildering array of biochemical data generated by recent and ongoing experiments in
molecular genetics.

These are just a few examples of the types of network whose study is the focus of this book.
There are many others that we will come across in later pages. Among them some of the best
known are telephone networks, road, rail, and air networks, the power grid, citation networks,
recommender networks, peer-to-peer networks, email networks, collaboration networks, disease
transmission networks, river networks, and word networks.



PROPERTIES OF NETWORKS

We have seen that a variety of systems can be represented as networks. If we can gather data on
the structure of one of these networks, what then can we do with those data? What can they tell us
about the form and function of the system the network represents? What properties of networked
systems can we measure or model and how are those properties related to the practical issues we
care about? This, essentially, is the topic of this entire book, and we are not going to answer it in
this chapter alone. Let us, however, look briefly here at a few representative concepts, to get a feel
for the kinds of ideas we will be dealing with.

A first step in analyzing the structure of a network is often to make a picture of it. Figures 1.1,
1.2, and 1.3 are typical examples. Each of these was generated by a specialized computer program
designed for network visualization and there are many such programs available, both commercially
and for free, if you want to produce pictures like these for yourself. Visualization can be an
extraordinarily useful tool in the analysis of network data, allowing one to see instantly important
structural features of a network that would otherwise be difficult to pick out of the raw data. The
human eye is enormously gifted at picking out patterns, and visualizations allow us to put this gift
to work on our network problems. On the other hand, direct visualization of networks is only really
useful for networks up to a few hundreds or thousands of vertices, and for networks that are
relatively sparse, meaning that the number of edges is quite small. If there are too many vertices or
edges in a network then pictures of the network will be too complicated for the eye to comprehend
and their usefulness becomes limited. Many of the networks that scientists are interested in today
have hundreds of thousands or even millions of vertices, which means that visualization is not of
much help in their analysis and we need to employ other techniques to determine their structural
features. In response to this need, network theory has developed a large toolchest of measures and
metrics that can help us understand what our network data are telling us, even in cases where
useful visualization is impossible.

An example of an important and useful class of network measures is that of measures of
centrality. Centrality quantifies how important vertices (or edges) are in a networked system, and
social network analysts in particular have expended considerable effort studying it. There are a
wide variety of mathematical measures of vertex centrality that focus on different concepts and
definitions of what it means to be central in a network. A simple but very useful example is the
measure called degree. The degree of a vertex in a network is the number of edges attached to it. In
a social network of friendships between individuals, for instance, such as the network of Fig. 1.2,
the degree of an individual is the number of friends he or she has within the network. In the
Internet degree would be the number of data connections a computer, router, or other device has.
In many cases the vertices with the highest degrees in a network, those with the most connections,
also play important roles in the functioning of the system, and hence degree can be a useful guide
for focusing our attention on the system’s most crucial elements.

See Chapter 7 for further discussion of centrality measures.




The number beside each vertex in this small network indicates the vertex’s degree.

In undirected networks degree is just a single number, but in directed networks vertices have
two different degrees, in-degree and out-degree, corresponding to the number of edges pointing
inward to and outward from those vertices. For example, the in-degree of a web page is the
number of other pages that link to it and the out-degree is the number of pages to which it links.
We have already mentioned one example of how centrality can be put to use on the Web to answer
an important practical question: by counting the number of links a web page gets—the in-degree of
the page—we (or a search engine operating on our behalf) can make a guess about which pages are
most likely to contain information that might be of use to us.

It is an interesting observation that many networks are found to contain a small but significant
number of “hubs”—uvertices with unusually high degree. Social networks often contain a few
central individuals with very many acquaintances; there are a few websites with an extraordinarily
large number of links; there are a few metabolites that take part in almost all metabolic processes.
A major topic of research in recent years has been the investigation of the effects of hubs on the
performance and behavior of networked systems. Both empirical and theoretical results indicate
that hubs can have a quite disproportionate effect, playing a central role particularly in network
transport phenomena and resilience, despite being few in number.

Hubs are discussed further in Section 8.3.

Another example of a network concept that arises repeatedly and has real practical implications
is the so-called small-world effect. One can define a distance, called the geodesic distance,
between two vertices in a network to be the minimum number of edges one would have to traverse
in order to get from one vertex to the other. For instance, two friends would have geodesic distance
1 in a friendship network because there is a single edge connecting them directly, while the friend
of your friend would have distance 2 from you. As discussed in Sections 3.6 and 8.2, it is found
empirically (and can be proven mathematically in some cases) that the mean geodesic distance,
appropriately defined,2 between vertex pairs is very short, typically increasing only as the
logarithm of the number of vertices in the network. Although first studied in the context of
friendship networks, this small-world effect appears to be very widespread, occurring in essentially
all types of networks. In popular culture it is referred to as the “six degrees of separation,” after a
successful stage play and film of the same name. The semi-mythological claim is that you can get
from anyone in the world to anyone else via a sequence of no more than five intermediate
acquaintances—six steps in all.

The small-world effect can have interesting repercussions. For example, news and gossip spread
over social networks. If you hear an interesting rumor from a friend, you may pass it on to your
other friends, and they in turn pass it on to theirs, and so forth. Clearly the rumor will spread
further and faster if it only takes six steps to reach anyone in the world than if it takes a hundred, or
a million. It is a matter of common experience that indeed a suitably scandalous rumor can reach
the ears of an entire community in what seems like the blink of an eye, and the structure of social
networks has a lot to do with it.

And consider the Internet. One of the reasons the Internet functions at all is because any
computer on the network is only a few “hops” over optical and other data lines from any other. In
practice the paths taken by packets over the Internet are typically in the range of about ten to
twenty hops long. Certainly the performance of the network would be much worse if packets had
to make a thousand hops instead.

A third example of a network concept of practical importance is provided by clusters or
communities in networks. We are most of us familiar with the idea that social networks break up
into subcommunities—tightly knit groups of friends or acquaintances within the larger, looser
network. Friendship networks, for instance, tend to contain cliques, circles, and gangs of friends
within which connections are strong and frequent but between which they are weaker or rarer. The



same is true of other kinds of social network also. For instance, in a network of business
relationships between companies one often finds clusters formed of sets of companies that operate
in particular sections of the economy. Connections might be stronger, for instance, between a pair
of computer companies or a pair of biotech companies than between a computer company and a
biotech company. And if it is the case that communities correspond to genuine divisions of interest
or purpose in this way, then we may well learn something by taking a network and examining it to
determine what communities it contains. The way a network breaks down into communities can
reveal levels and concepts of organization that are not easy to see without network data, and can
help us to understand how a system is structured. There is a substantial research literature in social
network analysis as well as in other fields concerned with precisely these kinds of questions, and a
large number of techniques have been developed to help us extract and analyze subcommunities
within larger networks. These are highly active topics of research at present, and hold promise for
exciting applications in the future.



OUTLINE OF THIS BOOK

This book is divided into five parts. In the first part, consisting of Chapters 2 to 5, we introduce the
various types of network encountered in the real world, including technological, social, and
biological networks, and the empirical techniques used to discover their structure. Although it is
not the purpose of this book to describe any one particular network in great detail, the study of
networks is nonetheless firmly founded on empirical observations and a good understanding of
what data are available and how they are obtained is immensely helpful in understanding the
science of networks as it is practiced today.

The second part of the book, Chapters 6 to 8, introduces the fundamental theoretical ideas on
which our current understanding of networks is based. Chapter 6 describes the basic mathematics
used to capture network ideas, Chapter 7 describes the measures and metrics we use to quantify
network structure, and Chapter 8 describes some of the intriguing patterns and principles that
emerge when we apply our mathematics and our metrics to real-world network data.

In the third part of the book, Chapters 9 to 11, we discuss computer algorithms for analyzing
and understanding network data. Measurements of network properties, such as those described in
Chapter 7, are typically only possible with the help of fast computers and much effort has been
devoted over the years to the development of efficient algorithms for analyzing network data. This
part of the book describes in detail some of the most important of these algorithms. A knowledge
of this material will be of use to anyone who wants to work with network data.

In the fourth part of the book, Chapters 12 to 15, we look at mathematical models of networks.
The material in these chapters forms a central part of the canon of the field and has been the
subject of a vast amount of published scientific research. We study both traditional models, such as
random graphs and their extensions, and newer models, such as models of growing networks and
the “small-world model.”

Finally, in the fifth and last part of the book, Chapters 16 to 19, we look at processes taking
place on networks, including failure processes and resilience, network epidemiology, dynamical
systems, and network search processes. The theory of these processes is less well developed than
other aspects of the theory of networks and there is much work still to be done. The last chapters of
the book probably raise at least as many questions as they answer, but this, surely, is a good thing.
With luck readers will feel inspired to answer some of those questions themselves and the author
looks forward to the new and exciting results they generate when they do.



PART I

THE EMPIRICAL STUDY OF NETWORKS



CHAPTER 2

TECHNOLOGICAL NETWORKS

A discussion of engineered networks like the Internet and the power grid and how we
determine their structure

IN THE next four chapters we define and describe some of the most commonly studied networks,
dividing them into four general classes—technological networks, social networks, information
networks, and biological networks. We will list the most important examples in each class and
then describe the techniques used to measure their structure. (The classes are not rigorously
defined and there is, as we will see, some overlap between them, with some networks belonging to
more than one class. Nonetheless, the division into classes is a useful one, since networks in the
same class are often treated using similar techniques or ideas.)

It is not our intention in this book to study any one network in great detail. Plenty of other books
exist that do that. Nonetheless, network science is concerned with understanding and modeling the
behavior of real-world networked systems and observational data are the starting point for
essentially all the developments of the field, so the reader will find it useful to have a grasp of the
types of data that are available, their strengths and limitations, and the means used to acquire them.
In this chapter we look at technological networks, the physical infrastructure networks that have
grown up over the last century or so and form the backbone of modern technological societies.
Perhaps the most celebrated such network—and a relatively recent entry in the field—is the
Internet, the global network of data connections, electrical, optical, and wireless, that links
computers and other information systems together. Section 2.1 is devoted to a discussion of the
Internet. A number of other important examples of technological networks, including power grids,
transportation networks, delivery and distribution networks, and telephone networks, are discussed
in subsequent sections.



2.1 THE INTERNET

The Internet should not be confused with the World Wide Web, a virtual network of web
pages and hyperlinks, which we discuss in Section 4.1.

The Internet is the worldwide network of physical data connections between computers and related
devices. The Internet is a packet switched data network, meaning that messages sent over it are
broken up into packets, small chunks of data, that are sent separately over the network and
reassembled into a complete message again at the other end. The format of the packets follows a
standard known as the Internet Protocol (IP) and includes an IP address in each packet that
specifies the packet’s destination, so that it can be routed correctly across the network.

The telephone network is discussed in Section 2.2.

The alternative to a packet switched network is a circuit switched network, the classic example
of which is the telephone system. In a circuit switched network, vertices request connections when
needed, such as when a telephone call is placed, and the network allocates a separate circuit for
each connection, reserved for the sole use of that connection until the connection is ended. This
works well for voice traffic, which consists of discrete phone calls each with a definite beginning
and end, but it would be a poor model for a data network, in which data transmission typically
occurs in brief, intermittent bursts. Using a packet switched model for the Internet allows
computers to transmit and receive data intermittently or at varying rates without tying up capacity
on the network. By making packets reasonably small, we also allow for a certain amount of
unreliability in the network. It is not uncommon for packets to disappear on the Internet and never
reach their destination, sometimes because of hardware or software failure, but more often because
packets are deliberately deleted to reduce congestion in the busiest parts of the network. If a
message is divided into several packets before transmission and a few packets are lost, then only
those that are lost need be resent to complete the message. A software protocol called Transport
Control Protocol or TCP, which runs on top of IP, performs the necessary error checking and
retransmission automatically, without the need for intervention from computer users or other
software .2

The simplest network representation of the Internet (there are others, as we will shortly see) is
one in which the vertices of the network represent computers and other devices, and the edges
represent physical connections between them, such as optical fiber lines. In fact, ordinary
computers mostly occupy only the vertices on the “outside” of the network, those that data flows
to and from, but they do not act as intermediate points for the flow of data between others. (Indeed,
most computers only have a single connection to the net, so it would not be possible for them to lie
on the path between any others.) The “interior” nodes of the Internet are primarily routers,
powerful special-purpose computers at the junctions between data lines that receive data packets
and forward them in one direction or another towards their intended destination.

The general overall shape of the Internet is shown, in schematic form, in Fig. 2.1. The network
is composed of three levels or circles of vertices. The innermost circle, the core of the network, is
the backbone of the network, the trunk lines that provide long-distance high-bandwidth data
transport across the globe, along with the high-performance routers and switching centers that link
them together. These trunk lines are the highways of the Internet, built with the fastest fiber optic
connections available (and improving all the time). The backbone is operated by network backbone
providers (NBPs), who are primarily national governments and communications companies such



as AT&T, Global Crossing, British Telecom, and others.

The second circle of the Internet is composed of Internet service providers or ISPs—commercial
companies, governments, universities, and others who contract with NBPs for connection to the
backbone and then resell or otherwise provide that connection to end users, the ultimate consumers
of Internet bandwidth, who form the third circle—businesses, government offices, academics,
people in their homes, and so forth. In fact, as Fig. 2.1 shows, the ISPs are further subdivided into
regional ISPs and local or consumer ISPs, the former being larger organizations whose primary
customers are the local ISPs, who in turn sell network connections to the end users. This
distinction is somewhat blurred however, because large consumer ISPs, such as America Online or
British Telecom, often act as their own regional ISPs (and some may be backbone providers as
well).

The network structure of the Internet is not dictated by any central authority. Protocols and
guidelines are developed by an informal volunteer organization called the Internet Engineering
Task Force, but one does not have to apply to any central Internet authority for permission to build
a new spur on the Internet, or to take one out of service.

Figure 2.1: A schematic depiction of the structure of the Internet. The vertices and edges of
the Internet fall into a number of different classes: the “backbone” of high-bandwidth long-
distance connections; the ISPs, who connect to the backbone and who are divided roughly into
regional (larger) and local (smaller) ISPs; and the end users—home users, companies, and so
forth—who connect to the ISPs.

One of the remarkable features of the Internet is that the scheme used for the routing of packets
from one destination to another is arrived at by automated negotiation among Internet routers using
a system called the Border Gateway Protocol (BGP). BGP is designed in such a way that if new
vertices or edges are added to the network, old ones disappear, or existing ones fail either
permanently or temporarily, routers will take note and adjust their routing policy appropriately.
Some human oversight is required to keep the system running smoothly, but no “Internet
government” is needed to steer things from on high; the system organizes itself by the combined
actions of many local and essentially autonomous computer systems.

While this is an excellent feature of the system from the point of view of robustness and
flexibility, it is a problem for those who want to study the structure of the Internet, because there is



no central registry from which one can determine that structure. There is no one whose job it is
to maintain an official map of the network. Instead the network’s structure must be determined by
experimental measurements. There are two primary methods for doing this. The first uses
something called “traceroute”; the second uses BGP.



2.1.1 MEASURING INTERNET STRUCTURE USING TRACEROUTE

It is not, at least for most of us, possible to probe the network structure of the Internet directly. We
can, however, quite easily discover the particular path taken by data packets traveling between our
own computer (or any computer to which we have access) and most others on the Internet. The
standard tool for doing this is called traceroute.

In addition to a destination address, which says where it is going, each Internet packet also
contains a source address, which says where it started from, and a time-to-live (TTL). The TTL is a
number that specifies the maximum number of “hops” that the packet can make to get to its
destination, a hop being the traversal of one edge in the network. At every hop, the TTL is
decreased by one, and if ever it reaches zero the packet is discarded, meaning it is deleted and not
forwarded any further over the network. If we are using TCP, a message is also then sent back to
the sender informing them that the packet was discarded and where it got to. (This is a part of
TCP’s mechanism for guaranteeing the reliable transmission of data—see above.) The TTL exists
mainly as a safeguard to prevent packets from getting lost on the Internet and wandering around
forever, but we can make use of it to track packet progress as well. The idea is as follows.

First, we send out a TCP packet with the destination address of the network vertex we are
interested in and a TTL of 1. The packet makes a single hop to the first router along the way, its
TTL is decreased to zero, the packet is discarded by the router and a message is returned to us
telling us, among other things, the IP address of the router. We record this address and then repeat
the process with a TTL of 2. This time the packet makes two hops before dying and the returned
message tells us the IP address of the second router. The process is repeated with larger and larger
TTL until the destination is reached, and the set of IP addresses received as a result specifies the
entire route taken to get there.® There are standard software tools that will perform the entire
procedure automatically and print out the list of IP addresses for us. On most computers the tool
that does this is called “traceroute.”

We can use traceroute (or a similar tool) to probe the network structure of the Internet. The idea
is to assemble a large data set of traceroute paths between many different pairs of points on the
Internet. With luck, most of the edges in the network (though usually not all of them) will appear
at least once in this set, and the union of all of them should give a reasonably complete picture of
the network. Early studies, for the sake of expediency, limited themselves to just a few source
computers, but more recent ones, such as the DIMES Project,& make use of distributed collections
of thousands of sources to develop a very complete picture of the network.

See Section 6.7 for a discussion of tree networks.

The paths from any single source to a set of destinations form a tree-like structure as shown
schematically in Fig. 2.2a, b, and c.Z The source computers should, ideally, be well distributed over
the network. If they are close together, then there may be a substantial overlap between the
traceroute paths to distant vertices, which means that they will duplicate needlessly each other’s
efforts, rather than returning independent measurements.

Once one has a suitable set of traceroute data, a simple union of all the paths appearing in the
data set gives us our snapshot of the network structure—see Fig. 2.2d. That is, we go through each
path and record a vertex for every IP address that appears in the path and an edge between every
pair of addresses that appear in adjacent positions. As hinted above, it is unlikely that such a
procedure will find all the edges in the network (see Fig. 2.2d again), and for studies based on
small numbers of sources there can be quite severe biases in the sampling of edges [3,192].
However, better and better data sets are becoming available as time passes, and it is believed that
we now have a reasonably complete picture of the shape of the Internet.



In fact, it is rarely, if ever, done to record every IP address on the Internet as a separate vertex.
There are believed to be about 2 billion unique IP addresses in use on the Internet at any one time,
with many of those corresponding to end-user computers that appear and disappear as the
computers are turned on or off or connections to the Internet are made or broken. Most studies of
the Internet ignore end-user computers and restrict themselves to just the routers, in effect
concentrating on the inner zones in Fig. 2.1 and ignoring the outermost one. We will refer to such
maps of the Internet as representations at the router level. The vertices in the network are routers,
and the edges between them are network connections.
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Figure 2.2: Reconstruction of the topology of the Internet from traceroute data. In panels (a),
(b), and (c) we show in bold the edges in three sets of traceroute paths starting from each of the
three highlighted source vertices. In panel (d) we form the union of these edges to make a picture
of the overall network topology. Note that a few edges are missing from this picture (the remaining
gray edges in panel (d)) because, by chance, they happen not to appear in any of the three
individual traceroute data sets.

(d)

It may appear strange to ignore end-user computers, since the end users are, after all, the entire
reason for the Internet’s existence in the first place. However, it is the structure of the network at
the router level that is responsible for most aspects of the performance, robustness, and efficiency
of the network, that dictates the patterns of traffic flow on the network, and that forms the focus of
most work on Internet structure and design. To the extent that these are the issues of scientific
interest, therefore, it makes sense to concentrate our efforts on the router-level structure.

An example of a study of the topology of the Internet at the router level is that of Faloutsos et al.
[111], who looked at the “degree distribution” of the network and discovered it to follow,
approximately, a power law. We discuss degree distributions and power laws in networks in more
detail in Section 8.4.

Even after removing all or most end-user computers from the network, the network structure at
the router level may still be too detailed for our purposes. Often we would like a more coarse-
grained representation of the network that gives us a broader overall picture of network structure.
Such representations are created by grouping sets of IP addresses together into single vertices.
Three different ways of grouping addresses are in common use giving rise to three different
coarse-grained representations, at the level of subnets, domains, and autonomous systems.

A subnet is a group of IP addresses defined as follows. IP addresses consist of four numbers,



each one in the range from 0 to 255 (eight bits in binary) and typically written in a string
separated by periods or dots. For example, the IP address of the main web server at the author’s
home institution, the University of Michigan, is 141.211.144.190. IP addresses are allocated to
organizations in blocks. The University of Michigan, for instance, owns (among others) all the
addresses of the form 141.211.144.xxx, where “xxx” can be any number between 0 and 255. Such
a block, where the first three numbers in the address are fixed and the last can be anything, is
called a class C subnet. There are also class B subnets, which have the form 141.211.xxx.yyy, and
class A subnets, which have the form 141.xxx.yyy.zzz.

Since all the addresses in a class C subnet are usually allocated to the same organization, a
reasonable way of coarse-graining Internet network data is to group vertices into class C subnets.
In most cases this will group together vertices in the same organization, although larger
organizations, like the University of Michigan, own more than one class C subnet, so there will
still be more than one vertex in the coarse-grained network corresponding to such organizations.
Given the topology of the network at the router level, the level of individual IP addresses, it is easy
to lump together into a single vertex all addresses in each class C subnet and place an edge
between any two subnets if any router in one has a network connection to any router in the other.
Figure 1.1 on page 4 shows an example of the network structure of the Internet represented at the
level of class C subnets.

The second common type of coarse-graining is coarse-graining at the domain level. A domain is
a group of computers and routers under, usually, the control of a single organization and identified
by a single domain name, normally the last two or three parts of a computer’s address when the
address is written in human-readable text form (as opposed to the raw IP addresses considered
above). For example, “umich.edu” is the domain name for the University of Michigan and “oup .
co . uk” is the domain name for Oxford University Press. The name of the domain to which a
computer belongs can be determined in a straightforward manner from the computer’s IP address
by a “reverse DNS lookup,” a network service set up to provide precisely this type of information.
Thus, given the router-level network topology, it is a simple task to determine the domain to which
each router belongs and group vertices in the network according to their domain. An edge is then
placed between two vertices if any router in one has a direct network connection to any router in
the other. The study by Faloutsos et al. [111] mentioned earlier looked at the domain-level
structure of the Internet as well as the router-level structure.

The third common coarse-graining of the network is coarse-graining at the level of autonomous
systems. An autonomous system is similar to a domain: it is a group of computers, usually under
single administrative control, and it often (though not always) coincides with a domain. Coarse-
graining at the autonomous system level is not usually used with data derived from traceroute
sampling but with data derived using an alternative method based on BGP routing tables, for
which it forms the most natural unit of representation. The BGP method and autonomous systems
are discussed in detail in the next section.



2.1.2 MEASURING INTERNET STRUCTURE USING ROUTING TABLES

Internet routers maintain routing tables that allow them to decide in which direction incoming
packets should be sent to best reach their destination. Routing tables are constructed from
information shared between routers using the Border Gateway Protocol (BGP). They consist of
lists of complete paths from the router in question to destinations on the Internet. When a packet
arrives at a router, the router examines it to determine its destination and looks up that destination
in the routing table. The first step of the path in the appropriate table entry tells the router how the
packet should be sent on its way. Indeed, in theory routers need store only the first step on each
path in order to route packets correctly. However, for efficient calculation of routes using BGP (the
techniques of which we will not go into here) it is highly desirable that routers be aware of the
entire path to each destination, and since the earliest days of the Internet all routers have operated
in this way. We can make use of this fact to measure the structure of the Internet.

Routing tables in routers are represented at the level of autonomous systems (ASes). An
autonomous system is a collection of computers and routers, usually under single administrative
control, within which data routing is handled independently of the wider Internet, hence the name

“autonomous system.” That is, when a data packet arrives at a router within an autonomous
system, destined for a specific computer within that same autonomous system, it is the
responsibility of the autonomous system to get the packet the last few steps to its final destination.
Data passing between autonomous systems, however, is handled by the Internet-wide mechanisms
of BGP. Thus it’s necessary for BGP to know about routing only down to the level of autonomous
systems and hence BGP tables are most conveniently represented in autonomous system terms. In
practice, autonomous systems, of which there are (at the time of writing) about twenty thousand on
the Internet, often coincide with domains, or nearly so.

Autonomous systems are assigned unique identification numbers. A routing path consists of a
sequence of these AS numbers and since router tables consist of paths to a large number of
destinations, we can construct a picture of the Internet at the autonomous system level by
examining them. The process is very similar to that used for the traceroute method described in the
previous section and depicted in Fig. 2.2. We first obtain a number of router tables. This is
normally done simply by the gracious cooperation of router operators at a variety of organizations.
Each router table contains a large number of paths starting from a single source (the router), and
the union of these paths gives a good but not complete network snapshot in which the vertices are
autonomous systems and the edges are the connections between autonomous systems. As with
traceroute, it is important that the routers used be well scattered over the network to avoid too
much duplication of results, and the number of routers used should be as large as possible to make
the sampling of network edges as complete as possible. For example, the Routeviews Project,2 a
large BGP-based Internet mapping effort based at the University of Oregon, uses (again at the time
of writing) a total of 223 source computers around the world to measure the structure of the entire
network every two hours.

Figure 2.3 shows a picture of the Internet at the AS level derived from routing tables.
Qualitatively, the picture is similar to Fig. 1.1 for the class C subnet structure, but there are
differences arising because class C subnets are smaller units than many autonomous systems and
so Fig. 1.1 is effectively a finer-grained representation than Fig. 2.3.

Using router-, subnet-, domain-, or AS-level structural data for the Internet, many intriguing
features of the net’s topology have been discovered in recent years [57, 66, 111, 211, 262, 265],
many of which are discussed in later chapters of this book.



Figure 2.3: The structure of the Internet at the level of autonomous systems. (See Plate 111 for
color version.) The vertices in this network representation of the Internet are autonomous systems
and the edges show the routes taken by data traveling between them. This figure is different from
Fig. 1.1, which shows the network at the level of class C subnets. The picture was created by Hal
Burch and Bill Cheswick. Patent(s) pending and Copyright Lumeta Corporation 2009. Reproduced
with permission.



One further aspect of the Internet worth mentioning here is the geographic location of its
vertices on the surface of the Earth. In many of the networks that we will study in this book,
vertices do not exist at any particular position in real space—the vertices of a citation network for
instance are not located on any particular continent or in any particular town. Not so the Internet;
its vertices, by and large, are quite well localized in space. Your computer sits on your desk, a
router sits in the basement of an office building, and so forth. Things become more blurry once the
network is coarse-grained. The domain umich. edu covers large parts of the state of Michigan. The
domain aol. com covers most of North America. These are somewhat special cases, however,
being unusually large domains. The majority of domains have a well-defined location at least to
within a few miles. Furthermore, tools now exist for determining, at least approximately, the
geographic location of a given IP address, domain, or autonomous system. Examples include
NetGeo, NetAcuity, GeoNetMap, and many others. Geographic locations are determined primarily
by looking them up in one of several registries that record the official addresses of the registered
owners of domains or autonomous systems. These addresses need not in all cases correspond to the
actual location of the corresponding computer hardware. For instance, the domain ibm. com is
registered in New York City, but IBM’s principal operations are in California. Nonetheless, an
approximate picture of the geographic distribution of the Internet can be derived by these methods,
and there has been some interest in the results [332].

Geographic localization is a feature the Internet shares with several other technological
networks, as we will see in the following sections, but rarely with networks of other kinds.2



2.2 THE TELEPHONE NETWORK

The Internet is the best studied example of a technological network, at least as measured by
volume of recent academic work. This is partly because data on Internet structure are relatively
easy to come by and partly because of intense interest among engineers and computer scientists
and among the public at large. Several other technological networks however are worthy of
mention here. In this and the following sections of the chapter we look briefly at the telephone
network and various distribution and transportation networks. A few other networks, such as
software call graphs and electronic circuits, could also be considered technological networks and
have been studied occasionally, but are beyond the scope of this book.

The telephone network—meaning the network of landlines and wireless links that transmits
telephone calls—is one of the oldest communication networks still in use (although the postal
network is certainly older), but it has been little studied by network theorists, primarily because of
a lack of good data about its structure. Of course, the structure of the phone network is known, but
the data are largely proprietary to the telephone companies that own the network and, while not
precisely secret, they are not openly shared with the research community in the same way that
Internet data are. We hope that this situation will change, although the issue may become moot in
the not too distant future, as telephone companies are sending an increasing amount of voice traffic
over the Internet rather than over dedicated telephone lines, and it may not be long before the two
networks merge into one.

Some general principles of operation of the telephone network are clear however. By contrast
with the Internet, the traditional telephone network is, as mentioned in Section 2.1, not packet
switched. Signals sent over the phone network are not disassembled and sent as sets of discrete
packets. Instead the telephone network is circuit switched, which means that the telephone
company has a number of lines or circuits available to carry telephone calls between different
points and it assigns them to individual callers when those callers place phone calls. In the earliest
days of the telephone systems in the United States and Europe the “lines” actually were individual
wires, one each for each call the company could carry. Increasing the capacity of the network to
carry more calls meant putting in more wires. Since the early part of the twentieth century,
however, phone companies have employed techniques for multiplexing phone signals, i.e., sending
many calls down the same wire simultaneously. The exception is the “last mile” of connection to
the individual subscriber. The phone cable entering a house usually only carries one phone call at a
time, although even that has changed in recent years as new technology has made it possible for
households to have more than one telephone number and place more than one call at a time.

The basic form of the telephone network is relatively simple. Most countries with a mature
landline (as opposed to wireless) telephone network use a three-tiered design. Individual telephone
subscribers are connected over local lines to local telephone exchanges, which are then connected
over shared “trunk” lines to long-distance offices, sometimes also called toll-switching offices.
The long-distance offices are then connected among themselves by further trunk lines. See Fig. 2.4
for a sketch of the network structure. The structure is, in many ways, rather similar to that of the
Internet (Fig. 2.1), even though the underlying principles on which the two networks operate are
quite different.
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Figure 2.4: A sketch of the three-tiered structure of a traditional telephone network. In a
telephone network individual subscriber telephones are connected to local exchanges, which are
connected in turn to long-distance offices. The long-distance offices are connected amongst
themselves by further lines, and there may be some connections between local exchanges as well.

The three-level topology of the phone network is designed to exploit the fact that most
telephone calls in most countries are local, meaning they connect subscribers in the same town or
region. Phone calls between subscribers connected to the same local exchange can be handled by
that exchange alone and do not need to make use of any trunk lines at all. Such calls are usually
referred to as local calls, while calls that pass over trunk lines are referred to as trunk or long-
distance calls. In many cases there may also be direct connections between nearby local exchanges
that allow calls to be handled locally even when two subscribers are not technically attached to the
same exchange.

The telephone network has had roughly this same topology for most of the last hundred years
and still has it today, but many of the details about how the network works have changed. In
particular, at the trunk level some telephone networks are no longer circuit switched. Instead they
are now digital packet switched networks that work in a manner not dissimilar from the Internet,
with voice calls digitized, broken into packets, and transmitted over optical fiber links. Only the

“last mile” to the subscriber’s telephone is still carried on an old-fashioned dedicated circuit, and
even that is changing with the advent of digital and Internet telephone services. Nonetheless, in
terms of geometry and topology the structure of the phone network is much the same as it has
always been, being dictated in large part by the constraints of geography and the propensity for
people to talk more often to others in their geographic vicinity than to those further away.



2.3 POWER GRIDS

The topology of power grids has received occasional study in the networks literature [16, 323]. A
power grid, in this context, is the network of high-voltage transmission lines that provide long-
distance transport of electric power within and between countries. Low-voltage local power
delivery lines are normally excluded. The vertices in a power grid correspond to generating
stations and switching substations, and the edges correspond to the high-voltage lines. The
topology of power grids is not difficult to determine. The networks are usually overseen by a
single authority and complete maps of grids are readily available. Indeed, very comprehensive data
on power grids (as well as other energy-related networks such as oil and gas pipelines) are
available from specialist publishers, either on paper or in electronic form, if one is willing to pay
for them.

There is much of interest to be learned by looking at the structure of power grids. Like the
Internet, power grids have a spatial aspect; the individual vertices each have a location somewhere
on the globe, and their distribution in space is interesting from geographic, social, and economic
points of view. Network statistics, both geographic and topological, may provide insight into the
global constraints governing the shape and growth of grids. Power grids also display some unusual
behaviors, such as cascading failures, which can give rise to surprising results such as the observed
power-law distribution in the sizes of power outages [92].

However, while there is a temptation to apply simple models of the kind described in this book
to try to explain these and other results, it is wise to be cautious. Power grids are very complicated
systems. The flow of power is governed not only by simple physical laws, but also by precise and
detailed control of the phases and voltages across transmission lines, monitored and adjusted on
rapid timescales by sophisticated computer systems and on slower timescales by human operators.
It turns out that power failures and other power-grid phenomena are influenced relatively little by
the raw topology of the network and much more by operator actions and software design, and as a
result network theory has not, so far, been very successful at shedding light on the behavior of
power grids.



2.4 TRANSPORTATION NETWORKS

A moderate amount of work has been done on the structure and function of transportation
networks such as airline routes and road and rail networks. The structure of these networks is not
usually hard to determine, although compiling the data may be laborious. Airline networks can be
reconstructed from published airline timetables, road and rail networks from maps. Geographic
information systems (GIS) software can be useful for speeding the compilation of transportation
data, and there are also a variety of online resources providing useful information such as latitude
and longitude of airports.

One of the earliest examples of a study of a transportation network is the study by Pitts [268] of
waterborne transport on Russian rivers in the Middle Ages. There was also a movement among
geographers in the 1960s and 70s to study road and rail networks, particularly focusing on the
interplay between their economics and their physical structure. The most prominent name in the
movement was that of Karel Kansky, and his book on transportation networks is a good point of
entry into that body of literature [168].

More recently a number of authors have produced studies applying new network analysis ideas
to road, rail, and air networks [16, 136, 294]. In most of the networks studied the vertices represent
geographic locations and the edges routes between them. For instance, in studies of road networks
the vertices usually represent road intersections and the edges roads. The study by Sen et al. [294]
of the rail network of India provides an interesting counterexample. Sen et al. argue, plausibly, that
in the context of rail travel what matters to most people is whether there is a direct train to their
destination or, if there is not, how many trains they will have to take to get there. People do not
care so much about how many stops there are along the way, so long as they don’t have to change
trains. Thus, Sen et al. argue, a useful network representation in the case of rail travel is one in
which the vertices represent locations and two vertices are connected by an edge if a single train
runs between them. Then the distance between two vertices in the network—the number of edges
you need to traverse to get from A to B—is equal to the number of trains you would have to take.
A Dbetter representation still (although Sen et al. did not consider it) would be a “bipartite network,”
a network containing two types of vertex, one representing the locations and the other representing
train routes. Edges in the network would then join locations to the routes that run through them.
The first, simpler representation of Sen et al. can be derived from the bipartite one by making a

“one-mode projection” onto the locations only. Bipartite networks and their projections are
discussed in greater detail in Section 6.6.



2.5 DELIVERY AND DISTRIBUTION NETWORKS

Falling somewhere between transportation networks and power grids are the distribution networks,
about which relatively little has been written within the field of networks research. Distribution
networks include things like oil and gas pipelines, water and sewerage lines, and the routes used by
the post office and package delivery and cargo companies. Figure 2.5 shows one example, the
European gas distribution network, taken from a study by Carvalho et al. [64], who constructed the
figure from data purchased from industry sources. In this network the edges are gas pipelines and
the vertices are their intersections, including pumping, switching, and storage facilities and
refineries.

If one is willing to interpret “distribution” in a loose sense, then one class of distribution
networks that has been relatively well studied is river networks, though if one wants to be precise
river networks are really collection networks, rather than distribution networks. In a river network
the edges are rivers or streams and the vertices are their intersections. Like road networks no
special techniques are necessary to gather data on the structure of river networks—the hard work
of surveying the land has already been done for us by surveyors and cartographers, and all we need
do is copy the results off their maps. See Fig. 2.6 for an example of a river network.

The topological and geographic properties of river networks have been studied in some detail
[94, 208, 284]. Of particular note is the fact that river networks, to an excellent approximation,
take the form of trees. That is, they contain no loops (if one disregards the occasional island
midstream), a point that we discuss in more detail in Section 6.7.

Similar in some respects to river networks are networks of blood vessels in animals, and their
equivalents in plants, such as root networks. These too have been studied at some length. An early
example of a mathematical result in this area is the formula for estimating the total geometric
length of all edges in such a network by observing the number of times they intersect a regular
array of straight lines [231]. This formula, whose derivation is related to the well-known “Buffon’s
needle” experiment for determining the value of z, is most often applied to root systems, but there
IS no reason it could not also be useful in the study of river networks or, with suitable modification,
any other type of geographic network.



Figure 2.5: The network of natural gas pipelines in Europe. Thickness of lines indicates the
sizes of the pipes. Figure created by R. Carvalho et al. [64]. Copyright 2009 American Physical
Society. Reproduced with permission.
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Figure 2.6: Drainage basin of the Loess Plateau. The network of rivers and streams on the Loess
Plateau in the Shanxi province of China. The tree-like structure of the network is clearly visible—
there are no loops in the network, so water at any point in the network drains off the plateau via a
single path. Reproduced from Pelletier [266] by permission of the American Geophysical Union.

Also of note in this area is work on the scaling relationships between the structure of branching
vascular networks in organisms and metabolic processes [26, 325, 326], an impressive example of
the way in which an understanding of network structure can be parlayed into an understanding of
the functioning of the systems the networks represent. We will see many more examples during the
course of this book.



CHAPTER 3

SOCIAL NETWORKS

A discussion of social networks and the empirical techniques used to probe their structure

SOCIAL networks are networks in which the vertices are people, or sometimes groups of people,
and the edges represent some form of social interaction between them, such as friendship.
Sociologists have developed their own language for discussing networks: they refer to the vertices,
the people, as actors and the edges as ties. We will sometimes use these words when discussing
social networks.

We begin this chapter with a short summary of the origins and research focus of the field of
social networks, before describing in detail some of the techniques used to discover social network
structure. The material in this chapter forms the basis for understanding many of the social
network examples that appear in the rest of the book.



3.1 THE EMPIRICAL STUDY OF SOCIAL NETWORKS

To most people the words “social network,” if they mean anything, refer to online social
networking services such as Facebook and MySpace. The study of social networks, however, goes
back far farther than the networks’ modernday computer incarnations. Indeed, among researchers
who study networks, sociologists have perhaps the longest and best established tradition of
quantitative, empirical work. There are clear antecedents of social network analysis to be found in
the literature as far back as the end of the nineteenth century. The true foundation of the field,
however, is usually attributed to psychiatrist Jacob Moreno, a Romanian immigrant to America
who in the 1930s became interested in the dynamics of social interactions within groups of people.
At a medical conference in New York City in March 1933 he presented the results of a set of
studies he had performed that may have been the first true social network studies, and the work
attracted enough attention to merit a column in the New York Times a few days later. A year after
that Moreno published a book entitled Who Shall Survive? [228] which, though not a rigorous
work by modern standards, contained the seeds of the field of sociometry, which later became
social network analysis.

Figure 3.1: Friendships between schoolchildren. This early hand-drawn image of a social
network, taken from the work of psychiatrist Jacob Moreno, depicts friendship patterns between
the boys (triangles) and girls (circles) in a class of schoolchildren in the 1930s. Reproduced from
[228] by kind permission of the American Society of Group Psychotherapy and Psychodrama.



Moreno called his diagrams of human interaction sociograms, rather than social networks (a
term not coined until about twenty years later), but in everything but name they are clearly what
we now know as networks. Figure 3.1, for instance, shows a hand-drawn figure from Moreno’s
book, depicting friendships within a group of schoolchildren. The triangles and circles represent
boys and girls respectively and the figure reveals, among other things, that there are many
friendships between two boys or two girls, but few between a boy and a girl. It is simple
conclusions like this, that are both sociologically interesting and easy to see once one draws a
picture of the network, that rapidly persuaded social scientists that there was merit in Moreno’s
methods.

One of the most important things to appreciate about social networks is that there are many
different possible definitions of an edge in such a network and the particular definition one uses
will depend on what questions one is interested in answering. Edges might represent friendship
between individuals, but they could also represent professional relationships, exchange of goods or
money, communication patterns, romantic or sexual relationships, or many other types of
connection. If one is interested, say, in professional interactions between the boards of directors of
Fortune 500 companies, then a network of who is dating whom or who looks at who else’s
Facebook page is probably not of much use. Moreover, the techniques one uses to probe different
types of social interaction can also be quite different, so that different kinds of social network
studies are typically needed to address different kinds of questions.

Direct questioning of experimental subjects is probably the most common method of
determining the structure of social networks. We discuss it in detail in Section 3.2. Another
important technique, the use of archival records (Sections 3.4 and 3.5), is illustrated by a different
early example of a social network study. It was, apparently, a common practice in the US in the
1930s for newspapers to report on the public appearances of society women, and Davis, Gardner,
and Gardner made use of this in a study of a social network of 18 women in a city in the American
south. This study, often referred to in the literature as the “Southern Women Study,” was described
in a book by the researchers published in 1941 [86], although it was based on data from 1939.
They took a sample of 14 social events attended by the women in question and recorded which
women attended which events. Women in this network may be considered connected if they
attended a common event. An alternative and more complete representation of the data is as an

“affiliation network” or “bipartite graph,” a network with two types of vertex, representing the
women and the events, with edges connecting each woman to the events she attended. A
visualization of the affiliation network for the Southern Women Study is shown in Fig. 3.2. One
reason why this study has become so well known, in addition to its antiquity, is that the women
were found by the researchers to split into two subgroups, tightly knit clusters of acquaintances
with only rather loose between-cluster interaction. A classic problem in social network analysis is
to devise a method or algorithm that can discover and extract such clustering from raw network
data, and quite a number of researchers have made use of the Southern Women data as a test case
for the development of such methods. Affiliation networks receive further attention in Section 3.5.

Such is the power of social network analysis that its techniques have, since Moreno and Davis et
al., been applied to an extraordinary variety of different communities, issues, and problems,
including friendship and acquaintance patterns in local communities and in the population at large
[36, 37, 175, 219, 311], and among students [334] and schoolchildren [112, 225, 277], contacts
between business people and other professionals [78, 134], boards of directors of companies [87,
88, 207], collaborations of scientists [145, 146, 236], movie actors [16, 323], and musicians [139],
sexual contact networks [183, 198, 272, 285] and dating patterns [34], covert and criminal
networks such as networks of drug users [289] or terrorists [191], historical networks [259], online
communities such as Usenet [204, 300, 312] or Facebook [196], and social networks of animals
[205, 286, 287].



Figure 3.2: The affiliation network of the “Southern Women Study.” This network (like all
affiliation networks) has two types of vertex, the open circles at the bottom representing the 18
women who were the subjects of the study and the shaded circles at the top representing the social
events they attended. The edges connect each woman to the events she attended, as deduced from
newspaper reports. Data courtesy of L. Freeman and originally from Davis et al. [86].

We will see some examples of these and other networks throughout this book and we will give
details as needed as we go along. The rest of the present chapter is devoted to a discussion of the
different empirical methods used to measure social networks. The two techniques described above,
namely direct questioning of subjects and the use of archival records, are two of the most
important, but there are several others that find regular use. This chapter does not give a complete
review of the subject—for that we refer the reader to specialized texts such as those of Wasserman
and Faust [320] and Scott [293]—Dbut we introduce as much material as will be needed for the later
chapters of the book, while at the same time, we hope, giving some flavor for the challenges of
empirical study in the field of social networks.



3.2 INTERVIEWS AND QUESTIONNAIRES

The most common general method for accumulating data on social networks is simply to ask
people questions. If you are interested in friendship networks, then you ask people who their
friends are. If you are interested in business relationships you ask people who they do business
with, and so forth. The asking may take the form of direct interviews with participants or the
completion by participants of questionnaires, either on paper or electronically. Indeed many
modern studies, particularly surveys conducted by telephone, employ a combination of both
interviews and questionnaires, wherein a professional interviewer reads questions from a
questionnaire to a participant. By using a questionnaire, the designers of the study can guarantee
that questions are asked, to a good approximation, in a consistent order and with consistent
wording. By employing an interviewer to do the asking the study gains flexibility and reliability:
interviewees often take studies more seriously when answering questions put to them by a human
being, and interviewers may be given some latitude to probe interviewees when they are unclear,
unresponsive, or confused. These are important considerations, since misunderstanding and
inconsistent interpretation of survey questions are substantial sources of error. By making
questions as uniform as possible and giving respondents personal help in understanding them,
these errors can be reduced. A good introduction to social survey design and implementation has
been given by Rea and Parker [279].

To find out about social networks, surveys typically employ a name generator , an item or series
of items that invite respondents to name others with whom they have contact of a specified kind.
For example, in their classic study of friendship networks among schoolchildren, Rapoport and
Horvath [277] asked children to complete a questionnaire that included items worded as follows:

My best friend at —_ Junior High School is:
My second-best friend at Junior High School is:
My third-best friend at Junior High School is:

My eighth-best friend at Junior High School is:

The blanks ”___ " in the questionnaire were filled in with the appropriate school name. The list

stopped at the eighth-best friend and many children did not complete all eight.

Ideally all students within the school would be surveyed, though Rapoport and Horvath reported
that in their case a few were absent on the day the survey was conducted. Note that the survey
specifically asks children to name only friends within the school. The resulting network will
therefore record friendship ties within the school but none to individuals outside. Since all social
network studies are limited to some community or portion of the population, and since it is highly
unlikely that such a community will have ties solely within the community and none outside, all
surveys must make some decision about how to deal with ties to outside individuals. Sometimes
they are recorded. Sometimes, as here, they are not. Such details can be important since statistics
derived from the survey results will often depend on the decisions made.

There are some points to notice about the data produced by name generators. First, the network
ties, friendships in the case above, are determined by one respondent nominating another by name.
This is a fundamentally asymmetric process. Individual A identifies individual B as their friend. In
many cases B will also identify A as their friend, but there is no guarantee that this will happen



and it is not uncommon for nomination to go only one way. We normally think of friendship as
a two-way type of relationship, but surveys suggest that this not always the case. As a result, data
derived from name generators are often best represented as directed networks, networks in which
edges run in a particular direction from one vertex to another. If two individuals nominate each
other then we have two directed edges, one pointing in either direction. Each vertex in the network
also has two degrees, an outdegree—the number of friends identified by the corresponding
individual—and an in-degree—the number of others who identified the individual as a friend.

We encountered directed networks previously in Chapter 1, in our discussion of the World
Wide Web, and they are discussed in more detail in Section 6.4.

This brings us to a second point about name generators. It is common, as in the example above,
for the experimenter to place a limit on the number of names a respondent can give. In the study of
Rapoport and Horvath, this limit was eight. Studies that impose such a limit are called fixed choice
studies. The alternative is to impose no limit. Studies that do this are called free choice studies.

Limits are often imposed purely for practical purposes, to reduce the work the experimenter
must do. However, they may also help respondents understand what is required of them. In surveys
of schoolchildren, for instance, there are some children who, when asked to name all their friends,
will patiently name all the other children in the entire school, even if there are hundreds of them.
Such responses are not particularly helpful in surveys—almost certainly the children in question
are employing a definition of friendship different from that employed by most of their peers and by
the investigators.

However, limiting the number of responses is for most purposes undesirable. In particular, it
clearly limits the out-degree of the vertices in the network, imposing an artificial and possibly
unrealistic cut-off. As discussed in Chapter 1, an interesting property of many networks is the
existence of a small number of vertices with unusually high degree, and it is known that in some
cases these vertices, though few in number, can have a dominant effect on the behavior of the
network as a whole. By employing a name generator that artificially cuts off the degree, any
information about the existence of such vertices is lost.

It is worth noticing, however, that even in a fixed-choice study there is normally no limit on the
in-degree of vertices in the network; there is no limit to the number of times an individual can be
nominated by others. And indeed in many networks it is found that a small number of individuals
are nominated an unusually large number of times. Rapoport and Horvath [277] observed this in
their friendship networks: while most children in a school are nominated as a friend of only a few
others, a small number of popular children are nominated very many times. Rapoport and Horvath
were some of the first scientists in any field to study quantitatively the degree distribution of a
network, reporting and commenting extensively on the in-degrees in their friendship networks.

Not all surveys employing name generators produce directed networks. Sometimes we are
interested in ties that are intrinsically symmetric between the two parties involved, in which case
the edges in the network are properly represented as undirected. An example is networks of sexual
contact, which are widely studied to help us understand the spread of sexually transmitted diseases
[183, 198, 272, 285]. In such networks a tie between individuals A and B means that A and B had
sex. While participants in studies sometimes do not remember who they had sex with or may be
unwilling to talk about it, it is at least in principal a straightforward yes-or-no question whether
two people had sex, and the answer should not depend on which of the two you ask.22 In such
networks therefore, ties are normally represented as undirected.

Surveys can and often do ask respondents not just to name those with whom they have ties but
to describe the nature of those ties as well. For instance, questions may ask respondents to name
people they both like and dislike, or to name those with whom they have certain types of contact,
such as socializing together, working together, or asking for advice. For example, in a study of the
social network of a group of medical doctors, Coleman et al. [78] asked respondents the following
questions:

Who among your colleagues do you turn to most often for advice?



With whom do you most often discuss your cases in the course of an ordinary week?

Who are the friends among your colleagues who you see most often socially?

The names of a maximum of three doctors could be given in response to each question. A survey
such as this, which asks about several types of interactions, effectively generates data on several
different networks at once—the network of advice, the discussion network, and so forth.

Surveys may also pose questions aimed at measuring the strength of ties, asking for instance
how often people interact or for how long, and they may ask individuals to give a basic description
of themselves: their age, income, education, and so forth. Some of the most interesting results of
social network studies concern the extent to which people’s choice of whom they associate with
reflects their own background and that of their associates. For instance, you might choose to
socialize primarily with others of a similar age to yourself, but turn for advice to those who are
older than you.

The main disadvantages of network studies based on direct questioning of participants are that
they are first laborious and second inaccurate. The administering of interviews or questionnaires
and the collation of responses is a demanding job that has been only somewhat helped in recent
years by the increasing availability of computers and the use of online survey tools. Most studies
have been limited to a few tens or at most hundreds of respondents—the 34-vertex social network
of Fig. 1.2 is a typical example. It is a rare study that contains more than a thousand actors, and
studies such as the National Longitudinal Study of Adolescent Health,22 which compiled responses
from over 90 000 participants, are very unusual and extraordinarily costly. Only a substantial
public interest such as, in that case, the control of disease, can justify their funding.

Data based on direct questioning are also plagued by uncontrolled biases. Answers given by
respondents are always, to some extent, subjective. If you ask people who their friends are,
different people will interpret “friend” in different ways and thus give different kinds of answers.
Investigators do their best to pose questions and record answers in a uniform fashion, but it is
inevitable that inconsistencies will be present in the final data and anyone who has ever conducted
a survey knows this well. This problem is not unique to social network studies. Virtually all social
surveys suffer from such problems and a large body of expertise has been developed concerning
techniques for dealing with them. Nonetheless, one should bear in mind when dealing with any
social network data derived from interviews or questionnaires the possibility of uncontrolled
experimental bias in the results.



3.2.1 EGO-CENTERED NETWORKS

Studies of the type described in the previous section, in which all or nearly all of the individuals in
a community are surveyed, are called sociometric studies, a term coined by Jacob Moreno himself
(see the discussion at the beginning of this chapter). For the purposes of determining network
structure, sociometric studies are desirable; unless we survey all or nearly all of the population of
interest, there is no way we can reconstruct the complete network of ties within that population.
However, as discussed at the end of the preceding section, sociometric studies also require a lot of
work and for large populations may simply be infeasible.
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An ego-centered network consisting of an ego and five alters.

At the other end of the spectrum lie studies of personal networks or ego-centered networks.2 An
ego-centered network is the network surrounding one particular individual, meaning, usually, the
individual surveyed and his or her immediate contacts. The individual surveyed is referred to as
the ego and the contacts as alters.

The typical survey of this kind is conducted using direct questioning techniques similar to those
discussed in Section 3.2, with interviews, questionnaires, or a combination of both being the
instruments of choice. One might, for instance, select a sample of the target population at
random,L2 and ask them to identify all those with whom they have a certain type of contact.
Participants might also be asked to describe some characteristics both of themselves and of their
alters, and perhaps to answer some other simple questions, such as which alters also have contact
with one another.

Obviously surveys of this type, and studies of ego-centered networks in general, cannot reveal
the structure of an entire network. One receives snapshots of small local regions of the network,
but in general those regions will not join together to form a complete social network. There are
cases, however, where we are primarily interested in local network properties, and egocentered
network studies can give us good data about these. For example, if we wish to know about the
degrees of vertices in a network then a study in which a random sample of people are each asked to
list their contacts can give us reasonable degree statistics. (Studies probing vertex degrees are
discussed more below.) If we also gather data on the contacts between alters, we can estimate
clustering coefficients (see Section 7.9). If we have data on characteristics of egos and alters we
can measure assortative mixing (Sections 7.13 and 8.7).

An example of a study gathering ego-centered network data is the General Social Survey (GSS)
[59], a large-scale survey conducted every year in the United States since 1972 (every two years
since 1994). The GSS is not primarily a social network study. The purpose of the study is to gather
data about life in the United States, how it is changing, and how it differs from or relates to life in



other societies. The study contains a large number of items ranging from general questions
probing the demographics and attitudes of the participants, to specific questions about recent
events, political topics, or quality of life. However, among these many items there are in each
iteration of the survey a few questions about social networks. The precise number and wording of
these questions changes from one year to another, but here some examples from the survey of
1998, which was fairly typical:

From time to time, most people discuss important matters with other people. Looking back
over the last six months, who are the people with whom you discussed matters important to
you? Do you feel equally close to all these people?

Thinking now of close friends—not your husband or wife or partner or family members, but
people you feel fairly close to—how many close friends would you say you have? How many
of these close friends are people you work with now? How many of these close friends are
your neighbors now?

And so on. By their nature these questions are of a “free choice” type, the number of friends or
acquaintances the respondent can name being unlimited, although (and this is a criticism that has
been leveled at the survey) they are also quite vague in their definitions of friends and
acquaintances, so people may give answers of widely varying kinds.

Another example of an ego-centered network study is the study by Bernard et al. [36, 37, 175,
213] of the degree of individuals in acquaintance networks (i.e., the number of people that people
know). It is quite difficult to estimate how many people a person knows because most people
cannot recall at will all those with whom they are acquainted and there is besides a large amount of
variation in people’s subjective definition of “knowing.” Bernard et al. came up with an elegant
experimental technique to circumvent these difficulties. They asked people to read through a list
containing a sample of several hundred family names drawn from a telephone directory.
Participants counted up how many people they knew with names appearing on the list. Each
person with a listed name was counted separately, so that two acquaintances called “Smith” would
count as two people. They were instructed to use the following precise definition of acquaintance:

You know the person and they know you by sight or by name; you can contact them in person
by telephone or by mail; and you have had contact with the person in the past two years.

(Of course, many other definitions are possible. By varying the definition, one could probe
different social networks.) Bernard et al. then fed the counts reported by participants into a
statistical formula to estimate the total number of acquaintances of each participant.

Bernard et al. repeated their study with populations drawn from several different cities and the
results varied somewhat from city to city, but overall they found that the typical number of
acquaintances, in the sense defined above, of the average person in the United States is on the
order of about 2000. In the city of Jacksonville, Florida, for instance, they found a figure of 1700,
while in Orange County, California they found a figure of 2025. Many people find these numbers
surprisingly high upon first encountering them, perhaps precisely because we are poor at recalling
all of the many people we know. But repeated studies have confirmed figures of the same order of
magnitude, at least in the United States. In some other countries the figures are lower. In Mexico
City, for instance, Bernard et al. estimated that the average person knows about 570 others.



3.3 DIRECT OBSERVATION

An obvious method for constructing social networks is direct observation. Simply by watching
interactions between individuals one can, over a period of time, form a picture of the networks of
unseen ties that exist between those individuals. Most of us, for instance, will be at least somewhat
aware of friendships or enmities that exist between our friends or coworkers. In direct observation
studies, researchers attempt to develop similar insights about the members of the population of
interest.

Direct observation tends to be a rather labor-intensive method of study, so its use is usually
restricted to rather small groups, primarily ones with extensive face-to-face interactions in public
settings. In Chapter 1 we saw one such example, the “karate club” network of Zachary [334].
Another example is the study by Freeman et al. [131, 132] of the social interactions of windsurfers
on a beach. The experimenters simply watched the individuals in question and recorded the length
in minutes of every pairwise interaction among them. A large number of direct-observation
network data sets were compiled by Bernard and co-workers during the 1970s and 80s as part of a
lengthy study of the accuracy of individuals’ perception of their own social situation [38, 40, 41,
173]. These include data sets on interactions between students, faculty, and staff in a university
department, on members of a university fraternity,XZ on users of a teletype service for the deaf, and
several other examples.

One arena in which direct observation is essentially the only viable experimental technique is in
studies of the social networks of animals—clearly animals cannot be surveyed using interviews or
questionnaires. One method is to record instances of animal pairs engaging in recognizable social
behaviors such as mutual grooming, courting, or close association and then to declare ties to exist
between the pairs that engage in these behaviors most often [205]. Not all animal species form
interesting or useful social networks, but informative studies have been performed of, amongst
others, monkeys [121, 286, 287], kangaroos [143], and dolphins [80, 205]. Networks in which the
ties represent aggressive behaviors have also been reported, such as networks of baboons [214],
wolves [163, 316], and ants [77]. In cases where aggressive behaviors normally result in one
animal’s establishing dominance over another the resulting networks can be regarded as directed
and are sometimes called dominance hierarchies [90, 91, 101].



3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS

An increasingly important, voluminous, and often highly reliable source of social network data is
archival records. Such records are, sometimes at least, relatively free from the vagaries of human
memory and are often impressive in their scale, allowing us to construct networks of a size that
would require far more effort were other techniques used.
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Figure 3.3: Intermarriage network of the ruling families of Florence. In this network the
vertices represent fifteenth century Florentine families and the edges represent ties of marriage
between them. After Padgett and Ansell [259].

A well-known small example of a study based on archival records is the study by Padgett and
Ansell of the ruling families of Florence in the fifteenth century [259]. In this work, the
investigators looked at contemporaneous historical records to determine which among the families
had trade relations, marriage ties, or other forms of social contact with one another. Figure 3.3
shows one of the resulting networks, a network of intermarriages between 15 of the families. It is
notable that the Medici family occupies a central position in this network, having marriage ties
with members of no fewer than six other families. Padgett and Ansell conjectured that it was by
shrewd manipulation of social ties such as these that the Medici rose to a position of dominance in
Florentine society.

In recent years, with the widespread availability of computers and online databases, many more
networks have been constructed from records of various types. A number of authors, for example,
have looked at email networks [103, 313]. Drawing on email logs—automatic records kept by
email servers of messages sent—it is possible to construct networks in which the vertices are
people (or more correctly email addresses) and the directed edges between them are email
messages. Exchange of email in such a network can be taken as a proxy for acquaintance between
individuals, or we may be interested in the patterns of email exchange for some other reason. For



instance, email messages can carry computer viruses and a knowledge of the structure of the
network of messages may help us to predict and control the spread of those viruses.

Another form of email network is the network formed by email address books. An email address
book is a computer file in which a computer user stores, for convenience, the email addresses of
his or her regular correspondents. The set of all such address books can be regarded as defining a
network in which the vertices represent the owners of the address books, and there is a directed
edge from vertex A to vertex B if person B’s address appears in person A’s address book. This
network is again of interest in the study of computer viruses, since some viruses search address
books for the addresses of new victims to infect and hence spread over the address book network.
Similar networks can also be constructed for other forms of electronic communication that use
address books, such as instant messaging [301].

Telephone call graphs are quite distinct from the physical network of telephone cables
discussed in Section 2.2. Indeed, a call graph is to the physical telephone network roughly as
an email network is to the Internet.

A form of network similar to but older than the email network is the telephone call graph. In
such a network the vertices represent telephone numbers and directed edges between them
represent telephone calls from one number to another. Call graphs can be reconstructed from call
logs kept by telephone companies, although such logs are generally proprietary and not easily
available outside of those companies, and call graphs have as a result only occasionally been
examined in the scientific literature [1, 9, 258].

Recent years have seen the rapid emergence of online social networking services, such as
Facebook and LinkedIn, which exist primarily to promote, document, and exploit the networks of
contacts between individuals. As a natural part of their operation, these services build records of
connections between their participants and hence provide, at least in principle, a rich source of
archival network data. These data, however, like those for telephone calls, are largely proprietary
to the companies operating the services and hence quite difficult to get hold of. So far only a few
studies have been published of online social networks [53], but internal studies have no doubt been
performed by the companies themselves and it is only a matter of time before more data become
publicly available.

A few other online communities, not explicitly oriented towards networks, have been studied
using network techniques. For instance, Holme et al. [158] took records of interactions between
members of a Swedish dating website and reconstructed from them the network of interactions
between the site’s members. This study was unusual in that the network was time-resolved—the
date and time of each interaction were recorded, allowing investigators to reconstruct after the fact
the timing and duration of contacts between individuals. Most of the sources of network data
considered in this book are not time-resolved, but many of the networks they correspond to do
nonetheless change over time. Time-resolved network studies, or longitudinal studies, as they are
called in sociology, are certainly a growth area to watch for in the future.

Another source of network data representing online communities is the Internet newsgroup
system Usenet, a worldwide online message-board system that allows users to post messages on a
large variety of topics. Messages are date and time stamped and identified with the name or email
address of the poster along with a unique reference number that allows a poster to indicate when a
posting is a reply or follow-on to a previous posting. Thus one can reconstruct the thread of the
conversation taking place in a newsgroup, and in particular assemble a network in which the
vertices are posters and the edges represent a response by one poster to a posting by another.
Studies of newsgroup networks of this kind have been performed by a number of authors [204,
300, 312].

Weblogs and online journals are another source of online social network data. Online journals of
various kinds have become popular on the World Wide Web since around the turn of the century.
On these websites the proprietor posts whatever thoughts he or she cares to make public, along
with links to sites maintained by others. These links form a directed network that lies, in terms of
semantic content, somewhere between a social network and the World Wide Web; the links are
often informational—the linker wishes to bring to his or her readers’ attention the contents of the



linked site—but there is a strong social element as well, since people often link to sites operated
by their friends or acquaintances. This trend is particularly noticeable within journal communities
such as LiveJournal and among weblogs devoted to specific topics, such as science or politics. The
structure of the networks of links can be extracted using “crawlers” similar to those used to search
the Web—see Section 4.1. Studies of journals and weblogs have been performed for example by
Adamic and Glance [4] and MacKinnon and Warren [206].

An interesting network that has features of both a social and a technological network is the
network of trust formed by a set of cryptographic keys. Cryptosystems or cyphers (i.e., secret
codes), long associated in the public mind with spies and skulduggery, have become a crucial part
of the twenty-first-century economy, used to protect important data, particularly financial data
such as credit card numbers, from theft and misuse. An important advance, central to the
widespread and convenient use of cryptography, was the development in the 1970s of public-key
cryptography. In traditional cryptosystems, two parties wishing to exchange messages must share a
key that they use to encode and decode the messages. The key is typically a large number, which is
used in combination with the chosen cryptosystem to dictate exactly how messages are converted
from their original “plain text” form into code and back again. This key, which allows anyone
possessing it to decode the messages, must be kept secret from any malicious snoopers, and this
raises the difficult problem of how the parties in question agree on the key in the first place.
Usually the key is generated by a computer program run by one party, but then it must be
transmitted securely to the other party without anyone else seeing it. Sending the key over the
Internet unencrypted would pose a significant risk of detection. Physical transmission, for example
by conventional mail, would be reasonably secure, but would take a long time. Most customers
buying goods over the Internet would not want to wait a week for a secret key to arrive by mail
from their vendor.

These problems were solved with the invention of public-key cryptography in the 1970s. Public-
key cryptosystems make use of any of several different asymmetric cyphers in which two different
keys are used. One key, called the public key, is employed in the computer algorithm that converts
the message from plain text into its encrypted form, but a different key, the private key, is needed
to decrypt the message. The public key cannot be used for decryption.l The two keys are
generated as a pair by one of the two parties wishing to exchange information and the public key is
sent openly over the Internet or other channel to the second party. The private key remains the
secret property of the first party and is not shared. The second party can then send messages to the
first by encoding them with the public key and only the first party can decode them.12 Although the
public key can be intercepted by a third party in transmission, it will do the third party no good,
since the public key cannot be used to decode messages, only to encode them. Indeed, in many
cases, users of public-key systems deliberately broadcast their public keys to anyone who might
want them, inviting the world to send them encoded messages, messages which only they can
decode. It is from such practices that the name “public-key cryptography” arises.

Some asymmetric cyphers can also be used in the reverse direction. That is, one can encode a
message with the private key and it can only be decoded with the public key. Why would one want
to do this, when everyone has the public key? The answer is that you can use it to prove your
identity. Someone talking to you over the Internet, say, may want to be certain that you are who
you claim to be (rather than some nefarious interloper) before they trust you with, for instance,
their credit card number. So they send you a specific message that they choose, usually just a
random string of digits, and ask you to encrypt it using your private key. Having done so, you send
the encrypted message back to them and they decode it with the public key. If the decoded
message matches the original one then they know that you are who you say you are, since no one
else has your private key and hence no one else could have encrypted a message that decodes
correctly with the public key.2 This “digital signature” process is a crucial part of electronic
commerce, allowing buyers and sellers to confirm each other’s identities before doing business,
and is used millions of times every day in transactions of every sort.

But there is still a fundamental problem with public-key encryption, namely the problem of
knowing that the public key you are given really was created by the person you think it was
created by. Some malicious person could create a public/private key pair and broadcast the public
key to the world, labeled with, say, the name of a bank or retail trader, then use that key in a digital



signature scheme to persuade some unsuspecting victim that they are the trader and that the
victim should send them a credit card number.

One way around this problem is to have people sign each other’s public keys [267]. That is,
party A takes a public key that claims to belong to party B, and that A knows in fact to be genuine,
and encrypts it with their own private key. Now if you have A’s public key and you believe it to be
genuine, then you can take the encrypted key and decode it with A’s public key, thereby
recovering B’s public key, which A says is genuine. If you trust A to make this statement, then you
can now also trust that the key you have is B’s true public key.

But now one can repeat the process. Now that you have a genuine public key for party B, and if
you trust B, then B can now sign the keys that they know to be genuine and you will be able to
verify that they are genuine also. In this way, parties who trust each other can securely represent to
one another that keys are genuine.

The act of digitally signing someone else’s public key is equivalent to saying that you know, or
at least believe, the public key to be genuine, belonging to the person it claims to belong to. That
act can be represented by a directed edge in a network. The vertices in the network represent the
parties involved and a directed edge from party A to party B indicates that A has signed B’s public
key. The resulting directed network certainly has technological aspects but is in many ways more
of a social network than anything else. People tend to vouch for the keys of other people they
know, people they have communicated with or worked with frequently, so that they have both a
good idea that the key in question is indeed genuine and a personal reason for making the effort to
sign it.

Since public keys and the digital signatures of the people who sign them are, by necessity,
public, it is relatively easy to construct a key-signing network from widely available data. There
are a number of widely used key-signing networks associated, usually, with particular commercial
cryptography products. One of the largest, for instance, is the network associated with the
cryptography program PGP [267]. There have been only a small number of studies so far of the
properties of key signing networks [47, 148] but there are certainly interesting questions awaiting
answers in this area.



3.5 AFFILIATION NETWORKS

An important special case of the reconstruction of networks from archival records is the affiliation
network. An affiliation network is a network in which actors are connected via comembership of
groups of some kind. We saw one example in the introduction to this chapter, the Southern
Women Study of Davis et al. [86], in which the authors drew their data from newspaper reports of
social events and the “groups” were the sets of individuals who attended particular events. As we
saw, the most complete representation of an affiliation network is as a network with two types of
vertex representing the actors and the groups, with edges connecting actors to the groups to which
they belong—see Fig. 3.2 on page 39. In such a representation, called a “bipartite network” or

“two-mode network,” there are no edges connecting actors directly to other actors (or groups to
other groups), only actors to groups.

We study bipartite networks in more detail in Section 6.6.

Many examples of affiliation networks can be found in the literature. Another famous case is the
study by Galaskiewicz [134] of the CEOs of companies in Chicago in the 1970s and their social
interaction via clubs that they attended. In this network the CEOs are the actors and the clubs are
the groups. Also in the business domain, quite a number of studies have been conducted of the
boards of directors of companies [87, 88, 207]. In these networks the actors are company directors
and the groups are the boards on which they sit. In addition to looking at the connections between
directors in such networks, which arise as a result of their sitting on boards together, a considerable
amount of attention has also been focused on the connections between boards (and hence between
companies) that arise as a result of their sharing a common director, a so-called board “interlock.”

More recently, some extremely large affiliation networks have been studied in the mathematics
and physics literature. Perhaps the best known example is the network of collaborations of film
actors, in which the “actors” in the network sense are actors in the dramatic sense also, and the
groups to which they belong are the casts of films. This network is the basis, among other things,
for a well-known parlor game, sometimes called the “Six Degrees of Kevin Bacon,” in which one
attempts to connect pairs of actors via chains of intermediate costars in a manner reminiscent of
the small-world experiments of Stanley Milgram, which we discuss in Section 3.6. The film actor
network has, with the advent of the Internet, become very thoroughly documented and has
attracted the attention of many network analysts in recent years [16, 27, 323], although it is not
clear whether there are any conclusions of real scientific interest to be drawn from its study.

Another example of a large affiliation network, one that holds more promise of providing useful
results, is the coauthorship network of academics. In this network an actor is an academic author
and a group is the set of authors of a learned paper. Like the film actor network, this network has
become well documented in the last few years with the appearance of extensive online
bibliographic resources covering many areas of human endeavor. Whether one is interested in
papers published in journals or in more informal forums such as online preprint servers, excellent
records now exist in most academic fields of authors and the papers they write, and a number of
studies of the corresponding affiliation networks have been published [29, 89, 145, 146, 234-236].



3.6 THE SMALL-WORLD EXPERIMENT

An unusual contribution to the social networks literature was made by the experimental
psychologist Stanley Milgram in the 1960s with his now-famous “small-world” experiments [219,
311]. Milgram was interested in quantifying the typical distance between actors in social networks.
As discussed in Chapter 1, the “geodesic distance” between two vertices in a network is the
minimum number of edges that must be traversed to travel from one vertex to the other through the
network. Mathematical arguments suggest (as we will see later in this book) that this distance
should be quite small for most pairs of vertices in most networks, a fact that was already well
known in Milgram’s time.22 Milgram wanted to test this conjecture in real networks and to do this
he concocted the following experiment.22

Milgram sent a set of packages, 96 in all, to recipients randomly chosen from the telephone
directory in the US town of Omaha, Nebraska. The packages contained an official-looking booklet,
or “passport,” emblazoned with the crest of Milgram’s home institution, Harvard University.
Written instructions were included asking the recipients to attempt to get the passport to a specified
target individual, a friend of Milgram’s who lived in Boston, Massachusetts, over a thousand miles
away. The only information supplied about the target was his name (and hence indirectly the fact
that he was male), his address, and his occupation as a stockbroker. But the passport holders were
not allowed simply to send their passport to the given address. Instead they were asked to pass it to
someone they knew on a first-name basis and more specifically the person in this category who
they felt would stand the best chance of getting the passport to the intended target. Thus they might
decide to send it to someone they knew who lived in Massachusetts, or maybe someone who
worked in the financial industry. The choice was up to them. Whoever they did send the passport
to was then asked to repeat the process, sending it on to one of their acquaintances, so that after a
succession of such steps the passport would, with luck, find its way into the hands of its intended
recipient. Since every step of the process corresponded to the passport’s changing hands between a
pair of first-name acquaintances, the entire path taken corresponded to a path along the edges of
the social network formed by the set of all such acquaintanceships. Thus the length of the path
taken provided an upper bound on the geodesic distance in this network between the starting and
ending individuals in the chain.

Of the 96 passports sent out, 18 found their way to the stockbroker target in Boston. While this
may at first sound like a low figure, it is actually remarkably high—recent attempts to repeat
Milgram’s work have resulted in response rates orders of magnitude lower [93]. Milgram asked
participants to record in the passport each step of the path taken, so he knew, among other things,
how long each path was, and he found that the mean length of completed paths from Omaha to the
target was just 5.9 steps. This result is the origin of the idea of the “six degrees of separation,” the
popular belief that there are only about six steps between any two people in the world.2

There are of course many reasons why this result is only approximate. Milgram used only a
single target in Boston, and there is no guarantee the target was in any way typical of the
population as a whole. And all the initial recipients in the study were in a single town in the same
country.24 (None of the completed chains that reached the target went outside the country.) Also
there is no guarantee that chains took the shortest possible route to the target. Probably they did
not, at least in some cases, so that the lengths of the paths found provide, as we have said, only an
upper bound on the actual geodesic distance between vertices. And most of the chains of course
were never completed. The passports were discarded or lost and never made their way to the
target. It is reasonable to suppose that the chances of getting lost were greater for passports that
took longer paths, and hence that the paths that were completed were a biased sample, having
typical lengths shorter than the average.



For all these reasons and several others, Milgram’s experiments should be taken with a large
pinch of salt. Even so, the fundamental result that vertex pairs in social networks tend on average
to be connected by short paths is now widely accepted, and has moreover been shown to extend to
many other kinds of networks as well. Enough experiments have confirmed the effect in enough
networks that, whatever misgivings we may have about Milgram’s particular technique, the
general result is not seriously called into question.

Funneling is discussed further in Section 8.2.

Milgram’s experiments also, as a bonus, revealed some other interesting features of
acquaintance networks. For instance, Milgram found that most of the passports that did find their
way to the stockbroker target did so via just three of the target’s friends. That is, a large fraction of
the target’s connections to the outside world seemed to be through only a few of his acquaintances,
a phenomenon sometimes referred to as the “funneling” effect. Milgram called such well-
connected acquaintances “sociometric superstars,” and their existence has occasionally been noted
in other networks also, such as collaboration networks [234], although not in some others [93].

A further interesting corollary of Milgram’s experiment has been highlighted by Kleinberg [177,
178]. (Milgram himself seems not to have appreciated the point.) The fact that a moderate number
of the passports did find their way to the intended target person shows not only that short paths
exist in the acquaintance network, but also that people are good at finding those paths. Upon
reflection this is quite a surprising result. As Kleinberg has shown, it is possible and indeed
common for a network to possess short paths between vertices but for them to be hard to find
unless one has complete information about the structure of the entire network, which the
participants in Milgram’s studies did not. Kleinberg has suggested a possible explanation for how
participants found the paths they did, based on conjectures about the structure of the network. We
discuss his ideas in detail in Section 19.3.

Recently the small-world experiment has been repeated by Dodds et al. [93] using the modern
medium of email. In this version of the experiment participants forwarded email messages to
acquaintances in an effort to get them ultimately to a specified target person about whom they
were told a few basic facts. The experiment improved on that of Milgram in terms of sheer
volume, and also by having much more numerous and diverse target individuals and starting points
for messages: 24 000 chains were started, most (though not all) with unique starting individuals,
and with 18 different participating targets in 13 different countries. On the other hand, the
experiment experienced enormously lower rates of participation than Milgram’s, perhaps because
the public is by now quite jaded in its attitude towards unsolicited mail. Of the 24 000 chains, only
384, or 1.5%, reached their intended targets, compared with 19% in Milgram’s case. Still, the basic
results were similar to those of Milgram. Completed chains had an average length of just over four
steps. Because of their better data and considerably more careful statistical analysis, Dodds et al.
were also able to compensate for biases due to unfinished chains and estimated that the true
average path length for the experiment was somewhere between five and seven steps—very similar
to Milgram’s result. However, Dodds et al. observed no equivalent of the “sociometric superstars”
of Milgram’s experiment, raising the question of whether their appearance in Milgram’s case was
merely a fluke of the particular target individual he chose rather than a generic property of social
networks.

An interesting variant on the small-world experiment has been proposed by Killworth and
Bernard [39, 174], who were interested in how people “navigate” through social networks, and
specifically how participants in the small-world experiments decide whom to forward messages to
in the effort to reach a specified target. They conducted what they called “reverse small-world”
experiments2 in which they asked participants to imagine that they were taking part in a small-
world experiment. A (fictitious) message was to be communicated to a target individual and
participants were asked what they wanted to know about the target in order to make a decision
about whom to forward the message to. The actual passing of the message never took place; the
experimenters merely recorded what questions participants asked about the target. They found that
three characteristics were sought overwhelmingly more often than any others, namely the name of
the target, their geographic location, and their occupation—the same three pieces of information



that Milgram provided in his original experiment. Some other characteristics came up with
moderate frequency, particularly when the experiment was conducted in non-Western cultures or
among minorities: in some cultures, for instance, parentage or religion were considered important
identifying characteristics of the target.

The mechanisms of network search and message passing are discussed in greater detail in
Section 19.3.

While the reverse small-world experiments do not directly tell us about the structure of social
networks, they do give us information about how people perceive and deal with social networks.



3.7 SNOWBALL SAMPLING, CONTACT TRACING, AND RANDOM WALKS

Finally in this chapter on social networks we take a look at a class of networkbased techniques for
sampling hidden populations.

Studies of some populations, such as drug users or illegal immigrants, present special problems
to the investigator because the members of these populations do not usually want to be found and
are often wary of giving interviews. Techniques have been developed, however, to sample these
populations by making use of the social network that connects their members together. The most
widely used such technique is snowball sampling [108, 127, 310].

Note that, unlike the other experimental techniques discussed in this chapter, snowball sampling
is not intended as a technique for probing the structure of social networks. Rather, it is a technique
for studying hidden populations that relies on social networks for its operation. It is important to
keep this distinction clear. To judge by the literature, some professional social network analysts do
not, and the results are often erroneous conclusions and bad science.

Standard techniques such as telephone surveys often do not work well when sampling hidden
populations. An investigator calling a random telephone number and asking if anyone on the other
end of the line uses drugs is unlikely to receive a useful answer. The target population in such
cases is small, so the chances of finding one of its members by random search are also small, and
when you do find one they will very likely be unwilling to discuss the highly personal and possibly
illicit topic of the survey with an investigator they have never met before and have no reason to
trust.

So investigators probe the population instead by getting some of its members to provide contact
details for others. The typical survey starts off rather like a standard ego-centered network study
(Section 3.2.1). You find one initial member of the population of interest and interview them about
themselves. Then, upon gaining their confidence, you invite them also to name other members of
the target population with whom they are acquainted. Then you go and find those acquaintances
and interview them asking them also to name further contacts, and so forth through a succession of

“waves” of sampling. Pretty soon the process “snowballs” and you have a large sample of your
target population to work with.

Clearly this is a better way of finding a hidden population than random surveys, since each
named individual is likely to be a member of the population, and you also have the advantage of an
introduction to them from one of their acquaintances, which may make it more likely that they will
talk to you. However, there are some serious problems with the method as well. In particular,
snowball sampling gives highly biased samples. In the limit of a large number of waves, snowball
sampling samples actors with probability proportional to their “eigenvector centrality” (see Section
7.2). Unfortunately, this limit is rarely reached in practice, and in any case the eigenvector
centrality cannot be calculated without knowledge of the complete contact network, which by
definition we don’t have, making correction for the sampling bias difficult. In short, snowball
sampling gives biased samples of populations and there is little we can do about it. Nonetheless,
the technique is sufficiently useful for finding populations that are otherwise hard to pin down that
it has been widely used, biases and all, in studies over the last few decades.

Sometimes, in the case of small target populations, a few waves of snowball sampling may find
essentially all members of a local population, in which case the method can be regarded as
returning data about the structure of the social network. If the contacts of each interviewed
participant are recorded in the study, it should be possible to reconstruct the contact network when
the study is complete. This has occasionally been done in such studies, although as noted above the
object is more often to exploit the social network to find the population than to study the network
itself.



A technique closely related to snowball sampling is contact tracing, which is essentially a form
of snowball sampling applied to disease incidence. Some diseases, such as tuberculosis and HIV,
are considered sufficiently serious that, when someone is discovered to be carrying them, an effort
must be made to track down all those who might also have been infected. Thus, in most Western
countries, when a patient tests positive for HIV, for instance, he or she will be questioned about
recent sexual contacts, and possibly about other types of potentially disease-carrying contacts, such
as needle sharing if the patient is an injection drug user. Then health authorities will make an effort
to track down those contacts and test them also for HIV. The process is repeated with any who test
positive, tracing their contacts as well, and so forth, until all leads have been exhausted. While the
primary purpose of contract tracing is to curtail disease outbreaks and safeguard the health of the
population, the process also produces data about the community through which a disease is
spreading and such data have sometimes been used in scientific studies, particularly of sexually
transmitted diseases, for which data may otherwise be hard to come by. Population samples
derived from contact tracing studies display biases similar in type and magnitude to those seen in
snowball sampling and should be treated with the same caution. Indeed, they contain extra biases
as well, since contacts are rarely pursued when an individual tests negative for the disease in
question, so the sample is necessarily dominated by carriers of the disease, who are themselves
usually a biased sample of the population at large. Also, as with snowball sampling, contact tracing
data can provide us with an experimental window on the structure of the contact network itself, but
again we expect the data to be strongly biased, except in cases of small target populations for
which the sampling process saturates.

There is another variant of snowball sampling that deals to some extent with the problems of
bias in the sample. This is random-walk sampling [182, 310]. In this method one again starts with
a single member of the target community and interviews them and determines their contacts. Then,
however, instead of interviewing all of those contacts, one chooses one of them at random and
interviews only that one at the next step. If the person in question cannot be found or declines to be
interviewed, one simply chooses another contact, and the process is repeated. Initially it appears
that this will be a more laborious process than standard snowball sampling, since one spends a lot
of time determining the names of individuals one never interviews, but this is not the case. In
either method one has to determine the contacts of each person interviewed, so the total amount of
work for a sample of a given size is the same. It is however very important that one really does
determine all the contacts of each individual, even though most of the time only one of them is
pursued. This is because for the method to work correctly one must make a random choice among
those contacts, for example by rolling a die (or some modern electronic version thereof). To do this
one must know the full set of contacts one is choosing between.

The advantage of the random-walk sampling method is that, as shown in Section 6.14, the
asymptotic sampling probability of vertices in a random walk is simply proportional to vertex
degree (see Eg. (6.60)). What’s more, the asymptotic regime in such studies is, unlike snowball
sampling, reached quite quickly for relatively small sample sizes. %

Knowing this, and given that we determine degree (i.e., the number of contacts an individual
has) as a part of the interview process, we can easily compensate for sampling bias and make
population estimates of quantities in a way that is, in theory at least, unbiased. In practice, many
sources of bias remain, particularly those associated with participant subjectivity, inability to recall
contacts, and non-participation of named contacts. Still, random-walk sampling is a great
improvement on standard snowball sampling, and should be used more than it is. Its principal
disadvantage is that it is relatively slow. Since the participants are interviewed serially, in a chain,
rather than in parallel waves, a strict implementation of the method can take a long time to develop
a large sample. One can get around this obstacle to some extent by running several short random
walks in parallel instead of one long one, but the walks cannot be too short or they will not reach
the asymptotic regime in which sampling is proportional to degree.

Another variant of the random-walk sampling idea is used to deal with a different problem, that
of enrolling study participants. In some cases it is considered unethical to get participants to name
their contacts, particularly when the topic of the study is one of dubious legality, and permission to
perform such studies may be withheld by the authorities. To circumvent this problem one can
make use of respondent-driven sampling [289]. In this technique, participants are usually paid to



take part, and enrollment is achieved by handing out tickets to interviewees. Rather than asking
people to name their contacts, the interviewees are simply told that they should give the tickets to
their friends, and that both they and the friends will receive payment if the friend brings the ticket
to the investigator and agrees to participate in the survey. In this way, no one is ever asked to name
names and all participants have actively volunteered their participation. In the case where a single
ticket is given to each participant, the method is roughly equivalent to random-walk sampling and
should in theory give a less biased sample than snowball sampling for the same reasons. In
practice, a new bias is introduced because the recipient of the ticket is not necessarily chosen at
random from an individual’s acquaintances. Also, tickets frequently get lost or their recipients
decline to participate, remuneration notwithstanding, so one would normally give out more than
one ticket to each participant, which complicates the sampling process. Even so, it is believed that
respondent-driven sampling provides superior population samples to snowball sampling, and it is
the method of choice for studies in which one cannot ask people to name their contacts.



CHAPTER 4

NETWORKS OF INFORMATION

A description of networks of information or data, with a particular focus on the World Wide
Web and citation networks

THIS CHAPTER focuses on networks of information, networks consisting of items of data linked
together in some way. Information networks are all, so far as we know, man-made, with perhaps
the best known example being the World Wide Web, though many others exist and are worthy of
study, particularly citation networks of various kinds. These and several other types of information
networks are discussed in this chapter.

In addition, there are some networks which could be considered information networks but which
also have social aspects to them. Examples include networks of email communications, networks
on social-networking websites such as Facebook or LinkedIn, and networks of weblogs and online
journals. These and similar examples were discussed in the previous chapter on social networks, in
Section 3.4, but they would have fitted perfectly well in the present chapter also. The classification
of networks as social networks, information networks, and so forth is a fuzzy one, and there are
plenty of examples that, like these, straddle the boundaries.



4.1 THE WORLD WIDE WEB

Although by no means the first information network created, the World Wide Web is probably the
example best known to most people and a good place to start our discussion in this chapter.

As described in Chapter 1, the Web is a network in which the vertices are web pages consisting
of text, pictures, or other information and the edges are the hyperlinks that allow us to navigate
from page to page. Since hyperlinks run in one direction only, the Web is a directed network. We
can picture the network with an arrow on each edge indicating which way it runs. Some pairs of
web pages are connected by hyperlinks running in both directions, which can be represented by
two directed edges, one in each direction between the corresponding vertices. Figure 4.1 shows a
picture of a small portion of the Web network, representing the connections between a set of web
pages on a single website.

Figure 4.1: A network of pages on a corporate website. The vertices in this network represent
pages on a website and the directed edges between them represent hyperlinks.

The World Wide Web was invented in the 1980s by scientists at the CERN high-energy physics
laboratory in Geneva as a means of exchanging information among themselves and their
coworkers, but it rapidly became clear that its potential was much greater [159]. At that time there
were several similar ideas competing for dominance of the rapidly growing Internet, but the Web



won the battle, largely because its inventors decided to give away for free the software
technologies on which it was based—the Hypertext Markup Language (HTML) used to specify the
appearance of pages and the Hypertext Transport Protocol (HTTP) used to transmit pages over the
Internet. The Web’s extraordinary rise is now a familiar story and most of us use its facilities at
least occasionally, and in some cases daily. A crude estimate of the number of pages on the Web
puts that number at over 25 billion at the time of the writing of this book.2 The network structure
of the Web has only been studied in detail relatively recently however.
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Figure 4.2: The operation of a web crawler. A web crawler iteratively downloads pages from
the Web, starting from a given initial page. URLs are copied from the link tags in that initial page
into a store. Once all links have been copied from the initial page, the crawler takes a URL from
the store and downloads the corresponding page, then copies links from that, and so on.

Breadth-first search is discussed at length in Section 10.3.

The structure of the Web can be measured using a crawler, a computer program that
automatically surfs the Web looking for pages. In its simplest form, the crawler performs a so-
called breadth-first search on the Web network, as shown schematically in Fig. 4.2. One starts
from any initial web page, downloads the text of that page over the Internet, and finds all the links
in the text. Functionally, a link consists of an identifying “tag”—a short piece of text marking the
link as a link—and a Uniform Resource Locator or URL, a standardized computer address that
says how and where the linked web page can be found. By scanning for the tags and then copying
the adjacent URLs a web crawler can rapidly extract URLs for all the links on a web page, storing
them in memory or on a disk drive. When it is done with the current page, it removes one of the
URLSs from its store, uses it to locate a new page on the Web, and downloads the text of that page,
and so the process repeats. If at any point the crawler encounters a URL that is the same as one
already in its store, then that URL is ignored and not added to the store again, to avoid duplicate
entries. Only URLSs that are different from all those seen before are added to the store.

By repeating the process of downloading and URL extraction for a suitably long period of time



one can find a significant portion of the pages on the entire Web. In practice, however, no web
crawler actually finds all the pages on the Web. There are a number of reasons for this. First, some
websites forbid crawlers to crawl their pages. Websites can place a file called robots . txt in their
root directory that specifies which files, if any, crawlers can look at and may optionally specify
that some crawlers are allowed to look at files while others are not. Compliance with the
restrictions specified in a robots . txt file is voluntary, but in practice many crawlers do comply.

Second, many pages on the Web are dynamically generated: they are created on the fly by
special software using, for instance, data from a database. Many corporate websites, as well as the
web pages generated by search engines or directory services, fall into this category. The number of
possible web pages that can be displayed as a result of a search using the Google search engine, for
example, is so large as to be effectively infinite; it would not be possible (or sensible) for a crawler
to crawl all of these pages. The crawler therefore has to make some choice about what counts as a
web page and what does not. One choice would be to restrict oneself to static web pages—ones
that are not generated on the fly. But it’s not always simple to tell which pages are static, and
besides, much useful information resides in the dynamic pages. In practice, the decisions made by
crawlers about which pages to include tend to be fairly arbitrary, and it is not easy to guess which
pages will be included in a crawl and which will not. But one can say with certainty that many will
not and in this sense the crawl is always incomplete.

However, perhaps the most important reason why web crawls do not reach all the pages on the
Web is that the network structure of the Web does not allow it. Since the Web is a directed
network, not all pages are reachable from a given starting point. In particular, it is clear that pages
that have no incoming hyperlinks—pages that no one links to—can never be found by a crawler
that blindly follows links. Taking that idea one step further, it is also the case that a page will never
be found if it is only linked to by pages that themselves have no incoming links. And so forth. In
fact, the Web, and directed networks in general, have a special “component” structure, which we
will examine in detail in Section 6.11.1, and most crawlers only find one part of that structure, the

“giant out-component.” In the case of the World Wide Web the giant out-component constitutes
only about a half of all web pages and the other half of the Web is unreachable.2

Although we are interested in web crawlers as a tool for probing the structure of the Web so that
we can study its network properties, this is not their main purpose. The primary use of web
crawlers is to construct directories of web pages for search purposes. Web search engines such as
Google indulge in web crawling on a massive scale to find web pages, parse their content, and
construct indexes of the words and pictures they contain that can later be searched offline by fast
database engines to find pages of interest to searchers. Because their primary interest is in
indexing, rather than in reconstructing the network structure of the Web, search engine companies
don’t have any particular reason to take a good statistical sample of the Web and in network terms
their crawls are probably quite biased. Still, many of them have graciously made their data
available to academic researchers interested in web structure, and the data are good enough to give
us a rough picture of what is going on. We will study a variety of features of the Web network in
subsequent chapters.

Web searching, which itself raises some interesting network questions, is discussed in Section
19.1.

It isn’t entirely necessary that we rely on search engine companies or other web enterprises for
data on the structure of the Web. One can also perform one’s own web crawls. There are a number
of excellent web crawlers available for free, including wget, Nutch, GRUB, Larbin, WebSPHINX,
and ht://Dig. While most of us don’t have the time and network bandwidth to crawl billions of web
pages, these programs can be useful for crawling single websites, and much useful insight and
information can be acquired by doing so.



4.2 CITATION NETWORKS

A less well-known but much older information network is the network of citations between
academic papers. Most papers refer to one or more other previous papers, usually in a bibliography
at the end of the paper, and one can construct a network in which the vertices are papers and there
is a directed edge from paper A to paper B if A cites B in its bibliography. There are many reasons
why one paper might cite another—to point out information that may be useful to the reader, to
give credit for prior work, to indicate influences on current work, or to disagree with the content of
a paper. In general, however, if one paper cites another it is usually an indication that the contents
of the earlier paper are relevant in some way to those of the later one, and hence citation networks
are networks of relatedness of subject matter.

Quantitative studies of citation networks go back to the 1960s. The earliest seems to be the 1965
study by Price [274] (which is also the earliest study we know of to find a “power-law degree
distribution,” of which we talk in detail in Section 8.4). Studies such as this usually fall within the
field formerly known as “library science” but now more often called “information science.” The
branch of information science dealing specifically with the statistical study of publications and
citations is called bibliometrics.

The most common way to assemble citation data is to do it by hand, simply typing in all the
entries in the bibliographies of papers to create a database that can then be used to assemble the
network. In the 1960s when Price carried out his study, such databases were just starting to be
created and he made use of an early version of what would later become the Science Citation
Index. The Science Citation Index (along with its sister publications, the Social Science Citation
Index and the Arts and Humanities Citation Index) is now one of the primary and most widely
used sources of citation data. Another database, Scopus, provides a competing but largely similar
service. Both are hand-maintained by professional staff and their coverage of the literature is
reasonably complete and accurate, although the data are also quite expensive to purchase. Still, if
one has the money, creating a citation network is only a matter of deciding which papers one
wishes to include, using one of the databases to find the citations between those papers, and adding
the appropriate directed edges to the network until it is complete.

See Section 4.1 for a discussion of web crawlers.

More recently, automated citation indexing by computer has started to become more common.
For instance, the website Citeseer, maintained by Pennsylvania State University, performs citation
indexing of papers in computer science and information science by crawling the Web to find freely
available manuscripts of papers in electronic form, and then searching through those manuscripts
to identify citations to other papers. This is a somewhat hit-ormiss operation because many papers
are not on the Web or are not freely available, citations in papers have a wide variety of different
formats and may include errors, and the same paper may exist in more than one place on the Web
as well as in journals or books, and possibly in more than one different version. Nonetheless,
enough progress has been made for Citeseer to become a useful tool in the computer science
community. Other automatic citation indexing projects include Citebase, which indexes physics
papers, and Google Scholar.

As with web crawls, the primary purpose of citation indexes is not to allow us to study the
network structure of citation. Citation indexes are primarily research tools that allow researchers to
discover by whom a paper has been cited, and hence to find research related to a topic of interest.
Nonetheless, data from citation indices have been widely used to reconstruct the underlying
networks and study their properties.



Citation networks are in many ways similar to the World Wide Web. The vertices of the
network hold information in the form of text and pictures, just as web pages do, and the links from
one paper to another play a role similar to hyperlinks on web pages, alerting the reader when
information relevant to the topic of one paper can be found in another.2 Papers with many
citations are often more influential and widely read than those with few, just as is the case with
web pages, and one can “surf ” the citation network by following a succession of citations from
paper to paper just as computer users surf the Web.

Acyclic networks are discussed further in Section 6.4.2.

There is, however, at least one important difference between a citation network and the Web: a
citation network is acyclic, while the Web is not. An acyclic network is one in which there are no
closed loops of directed edges. On the World Wide Web, it is entirely possible to follow a
succession of hyperlinks and end up back at the page you started at. Indeed this happens often. On
a citation network, by contrast, it is essentially impossible. The reason is that in order to cite a
paper, that paper must already have been written. One cannot cite a paper that doesn’t exist yet.
Thus all the directed edges in a citation network point backward in time, from newer papers to
older ones. If we follow a path of such edges from paper to paper, we will therefore find ourselves
going backward in time, but there is no way to go forward again, so we cannot close the loop and
return to where we started.2

See Fig. 6.3 for an illustration of a small acyclic network.

Citation networks have some surprising statistics. About 47% of all papers in the Science
Citation Index have never been cited at all. Of the remainder, 9% have one citation, 6% have two,
and it goes down quickly after that. Only 21% of all papers have 10 or more citations, and just 1%
have 100 or more. These figures are a consequence of the power-law degree distribution of the
network mentioned above and discussed more in Section 8.4.

The most highly cited paper in the Science Citation Index is a paper by Lowry et al. [202],
which has been cited more than a quarter of a million times.&L Like most very highly cited papers,
it is a methodological paper in molecular biology.

Citation networks of the type described so far are the simplest but not the only possible network
representation of citation patterns. An alternative and widely studied representation is the
cocitation network. Two papers are said to be cocited if they are both cited by the same third
paper. Cocitation is often taken as an indicator that papers deal with related topics and there is
good evidence that this is a reasonable assumption in many cases.

A cocitation network is a network in which the vertices represent papers and the edges represent
cocitation of pairs of papers. By contrast with ordinary citation networks, the edges in a cocitation
network are normally considered undirected, since cocitation is a symmetric relationship. One can
also define a strength for the cocitation between two papers as the number of other papers that cite
both and one can create weighted cocitation networks in which the strengths of the edges are equal
to this cocitation strength.

Another related concept, although one that is less often used, is bibliographic coupling. Two
papers are said to be bibliographically coupled if they cite the same other papers (rather than being
cited by the same papers). Bibliographic coupling, like cocitation, can be taken as an indicator that
papers deal with related material and one can define a strength or weight of coupling by the
number of common citations between two papers. From the bibliographic coupling figures one can
then assemble a bibliographic coupling network, either weighted or not, in which the vertices are
papers and the undirected edges indicate bibliographic coupling.

Cocitation and bibliographic coupling are discussed in more detail in Section 6.4.1.



4.2.1 PATENT AND LEGAL CITATIONS

Our discussions of citation networks have so far focused on citations between academic papers,
but there are other types of citation also. Two of particular importance are citations between
patents and between legal opinions.

Patents are temporary grants of ownership for inventions, which give their holders the right to
take legal action against others who attempt to profit without permission from the protected
inventions. They are typically issued to inventors—either individuals or corporations—by national
governments after a review process to determine whether the invention in question is original and
has not previously been invented by someone else. In applying for a patent, an inventor must
describe his or her invention in sufficient detail to make adequate review possible and present the
case that the invention is worthy of patent protection. A part of this case typically involves
detailing the relationship between the invention and previously patented inventions, and in doing
so the inventor will usually cite one or more previous patents. Citations may highlight
dependencies between technologies, such as one invention depending for its operation on another,
but more often patent citations are “defensive,” meaning that the inventor cites the patent for a
previous technology and then presents an argument for why the new technology is sufficiently
different from the old one to merit its own patent. Governments, in the process of examining patent
applications, will routinely consider their similarity to previous inventions, and defensive citations
are one way in which an inventor can fend off in advance possible objections that might be raised.
Typically there are a number of rounds of communication, back and forth between the government
patent examiner and the inventor, before a patent application is finally accepted or rejected. During
this process extra citations are often added to the application, either by the inventor or by the
examiner, to document the further points discussed in their communications.

If and when a patent is finally granted, it is published, citations and all, so that the public may
know which technologies have patent protection. These published patents provide a source of
citation data that we can use to construct networks similar to the networks for citations between
papers. In these networks the vertices are patents, each identified by a unique patent number, and
the directed edges between them are citations of one patent by another. Like academic citation
networks, patent networks are mostly acyclic, with edges running from more recent patents to
older ones, although short loops can arise in the network in the not uncommon case that an
inventor simultaneously patents a number of mutually dependent technologies. The structure of
patent networks reflects the organization of human technology in much the same way that
academic citations reflect the structure of research knowledge. Patent networks have been studied
far less than academic citation networks, but studies have been growing in the last few years with
the appearance of high-quality data sets, particularly for US patents [161], and there are a number
of important technological and legal questions, for instance concerning antitrust policy, that can be
addressed by examining their structure [69].

Another class of citation network that has begun to attract attention in recent years is that of
legal citation networks. In countries where law cases can be heard by judges rather than juries,
such as civil cases or appeals in Europe or the US, a judge will frequently issue an “opinion” after
deciding a case, a narrative essay explaining his or her reasoning and conclusions. It is common
practice in writing such an opinion to cite previous opinions issued in other cases in order to
establish precedent, or occasionally to argue against it. Thus, like academic papers and patents,
legal opinions form a citation network, with opinions being the vertices and citations being the
directed edges. Again the network is approximately acyclic, as with the other networks in this
section. The legal profession has long maintained indexes of citations between opinions for use by
lawyers, judges, scholars, and others, and in recent years those indexes have made the jump to
electronic form and are now available online. In the United States, for instance, two commercial



services, LexisNexis and Westlaw,22 provide thorough and detailed data on legal opinions and
their citations via online services. In the last few years a number of studies have been published of
the structure of legal citation networks using data derived from these services [125, 126, 194].

In principle it would be possible also to construct networks of cocitation or bibliographic

coupling between either patents or legal opinions, but the author is not aware of any studies yet
published of such networks.



4.3 OTHER INFORMATION NETWORKS

There are many other networks of information, although none have received the same level of
study as the Web and citation networks. In the remainder of this chapter we briefly discuss a few
examples of other networks.



4.3.1 PEER-TO-PEER NETWORKS

Peer-to-peer (P2P) file-sharing networks have become popular and widespread in the last decade
or so. A peer-to-peer network is a network in which the nodes are computers containing
information in the form, usually, of discrete files, and the edges between them are virtual links
established for the purpose of sharing the contents of those files. The links exist only in software—
they indicate only the intention of one computer to communicate with another should the need
arise.

Peer-to-peer networks are typically used as a vehicle for distributed databases, particularly for
the storage and distribution, often illegally, of music and movies, although there are substantial
legal uses as well, such as local sharing of files on corporate networks or the distribution of open-
source software. (The network of router-to-router communications using the Border Gateway
Protocol described in Section 2.1 is another less obvious example of a legitimate and useful peer-
to-peer network.)

The point of a peer-to-peer network is that data is transferred directly between computers
belonging to two end users of the network, two “peers.” This contrasts with the more common
server-client model, such as that used by the World Wide Web, in which central server computers
supply requested data to a large number of client machines. The peer-to-peer model is favored
particularly for illicit sharing of copyrighted material because the owners of a centralized server
can easily be obliged to turn off the server by legal or lawenforcement action, but such actions are
much more difficult when no central server exists.

On most peer-to-peer networks each computer is home to some information, but no computer
has all the information in the network. If the user of a computer requires information stored on
another computer, that information can be transmitted simply and directly over the Internet or over
a local area network. This is a peer-to-peer transfer, but no special infrastructure is necessary to
accomplish it—standard Internet protocols are perfectly adequate to the task. Things get
interesting, however, when one wants to find which other computer has the desired information.
One way to do that is to have a central server containing none of the information but just an index
of which information is on which computers. Such a system was employed by the early file-
sharing network Napster, but the central index server is, once again, susceptible to legal and other
challenges, and such challenges were in the end responsible for shutting Napster down.22

To avoid this problem, developers have turned to distributed schemes for searching and this is
where network concepts come into play. An illustrative example of a peer-to-peer system with
distributed search is the Gnutella network, which underlies a number of popular file-sharing
programs including LimeWire and the now-defunct Morpheus. In the simplest incarnation of this
system (more sophisticated ones are in use now) computers form links to some number of their
peers in such a way that all the computers form a connected network. Again, a link here is purely a
software construct—a computer ’s network neighbors in the peer-to-peer sense are merely those
others with which it intends to communicate when the need arises.

When a user instructs his or her computer to search the network for a specific file the computer
sends out a message to its network neighbors asking whether they have that file. If they do, they
arrange to transmit it back to the first computer. If they do not, they pass the message on to their
neighbors, and so forth until the file is found. As pointed out in Section 19.2, where we discuss
search strategies on peer-to-peer networks at some length, this algorithm works, but only on
relatively small networks. Since it requires messages to be passed between many computers for
each individual search, the algorithm does not scale well as the network becomes large, the volume
of network traffic eventually swamping the available data bandwidth. To get around this problem,
modern peer-to-peer networks, including recent versions of Gnutella, employ a two-tiered network
topology of nodes and “supernodes,” in which searches are performed only among the supernodes



and ordinary nodes contact them directly to request searches be performed. More details are
given in Section 19.2.

So what is the structure of a peer-to-peer network like? In many cases, unfortunately, not a lot is
known since the software is proprietary and its owners are reluctant to share operational details.
The Gnutella system is more promising, being so-called open-source software, meaning that the
original computer code for the software and the specification of the protocols it uses are freely
available. By exploiting certain details of these protocols, particularly the ability for computers in
the Gnutella network to “ping” one another (i.e., ask each other to identify themselves), a number
of authors have been able to discover structures for Gnutella networks [282, 308]. The networks
appear to have approximately power-law degree distributions and it has been suggested that this
property could be exploited to improve search performance [6].



4.3.2 RECOMMENDER NETWORKS

A type of information network important for technology and commerce is the recommender
network. Recommender networks represent people’s preferences for things, such as for certain
products sold by a retailer. Online merchants, for instance, usually keep records of which
customers bought which products and sometimes ask them whether they liked the products or not.
Many large supermarket chains record the purchases made by each of their regular customers
(usually identified by a small card with a barcode on it that is scanned when purchases are made)
and so can work out which products each customer buys frequently.

The fundamental representation of a recommender network is as a “bipartite network,” a
network with two types of vertex, one representing the products or other items and the other
representing the people, with edges connecting people to the items they buy or like. One can also
add strengths or weights to the edges to indicate, for instance, how often a person has bought an
item or how much he or she likes it, or the strengths could be made negative to indicate dislikes.

We encountered bipartite networks previously in Section 3.5 and will study them further in
Section 6.6.

Recommender networks have been studied for many types of goods and products, including
books, music, films, and others. The primary commercial interest in recommender networks arises
from their use in collaborative filtering systems, also sometimes called recommender systems,
which are computer algorithms that attempt to guess items that people will like by comparing a
person’s known preferences with those of other people. If person A likes many of the same things
as persons B, C, and D, and if persons B, C, and D all like some further item that A has never
expressed an opinion about, then maybe (the theory goes) A would like that item too. A wide
variety of computer algorithms have been developed for extracting conclusions of this type from
recommender networks and are used extensively by retailers to suggest possible purchases to their
customers, in the hope of drumming up business. The website of the online bookseller
Amazon.com, for instance, has a feature that lists recommended book titles to customers based on
their previously expressed preferences and purchases. And many supermarkets now print out
discount coupons after customers have completed their purchases, coupons for products that the
customer has not bought in the past but might be interested to try.

Research on recommender networks has in the past focused mainly on the development of new
collaborative filtering algorithms, but it is reasonable to suppose that the success of these
algorithms should depend to some extent on the structure of the recommender network itself, and
there is therefore good reason to also study that structure. A few such studies have been published
in the scientific literature [63, 147], but there is clearly room for further work.



4.3.3 KEYWORD INDEXES

Another type of information network, also bipartite in form, is the keyword index. Consider, for
instance, a set of documents containing information on various topics. One can construct an index
to that set so that one can look up words in that index and the index will list important occurrences
of those words in the documents. Such indexes have historically appeared, of course, in books, as
guides to their content, but more recently indexes have regularly been constructed as guides to
other information collections, including sets of academic papers and the World Wide Web. The
index constructed by a web search engine, as discussed in Section 4.1, is a good example; it
consists, at a minimum, of a list of words or phrases, with each word or phrase accompanied by a
list of the web pages on which it occurs.

Such indexes can be represented as a bipartite network in which one of the two types of vertex
represents words in the index and the other represents documents or pages. Then one places an
edge between each word and the documents in which it occurs. Although such networks can be
constructed for, amongst other things, the Web or collections of academic papers, they should not
be confused with the networks of web links or citations discussed earlier in this chapter. Those are
also networks of web pages and documents, but they are different from a keyword index. Those
networks were networks of direct links between documents. An index is a network of links
between index entries and the documents they point to.

Indexes are of practical importance as a method for searching large bodies of information. Web
search engines, for example, rely heavily on them to quickly find web pages that correspond to a
particular query. However, indexes also have other, more sophisticated applications. They are
used, for example, as a basis for techniques that attempt to find documents or pages that are similar
to one another. If one has a keyword index to a set of documents and finds that two documents
share a lot of the same keywords, it may be an indication that the two cover similar topics. A
variety of computer algorithms for spotting such connections have been developed, typically
making use of ideas very similar to those used in the recommender systems discussed above—the
problem of finding documents with similar keywords is in many ways similar to the problem of
finding buyers who like similar products.

The identification of similar documents can be useful, for example, when searching through a
body of knowledge. In a standard index search, one typically types in a set of keywords and gets
back a list of documents containing those words. Search engines that can tell when documents are
similar to each other may be able to respond more usefully to such queries because they can return
documents that do not in fact contain the keywords entered, but which are similar to documents
that do. In cases where a single concept is called by more than one name, this may be a very
effective strategy for finding all of the relevant documents.

In the context of document retrieval, the classic method for determining document similarity and
performing generalized searches of this type is latent semantic indexing, which is based on the
application of the matrix technique known as singular value decomposition to the bipartite network
of keywords and documents. The interested reader can find a discussion of latent semantic
indexing in Ref. [193].

As with recommender systems, it is reasonable to suppose that the success of methods for
finding similar documents or improving searches using similarity information depends on the
structure of the bipartite keyword/document network, and hence that studies of that structure could
generate useful insights. There has been relatively little interest in the problem within the network
community so far and again there is plenty of room for future work.



CHAPTER 5

BIOLOGICAL NETWORKS

A discussion of various networks of interest in biology, including biochemical networks,
neural networks, and ecological networks

NETWORKS are widely used in many branches of biology as a convenient representation of
patterns of interaction between appropriate biological elements. Molecular biologists, for example,
use networks to represent the patterns of chemical reactions among chemicals in the cell, while
neuroscientists use them to represent patterns of connections between brain cells, and ecologists
study the networks of interactions between species in ecosystems, such as predation or
cooperation. In this chapter we describe the commonest kinds of biological networks and discuss
methods for determining their structure.



5.1 BIOCHEMICAL NETWORKS

Among the biological networks those attracting the most attention in recent years have been
biochemical networks, networks that represent the molecularlevel patterns of interaction and
mechanisms of control in the biological cell. The principal types of networks studied in this area
are metabolic networks, protein-protein interaction networks, and genetic regulatory networks.



5.1.1 METABOLIC NETWORKS

Metabolism is the chemical process by which cells break down food or nutrients into usable
building blocks (so-called catabolic metabolism) and then reassemble those building blocks to
form the biological molecules the cell needs to complete its other tasks (anabolic metabolism).
Typically this breakdown and reassembly involves chains or pathways, sets of successive chemical
reactions that convert initial inputs into useful end products by a series of steps. The complete set
of all reactions in all pathways forms a metabolic network.

The vertices in a metabolic network are the chemicals produced and consumed by the reactions.
These chemicals are known generically as metabolites. By convention the definition of a
metabolite is limited to small molecules, meaning things like carbohydrates (such as sugars) and
lipids (such as fats), as well as amino acids and nucleotides. Amino acids and nucleotides are
themselves the building blocks for larger polymerized macromolecules such as DNA, RNA, and
proteins, but the macromolecules are not themselves considered metabolites—they are not
produced by simple chemical reactions but by more complex molecular machinery within the cell,
and hence are treated separately. (We discuss some of the mechanisms by which macromolecules
are produced in Section 5.1.3.)

Although the fundamental purpose of metabolism is to turn food into useful biomolecules, one
should be wary of thinking of it simply as an assembly line, even a very complicated one.
Metabolism is not just a network of conveyor belts in which one reaction feeds another until the
final products fall out the end; it is a dynamic process in which the concentrations of metabolites
can change widely and rapidly, and the cell has mechanisms for turning on and off the production
of particular metabolites or even entire portions of the network. Metabolism is a complex machine
that reacts to conditions both within and outside the cell and generates a broad variety of chemical
responses. A primary reason for the high level of scientific interest in metabolic networks is their
importance as a stepping stone on the path towards an understanding of the chemical dynamics of
the cell.

Generically, an individual chemical reaction in the cell involves the consumption of one or more
metabolites that are broken down or combined to produce one or more others. The metabolites
consumed are called the substrates of the reaction, while those produced are called the products.

The situation is complicated by the fact that most metabolic reactions do not occur
spontaneously, or do so only at a very low rate. To make reactions occur at a usable rate, the cell
employs an array of chemical catalysts, referred to as enzymes. Unlike metabolites, enzymes are
mostly macromolecules, usually proteins but occasionally RNAs. Like all catalysts, enzymes are
not consumed in the reactions they catalyze but they play an important role in metabolism
nonetheless. Not only do they enable reactions that would otherwise be thermodynamically
disfavored or too slow to be useful, but they also provide one of the mechanisms by which the cell
controls its metabolism. By increasing or decreasing the concentration of the enzyme that catalyzes
a particular reaction, the cell can turn that reaction on or off, or moderate its speed. Enzymes tend
to be highly specific to the reactions they catalyze, each one enabling only one or a small number
of reactions. Thousands of enzymes are known and many more are no doubt waiting to be
discovered, and this large array of highly specific catalysts allows for a fine degree of control over
the processes of the cell.

The details of metabolic networks vary between different species of organisms but, amongst
animals at least, large parts are common to all or most species. Many important pathways, cycles,
or other subportions of metabolic networks are essentially unchanged across the entire animal
kingdom. For this reason one often refers simply to “metabolism” without specifying a particular
species of interest; with minor variations, observations made in one species often apply to others.

The most correct representation of a metabolic network is as a bipartite network. We



encountered bipartite networks previously in Section 3.5 on social affiliation networks and in
Section 4.3.2 on recommender networks. A bipartite network has two distinct types of vertex, with
edges running only between vertices of unlike kinds. In the case of affiliation networks, for
example, the two types of vertex represented people and the groups they belonged to. In the case
of a metabolic network they represent metabolites and metabolic reactions, with edges joining each
metabolite to the reactions in which it participates. In fact, a metabolic network is really a directed
bipartite network, since some metabolites go into the reaction (the substrates) and some come out
of it (the products). By placing arrows on the edges we can distinguish between the ingoing and
outgoing metabolites. An example is sketched in Fig. 5.1a.34

This bipartite representation of a metabolic network does not include any way of representing
enzymes, which, though not metabolites themselves, are still an important part of the metabolism.
Although it’s not often done, one can in principle incorporate the enzymes by introducing a third
class of vertex to represent them, with edges connecting them to the reactions they catalyze. Since
enzymes are not consumed in reactions, these edges are undirected—running neither into nor out
of the reactions they participate in. An example of such a network is sketched in Fig. 5.1b.
Technically this is now a tripartite network, partly directed and partly undirected.2

Correct and potentially useful though they may be, however, neither of these representations is
very often used for metabolic networks. The most common representations of metabolic networks
project the network onto just one set of vertices, either the metabolites or the reactions, with the
former being the more popular choice. In one approach the vertices in the network represent
metabolites and there is an undirected edge between any two metabolites that participate in the
same reaction, either as substrates or as products. Clearly this projection loses much of the
information contained in the full bipartite network, but, as we have said, it is nonetheless widely
used. Another approach, probably the most common, is to represent the network as a directed
network with a single type of vertex representing metabolites and a directed edge from one
metabolite to another if there is a reaction in which the first metabolite appears as a substrate and
the second as a product. This representation contains more of the information from the full
network, but is still somewhat unsatisfactory since a reaction with many substrates or many
products appears as many edges, with no easy way to tell that these edges represent aspects of the
same reaction. The popularity of this representation arises from the fact that for many metabolic
reactions only one product and one substrate are known or are considered important, and therefore
the reaction can be represented by only a single directed edge with no confusion arising. A number
of companies produce large charts showing the most important parts of the metabolic network in
this representation. An example is shown in Fig. 5.2. Such charts have become quite popular as
wall decorations in the offices of molecular biologists and biochemists, although whether they are
actually useful in practice is unclear.
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Figure 5.1: Bipartite and tripartite representations of a portion of a metabolic network. (a) A



metabolic network can be represented as a directed bipartite network with vertices for the
metabolites (circles) and reactions (squares) and directed edges indicating which metabolites are
substrates (inputs) and products (outputs) of which reactions. (b) A third type of vertex (triangles)
can be introduced to represent enzymes, with undirected edges linking them to the reactions they
catalyze. The resulting network is a mixed directed/undirected tripartite network.

Projections of bipartite networks and the associated loss of information are discussed further
in Section 6.6.

The experimental measurement of metabolic networks is a complex and laborious process,
although it has been made somewhat easier in recent years with the introduction of new techniques
from molecular genetics. Experiments tend to focus neither on whole networks nor on individual
reactions but on metabolic pathways. A number of tools are available to probe the details of
individual pathways. Perhaps the most common is the use of radioactive isotopes to trace the
intermediate products along a pathway. In this technique, the organism or cell under study is
injected with a substrate for the pathway of interest in which one or more of the atoms has been
replaced by a radioisotope. Typically this has little or no effect on the metabolic chemistry, but as
the reactions of the pathway proceed, the radioactive atoms move from metabolite to metabolite.
Metabolites can then be refined, for example by mass spectroscopy or chromatography, and tested
for radioactivity. Those that show it can be assumed to be “downstream” products in the pathway
fed by the initial radioactive substrate.

This method tells us the products along a metabolic pathway, but of itself does not tell us the
order of the reactions making up the pathway. Knowledge of the relevant biochemistry—which
metabolites can be transformed into which others by some chemical reaction—can often identify
the ordering or at least narrow down the possibilities. Careful measurement of the strength of
radioactivity of different metabolites, coupled with a knowledge of the half-life of the isotope
used, can also give some information about pathway structure as well as rates of reactions.

Notice, however, that there is no way to tell if any of the reactions discovered have substrates
other than those tagged with the radioisotope. If new substrates enter the pathway at intermediate
steps (that is, they are not produced by earlier reactions in the pathway) they will not be
radioactive and so will not be measured. Similarly, if there are reaction products that by chance do
not contain the radioactive marker they too will not be measured.

An alternative approach to probing metabolic pathways is simply to increase the level of a
substrate or enzyme for a particular reaction in the cell, thereby increasing the levels of the
products of that reaction and those downstream of it in the relevant pathway or pathways, increases
that can be measured to determine the constituents of the pathway. This technique has the
advantage of being able to detect products other than those that carry a particular radioactive
marker inherited from a substrate, but it is still incapable of identifying substrates other than those
produced as products along the pathway.



Figure 5.2: A metabolic network. (See Plate IV for color version.) A wallchart showing the
network formed by the major metabolic pathways. Created by Donald Nicholson. Copyright of the
International Union of Biochemistry and Molecular Biology. Reproduced with permission.

A complementary experimental technique that can probe the substrates of reactions is reaction
inhibition, in which a reaction in a pathway is prevented from taking place or its rate is reduced.
Over time, this results in a build-up in the cell of the substrates for that reaction, since they are no
longer being used up. By watching for this build-up one can determine the reaction substrates. In
principle the same method could also be used to determine the products of the reaction, since their
concentration would decrease because they are not being produced any longer, but in practice this
turns out to be a difficult measurement and is rarely done.

The inhibition of a reaction is usually achieved by disabling or removing an enzyme necessary
for the reaction. This can be done in a couple of different ways. One can use enzyme inhibitors,
which are chemicals that bind to an enzyme and prevent it from performing its normal function as
a catalyst, or one can genetically alter the organism under study to remove or impair its ability to
produce the enzyme (a so-called knockout experiment). The same techniques can also be used to



determine which reactions are catalyzed by which enzymes in the first place, and hence to
discover the structure of the third, enzymatic part of the tripartite metabolic network pictured in
Fig. 5.1b.

The construction of a complete or partial picture of a metabolic network involves the
combination of data from many different pathways, almost certainly derived from experiments
performed by many different experimenters using many different techniques. There are now a
number of public databases of metabolic pathway data from which one can draw to assemble
networks, the best known being KEGG and MetaCyc. Assembling the network itself is a non-
trivial task. Because the data are drawn from many sources, careful checking against the
experimental literature (or “curation,” as the lingo goes) is necessary to insure consistent and
reliable inputs to the process, and missing steps in metabolic pathways must often be filled in by
guesswork based on biochemistry and a knowledge of the genetics. A number of computer
software packages have been developed that can reconstruct networks from raw metabolic data in
an automated fashion, but the quality of the networks they create is generally thought to be poorer
than that of networks created by knowledgeable human scientists (although the computers are
much faster).



5.1.2 PROTEIN-PROTEIN INTERACTION NETWORKS

The metabolic networks of the previous section describe the patterns of chemical reactions that
turn one chemical into another in the cell. As we have noted, the traditional definition of
metabolism is restricted to small molecules and does not include proteins or other large molecules,
except in the role of enzymes, in which they catalyze metabolic reactions but do not take part as
reactants themselves.

Proteins do however interact with one another and with other biomolecules, both large and
small, but the interactions are not purely chemical. Proteins sometimes interact chemically with
other molecules—exchanging small subgroups, for example, such as the exchange of a phosphate
group in the process known as phosphorylation. But the primary mode of protein-protein
interaction—interactions of proteins with other proteins—is physical, their complicated folded
shapes interlocking to create so-called protein complexes (see Fig. 5.3) but without the exchange
of particles or subunits that defines chemical reactions.

Figure 5.3: Two proteins joined to form a protein complex. Protein molecules can have
complicated shapes that interlock with one another to form protein complexes.

The set of all protein-protein interactions forms a protein-protein interaction network, in which
the vertices are proteins and two vertices are connected by an undirected edge if the corresponding
proteins interact. Although this representation of the network is the one commonly used, it omits
much useful information about the interactions. Interactions that involve three or more proteins, for
instance, are represented by multiple edges, and there is no way to tell from the network itself that
such edges represent aspects of the same interaction. This problem could be addressed by adopting
a bipartite representation of the network similar to the one we sketched for metabolic networks in
Fig. 5.1, with two kinds of vertex representing proteins and interactions, and undirected edges
connecting proteins to the interactions in which they participate. Such representations, however,
are rarely used.



There are a number of experimental techniques available to probe for interactions between
proteins. One of the most reliable and trusted is co-immunoprecipitation. Immunoprecipitation
(without the “co-" ) is a technique for extracting a single protein species from a sample containing
more than one. The technique borrows from the immune system, which produces antibodies,
specialized proteins that attach or bind to a specific other target protein when the two encounter
each other. The immune system uses antibodies to neutralize proteins, complexes, or larger
structures that are harmful to the body, but experimentalists have appropriated them for use in the
laboratory. Immunoprecipitation involves attaching an antibody to a solid surface, such as the
surface of a glass bead, then passing a solution containing the target protein (as well as others, in
most cases) over the surface. The antibody and the target protein bind together, effectively
attaching the protein to the surface via the antibody. The rest of the solution is then washed away,
leaving the target protein to be recovered from the surface.
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In immunoprecipitation, antibodies attached to a solid surface bind to a specific protein,
represented here by the circles, pulling it out of the solution.

There are known naturally occurring antibodies for many proteins of scientific interest, but
researchers also routinely create antibodies for specific proteins by injecting those proteins (or
more often a portion of a protein) into an animal to provoke its immune system to generate the
appropriate antibody.

Co-immunoprecipitation is an extension of the same method to the identification of protein
interactions. An antibody is again attached to a suitable solid surface and binds to a known protein
in a sample. If that protein is attached to others, forming a protein complex, then the entire
complex will end up attached to the surface and will remain after the solution is washed away.
Then the complex can be recovered from the surface and the different proteins that make it up
individually identified, typically by testing to see if they bind to other known antibodies (a
technique known as a Western blot).

Although well-established and reliable, co-immunoprecipitation is an impractical approach for
reconstructing entire interaction networks, since individual experiments, each taking days, have to
be performed for every interaction identified. If appropriate antibodies also have to be created the
process would take even longer; the creation of a single antibody involves weeks or months of
work, and costs a considerable amount of money too. As a result, the large-scale study of protein-
protein interaction networks did not really take off until the adoption in the 1990s and early 2000s
of so-called high-throughput methods for discovering interactions, methods that can identify
interactions quickly and in a semi-automated fashion.

Transcription factors are discussed in more detail in Section 5.1.3.

The oldest and best established of the high-throughput methods for protein interactions is the
two-hybrid screen, invented by Fields and Song in 1989 [119].2¢ This method relies on the actions



of a specialized protein known as a transcription factor, which, if present in a cell, turns on the
production of another protein, referred to as a reporter. The presence of the reporter can be
detected by the experimenter by any of a number of relatively simple means. The idea of the two-
hybrid screen is to arrange things so that the transcription factor is created when two proteins of
interest interact, thereby turning on the reporter, which tells us that the interaction has taken place.

The two-hybrid screen relies on the fact that transcription factors are typically composed of two
distinct parts, a so-called binding domain and an activation domain. It turns out that most
transcription factors do not require the binding and activation domains to be actually attached to
one another for the transcription factor to work. If they are merely in close enough proximity
production of the reporter will be activated.

In a two-hybrid screen, a cell, usually a yeast cell, is persuaded to produce two proteins of
interest, each with one of the domains of the transcription factor attached to it. This is done by
introducing plasmids into the cell, fragments of DNA that code for the proteins and domains.
Then, if the two proteins in question interact and form a complex, the two domains of the
transcription factor will be brought together and, with luck, will activate production of the reporter.

See Section 5.1.3 for a discussion of DNA coding of proteins.

In a typical two-hybrid experiment, the protein attached to the binding domain of the
transcription factor is a known protein (called the bait protein) whose interactions the experimenter
wants to probe. Plasmids coding for a large number of other proteins (called prey) attached to
copies of the activation domain are created, resulting in a so-called library of possible interaction
targets for the bait. The plasmids for the bait and the library of prey are then introduced into a
culture of yeast cells, with the concentration of prey carefully calibrated so that at most one prey
plasmid enters each cell in most cases. Cells observed to produce the reporter are then assumed to
contain plasmids coding for prey proteins that interact with the bait and the plasmids are recovered
from those cells and analyzed to determine the proteins they correspond to.

The two-hybrid screen has two important advantages over older methods like co-
immunoprecipitation. First, one can employ a large library of prey and hence test for interactions
with many proteins in a single experiment, and second, the method is substantially cheaper and
faster than co-immunoprecipitation per interaction detected. Where co-immunoprecipitation
requires one to obtain or create antibodies for every protein tested, the two-hybrid screen requires
only the creation of DNA plasmids and their later sequence analysis, both relatively simple
operations for an experimenter armed with the machinery of modern genetic engineering.

One disadvantage of the two-hybrid screen is that the presence of the two domains of the
transcription factor attached to the bait and prey proteins can get in the way of their interacting
with one another and prevent the formation of a protein complex, meaning that some legitimate
protein-protein interactions will not take place under the conditions of the experiment.

The principal disadvantage of the method, however, is that it is simply unreliable. It produces
high rates of both false positive results—apparent interactions between proteins that in fact do not
interact—and false negative results—failure to detect true interactions. By some estimates the rate
of false positives may be as high as 50%, meaning that fully half of all interactions detected by the
method are not real. This has not stopped a number of researchers from performing analyses on the
interaction networks reconstructed from two-hybrid screen data, but the results should be viewed
with caution. It is certainly possible that many or even most of the conclusions of such studies are
substantially inaccurate.

An alternative and more accurate class of methods for high-throughput detection of protein
interactions are the affinity purification methods (also sometimes called affinity precipitation
methods). These methods are in some ways similar to the co-immunoprecipitation method
described previously, but avoid the need to develop antibodies for each protein probed. In an
affinity purification method, a protein of interest is “tagged” by adding a portion of another protein
to it, typically by introducing a plasmid that codes for the protein plus tag, in a manner similar to
the introduction of plasmids in the two-hybrid screen. Then the protein is given the opportunity to
interact with a suitable library of other proteins and a solution containing the resulting protein
complexes (if any) passed over a surface to which are attached antibodies that bind to the tag. As a



result, the tag, the attached protein, and its interaction partners are bound to the surface while the
rest of the solution is washed away. Then, as in co-immunoprecipitation, the resulting complex or
complexes can be analyzed to determine the identities of the interaction partners.

The advantage of this method is that it requires only a single antibody that binds to a known tag,
and the same tag-antibody pair can be used in different experiments to bind different proteins.
Thus, as with the two-hybrid screen, one need only generate new plasmids for each experiment,
which is relatively easy, as opposed to generating new antibodies, which is slow and difficult.
Some implementations of the method have a reliability comparable to that of co-
immunoprecipitation. Of particular note is the method known as tandem affinity purification,
which combines two separate purification stages and generates correspondingly higher-quality
results. Tandem affinity purification is the source for some of the most reliable current data for
protein-protein interaction networks.

As with metabolic reactions, there are now substantial databases of protein interactions available
online, of which the most extensive are IntAct, MINT, and DIP, and from these databases
interaction networks can be constructed for analysis. An example is shown in Fig. 5.4.
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Figure 5.4: A protein-protein interaction network for yeast. A network of interactions between



proteins in the single-celled organism Saccharomyces cerevisiae (baker’s yeast), as determined

using, primarily, two-hybrid screen experiments. From Jeong et al. [164]. Copyright Macmillan
Publishers Ltd. Reproduced by permission.



5.1.3 GENETIC REGULATORY NETWORKS

As discussed in Section 5.1.1, the small molecules needed by biological organisms, such as sugars
and fats, are manufactured in the cell by the chemical reactions of metabolism. Proteins, however,
which are much larger molecules, are manufactured in a different manner, following recipes
recorded in the cell’s genetic material, DNA.

Proteins are biological polymers, long-chain molecules formed by the concatenation of a series
of basic units called amino acids. The individual amino acids themselves are manufactured by
metabolic processes, but their assembly into complete proteins is accomplished by the machinery
of genetics. There are 20 distinct amino acids that are used by all living organisms to build
proteins, and different species of proteins are distinguished from one another by the particular
sequence of amino acids that make them up. Once created, a protein does not stay in a loose chain-
like form, but folds up on itself under the influence of thermodynamic forces and mechanical
constraints, reliably producing a specific folded form or conformation whose detailed shape
depends on the amino acid sequence—see Fig. 5.5. A protein’s conformation dictates the physical
interactions it can have with other molecules and can expose particular chemical groups or active
sites on the surface of the protein that contribute to its biological function within the organism.
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Figure 5.5: Protein folding. Proteins, which are long-chain polymers of amino acids, do not
naturally remain in an open state (left), but collapse upon themselves to form a more compact
folded state (right).

A protein’s amino acid sequence is determined by a corresponding sequence stored in the DNA
of the cell in which the protein is synthesized. This is the primary function of DNA in living
matter, to act as an information storage medium containing the sequences of proteins needed by
the cell. DNA is itself a long-chain polymer made up of units called nucleotides, of which there are
four distinct species, adenine, cytosine, guanine, and thymine, commonly denoted A, C, G, and T,
respectively.&Z The amino acids in proteins are encoded in DNA as trios of consecutive nucleotides
called codons, such as ACG or TTT, and a succession of such codons spells out the complete
sequence of amino acids in a protein. A single strand of DNA can code for many proteins—
hundreds or thousands of them—and two special codons, called the start and stop codons, are used
to signal the beginning and end within the larger DNA strand of the sequence coding for a protein.
The DNA code for a single protein, from start codon to stop codon, is called a gene.

Proteins are created in the cell by a mechanism that operates in two stages. In the first stage,
known as transcription, an enzyme called RNA polymerase makes a copy of the coding sequence



of a single gene. The copy is made of RNA, another information-bearing biopolymer,
chemically similar but not identical to DNA. RNA copies of this type are called messenger RNAs.
In the second stage, called translation, the protein is assembled, step by step, from the RNA
sequence by an ingenious piece of molecular machinery known as a ribosome, a complex of
interacting proteins and RNA. The translation process involves the use of transfer RNAs, short
molecules of RNA that have a region at one end that recognizes and binds to a codon in the
messenger RNA and a region at the other end that pulls the required amino acid into the correct
place in the growing protein. The end result is a protein, assembled following the exact
prescription spelled out in the corresponding gene. In the jargon of molecular biology, one says
that the gene has been expressed.

The cell does not, in general, need to produce at all times every possible protein for which it
contains a gene. Individual proteins serve specific purposes, such as catalyzing metabolic
reactions, and it is important for the cell to be able to respond to its environment and circumstances
by turning on or off the production of individual proteins as required. It does this by the use of
transcription factors, which are themselves proteins and whose job is to control the transcription
process by which DNA sequences are copied to RNA.

Transcription is performed by the enzyme RNA polymerase, which works by attaching to a
DNA strand and moving along it, copying nucleotides one by one. The RNA polymerase doesn’t
just attach spontaneously, however, but is aided by a transcription factor. Transcription factors are
specific to particular genes or sets of genes and regulate transcription in a variety of ways, but
most commonly by binding to a recognized sub-sequence in the DNA, called a promoter region,
which is adjacent to the beginning of the gene. The binding of the transcription factor to the
promoter region makes it thermodynamically favorable for the RNA polymerase to attach to the
DNA at that point and start transcribing the gene. (The end of the gene is marked by a stop codon
and upon encountering this codon the RNA polymerase automatically detaches from the DNA
strand and transcription ends.) Thus the presence in the cell of the transcription factor for the gene
turns on or enhances the expression of that gene. We encountered an example of a transcription
factor previously in our discussion of the two-hybrid screen in Section 5.1.2.

There are also transcription factors that inhibit expression by binding to a DNA strand in such a
way as to prevent RNA polymerase from attaching to the strand and hence prevent transcription
and the production of the corresponding protein.

But now here is the interesting point: being proteins, transcription factors are themselves
produced by transcription from genes. Thus the protein encoded in a given gene can act as a
transcription factor promoting or inhibiting production of one or more other proteins, which
themselves can act as transcription factors for further proteins and so forth. The complete set of
such interactions forms a genetic regulatory network. The vertices in this network are proteins or
equivalently the genes that code for them and a directed edge from gene A to gene B indicates that
A regulates the expression of B. A slightly more sophisticated representation of the network
distinguishes between promoting and inhibiting transcription factors, giving the network two
distinct types of edge.

The experimental determination of the structure of genetic regulatory networks involves
identifying transcription factors and the genes that they regulate. The process has several steps. To
begin with, one first confirms that a given candidate protein does bind to DNA roughly in the
region of a gene of interest. The commonest technique for establishing the occurrence of such a
binding is the electrophoretic mobility shift assay.2 In this technique one creates strands of DNA
containing the sequence to be tested and mixes them in solution with the candidate protein. If the
two indeed bind, then the combined DNA/protein complex can be detected by gel electrophoresis,
a technique in which one measures the speed of migration of electrically charged molecules or
complexes through an agarose or polyacrylamide gel in an imposed electric field. In the present
case the binding of the DNA and protein hinders the motion of the resulting complex through the
gel, measurably reducing its speed when compared with unbound DNA strands. Typically one runs
two experiments side by side, one with protein and one without, and compares the rate of
migration to determine whether the protein binds to the DNA. One can also run parallel
experiments using many different DNA sequences to test which (if any) bind to the protein.

An alternative though less sensitive technique for detecting binding is the deoxyribonuclease



footprinting assay. Deoxyribonucleases (also called DNases for short) are enzymes that, upon
encountering DNA strands, cut them into shorter strands. There are many different DNases, some
of which cut DNA only in particular places according to the sequence of nucleotides, but the
footprinting technique uses a relatively indiscriminate DNase that will cut DNA at any point. If,
however, a protein binds to a DNA strand at a particular location it will often (though not always)
prevent the DNase from cutting the DNA at or close to that location. Footprinting makes use of
this by mixing strands of DNA containing the sequence to be tested with the DNase and observing
the resulting mix of strand lengths after the DNase has cut the DNA samples into pieces in a
variety of different ways. Repeating the experiment with the protein present will result in a
different mix of strand length if the protein binds to the DNA and prevents it from being cut in
certain places. The mix is usually determined again by gel electrophoresis (strands of different
lengths move at different speeds under the influence of the electric field) and one again runs side-
by-side gel experiments with and without the protein to look for the effects of binding.

Both the mobility shift and footprinting assays can tell us if a protein binds somewhere on a
given DNA sequence. To pin down exactly where it binds one typically must do some further
work. For instance, one can create short strands of DNA, called oligonucleotides, containing
possible sequences that the protein might bind to, and add them to the mix. If they bind to the
protein then this will reduce the extent to which the longer DNAs bind and visibly affect the
outcome of the experiment. By a combination of such experiments, along with computer-aided
guesswork about which oligonucleotides are likely to work best, one can determine the precise
sub-sequence to which a particular protein binds.

While these techniques can tell us the DNA sequence to which a protein binds, they cannot tell
us which gene’s promoter region that sequence belongs to (if any), whether the protein actually
affects transcription of that gene, or, if it does, whether the transcription is promoted or inhibited.
Further investigations are needed to address these issues.

Identification of the gene is typically done not by experiment but by computational means and
requires a knowledge of the sequence of the DNA in the region where the protein binds. If we
know the DNA sequence then we can search it for occurrences of the sub-sequence to which our
protein binds, and then examine the vicinity to determine what gene or genes are there, looking for
example for start and stop codons in the region and then recording the sequence of other codons
that falls between them. Complete DNA sequences are now known for a number of organisms as a
result of sequencing experiments starting in the late 1990s, and the identification of genes is as a
result a relatively straightforward task.

Finally, we need to establish whether or not our protein actually acts as a transcription factor,
which can be done either computationally or experimentally. The computational approach involves
determining whether the sub-sequence to which the protein binds is indeed a promoter region for
the identified gene. (It is possible for a protein to bind near a gene but not act as a transcription
factor because the point at which it binds has no effect on transcription.) This is a substantially
harder task than simply identifying nearby genes. The structure of promoter regions is,
unfortunately, quite complex and varies widely, but computer algorithms have been developed that
can identify them with some reliability.

Alternatively, one can perform an experiment to measure directly the concentration of the
messenger RNA produced when the gene is transcribed. This can be achieved for example by
using a microarray (colloguially known as a “DNA chip”), tiny dots of DNA strands attached in a
grid-like array to a solid surface. RNA will bind to a dot if a part of its sequence matches the
sequence of the dot’s DNA and this binding can be measured using a fluorescence technique. By
observing the simultaneous changes in binding on all the dots of the microarray, one can determine
with some accuracy the change in concentration of any specific RNA and hence quantify the effect
of the transcription factor. This technique can also be used to determine whether a transcription
factor is a promoter or an inhibitor, something that is currently not easy using computational
methods.

As with metabolic pathways and protein-protein interactions, there now exist electronic
databases of genes and transcription factors, such as EcoCyc, from which it is possible to assemble
snapshots of genetic regulatory networks. Current data on gene regulation are substantially
incomplete and hence so are our networks, but more data are being added to the databases all the



time.



5.2 NEURAL NETWORKS

A completely different use of networks in biology arises in the study of the brain and central
nervous system in animals. One of the main functions of the brain is to process information and the
primary information processing element is the neuron, a specialized brain cell that combines
(usually) several inputs to generate a single output. Depending on the animal, an entire brain can
contain anywhere from a handful of neurons to more than a hundred billion, wired together, the
output of one cell feeding the input of another, to create a neural network capable of remarkable
feats of calculation and decision making.

Figure 5.6 shows a sketch of a typical neuron, which consists of a cell body or soma, along with
a number of protruding tentacles, which are essentially wires for carrying signals in and out of the
cell. Most of the wires are inputs, called dendrites, of which a neuron may have just one or two, or
as many as a thousand or more. Most neurons have only one main output, called the axon, which is
typically longer than the dendrites and may in some cases extend over large distances to connect
the cell to others some way away. Although there is just one axon, it usually branches near its end
to allow the output of the cell to feed the inputs of several others. The tip of each branch ends at an
axon terminal that abuts the tip of the input dendrite of another neuron. There is a small gap, called
a synapse, between terminal and dendrite across which the output signal of the first (presynaptic)
neuron must be conveyed in order to reach the second (postsynaptic) neuron. The synapse plays an
important role in the function of the brain, allowing transmission from cell to cell to be regulated
by chemically modifying the properties of the gap.22
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Figure 5.6: The structure of a neuron. A typical neuron is composed of a cell body or soma with
many dendrites that act as inputs and a single axon that acts as an output. Towards its tip, the axon
branches to allow it to connect to the inputs of several other neurons.

The actual signals that travel within neurons are electrochemical in nature. They consist of
traveling waves of electrical voltage created by the motion of positively charged sodium and
potassium ions in and out of the cell. These waves are called action potentials and typically consist
of voltages on the order of tens of millivolts traveling at tens of meters per second. When an action
potential reaches a synapse, it cannot cross the gap between the axon terminal and the opposing
dendrite and the signal is instead transmitted chemically; the arrival of the action potential
stimulates the production of a chemical neurotransmitter by the terminal, and the neurotransmitter



diffuses across the gap and is detected by receptor molecules on the dendrite at the other side.
This in turn causes ions to move in and out of the dendrite, changing its voltage.

These voltage changes, however, do not yet give rise to another traveling wave. The soma of the
postsynaptic neuron sums the inputs from its dendrites and as a result may (or may not) send an
output signal down its own axon. The neuron is stable against perturbations caused by voltages at a
small number of its inputs, but if enough inputs are excited they can collectively drive the neuron
into an unstable runaway state in which it “fires,” generating a large electrochemical pulse that
starts a new action potential traveling down the cell’s axon and so a signal is passed on to the next
neuron or neurons in the network. Thus the neuron acts as a switch or gate that aggregates the
signals at its inputs and only fires when enough inputs are excited.

As described, inputs to neurons are excitatory, increasing the chance of firing of the neuron, but
inputs can also be inhibiting—signals received at inhibiting inputs make the receiving neuron less
likely to fire. Excitatory and inhibiting inputs can be combined in a single neuron and the
combination allows neurons to perform quite complex information processing tasks all on their
own, while an entire brain or brain region consisting of many neurons can perform tasks of
extraordinary complexity. Current science cannot yet tell us exactly how the brain performs the
more sophisticated cognitive tasks that allow animals to survive and thrive, but it is known that the
brain constantly changes the pattern of wiring between neurons in response to inputs and
experiences, and it is presumed that this pattern—the neural network—holds much of the secret.
An understanding of the structure of neural networks is thus crucial if we are ever to explain the
higher-level functions of the brain.

A wiring diagram for a small neural network.

At the simplest level, a neuron can be thought of as a unit that accepts a number of inputs, either
excitatory or inhibiting, combines them, and generates an output result that is sent to one or more
further neurons. In network terms, a neural network can thus be represented as a set of vertices—
the neurons—connected by two types of directed edges, one for excitatory inputs and one for
inhibiting inputs. By convention, excitatory connections are denoted by an edge ending with an
arrow “— =", while inhibiting connections are denoted by an edge ending with a bar »

In practice, neurons are not all the same. They come in a variety of different types and even
relatively small regions or circuits in the brain may contain many types. This variation can be
encoded in our network representation by different types of vertex. Visually the types are often
denoted by using different shapes for the vertices or by labeling. In functional terms, neurons can
differ in a variety of ways, including the number and type of their inputs and outputs, the nature
and speed of their response to their inputs, whether and to what extent they can fire spontaneously
without receiving inputs, and many other things besides.

Experimental determination of the structure of neural networks is difficult and the lack of
straightforward experimental techniques for probing network structure is a major impediment to
current progress in neuroscience. Some useful techniques do exist, however, although their
application can be extremely laborious.

The basic tool for structure determination is microscopy, either optical or electronic. One



relatively simple approach works with cultured neurons on flat dishes. Neurons taken from
animal brains at an early stage of embryonic development can be successfully cultured in a suitable
nutrient medium and will, without prompting, grow synaptic connections to form a network. If
cultured on a flat surface, the network is then roughly two-dimensional and its structure can be
determined with reasonable reliability by simple optical microscopy. The advantage of this
approach is that it is quick and inexpensive, but it has the substantial disadvantage that the
networks studied are not the networks of real living animals and their structure is probably not
very similar to that of a functional brain circuit.

In this respect, studies of real brains are much more satisfactory and likely to lead to greater
insight, but they are also far harder, because real brains are three-dimensional and we do not
currently have any form of microscopy suitable for probing such three-dimensional structures.
Instead, therefore, researchers have resorted to cutting suitably preserved brains or brain regions
into thin slices, whose structure is then determined by electron microscopy. Given the structure of
an entire set of consecutive slices, one can, at least in principle, reconstruct the three-dimensional
structure, identifying different types of neurons by their appearance, where possible. In the early
days of such studies, most reconstruction was done by hand but more recently researchers have
developed computer programs that can significantly speed the reconstruction process. Nonetheless,
studies of this kind are very laborious and can take months or years to complete, depending on the
size and complexity of the network studied.

Figure 5.7 shows an example of a “wiring diagram” of a neural network, reconstructed by hand
from electron microscope studies of this type. The network in question is the neural network of the
worm Caenorhabditis elegans, one of the best studied organisms in biology. The brain of C.
elegans is simple—it has less than 300 neurons and essentially every specimen of the worm has
the same wiring pattern. Several types of neuron, denoted by shapes and labels, are shown in the
figure, along with a number of different types of connection, both excitatory and inhibiting. Some
of the connections run out of the figure or enter from somewhere off the page. These are
connections that run to or from other parts of the network not shown. The original experimenters
determined the structure of the entire network and presented it as set of interconnected wiring
diagrams like this one [328].
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Figure 5.7: A diagram of a part of the brain circuitry of a worm. A portion of the neural



circuitry of the nematode Caenorhabditis elegans, reconstructed by hand from electron
micrographs of slices through the worm’s brain. Reproduced from White et al. [328]. Copyright of
the Royal Society. Reproduced by permission.



5.3 ECOLOGICAL NETWORKS

The final class of biological network that we consider in this chapter is networks of ecological
interactions between species. Species in an ecosystem can interact in a number of different ways.
They can eat one another, they can parasitize one another, they can compete for resources, or they
can have any of a variety of mutually advantageous interactions, such as pollination or seed
dispersal. Although in principle the patterns of interactions of all of these types could be
represented in a combined “interaction network” with several different edge types, ecologists have
traditionally separated interaction types into different networks. Food webs, for example—
networks of predator-prey interactions (i.e., who eats whom)—have a long history of study.
Networks of hosts and parasites or of mutualistic interactions are less well studied, but have
nonetheless received significant attention in recent years.



5.3.1 FOOD WEBS

The biological organisms on our planet can be divided into ecosystems, groups of organisms that
interact with one another and with elements of their environment such as sources of material,
nutrients, and energy. Mountains, valleys, lakes, islands, and larger regions of land or water can all
be home to ecosystems composed of many organisms each. Within ecological theory, ecosystems
are usually treated as self-contained units with no outside interactions, although in reality perfect
isolation is rare and many ecosystems are only approximately self-contained. Nonetheless, the
ecosystem concept is one of significant practical utility for understanding ecological dynamics.

A food web is a directed network that represents which species prey on which others in a given
ecosystem.22 The vertices in the network correspond to species and the directed edges to predator-
prey interactions. Figure 5.8 shows a small example, representing predation among species living
in Antarctica. There are several points worth noticing about this figure. First, notice that not all of
the vertices actually represent single species in this case. Some of them do—the vertices for sperm
whales and humans, for instance. But some of them represent collections of species, such as birds
or fish. This is common practice in the network representation of food webs. If a set of species
such as birds all prey upon and are preyed on by the same other species, then the network can be
simplified by representing them as a single vertex, without losing any information about who preys
on whom. Indeed, even in cases where a set of species only have mostly, but not exactly, the same
predators and prey we still sometimes group them, if we feel the benefits of the resulting
simplification are worth a small loss of information. A set of species with the same or similar
predators and prey is sometimes referred to as a trophic species.
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Figure 5.8: A food web of species in Antarctica. Vertices in a food web represent species or
sometimes, as with some of the vertices in this diagram, groups of related species, such as fish or
birds. Directed edges represent predator-prey interactions and run in the direction of energy flow,
i.e., from prey to predator.

Second, notice the direction of the edges in the network. One might imagine that the edges
would point from predators to prey, but ecologists conventionally draw them in the opposite
direction, from prey to predator. Thus the edge representing the eating of fish by birds runs from
the fish vertex to the bird vertex. The reason for this apparently odd choice is that ecologists view
food webs as representations of the flow of energy (or sometimes carbon) within ecosystems. The
arrow from fish to birds indicates that the population of birds gains energy from the population of
fish when the birds eat the fish.

Third, notice that almost all the arrows in the figure run up the page. Directed networks with this
property—that they can be drawn so that the edges all run in one direction—are called acyclic
networks. We encountered acyclic networks previously in our discussion of citation networks in
Section 4.2. Food webs are usually only approximately acyclic. There are usually a few edges that
do not run in the right direction,4 but it is often a useful approximation to assume that the network
is acyclic.

Acyclic networks are discussed in more detail in Section 6.4.2.

The acyclic nature of food webs indicates that there is an intrinsic pecking order among the
species in ecosystems. Those higher up the order (which means higher up the page in Fig. 5.8)
prey on those lower down, but not vice versa. A species’ position in this pecking order is called by
ecologists its trophic level. Species at the very bottom of the food web, of which there is just one
in our example—the phytoplankton—have trophic level 1. Those that prey on them—Kkrill,
herbivorous plankton—have trophic level 2, and so forth all the way up to the species at the top of
the web, which have no predators at all. In our antarctic example there are two species that have no
predators, humans and small whales. (Note however that although such species are all, in a sense,
at “the top of the food chain” they need not have the same trophic level.)

Trophic level is a useful general guide to the roles that species play in ecosystems, those in
lower trophic levels tending to be smaller, more abundant species that are prey to other species
higher up the food web, while those in higher trophic levels are predators, usually larger-bodied
and less numerous. Calculating a species’ trophic level, however, is not always easy. In principle,
the rule is simple: a species’ trophic level is 1 greater than the trophic level of its prey. Thus the
herbivorous plankton and krill in our example have trophic level 2, because their prey has trophic
level 1, and the carnivorous plankton have trophic level 3. On the other hand, the squid in our
example prey on species at two different levels, levels 2 and 3, so it is unclear what level they
belong to. A variety of mathematical definitions have been proposed to resolve this issue. One
strategy is to define trophic level to be 1 greater than the mean of the trophic levels of the prey.
There is, however, no accepted standard definition, and the only indisputable statement one can
make is that in most food webs some species have ill-defined or mixed trophic level.

The food webs appearing in the ecological literature come in two basic types. Community food
webs are complete webs for an entire ecosystem, as in Fig. 5.8—they represent, at least in theory,
every predator-prey interaction in the system. Source food webs and sink food webs are subsets of
complete webs that focus on species connected, directly or indirectly, to a specific prey or
predator. In a source food web, for instance, one records all species that derive energy from a
particular source species, such as grass. Our food web of antarctic species is, in fact, both a
community food web and a source food web, since all of the species in the network derive their
energy ultimately from phytoplankton. Phytoplankton is the source in this example, and the
species above it (all of the species in this case) form the corresponding source web. A sink food
web is the equivalent construct for a particular top predator in the network. In the antarctic
example, for instance, humans consume the sperm and baleen whales and elephant seals, which in



turn derive their energy from fish, squid, plankton, krill, and ultimately phytoplankton. This
subset of species, therefore, constitutes the sink food web for humans—the web that specifies
through which species or species groups the energy consumed by humans passes.

The experimental determination of the structure of food webs is typically done in one of two
different ways, or sometimes a mixture of both. The first and most straightforward method is direct
measurement. Having settled on the ecosystem to be studied, one first assembles a list of the
species in that ecosystem and then determines their predator-prey interactions. For large-bodied
animals such as mammals, birds, or larger fish, some predation can be established simply by
observation in the field—we see a bird eating a fish and the presence of the corresponding edge is
thereby established. More often, however, and particularly with smaller-bodied animals,
interactions are established by catching and dissecting the animals in question and examining the
contents of their stomachs to determine what they have been eating.

The second primary method of constructing food webs is by compilation from existing
literature. Many predator-prey interactions are already known and have been recorded in the
scientific literature, but not in the context of the larger food web, and one can often reconstruct a
complete or partial picture of a food web by searching the literature for such records. Many of the
currently available food web data sets were assembled in this way from preexisting data, and some
others were assembled by a combination of experimental measurement and literature searches.

In some cases attempts have also been made to measure not merely the presence (or absence) of
interactions between species but also the strength of those interactions. One can quantify
interaction strength by the fraction of its energy a species derives from each of its predators, or by
the total rate of energy flow between a prey species and a predator. The result is a weighted
directed network that sheds considerably more light on the flow of energy through an ecosystem
than the more conventional unweighted food web. Measurements of interaction strength are,
however, time-consuming, difficult, and yield uncertain results, so the current data on weighted
food webs should be treated with caution.

Food web data from a variety of sources have been assembled into publicly available databases,
starting in the late 1980s. Examples include the Ecoweb database [73] and the web-based
collection at www.foodwebs.org.




5.3.2 OTHER ECOLOGICAL NETWORKS

Two other types of ecological network have received significant attention in the scientific literature
(although less than has been paid to food webs). Host- parasite networks are networks of parasitic
relationships between organisms, such as the relationship between a large-bodied animal and the
insects and microorganisms that live on and inside it. In a sense parasitic relations are a form of
predation—one species eating another—but in practical terms they are quite distinct from
traditional predator-prey interactions. Parasites, for example, tend to be smaller-bodied than their
hosts where predators tend to be larger, and parasites can live off their hosts for long, sometimes
indefinite, periods of time without killing them, where predation usually results in the death of the
prey.

Parasitic interactions, however, do form networks that are somewhat similar to traditional food
webs. Parasites themselves frequently play host to still smaller parasites (called “hyperparasites”),
which may have their own still smaller ones, and so forth through several levels.#2 There is a
modest but growing literature on host-parasite networks, much of it based on research within the
agriculture community, a primary reason for interest in parasites being their prevalence in and
effects on livestock and crop species.

The other main class of ecological networks is that of mutualistic networks, meaning networks
of mutually beneficial interactions between species. Three specific types of mutualistic network
that have received attention in the ecological literature are networks of plants and the animals
(primarily insects) that pollinate them, networks of plants and the animals (such as birds) that
disperse their seeds, and networks of ant species and the plants that they protect and eat. Since the
benefit of a mutualistic interaction runs, by definition, in both directions between a pair of species,
mutualistic networks are undirected networks (or bidirectional, if you prefer), in contrast with the
directed interactions of food webs and host-parasite networks. Most mutualistic networks studied
are also bipartite, consisting of two distinct, non-overlapping sets of species (such as plants and
ants), with interactions only between members of different sets. In principle, however, non-
bipartite mutualistic networks are also possible.

See Section 6.6 for a discussion of bipartite networks.
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CHAPTER 6

MATHEMATICS OF NETWORKS

An introduction to the mathematical tools used in the study of networks, tools that will be
important to many subsequent developments

IN THE next three chapters we introduce the fundamental quantitative foundations of the study of
networks, concepts that are crucial for essentially all later developments in this book. In this
chapter we introduce the basic theoretical tools used to describe and analyze networks, most of
which come from graph theory, the branch of mathematics that deals with networks. Graph theory
is a large field containing many results and we describe only a small fraction of those results here,
focusing on the ones most relevant to the study of real-world networks. Readers interested in
pursuing the study of graph theory further might like to look at the books by Harary [155] or West
[324].

In the two chapters after this one we look first at measures and metrics for quantifying network
structure (Chapter 7) and then at some of the remarkable patterns revealed in real-world networks
when we apply the mathematics and metrics we have developed to their analysis (Chapter 8).



6.1 NETWORKS AND THEIR REPRESENTATION

To begin at the beginning, a network—also called a graph in the mathematical literature—is, as we
have said, a collection of vertices joined by edges. Vertices and edges are also called nodes and
links in computer science, sites and bonds in physics, and actors4 and ties in sociology. Table 6.1
gives some examples of vertices and edges in particular networks.

Metwork Vertex Edge

Internet Computer or router Cable or wireless data connection
World Wide Web Web page Hyperlink

Citation network Article, patent, or legal case Citation

Power grid Generating station or substation Transmission line

Friendship network Person Friendship

Metabolic network Metabolite Metabolic reaction

Meural network MNeuron Synapse

Food web Species Predation

Table 6.1: Vertices and edges in networks. Some examples of vertices and edges in particular
networks.

Throughout this book we will normally denote the number of vertices in a network by n and the
number of edges by m, which is a common notation in the mathematical literature.

Most of the networks we will study in this book have at most a single edge between any pair of
vertices. In the rare cases where there can be more than one edge between the same pair of vertices
we refer to those edges collectively as a multiedge. In most of the networks we will study there are
also no edges that connect vertices to themselves, although such edges will occur in a few
instances. Such edges are called self-edges or self-loops.

A network that has neither self-edges nor multiedges is called a simple network or simple graph.
A network with multiedges is called a multigraph.2¢ Figure 6.1 shows examples of (a) a simple
graph and (b) a non-simple graph having both multiedges and self-edges.



6.2 THE ADJACENCY MATRIX

There are a number of different ways to represent a network mathematically. Consider an
undirected network with n vertices and let us label the vertices with integer labels 1 . . . n, as we
have, for instance, for the network in Fig. 6.1a. It does not matter which vertex gets which label,
only that each label is unique, so that we can use the labels to refer to any vertex unambiguously.

If we denote an edge between vertices i and j by (i,j) then the complete network can be specified
by giving the value of n and a list of all the edges. For example, the network in Fig. 6.1a hasn =6
vertices and edges (1,2), (1,5), (2,3), (2,4), (3,4), (3,5), and (3,6). Such a specification is called an
edge list. Edge lists are sometimes used to store the structure of networks on computers, but for
mathematical developments like those in this chapter they are rather cumbersome.
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Figure 6.1: Two small networks. (a) A simple graph, i.e., one having no multiedges or self-edges.
(b) A network with both multiedges and self-edges.

A better representation of a network for present purposes is the adjacency matrix. The adjacency
matrix A of a simple graph is the matrix with elements A;; such that

& 1 if there is an edge between vertices § and J,
; 0 otherwise.

(6.1)

For example, the adjacency matrix of the network in Fig. 6.1a is



(6.2)

Two points to notice about the adjacency matrix are that, first, for a network with no self-edges
such as this one the diagonal matrix elements are all zero, and second that it is symmetric, since if
there is an edge between i and j then there is an edge between j and i.

It is also possible to represent multiedges and self-edges using an adjacency matrix. A multiedge
is represented by setting the corresponding matrix element A; equal to the multiplicity of the edge.

For example, a double edge between vertices i and j is represented by A; = A;; = 2.

Self-edges are a little more complicated. A single self-edge from vertex i to itself is represented
by setting the corresponding diagonal element A; of the matrix equal to 2. Why 2 and not 1?
Essentially it is because every self-edge from i to i has two ends, both of which are connected to
vertex i. We will find that many of our mathematical results concerning the adjacency matrix work
equally well for networks with and without self-edges, but only if we are careful to count both
ends of every edge, including the self-edges, by making the diagonal matrix elements equal to 2
rather than 1.4

Another way to look at this is that non-self-edges appear twice in the adjacency matrix—an edge
from i to j means that both A; and A; are 1. To count edges equally, self-edges should also appear

twice, and since there is only one diagonal matrix element A, , we need to record both appearances

there.
To give an example, the adjacency matrix for the multigraph in Fig. 6.1b is
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(6.3)

One can also have multiple self-edges (or “multi-self-edges” perhaps). Such edges are
represented by setting the corresponding diagonal element of the adjacency matrix equal to twice
the multiplicity of the edge.



6.3 WEIGHTED NETWORKS

Many of the networks we will study have edges that form simple on/off connections between
vertices. Either they are there or they are not. In some situations, however, it is useful to represent
edges as having a strength, weight, or value to them, usually a real number. Thus in the Internet
edges might have weights representing the amount of data flowing along them or their bandwidth.
In a food web predator-prey interactions might have weights measuring total energy flow between
prey and predator. In a social network connections might have weights representing frequency of
contact between actors. Such weighted or valued networks can be represented by giving the
elements of the adjacency matrix values equal to the weights of the corresponding connections.
Thus the adjacency matrix

(6.4)

represents a weighted network in which the connection between vertices 1 and 2 is twice as strong
as that between 1 and 3, which in turn is twice as strong as that between 2 and 3.46

We have now seen two different types of network where the adjacency matrix can have off-
diagonal elements with values other than 0 and 1, networks with weighted edges and networks
with multiedges.4Z Indeed, if the weights in a weighted network are all integers it is possible to
create a network with multiedges that has the exact same adjacency matrix, by simply choosing the
multiplicities of the multiedges equal to the corresponding weights. This connection comes in
handy sometimes. In some circumstances it is easier to reason about the behavior of a multigraph
than a weighted network, or vice versa, and switching between the two can be a useful aid to
analysis [242].

The weights in a weighted network are usually positive numbers, but there is no reason in theory
why they should not be negative. For example, it is common in social network theory to construct
networks of social relations between people in which positive edge weights denote friendship or
other cordial relationships and negative ones represent animosity. We discuss such networks
further in Section 7.11 when we consider the concept of structural balance.

Given that edges can have weights on them, it is not a huge leap to consider weights on vertices
too, or to consider more exotic variables on either edges or vertices, such as vectors or discrete
enumerative variables like colors. Many such variations have been considered in the networks
literature and we will discuss some of them later in the book. There is one case of variables on
edges, however, that is so central to the study of networks that we discuss it straight away.



6.4 DIRECTED NETWORKS

A directed network or directed graph, also called a digraph for short, is a network in which each
edge has a direction, pointing from one vertex to another. Such edges are themselves called
directed edges, and can be represented by lines with arrows on them—see Fig. 6.2.

Figure 6.2: A directed network. A small directed network with arrows indicating the directions
of the edges.

We encountered a number of examples of directed networks in previous chapters, including the
World Wide Web, in which hyperlinks run in one direction from one web page to another, food
webs, in which energy flows from prey to predators, and citation networks, in which citations point
from one paper to another.

The adjacency matrix of a directed network has matrix elements

1 if there is an edge from j to 1,
0 otherwise.

(6.5)

Notice the direction of the edge here—it runs from the second index to the first. This is slightly
counter-intuitive, but it turns out to be convenient mathematically and it is the convention we
adopt in this book.

As an example, the adjacency matrix of the small network in Fig. 6.2 is



(6.6)

Note that this matrix is not symmetric. In general the adjacency matrix of a directed network is
asymmetric.

We can, if we wish, think of undirected networks as directed networks in which each undirected
edge has been replaced with two directed ones running in opposite directions between the same
pair of vertices. The adjacency matrix for such a network is then symmetric and exactly the same
as for the original undirected network.

Like their undirected counterparts, directed networks can have multiedges and self-edges, which
are represented in the adjacency matrix by elements with values greater than 1 and by non-zero
diagonal elements, respectively. An important point however is that self-edges in a directed
network are represented by setting the corresponding diagonal element of the adjacency matrix to
1, not 2 as in the undirected case.2¢ With this choice the same formulas and results, in terms of the
adjacency matrix, apply for networks with and without self-edges.



6.4.1 COCITATION AND BIBLIOGRAPHIC COUPLING

It is sometimes convenient to turn a directed network into an undirected one for the purposes of
analysis—there are many useful analytic techniques for undirected networks that do not have
directed counterparts (or at least not yet).

One simple way to make a directed network undirected is just to ignore the edge directions
entirely, an approach that can work in some cases, but inevitably throws out a lot of potentially
useful information about the network’s structure. A more sophisticated approach is to use

“cocitation” or “bibliographic coupling,” two different but related ideas that derive their names
from their widespread use in the analysis of citation networks.

We briefly discussed cocitation in the context of citation networks in Section 4.2.

The cocitation of two vertices | and | in a directed network is the number of vertices that have
outgoing edges pointing to both i and j. In the language of citation networks, for instance, the
cocitation of two papers is the number of other papers that cite both. Given the definition above of
the adjacency matrix of a directed network (Eq. (6.5)), we can see that A A, = 1 if I and | are both

cited by k and zero otherwise. Summing over all k, the cocitation C;; of i and j is

f--||'." E rﬂl,—.’.. /q-_.," i ,’d.lr.-"l{,
k=1 k=1

(6.7)

T
where jj"" is an element of the transpose of A. We can define the cocitation matrix C to be the n

x n matrix with elements C;; , which is thus given by

C=AAT

(6.8)

Vertices i and j are cited by three common papers, so their cocitation is 3.



Note that C is a symmetric matrix, since CT= (AAT)T=AAT=C.
Now we can define a cocitation network in which there is an edge between i and j if C;; > 0, for i

# ], 1.e., an edge between any two vertices that are cocited in the original directed network. (We
enforce the constraint that i # j because the cocitation network is conventionally defined to have no
self-edges, even though the diagonal elements of the cocitation matrix are in general nonzero—see
below.) Better still, we can make the cocitation network a weighted network with positive integer
weights on the edges equal to the corresponding elements C;. Then vertex pairs cited by more

common neighbors have a stronger connection than those cited by fewer. Since the cocitation
matrix is symmetric, the cocitation network is undirected, making it easier to deal with in many
respects than the original directed network from which it was constructed.

The cocitation network turns out to make a lot of sense in many cases. In citation networks of
academic papers, for instance, strong cocitation between papers is often a good indicator of papers
that deal with related topics—if two papers are often cited together in the same bibliography they
probably have something in common. And the more often they are cited together, the more likely it
is that they are related.

The cocitation matrix thus plays a role similar to an adjacency matrix for the cocitation network.
There is however one aspect in which the cocitation matrix differs from an adjacency matrix: its
diagonal elements. The diagonal elements of the cocitation matrix are given by

Cii iﬂ‘ﬁ El'i:f‘\m

(6.9)

where we have assumed that the directed network is a simple graph, with no multiedges, so that
all elements A, of the adjacency matrix are zero or one. Thus C; is equal to the total number of

edges pointing to i—the total number of papers citing | in the citation network language. In
constructing the cocitation network we ignore these diagonal elements, meaning that the network’s
adjacency matrix is equal to the cocitation matrix but with all the diagonal elements set to zero.

Vertices i and j cite three of the same papers and so have a bibliographic coupling of 3.

Bibliographic coupling is similar to cocitation. The bibliographic coupling of two vertices in a
directed network is the number of other vertices to which both point. In a citation network, for
instance, the bibliographic coupling of two papers i1 and j is the number of other papers that are
cited by both i and j. Noting that AjA,; = 1 if i and j both cite k and zero otherwise, the

bibliographic coupling of i and j is
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(6.10)

and we define the bibliographic coupling matrix B to be the n x n matrix with elements B; so
that

6.11)

The bibliographic coupling matrix is again a symmetric matrix and the off-diagonal elements can
be used to define a weighted undirected network, the bibliographic coupling network, in which
there is an edge with weight By between any vertex pair i, j for which B; > 0. The diagonal

elements of B are

B” E AEI i/“'l.‘u.
k=1
(6.12)

Thus B is equal to the number of other vertices that vertex i points to—the number of papers |

cites, in the citation language.

Bibliographic coupling, like cocitation, can be a useful measure of connection between vertices.
In a citation network, for example, if two papers cite many of the same other papers it is often a
good indication that they deal with similar subject matter, and the number of common papers cited
can be an indicator of how strongly they overlap.

Although cocitation and bibliographic coupling are mathematically similar measures they can in
practice give noticeably different results. In particular, they are affected strongly by the number of
ingoing and outgoing edges that vertices have. For two vertices to have strong cocitation—to be
pointed to by many of the same other vertices—they must both have a lot of incoming edges in the
first place. In a citation network, for instance, two papers can only have strong cocitation if they
are both well cited and hence strong cocitation is limited to influential papers, review articles,
books, and similar highly cited items. Conversely, two papers can only have strong bibliographic
coupling if they both cite many others, i.e., if they have large bibliographies. In practice, the sizes
of bibliographies vary less than the number of citations papers receive, and hence bibliographic
coupling is a more uniform indicator of similarity between papers than cocitation. The Science
Citation Index, for example, makes use of bibliographic coupling in its “Related Records™ feature,
which allows users to find papers similar to a given paper. Cocitation would be less appropriate in
this situation, since it tends not to work well for papers with few citations.



Bibliographic coupling also has the advantage that it can be computed as soon as a paper is
published and the contents of the paper’s bibliography are known. Cocitation, on the other hand,
cannot be computed until a paper has been cited by other papers, which usually doesn’t happen
until at least a few months after publication, and sometimes years. Furthermore, the cocitation of
two papers can change over time as the papers receive new citations, whereas bibliographic
coupling is fixed from the moment the papers are published. (This could be an advantage or a
disadvantage—there are situations in which changes in cocitation could reveal interesting
information about the papers that cannot be gleaned from an unchanging measure like
bibliographic coupling.)

In addition to their use as measures of vertex similarity, the cocitation and bibliographic
coupling matrices are also used in search algorithms for directed networks, and in particular in the
so-called HITS algorithm, which we describe in Section 7.5.



6.4.2 ACYCLIC DIRECTED NETWORKS

A cycle in a directed network is a closed loop of edges with the arrows on each of the edges
pointing the same way around the loop. Networks like the World Wide Web have many such
cycles in them. Some directed networks however have no cycles and these are called acyclic
networks.22 Ones with cycles are called cyclic. A self-edge—an edge connecting a vertex to
itself—counts as a cycle, and so an acyclic network also has no self-edges.

A cycle in a directed network.

The classic example of an acyclic directed network is a citation network of papers, as discussed
in Section 4.2. When writing a paper you can only cite another paper if it has already been written,
which means that all the directed edges in a citation network point backward in time. Graphically
we can depict such a network as in Fig. 6.3, with the vertices time-ordered—running from bottom
to top of the picture in this case—so that all the edges representing the citations point downward in
the picture.2 There can be no closed cycles in such a network because any cycle would have to go
down the picture and then come back up again to get back to where it started and there are no
upward edges with which to achieve this.

Figure 6.3: An acyclic directed network. In this network the vertices are laid out in such a way
that all edges point downward. Networks that can be laid out in this way are called acyclic, since
they possess no closed cycles of edges. An example of an acyclic network is a citation network of
citations between papers, in which the vertical axis would represent date of publication, running up



the figure, and all citations would necessarily point from later papers to earlier ones.

It is less obvious but still true that if a network is acyclic it can be drawn in the manner of Fig.
6.3 with all edges pointing downward. The proof that this can be done turns out to be useful,
because it also provides us with a method for determining whether a given network is acyclic.

Suppose we have an acyclic directed network of » vertices. There must be at least one vertex
somewhere on the network that has ingoing edges only and no outgoing ones. To see this consider
starting from any vertex in the network and making a path across the network by following edges,
each in the correct direction denoted by its arrow. Either such a path will eventually encounter a
vertex with no outgoing edges, in which case we are done, or each vertex it encounters has one or
more outgoing edges, in which case we choose one such edge and continue our path. If the path
never reaches a vertex with no outgoing edges, then it must eventually arrive back at a vertex that
has been visited previously—at most we can visit all n vertices in the network once before the path
either terminates or we are forced to revisit a vertex. However if we revisit a vertex then we have
gone around a cycle in the network, which cannot be since the network is acyclic. Thus we must
always in the end find a vertex with no outgoing edges and hence at least one such vertex always
exists.

In practice, it is not necessary to actually construct the paths through the network to find a
vertex with no outgoing edges—since we know that such a vertex exists, we can simply look
through each vertex in turn until we find one.

We now take this vertex with no outgoing edges and draw it at the bottom of our picture. We
remove this vertex from the network, along with any edges attached to it, and repeat the process,
finding another vertex with no outgoing edges in the remaining network. We draw this second
vertex above the first one in the figure, remove it from the network and repeat again. And so forth.

When we have drawn all vertices, we then add the directed edges between them to the picture.
Since each edge, by definition, has incoming edges only from vertices drawn after it—and
therefore above it—all edges in the final picture must be pointing downward. Note that the
particular order in which we draw the vertices, and hence the picture we produce, is not necessarily
unique. If at any stage in the process of drawing the vertices there is more than one vertex with no
outgoing edges then we have a choice about which one we pick and hence a choice between
overall vertex orders.

This process is a useful one for visualizing acyclic networks. Most computer algorithms for
drawing such networks work by arranging the vertices in order along one axis in just this way, and
then moving them around along the other axis to make the network structure as clear and visually
pleasing as possible (which usually means minimizing the number of times that edges cross).

The process is useful for another reason too: it will break down if the network is cyclic, and
therefore it gives us a way to test whether a given network is acyclic. If a network contains a cycle,
then none of the vertices in that cycle will ever be removed during our process: none of them will
be without outgoing edges until one of the others in the cycle is removed, and hence none of them
can ever be removed. Thus, if the network contains a cycle there must come a point in our process
where there are still vertices left in the network but all of them have outgoing edges. So a simple
algorithm for determining whether a network is acyclic is:

1. Find a vertex with no outgoing edges.

2. If no such vertex exists, the network is cyclic. Otherwise, if such a vertex does exist,
remove it and all its ingoing edges from the network.

3. If all vertices have been removed, the network is acyclic. Otherwise go back to step 1.

The adjacency matrix of an acyclic directed network has interesting properties. Suppose we
construct an ordering of the vertices of an acyclic network as described above, so that all edges
point in one direction, and suppose we then label the vertices in that order. Then there can be an
edge from vertex j to vertex i only if j > i. Put another way, the adjacency matrix A (whose
element 4, records the presence of an edge firom j to i) has all its non-zero elements above the

diagonal—it is upper triangular. For instance, the adjacency matrix of the network shown in Fig.



6.3 is

(6.13)

Note also that the diagonal elements of the adjacency matrix are necessarily zero, since an acyclic
network has no self-edges. Triangular matrices with zeros on the diagonal are called strictly
triangular.

If the vertices of an acyclic network are not numbered in order as described above, then the
adjacency matrix will not be triangular. (Imagine swapping rows and columns of the matrix above,
for instance.) However, we can say that for every acyclic directed network there exists at least one
labeling of the vertices such that the adjacency matrix will be strictly upper triangular.

The adjacency matrix also has the property that all of its eigenvalues are zero if and only if the
network is acyclic. To demonstrate this, we must demonstrate the correspondence in both
directions, i.e., that the adjacency matrix of an acyclic network has all eigenvalues zero and also
that a network is acyclic if its adjacency matrix has all eigenvalues zero.

The former is the easier to prove. If a network is acyclic then we can order and label the vertices
as described above and hence write the adjacency matrix in strictly upper triangular form. The
diagonal elements of a triangular matrix, however, are its eigenvalues, and since these are all zero
it follows immediately that all eigenvalues are zero for an acyclic network.

To show the converse, that the network is acyclic if the eigenvalues are all zero, it suffices to
demonstrate that any cyclic network must have at least one non-zero eigenvalue. To demonstrate
this we make use of a result derived in Section 6.10. There we show that the total number L of

cycles of length » in a network is

(6.14)

where x;, is the ith eigenvalue of the adjacency matrix. Suppose a network is cyclic. Let » be the
length of one of the cycles it contains. Then by definition L > 0 for this network. However, this

can only be the case if at least one of the terms in the sum on the right-hand side of Eq. (6.14) is
greater than zero, and hence the adjacency matrix has at least one non-zero eigenvalue. If all
eigenvalues are zero, therefore, the network cannot be cyclic.
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Figure 6.4: A hypergraph and corresponding bipartite graph. These two networks show the
same information—the membership of five vertices in four different groups. (a) The hypergraph
representation in which the groups are represented as hyperedges, denoted by the loops circling
sets of vertices. (b) The bipartite representation in which we introduce four new vertices (open
circles) representing the four groups, with edges connecting each vertex to the groups to which it
belongs.

Matrices with all eigenvalues zero are called nilpotent matrices. Thus one could also say that a
network is acyclic if and only if it has a nilpotent adjacency matrix.



6.5 HYPERGRAPHS

In some kinds of network the links join more than two vertices at a time. For example, we might
want to create a social network representing families in a larger community of people. Families
can have more than two people in them and the best way to represent family ties in such families is
to use a generalized kind of edge that joins more than two vertices.2t Such an edge is called a
hyperedge and a network with hyperedges is called a hypergraph. Figure 6.4a shows a small
example of a hypergraph in which the hyperedges are denoted by loops.

Metwork WVertex Group Section
Film actors Actor Cast of a film 3.5
Coauthorship Author Authors of an article 3.5
Boards of directors Director Board of a company 3.5
Social events Meople Participants at social event 31
Recommender system People Those who like a book, film, ete. 4.3.2
Keyword index Keywords Pages where words appear 4.3.3
Rail connections Stations Train routes 24
Metabolic reactions Metabolites Participants in a reaction 51.1

Table 6.2: Hypergraphs and bipartite graphs. Examples of networks that can be represented as
hypergraphs or equivalently as bipartite graphs. The last column gives the section of this book in
which each network is discussed.

Many of the networks that we will encounter in this book can be presented as hypergraphs. In
particular, any network in which the vertices are connected together by common membership of
groups of some kind can be represented in this way. In sociology such networks are called

“affiliation networks” and we saw several examples of them in Section 3.5. Directors sitting on
the boards of companies, scientists coauthoring papers, and film actors appearing together in films
are all examples of such networks (see Table 6.2).

We will however talk very little about hypergraphs in this book, because there is another way of

representing the same information that is more convenient for our purposes—the bipartite network.



6.6 BIPARTITE NETWORKS

The membership of vertices in groups represented by hyperedges in a hypergraph can equally and
often more conveniently be represented as a bipartite network, also called a two-mode network in
the sociology literature. In such a network there are two kinds of vertices, one representing the
original vertices and the other representing the groups to which they belong. We discussed
bipartite networks previously in the context of affiliation networks in Section 3.5 and of
recommender networks in Section 4.3.2. For example, we can represent the network of film actors
discussed in Section 3.5 as a bipartite network in which the two types of vertex are the actors
themselves and the films in which they appear. The edges in a bipartite network run only between
vertices of unlike types: in the film network they would run only between actors and films, and
each actor would be connected by an edge to each film in which he or she appeared. A small
example of a bipartite network is shown in Fig. 6.4b. This example network in fact portrays
exactly the same set of group memberships as the hypergraph of Fig. 6.4a; the two are entirely
equivalent.

Bipartite networks occur occasionally in contexts other than membership of groups. For
example, if we were to construct a network of who is or has been married to whom within a
population, that network would be bipartite, the two kinds of vertex corresponding to men and
women and the edges between them marriages.

The equivalent of an adjacency matrix for a bipartite network is a rectangular matrix called an
incidence matrix. If n is the number of people or other participants in the network and g is the
number of groups, then the incidence matrix B is a g x n matrix having elements B;; such that

B 1 if vertex j belongs to group |,
(t otherwise.

(6.15)

For instance, the 4 x 5 incidence matrix of the network shown in Fig. 6.4b is

(6.16)

Although a bipartite network may give the most complete representation of a particular network
it is often convenient to work with direct connections between vertices of just one type. We can
use the bipartite network to infer such connections, creating a one-mode projection from the two-



mode bipartite form. As an example, consider again the case of the films and actors. We can
perform a projection onto the actors alone by constructing the n-vertex network in which the
vertices represent actors and two actors are connected by an edge if they have appeared together in
a film. The corresponding one-mode projection onto the films would be the g-vertex network
where the vertices represent films and two films are connected if they share a common actor.
Figure 6.5 shows the two one-mode projections of a small bipartite network.

When we form a one-mode projection each group in the bipartite network results in a cluster of
vertices in the one-mode projection that are all connected to each other—a “clique” in network
jargon (see Section 7.8.1). For instance, if a group contains four members in the bipartite network,
then each of those four is connected to each of the others in the one-mode projection by virtue of
common membership in that group. (Such a clique of four vertices is visible in the center of the
lower projection in Fig. 6.5.) Thus the projection is, generically, the union of a number of cliques,
one for each group in the original bipartite network. The same goes for the other projection onto
the groups.

Figure 6.5: The two one-mode projections of a bipartite network. The central portion of this
figure shows a bipartite network with four vertices of one type (open circles labeled A to D) and
seven of another (filled circles, 1 to 7). At the top and bottom we show the one-mode projections
of the network onto the two sets of vertices.

The one-mode projection, as we have described it, is often useful and is widely employed, but
its construction discards a lot of the information present in the structure of the original bipartite
network and hence it is, in a sense, a less powerful representation of our data. For example, the
projection loses any information about how many groups two vertices share in common. In the
case of the actors and films, for instance, there are some pairs of actors who have appeared in
many films together—Fred Astaire and Ginger Rogers, say, or William Shatner and Leonard
Nimoy—and it’s reasonable to suppose this indicates a stronger connection than between actors
who appeared together only once.



We can capture information of this kind in our projection by making the projection weighted,
giving each edge between two vertices in the projected network a weight equal to the number of
common groups the vertices share. This weighted network still does not capture all the information
in the bipartite original—it doesn’t record the number of groups or the exact membership of each
group for instance—Dbut it is an improvement on the unweighted version and is quite widely used.

Mathematically the projection can be written in terms of the incidence matrix B as follows. The
product B,;B,; will be 1 if and only if i and j both belong to the same group k in the bipartite

network. Thus, the total number P; of groups to which both i and j belong is

= 2
Py = 3" BBy~ 3. BB,
=1 k=1

(6.17)

where Bl is an element of the transpose BT of B. The n x n matrix P = BB is similar to an
adjacency matrix for the weighted one-mode projection onto the n vertices. Its off-diagonal
elements are equal to the weights in that network, the number of common groups shared by each
vertex pair. P is not quite an adjacency matrix, however, since its diagonal elements are non-zero,
even though the network itself, by definition, has no self-edges. (In this respect P is somewhat
similar to the cocitation matrix of Section 6.4.1.) The diagonal elements have values

Pi— Y Bi-Y Bu

k=1

(6.18)

where we have made use of the fact that B,; only takes the values 0 or 1. Thus P, is equal to the

number of groups to which vertex i belongs.

Thus to derive the adjacency matrix of the weighted one-mode projection, we would calculate
the matrix P = BB and set the diagonal elements equal to zero. And to derive the adjacency matrix
of the unweighted projection, we would take the adjacency matrix of the weighted version and
replace every non-zero matrix element with a 1.

The other one-mode projection, onto the groups, can be represented by a g x g matrix P’ = BBT,

whose off-diagonal element Bij gives the number of common members of groups i and j, and
whose diagonal element F: gives the number of members of group i.

One occasionally also comes across bipartite networks that are directed. For example, the
metabolic networks discussed in Section 5.1.1 can be represented as directed bipartite networks—
see Fig. 5.1a. A variety of more complex types of projection are possible in this case, although
their use is rare and we won’t spend time on them here. Weighted bipartite networks are also
possible in principle, although no examples will come up in this book.



Figure 6.6: Two sketches of the same tree. The two panels here show two different depictions of
a tree, a network with no closed loops. In (a) the vertices are positioned on the page in any
convenient position. In (b) the tree is a laid out in a “rooted” fashion, with a root node at the top
and branches leading down to “leaves” at the bottom.



6.7 TREES

A tree is a connected, undirected network that contains no closed loops—see Fig. 6.6a.23 By

“connected” we mean that every vertex in the network is reachable from every other via some
path through the network. A network can also consist of two or more parts, disconnected from one
another,* and if an individual part has no loops it is also called a tree. If all the parts of the
network are trees, the complete network is called a forest.

Trees are often drawn in a rooted manner, as shown in Fig. 6.6b, with a root node at the top and
a branching structure going down. The vertices at the bottom that are connected to only one other
vertex are called leaves.22 Topologically, a tree has no particular root—the same tree can be drawn
with any node, including a leaf, as the root node, but in some applications there are other reasons
for designating a root. A dendrogram is one example (see below).

Not very many of the real-world networks that we will encounter in this book are trees, although
a few are. A river network is an example of a naturally occurring tree (see Fig. 2.6, for instance).
Trees do nonetheless play several important roles in the study of networks. In Chapter 12 for
instance we will study the network model known as the “random graph.” In this model local
groups of vertices—the so-called small components in the network—form trees, and we can
exploit this property to derive a variety of mathematical results about random graphs. In Section
11.11.1 we introduce the “dendrogram,” a useful tool that portrays a hierarchical decomposition of
a network as a tree. Trees also occur commonly in computer science, where they are used as a
basic building block for data structures such as AVL trees and heaps (see Sections 9.5 and 9.7 and
Refs. [8, 81]) and in other theoretical contexts like minimum spanning trees [81], Cayley trees or
Bethe lattices [269], and hierarchical models of networks (see Section 19.3.2 and Refs. [70, 179,
322)).

Perhaps the most important property of trees for our purposes is that, since they have no closed
loops, there is exactly one path between any pair of vertices. (In a forest there is at most one path,
but there may be none.) This is clear since if there were two paths between a pair of vertices A and
B then we could go from A to B along one path and back along the other, making a loop, which is
forbidden.

This property of trees makes certain kinds of calculation particularly simple, and trees are
sometimes used as a basic model of a network for this reason. For instance, the calculation of a
network’s diameter (Section 6.10.1), the betweenness centrality of a vertex (Section 7.7), and
certain other properties based on shortest paths are all relatively easy with a tree.

Another useful property of trees is that a tree of n vertices always has exactly n— 1 edges. To
see this, consider building up a tree by adding vertices one by one. Starting with a single vertex
and no edges, we add a second vertex and one edge to connect it to the first. Similarly when we
add a third vertex we need at least one edge to connect it one of the others, and so forth. For every
vertex we must add at least one edge to keep the network connected. This means that the number
of edges must always be at least one less than the number of vertices. In mathematical terms, n — 1
is a lower bound on the number of edges.

But it is also an upper bound, because if we add more than one edge when we add a new vertex
then we create a loop: the first edge connects the added vertex to the rest of the network and the
second then connects together two vertices that are already part of the network. But adding an edge
between two vertices that are already connected via the network necessarily creates a loop. Hence
we are not allowed to add more than one edge per vertex if the network is to remain free of loops.

Thus the number of edges in a tree cannot be either more or less than n — 1, and hence is exactly
n—1.

The reverse is also true, that any connected network with n vertices and n — 1 edges is a tree. If



such a network were not a tree then there must be a loop in the network somewhere, implying
that we could remove an edge without disconnecting any part of the network. Doing this
repeatedly until no loops are left, we would end up with a tree, but one with less than n — 1 edges,
which cannot be. Hence we must have had a tree to begin with. As a corollary, this implies that the
connected network on n vertices with the minimum number of edges is always a tree, since no
connected network has less than n — 1 edges and all networks with n — 1 edges are trees.

Adding an extra edge (gray) between any two vertices of a tree creates a loop.



6.8 PLANAR NETWORKS

A planar network is a network that can be drawn on a plane without having any edges cross.2
Figure 6.7a shows a small planar network. Note that it is in most cases possible to find a way to
draw a planar network so that some edges do cross (Fig. 6.7b). The definition of planarity only
specifies that at least one arrangement of the vertices exists that results in no crossing.

Most of the networks we will encounter in this book are not planar, either because there is no
relevant two-dimensional geometry to which the network is confined (e.g., citation networks,
metabolic networks, collaboration networks), or else there is but there is nothing to stop edges
from crossing on it (e.g., the Internet, airline route maps, email networks). However, there are a
few important examples of networks that are planar. First of all, all trees are planar. For some
trees, such as river networks, this is obvious. Rivers never cross one another; they only flow
together. In other cases, such as the trees used in computer data structures, there is no obvious two-
dimensional surface onto which the network falls but it is planar nonetheless.

Among non-tree-like networks, some are planar for physical reasons. A good example is a road
network. Because roads are confined to the Earth’s surface they form a roughly planar network. It
does happen sometimes that roads meet without intersecting, one passing over the other on a
bridge, so that in fact, if one wishes to be precise, the road network is not planar. However, such
instances are rare (in the sense that there are far more places where roads intersect than there are
bridges where they don’t) and the network is planar to a good approximation.
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Figure 6.7: Two drawings of a planar graph. (a) A small planar graph with four vertices and six
edges. It is self-evident that the graph is planar, since in this depiction it has no edges that cross.
(b) The same graph redrawn with two of its edges crossing. Even though the edges cross, the graph
is still planar—a graph is planar if it can be drawn without crossing edges.

Another example is the network of shared borders between countries, states, or provinces—see
Fig. 6.8. We can take a map depicting any set of contiguous regions, represent each by a vertex,
and draw an edge between any two that share a border. It is easy to see that the resulting network
can always be drawn without crossing edges provided the regions in question are formed of
contiguous landmasses.

Networks of this type, representing regions on a map, play an important role in the four-color
theorem, a theorem that states that it is possible to color any set of regions on a two-dimensional
map, real or imagined, with at most four colors such that no two adjacent regions have the same
color, no matter how many regions there are or of what size or shape.2l By constructing the
network corresponding to the map in question, this problem can be converted into a problem of



coloring the vertices of a planar graph in such a way that no two vertices connected by an edge
have the same color. The number of colors required to color a graph in this way is called the
chromatic number of the graph and many mathematical results are known about chromatic
numbers. The proof of the four-color theorem—the proof that the chromatic number of a planar
graph is always four or less—is one of the triumphs of traditional graph theory and was first given
by Appel and Haken [20-22] in 1976 after more than a hundred years of valiant effort within the
mathematics community.28

Figure 6.8: Graph of the adjacencies of the lower 48 United States. In this network each of the
lower 48 states in the US is represented as a vertex and there is an edge between any two vertices
if the corresponding states share a border. The resulting graph is planar, and indeed any set of
states, countries, or other regions on a two-dimensional map can be turned into a planar graph in
this way.

An important question that arises in graph theory is how to determine, given a particular
network, whether that network is planar or not. For a small network it is a straightforward matter
to draw a picture and play around with the positions of the vertices to see if one can find an
arrangement in which no edges cross, but for a large network this is impractical and a more general
method of determining planarity is needed. Luckily a straightforward one exists. We will only
describe the method here, not prove why it works, since the proof is long and technical and not
particularly relevant to the study of real-world networks. For those interested in seeing a proof, one
is given by West [324].

Figure 6.9 shows two small networks, conventionally denoted K. and UG, that are definitely not
planar.22 Neither of these networks can be drawn without edges crossing. It immediately follows
that any network that contains a subset of vertices, or subgraph, in the form of K, or UG, is also

not planar.



An expansion of K..

{a) Ks (b} LIG

Figure 6.9: The fundamental non-planar graphs K.and UG employed in Kuratowski’s

theorem. These two small graphs are non-planar and Kuratowski’s theorem states that any non-
planar graph contains at least one subgraph that is an expansion of K, or UG.

An expansion is a network derived by adding extra vertices in the middle of edges in another
network. No such added vertices, however numerous, will ever make a non-planar network planar,
so it is also the case that any expansion of K or UG is non-planar, and hence that any network

containing an expansion of K; or UG, is also non-planar.

Kuratowski’s theorem (sometimes also called the Kuratowski reduction theorem) states that the
converse is also true:

Every non-planar network contains at least one subgraph that is an expansion of K, or UG.

“Expansion” should be taken here to include the null expansions, i.e., the graphs K, and UG

themselves.

This theorem, first proved by Pontryagin in 1927 but named after Kuratowski who gave an
independent proof a few years later,&2 provides us with a way of determining whether a graph is
planar. If it contains a subgraph that is an expansion of K, or UG it is not, otherwise it is.

Kuratowski’s theorem is not, however, particularly useful for the analysis of real-world
networks, because such networks are rarely precisely planar. (And if they are, then, as in the case
of the shared border network of countries or states, it is usually clear for other reasons that they are



planar and hence Kuratowski’s theorem is unnecessary.) More often, like the road network, they
are very nearly planar, but have a few edge crossings somewhere in the network. For such a
network, Kuratowski’s theorem would tell us, correctly, that the network was not planar, but we
would be missing the point.

What we would really like is some measure of the degree of planarity of a network, a measure
that could tell us, for example, that the road network of a country is 99% planar, even though there
are a few bridges or tunnels here and there. One possible such measure is the minimum number of
edge crossings with which the network can be drawn. This however would be a difficult measure
to determine since, at least in the simplest approach, its evaluation would require us to try every
possible way of drawing the network. Perhaps another approach would be to look at the number of
subgraphs in a network that are expansions of K. or UG. So far, however, no widely accepted

metric for degree of planarity has emerged. If such a measure were to gain currency it might well
find occasional use in the study of real-world networks.



6.9 DEGREE

The degree of a vertex in a graph is the number of edges connected to it. We will denote the degree
of vertex i by k,. For an undirected graph of n vertices the degree can be written in terms of the

adjacency matrix as

(6.19)

Every edge in an undirected graph has two ends and if there are m edges in total then there are
2m ends of edges. But the number of ends of edges is also equal to the sum of the degrees of all the
vertices, SO

2 ik,-,
i=1

(6.20)

or

(6.21)

a result that we will use many times throughout this book.
The mean degree c of a vertex in an undirected graph is

(6.22)



and combining this with Eq. (6.20) we get

2m

(6.23)

This relation too will come up repeatedly throughout the book.
The maximum possible number of edges in a simple graph (i.e., one with no multiedges or self-

Iy 1 .
edges) is (2} = zn(n ”'. The connectance or density p of a graph is the fraction of these edges

that are actually present:
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(6.24)

where we have made use of Eq. (6.23).22 The density lies strictly in the range 0 < p < 1. Most of
the networks we are interested in are sufficiently large that Eq. (6.24) can be safely approximated
as p =c/n.

A network for which the density p tends to a constant as n — o is said to be dense. In such a
network the fraction of non-zero elements in the adjacency matrix remains constant as the network
becomes large. A network in which p — 0 as n — oo is said to be sparse, and the fraction of non-
zero elements in the adjacency matrix also tends to zero. In particular, a network is sparse if ¢
tends to a constant as n becomes large. These definitions of dense and sparse networks can,
however, be applied only if one can actually take the limit » — oo, which is fine for theoretical
model networks but doesn’t work in most practical situations. You cannot for example take the
limit as an empirical metabolic network or food web becomes large—you are stuck with the
network nature gives you and it can’t easily be changed.

In some cases real-world networks do change their sizes and by making measurements for
different sizes we can make a guess as to whether they are best regarded as sparse or dense. The
Internet and the World Wide Web are two examples of networks whose growth over time allows
us to say with some conviction that they are best regarded as sparse. In other cases there may be
independent reasons for regarding a network to be sparse or dense. In a friendship network, for
instance, it seems unlikely that the number of a person’s friends will double solely because the
population of the world doubles. How many friends a person has is more a function of how much
time they have to devote to the maintenance of friendships than it is a function of how many
people are being born. Friendship networks therefore are usually regarded as sparse.

In fact, almost of all of the networks we consider in this book are considered to be sparse
networks. This will be important when we look at the expected running time of network algorithms
in Chapters 9 to 11 and when we construct mathematical models of networks in Chapters 12 to 15.
One possible exception to the pattern is food webs. Studies comparing ecosystems of different
sizes seem to show that the density of food webs is roughly constant, regardless of their size,
indicating that food webs may be dense networks [102, 210].

Occasionally we will come across networks in which all vertices have the same degree. In graph
theory, such networks are called regular graphs. A regular graph in which all vertices have degree



k is sometimes called k-regular. An example of a regular graph is a periodic lattice such as a
square or triangular lattice. On the square lattice, for instance, every vertex has degree four.
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An infinite square lattice is an example of a 4-regular graph.

Vertex degrees are more complicated in directed networks. In a directed network each vertex
has two degrees. The in-degree is the number of ingoing edges connected to a vertex and the out-
degree is the number of outgoing edges. Bearing in mind that the adjacency matrix of a directed
network has element 4, = 1 if there is an edge from to i, in- and out-degrees can be written
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The number of edges m in a directed network is equal to the total number of ingoing ends of edges
at all vertices, or equivalently to the total number of outgoing ends of edges, so
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(6.26)

Thus the mean in-degree ¢, and the mean out-degree c_, of every directed network are equal:
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(6.27)

For simplicity we will just denote both by ¢, and combining Egs. (6.26) and (6.27) we get

m
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n

(6.28)

Note that this differs by a factor of two from the equivalent result for an undirected network, Eq.
(6.23).



6.10 PATHS

A path in a network is any sequence of vertices such that every consecutive pair of vertices in the
sequence is connected by an edge in the network. In layman’s terms a path is a route across the
network that runs from vertex to vertex along the edges of the network. Paths can be defined for
both directed and undirected networks. In a directed network, each edge traversed by a path must

be traversed in the correct direction for that edge. In an undirected network edges can be traversed
in either direction.

A path of length three in a network.

In general a path can intersect itself, visiting again a vertex it has visited before, or even running
along an edge or set of edges more than once. Paths that do not intersect themselves are called self-
avoiding paths and are important in some areas of network theory. Geodesic paths and
Hamiltonian paths are two special cases of self-avoiding paths that we will study in this book.

The length of a path in a network is the number of edges traversed along the path (not the
number of vertices). Edges can be traversed more than once, and if they are they are counted
separately each time they are traversed. Again in layman’s terms, the length of a path is the
number of “hops” the path makes from vertex to adjacent vertex.

It is straightforward to calculate the number of paths of a given length » on a network. For either
a directed or an undirected simple graph the element 4 is 1 if there is an edge from vertex j to

vertex i, and 0 otherwise. (We will consider only simple graphs for now, although the
developments generalize easily to non-simple graphs.) Then the product 4,4, is 1 if there is a path

of length 2 from j to 7 via &, and 0 otherwise. And the total number NI of paths of length two from
j to i, via any other vertex, is
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where [. . .] . denotes the ijth element of a matrix.
Similarly the product 4,4,,4, is 1 if there is a path of length three from j to i via / and £, in that
order, and 0 otherwise, and hence the total number of paths of length three is

N = ¥ AxAudy = [AY). .

R 4
(6.30)

Generalizing to paths of arbitrary length r, we see that
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(6.31)

A special case of this result is that the number of paths of length r that start and end at the same
vertex i is [A’],. These paths are just loops in the network, what we called “cycles” in our

discussion of acyclic graphs in Section 6.1. The total number L_of loops of length » anywhere in a
network is the sum of this quantity over all possible starting points i:
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(6.32)

Note that this expression counts separately loops consisting of the same vertices in the same order
but with different starting points.& Thus the loop 1 — 2 — 3 — 1 is considered different from the
loop 2 — 3 — 1 — 2. The expression also counts separately loops that consist of the same vertices
but traversed in opposite directions, so that | -2 —3 — 1l and 1 — 3 — 2 — 1 are distinct.

Equation (6.32) can also be expressed in terms of the eigenvalues of the adjacency matrix. Let
us consider the case of an undirected graph first. In this case, the adjacency matrix is symmetric,
which means that it has » real non-negative eigenvalues, the eigenvectors have real elements, and
the matrix can always be written in the form A = UKU7, where U is the orthogonal matrix of
eigenvectors and K is the diagonal matrix of eigenvalues. Then A7 = (UKU?y = UK"U7 and the
number of loops is

L, = Tr(UK'UT) = Tr(UTUK") = Tr K"
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where «, is the ith eigenvalue of the adjacency matrix and we have made use of the fact that the

trace of a matrix product is invariant under cyclic permutations of the product.

For directed networks the situation is more complicated. In some cases the same line of proof
works and we can again demonstrate that Eq. (6.33) is true, but in other cases the proof breaks
down. Recall that directed graphs have, in general, asymmetric adjacency matrices, and some
asymmetric matrices cannot be diagonalized.2 An example is the matrix

1 1
(H l)' which describes the graph | &=+ 1.

This matrix has only a single (right) eigenvector (1, 0), and thus one cannot form an orthogonal
matrix of eigenvectors with which to diagonalize it. Nonetheless Eq. (6.33) is still true even in
such cases, but a different method of proof is needed, as follows.

Every real matrix, whether diagonalizable or not, can be written in the form A = QTQ?, where
Q is an orthogonal matrix and T is an upper triangular matrix. This form is called the Schur
decomposition of A [217].

Since T is triangular, its diagonal elements are its eigenvalues. Furthermore those eigenvalues
are the same as the eigenvalues of A. To see this, let X be a right eigenvector of A with eigenvalue
k. Then QTQ’™X = AX = kX, and multiplying throughout by Q7, bearing in mind that Q is
orthogonal, gives

TQ x — xQ'x,

(6.34)

and hence QX is an eigenvector of T with the same eigenvalue x as the adjacency matrix.&
Then

L, = TrA" = Tr{QTQ") = TH{QTQT ) =Tr T

L K7,

(6.35)

the final equality following because the diagonal elements of any power of a triangular matrix T
are T's diagonal elements raised to the same power.

This demonstration works for any graph, whatever the properties of its adjacency matrix, and
hence Eq. (6.35) is always true. We used this result in Eq. (6.14) to show that the graph described
by a nilpotent adjacency matrix (i.e., a matrix whose eigenvalues are all zero) must be acyclic. (All
such matrices are non-diagonalizable, so one must use Eq. (6.35) in that case.)

Since the adjacency matrix of a directed graph is, in general, asymmetric it may have complex



eigenvalues. But the number of loops L. above is nonetheless always real, as it must be. The

eigenvalues of the adjacency matrix are the roots of the characteristic polynomial det(xl — A),
which has real coefficients, and all roots of such a polynomial are either themselves real or come
in complex-conjugate pairs. Thus, while there may be complex terms in the sum in Eq. (6.33),
each such term is complemented by another that is its complex conjugate and the sum itself is
always real.



6.10.1 GEODESIC PATHS

A geodesic path, also called simply a shortest path, is a path between two vertices such that no
shorter path exists:

A geodesic path of length two between two vertices.

The length of a geodesic path, often called the geodesic distance or shortest distance , is thus the
shortest network distance between the vertices in question. In mathematical terms, the geodesic
distance between vertices i and j is the smallest value of r such that [AT]; > 0. In practice however

there are much better ways of calculating geodesic distances than by employing this formula. We
will study some of them in Section 10.3.

It is possible for there to be no geodesic path between two vertices if the vertices are not
connected together by any route though the network (i.e., if they are in different “components”—
see Section 6.11). In this case one sometimes says that the geodesic distance between the vertices
is infinite, although this is mostly just convention—it doesn’t really mean very much beyond the
fact that the vertices are not connected.

Geodesic paths are necessarily self-avoiding. If a path intersects itself then it contains a loop and
can be shortened by removing that loop while still connecting the same start and end points, and
hence self-intersecting paths are never geodesic paths.

Figure 6.10: Vertices i and j have three geodesic paths between them of length three.

Geodesic paths are not necessarily unique, however. It is perfectly possible to have two or more



paths of equal length between a given pair of vertices. The paths may even overlap along some
portion of their length—see Fig. 6.10.

The diameter of a graph is the length of the longest geodesic path between any pair of vertices
in the network for which a path actually exists. (If the diameter were merely the length of the
longest geodesic path then it would be formally infinite in a network with more than one
component if we adopted the convention above that vertices connected by no path have infinite
geodesic distance. One can also talk about the diameters of the individual components separately,
this being a perfectly well-defined concept whatever convention we adopt for unconnected
vertices.)



6.10.2 EULERIAN AND HAMILTONIAN PATHS

An Eulerian path is a path that traverses each edge in a network exactly once. A Hamiltonian path
is a path that visits each vertex exactly once. A network can have one or many Eulerian or
Hamiltonian paths, or none. A Hamiltonian path is by definition self-avoiding, but an Eulerian
path need not be. Indeed if there are any vertices of degree greater than two in a network an
Eulerian path will have to visit those vertices more than once in order to traverse all their edges.

Examples of Eulerian and Hamiltonian paths in a small network.

Eulerian paths form the basis of one of the oldest proofs in graph theory, which dates from
1736. Around that time the great mathematician Leonard Euler became interested the mathematical
riddle now known as the Konigsberg Bridge Problem. The city of Kénigsberg (now Kaliningrad)
was built on the banks of the river Pregel, and on two islands that lie midstream. Seven bridges
connected the land masses, as shown in Fig. 6.11a. The riddle asked, “Does there exist any
walking route that crosses all seven bridges exactly once each?” Legend has it that the people of
Konigsberg spent many fruitless hours trying to find such a route, before Euler proved the
impossibility of its existence.&Z The proof, which perhaps seems rather trivial now, but which
apparently wasn’t obvious in 1736, involved constructing a network (technically a multigraph)
with four vertices representing the four land masses and seven edges joining them in the pattern of
the Konigsberg bridges (Fig. 6.11b). Then the bridge problem becomes a problem of finding an
Eulerian path on this network (and indeed the Eulerian path is named in honor of Euler for his
work on this problem). Euler observed that, since any Eulerian path must both enter and leave
every vertex it passes through except the first and last, there can at most be two vertices in the
network with odd degree if such a path is to exist. Since all four vertices in the Kdnigsberg
network have odd degree, the bridge problem necessarily has no solution.
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Figure 6.11: The Konigsberg bridges. (a) In the eighteenth century the Prussian city of
Konigsberg, built on four landmasses around the river Pregel, was connected by seven bridges as
shown. (b) The topology of the landmasses and bridges can be represented as a multigraph with
four vertices and seven edges.

More precisely a network can have an Eulerian path only if there are exactly two or zero vertices
of odd degree—zero in the case where the path starts and ends at the same vertex. This is not a
sufficient condition for an Eulerian path, however. One can easily find networks that satisfy it and
yet have no Eulerian path. The general problem of finding either an Eulerian or Hamiltonian path
on a network, or proving that none exists, is a hard one and significant work is still being done on
particular cases.

Eulerian and Hamiltonian paths have a number of practical applications in computer science, in
job sequencing, “garbage collection,” and parallel programming [81]. A Hamiltonian path problem
was also, famously, the first problem solved using a DNA-based computer [7].



6.11 COMPONENTS

It is possible for there to be no path at all between a given pair of vertices in a network. The
network shown in Fig. 6.12, for example, is divided into two subgroups of vertices, with no
connections between the two, so that there is no path from any vertex in the left subgroup to any
vertex in the right. For instance, there is no path from the vertex labeled A to the vertex labeled B.
A network of this kind is said to be disconnected. Conversely, if there is a path from every vertex
in a network to every other the network is connected.

The subgroups in a network like that of Fig. 6.12 are called components. Technically a
component is a subset of the vertices of a network such that there exists at least one path from each
member of that subset to each other member, and such that no other vertex in the network can be
added to the subset while preserving this property. (Subsets like this, to which no other vertex can
be added while preserving a given property, are called maximal subsets.) The network in Fig. 6.12
has two components of three and four vertices respectively. A connected network necessarily has
only one component. A singleton vertex that is connected to no others is considered to be a
component of size one, and every vertex belongs to exactly one component.

The adjacency matrix of a network with more than one component can be written in block
diagonal form, meaning that the non-zero elements of the matrix are confined to square blocks
along the diagonal of the matrix, with all other elements being zero:

ﬁ 0

(6.36)

Note, however, that the vertex labels must be chosen correctly to produce this form. The visual
appearance of blocks in the adjacency matrix depends on the vertices of each component being
represented by adjacent rows and columns and choices of labels that don’t achieve this will
produce non-block-diagonal matrices, even though the choice of labels has no effect on the
structure of the network itself. Thus, depending on the labeling, it may not always be immediately
obvious from the adjacency matrix that a network has separate components. There do, however,
exist computer algorithms, such as the “breadth-first search” algorithm described in Section 10.3,
that can take a network with arbitrary vertex labels and quickly determine its components.
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Figure 6.12: A network with two components. This undirected network contains two
components of three and four vertices respectively. There is no path between pairs of vertices like
A and B that lie in different components.



6.11.1 COMPONENTS IN DIRECTED NETWORKS

When we look at directed networks the definition of components becomes more complicated. The
situation is worth looking at in some detail, because it assumes some practical importance in
networks like the World Wide Web. Consider the directed network shown in Fig. 6.13. If we
ignore the directed nature of the edges, considering them instead to be undirected, then the network
has two components of four vertices each. In the jargon of graph theory these are called weakly
connected components. Two vertices are in the same weakly connected component if they are
connected by one or more paths through the network, where paths are allowed to go either way
along any edge.

In many practical situations, however, this is not what we care about. For example, the edges in
the World Wide Web are directed hyperlinks that allow Web users to surf from one page to
another, but only in one direction. This means it is possible to reach one web page from another by
surfing only if there is a directed path between them, i.e., a path in which we follow edges only in
the forward direction. It would be useful to define components for directed networks based on such
directed paths, but this raises some problems. It is certainly possible for there to be a directed path
from vertex A to vertex B but no path back from B to A. Should we then consider A and B to be
connected? Are they in the same component or not?

Figure 6.13: Components in a directed network. This network has two weakly connected
components of four vertices each, and five strongly connected components (shaded).

Clearly there are various answers one could give to these questions. One possibility is that we
define A and B to be connected if and only if there exists both a directed path from A to B and a
directed path from B to A. A and B are then said to be strongly connected. We can define
components for a directed network using this definition of connection and these are called strongly
connected components. Technically, a strongly connected component is a maximal subset of
vertices such that there is a directed path in both directions between every pair in the subset. The
strongly connected components of the network in Fig. 6.13 are highlighted by the shaded regions.
Note that there can be strongly connected components consisting of just a single vertex and, as
with the undirected case, each vertex belongs to exactly one strongly connected component. Note
also that every strongly connected component with more than one vertex must contain at least one
cycle. Indeed every vertex in such a component must belong to at least one cycle, since there is by
definition a directed path from that vertex to every other in the component and a directed path back
again, and the two paths together constitute a cycle. (A corollary of this observation is that acyclic
directed graphs have no strongly connected components with more than one vertex, since if they
did they wouldn’t be acyclic.)



Strongly and weakly connected components are not the only useful definitions of components in
a directed network. On the Web it could be useful to know what pages you can reach by surfing
from a given starting point, but you might not care so much whether it’s possible to surf back the
other way. Considerations of this kind lead us to define the out-component, which is the set of
vertices that are reachable via directed paths starting at a specified vertex A, and including A itself.

An out-component has the property that edges connecting it to other vertices (ones not in the
out-component) only point inward towards the members of component, and never outward (since
if they pointed outward then the vertices they connected to would by definition be members of the
out-component).

Note that the members of an out-component depend on the choice of the starting vertex. Choose
a different starting vertex and the set of reachable vertices may change. Thus an out-component is
a property of the network structure and the starting vertex, and not (as with strongly and weakly
connected components) of the network structure alone. This means, among other things, that a
vertex can belong to more than one different out-component. In Fig. 6.14, for instance, we show
the out-components of two different starting vertices, A and B. Vertices X and Y belong to both.

A few other points are worth noticing. First, it is self-evident that all the members of the
strongly connected component to which a vertex A belongs are also members of A’s out-
component. Furthermore, all vertices that are reachable from A are necessarily also reachable from
all the other vertices in the strongly connected component. Thus it follows that the out-components
of all members of a strongly connected component are identical. It would be reasonable to say that
out-components really “belong” not to individual vertices, but to strongly connected components.
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Figure 6.14: Out-components in a directed network. (a) The out-component of vertex A, which
IS the subset of vertices reachable by directed paths from A. (b) The out-component of vertex B.
Vertices X and Y belong to both out-components.

Very similar arguments apply to vertices from which a particular vertex can be reached. The in-
component of a specified vertex A is the set of all vertices from which there is a directed path to A,
including A itself. In-components depend on the choice of the specified vertex, and a vertex can
belong to more than one in-component, but all vertices in the same strongly connected component
have the same in-component. Furthermore, the strongly connected component to which a vertex
belongs is a subset of its in-component, and indeed a vertex that is in both the in- and out-
components of A is necessarily in the same strongly connected component as A (since paths exist
in both directions) and hence A’s strongly connected component is equal to the intersection of its
in- and out-components.



The in- and out-components of a vertex A in a small directed network.



6.12 INDEPENDENT PATHS, CONNECTIVITY, AND CUT SETS

A pair of vertices in a network will typically be connected by many paths of many different
lengths. These paths will usually not be independent however. That is, they will share some
vertices or edges, as in Fig. 6.10 for instance (page 140). If we restrict ourselves to independent
paths, then the number of paths between a given pair of vertices is much smaller. The number of
independent paths between vertices gives a simple measure of how strongly the vertices are
connected to one another, and has been the topic of much study in the graph theory literature.
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Figure 6.15: Edge independent paths. (a) There are two edge-independent paths from A to B in
this figure, as denoted by the arrows, but there is only one vertex-independent path, because all
paths must pass through the center vertex C. (b) The edge-independent paths are not unique; there
are two different ways of choosing two independent paths from A to B in this case.

There are two species of independent path: edge-independent and vertex-independent. Two
paths connecting a given pair of vertices are edge-independent if they share no edges. Two paths
are vertex-independent (or node-independent) if they share no vertices other than the starting and
ending vertices. If two paths are vertex-independent then they are also edge-independent, but the
reverse is not true: it is possible to be edge-independent but not vertex-independent. For instance,
the network shown in Fig. 6.15a has two edge-independent paths from A to B, as denoted by the
arrows, but only one vertex-independent path—the two edge-independent paths are not vertex-
independent because they share the intermediate vertex C.

Independent paths are also sometimes called disjoint paths, primarily in the mathematical
literature. One also sees the terms edge-disjoint and vertexdisjoint , describing edge and vertex
independence.

The edge- or vertex-independent paths between two vertices are not necessarily unique. There
may be more than one way of choosing a set of independent paths. For instance Fig. 6.15b shows
the same network as Fig. 6.15a, but with the two paths chosen a different way, so that they cross
over as they pass through the central vertex C.

It takes only a moment’s reflection to convince oneself that there can be only a finite number of
independent paths between any two vertices in a finite network. Each path must contain at least
one edge and no two paths can share an edge, so the number of independent paths cannot exceed
the number of edges in the network.

The number of independent paths between a pair of vertices is called the connectivity of the
vertices.8 If we wish to be explicit about whether we are considering edge- or vertex-
independence, we refer to edge or vertex connectivity . The vertices A and B in Fig. 6.15 have edge
connectivity 2 but vertex connectivity 1 (since there is only one vertex-independent path between



them).

The connectivity of a pair of vertices can be thought of as a measure of how strongly connected
those vertices are. A pair that have only a single independent path between them are perhaps more
tenuously connected than a pair that have many paths. This idea is sometimes exploited in the
analysis of networks, for instance in algorithmic methods for discovering clusters or communities
of strongly linked vertices within networks [122].

Connectivity can also be visualized in terms of “bottlenecks” between vertices. Vertices A and
B in Fig. 6.15, for instance, are connected by only one vertex-independent path because vertex C
forms a bottleneck through which only one path can go. This idea of bottlenecks is formalized by
the notion of cut sets as follows.

Consider an undirected network. (In fact the developments here apply equally to directed ones,
but for simplicity let us stick with the undirected case for now.) A cut set, or more properly a
vertex cut set, is a set of vertices whose removal will disconnect a specified pair of vertices. For
example, the central vertex C in Fig. 6.15 forms a cut set of size 1 for the vertices A and B. If it is
removed, there will be no path from A to B. There are also other cut sets for A and B in this
network, although all the others are larger than size 1.

An edge cut set is the equivalent construct for edges—it is a set of edges whose removal will
disconnect a specified pair of vertices.

A minimum cut set is the smallest cut set that will disconnect a specified pair of vertices. In Fig.
6.15 the single vertex C is a minimum vertex cut set for vertices A and B. A minimum cut set need
not be unique. For instance, there is a variety of minimum vertex cut sets of size two between the
vertices A and B in this network:

W X

{W,Y}, {W,Z}, {X,Y}, and {X,Z} are all minimum cut sets for this network. (There are also many
different minimum edge cut sets.) Of course all the minimum cut sets must have the same size.

An important early theorem in graph theory addresses the size of cut sets. Menger’s theorem
states:

If there is no cut set of size less than n between a given pair of vertices, then there are at least
n independent paths between the same vertices.

The theorem applies both to edges and to vertices and was first proved by Karl Menger [216] for
the vertex case, although many other proofs have been given since. A simple one can be found in
Ref. [324].

To understand why Menger’s theorem is important, consider the following argument. If the
minimum vertex cut set between two vertices has size n, Menger’s theorem tells us that there must
be at least n vertex-independent paths between those vertices. That is, the number of vertex-
independent paths is greater than or equal to the size of the minimum cut set. Conversely, if we
know there to be exactly n vertex-independent paths between two vertices, then, at the very least,
we have to remove one vertex from each path in order to disconnect the two vertices, so the size of
the minimum cut set must be at least n. We thus conclude that the number of vertex-independent
paths must be both greater than or equal to and less than or equal to the size of the minimum cut
set, which can only be true if the two are in fact equal. Thus Menger’s theorem implies that:

The size of the minimum vertex cut set that disconnects a given pair of vertices in a network



is equal to the vertex connectivity of the same vertices.

Given that Menger’s theorem also applies for edges, a similar argument can be used to show that
the same result also applies for edge cut sets and edge connectivity.

The edge version of Menger’s theorem has a further corollary that will be of some importance to
us when we come to study computer algorithms for analyzing networks. It concerns the idea of
maximum flow. Imagine a network of water pipes in the shape of some network of interest. The
edges of the network correspond to the pipes and the vertices to junctions between pipes. Suppose
that there is a maximum rate r, in terms of volume per unit time, at which water can flow through
any pipe. What then is the maximum rate at which water than can flow through the network from
one vertex, A, to another, B? The answer is that this maximum flow is equal to the number of
edge-independent paths times the pipe capacity r.

We can construct a proof of this result starting from Menger’s theorem. First, we observe that if
there are n independent paths between A and B, each of which can carry water at rate r, then the
network as a whole can carry a flow of at least nr between A and B, i.e., nr is a lower bound on the
maximum flow.

At the same time, by Menger’s theorem, we know that there exists a cut set of n edges between
A and B. If we push the maximum flow (whatever it is) through the network from A to B and then
remove one of the edges in this cut set, the maximum flow will be reduced by at most r, since that
is the maximum flow an edge can carry. Thus if we remove all n edges in the cut set one by one,
we remove at most nr of flow. But, since the cut set disconnects the vertices A and B, this removal
must stop all of the flow. Hence the total capacity is at most nr, i.e., nr is an upper bound on the
maximum flow.

Thus nr is both an upper and a lower bound on the maximum flow, and hence the maximum
flow must in fact be exactly equal to nr.

This in outline is a proof of the max-flow/min-cut theorem, in the special case in which each
pipe can carry the same fixed flow. The theorem says that the maximum flow between two vertices
is always equal to the size of the minimum cut set times the capacity of a single pipe. The full
max-flow/min-cut theorem applies also to weighted networks in which individual pipes can have
different capacities. We look at this more general case in the following section.

In combination, Menger’s theorem for edges and the max-flow/min-cut theorem show that for a
pair of vertices in an undirected network three quantities are all numerically equal to each other:
the edge connectivity of the pair (i.e., the number of edge-independent paths connecting them), the
size of the minimum edge cut set (i.e., the number of edges that must be removed to disconnect
them), and the maximum flow between the vertices if each edge in the network can carry at most
one unit of flow. Although we have stated these results for the undirected case, nothing in any of
the proofs demands an undirected network, and these three quantities are equal for directed
networks as well.

The equality of the maximum flow, the connectivity, and the cut set size has an important
practical consequence. There are simple computer algorithms, such as the augmenting path
algorithm of Section 10.5.1, that can calculate maximum flows quite quickly (in polynomial time)
for any given network, and the equality means that we can use these same algorithms to quickly
calculate a connectivity or the size of a cut set as well. Maximum flow algorithms are now the
standard numerical method for connectivities and cut sets.



6.12.1 MAXIMUM FLOWS AND CUT SETS ON WEIGHTED NETWORKS

As discussed in Section 6.3, networks can have weights on their edges that indicate that some
edges are stronger or more prominent than others. In some cases these weights can represent
capacities of the edges to conduct a flow of some kind. For example, they might represent
maximum traffic throughput on the roads of a road network or maximum data capacity of Internet
lines. We can ask questions about network flows on such networks similar to those we asked in the
last section, but with the added twist that different edges can now have different capacities. For
example, we can ask what the maximum possible flow is between a specified pair of vertices. We
can also ask about cut sets. An edge cut set is defined as before to be a set of edges whose removal
from the network would disconnect the specified pair of vertices. A minimum edge cut set is
defined as being a cut set such that the sum of the weights on the edges of the set has the minimum
possible value. Note that it is not now the number of edges that is minimized, but their weight.
Nonetheless, this definition is a proper generalization of the one we had before—we can think of
the unweighted case as being a special case of the weighted one in which the weights on all edges
are equal, and the sum of the weights in the cut set is then simply proportional to the number of
edges in the set.

Maximum flows and minimum cut sets on weighted networks are related by the max-flow/min-
cut theorem in its most general form:

The maximum flow between a given pair of vertices in a network is equal to the sum of the
weights on the edges of the minimum edge cut set that separates the same two vertices.

We can prove this theorem using the results of the previous section.&

Consider first the special case in which the capacities of all the edges in our network are integer
multiples of some fixed capacity r. We then transform our network by replacing each edge of
capacity kr (with k integer) by k parallel edges of capacity r each. For instance, if r = 1 we would

have something like this:

It is clear that the maximum flow between any two vertices in the transformed network is the
same as that between the corresponding vertices in the original. At the same time the transformed
network now has the form of a simple unweighted network of the type considered in Section 6.12,
and hence, from the results of that section, we can immediately say that the maximum flow in the
network is equal to the size in unit edges of the minimum edge cut set.

We note also that the minimum cut set on the transformed network must include either all or
none of the parallel edges between any adjacent pair of vertices; there is no point cutting one such
edge unless you cut all of the others as well—you have to cut all of them to disconnect the
vertices. Thus the minimum cut set on the transformed network is also a cut set on the original
network. And it is a minimum cut set on the original network, because every cut set on the original
network is also a cut set with the same weight on the transformed network, and if there were any
smaller cut set on the original network then there would be a corresponding one on the transformed
network, which, by hypothesis, there is not.




Thus the maximum flows on the two networks are the same, the minimum cuts are also the
same, and the maximum flow and minimum cut are equal on the transformed network. It therefore
follows that the maximum flow and minimum cut are equal on the original network.

This demonstrates the theorem for the case where all edges are constrained to have weights that
are integer multiples of r. This constraint can now be removed, however, by simply allowing r to
tend to zero. This makes the units in which we measure edge weights smaller and smaller, and in
the limit r — 0 the edges can have any weight—any weight can be represented as a (very large)
integer multiple of r—and hence the max-flow/min-cut theorem in the form presented above must
be generally true.

Again there exist efficient computer algorithms for calculating maximum flows on weighted
networks, so the max-flow/min-cut theorem allows us to calculate minimum cut weights
efficiently also, and this is now the standard way of performing such calculations.Z



6.13 THE GRAPH LAPLACIAN

Section 6.2 introduced an important quantity, the adjacency matrix, which captures the entire
structure of a network and whose matrix properties can tell us a variety of useful things about
networks. There is another matrix, closely related to the adjacency matrix but differing in some
important respects, that can also tell us much about network structure. This is the graph Laplacian.



6.13.1 DIFFUSION

Diffusion is, among other things, the process by which gas moves from regions of high density to
regions of low, driven by the relative pressure (or partial pressure) of the different regions. One
can also consider diffusion processes on networks, and such processes are sometimes used as a
simple model of spread across a network, such as the spread of an idea or the spread of a disease.
Suppose we have some commodity or substance of some kind on the vertices of a network and
there is an amount y, of it at vertex 7. And suppose that the commodity moves along the edges,
flowing from one vertex j to an adjacent one i at a rate C(y; — y,) where C is a constant called the
diffusion constant. That is, in a small interval of time the amount of fluid flowing fromj to i is C(y;

= ) dt. Then the rate at which y, is changing is given by

(6.37)

The adjacency matrix in this expression insures that the only terms appearing in the sum are those
that correspond to vertex pairs that are actually connected by an edge. Equation (6.37) works
equally well for both undirected and directed networks, but let us focus here on undirected ones.Zt
We will also consider our networks to be simple (i.e., to have at most a single edge between any
pair of vertices and no self-edges).

Splitting the two terms in Eq. (6.37), we can write

iy ) ) q
L{‘I_[‘l; L E -'q-,-l|'[|['l_l — L q','l- IE A..'., I : AI‘E |:{1I; = [I_.I.kl.
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(6.38)

where £, is the degree of vertex i as usual and we have made use of the result k, = 3 4,—see Eq.
(6.19). (And 9, is the Kronecker delta, which is 1 if / =/ and 0 otherwise.)
Equation (6.38) can be written in matrix form as

s

= == [}
1 CiA—D),



(6.39)

where y is the vector whose components are numbers y, A is the adjacency matrix, and D is the
diagonal matrix with the vertex degrees along its diagonal:

ky 00 -.-
ks Q0 oo
D 00k -
(6.40)
It is common to define the new matrix
L-=D-A,
(6.41)
so that Eq. (6.38) takes the form
dafs .
— 4 CLyr = 0,

di

(6.42)

which has the same form as the ordinary diffusion equation for a gas, except that the Laplacian
operator V2 that appears in that equation has been replaced by the matrix L. The matrix L is for
this reason called the graph Laplacian, although its importance stretches much further than just
diffusion processes. The graph Laplacian, as we will see, turns up in a variety of different places,
including random walks on networks, resistor networks, graph partitioning, and network
connectivity.22

Written out in full, the elements of the Laplacian matrix are

k; ifi=j
L ~1 if i # jand there is an edge (4, j},
] otherwise,

(6.43)



so it has the degrees of the vertices down its diagonal and a —1 element for every edge.
Alternatively we can write

L.'II ril."kn' - -"d‘.'_l-

(6.44)

We can solve the diffusion equation (6.42) by writing the vector i as a linear combination of the
eigenvectors V, of the Laplacian thus:

i) Er!,[r} Vi,

(6.45)

with the coefficients a(f) varying over time. Substituting this form into (6.42) and making use of
Lv, = AV, where 4, is the eigenvalue corresponding to the eigenvector v,, we get

du’r- ; )
E(m } Ca‘;ff‘)\fl (0.

(6.46)

But the eigenvectors of a symmetric matrix such as the Laplacian are orthogonal, and so, taking
the dot product of this equation with any eigenvector v, we get

d
= ", 0,
di A

(6.47)

for all 7, which has the solution

ai(t) = a;(0)e cue

(6.48)



Given an initial condition for the system, as specified by the quantities a,(0), therefore, we can

solve for the state at any later time, provided we know the eigenvalues and eigenvectors of the
graph Laplacian.



6.13.2 EIGENVALUES OF THE GRAPH LAPLACIAN

This is the first of many instances in which the eigenvalues of the Laplacian will arise, so it is
worth spending a little time understanding their properties. The Laplacian is a symmetric matrix,
and so has real eigenvalues. However, we can say more than this about them. In fact, as we now
show, all the eigenvalues of the Laplacian are also non-negative.

Consider an undirected network with n vertices and m edges and let us arbitrarily designate one
end of each edge to be end 1 and the other to be end 2. It doesn’t matter which end is which, only
that they have different labels.

Now let us define an m x n matrix B with elements as follows:

-] if end 2 of edge i is attached to vertex j,

H ifend 1 of edge i is attached to vertex j,
B“
0 otherwise.

(6.49)

Thus each row of the matrix has exactly one +1 and one —1 element.

The matrix B is called the edge incidence matrix. It bears some relation to, but is distinct from,
the incidence matrix for a bipartite graph defined in Section 6.6.

Now consider the sum B, B,.. If i # j, then the only non-zero terms in the sum will occur if

both B, and B, are non-zero, i.¢., if edge k connects vertices i and /, in which case the product will

have value —1. For a simple network, there is at most one edge between any pair of vertices and
hence at most one such non-zero term, so the value of the entire sum will be —1 if there is an edge
between i and j and zero otherwise.

If i = then the sum is b EI", 2 which has a term +1 for every edge connected to vertex i, so the
whole sum is just equal to the degree £, of vertex i.

Thus the sum }, B, B, is precisely equal to an element of the Laplacian ), B, B, = L,—the
diagonal terms L, are equal to the degrees &, and the off-diagonal terms L, are—1 if there is an
edge (7, /) and zero otherwise. (See Eq. (6.43).) In matrix form we can write

L= B'B,

(6.50)

where BT is the transpose of B.
Now let v, be an eigenvector of L with eigenvalue 4. Then

'l.’_.-'rBTBV, vTLv, f‘l.,.v,T'.r, A,



(6.51)

where we assume that the eigenvector Vv, is normalized so that its inner product with itself'is 1.
Thus any eigenvalue A, of the Laplacian is equal to (vIBT)(Bvi). But this quantity is itself just
the inner product of a real vector (Bv,) with itself. In other words, it is the sum of the squares of the

(real) elements of that vector and hence it cannot be negative. The smallest value it can have is
Zero:

A =0

(6.52)

for all 7.

This is an important physical property of the Laplacian. It means, for instance, that the solution,
Eq. (6.48), of the diffusion equation on any network contains only decaying exponentials or
constants and not growing exponentials, so that the solution tends to an equilibrium value as ¢t —
oo, rather than diverging.2

While the eigenvalues of the Laplacian cannot be negative, they can be zero, and in fact the
Laplacian always has at least one zero eigenvalue. Consider the vector 1 = (1,1,1,...). If we
multiply this vector by the Laplacian, the ith element of the result is given by

Y Lix1=Y (dki—Ai) =ki— L Aj=ki—k

0,

(6.53)

where we have made use of Egs. (6.19) and (6.44). In vector notation, L - 1 = 0. Thus the vector
1 is always an eigenvector of the graph Laplacian with eigenvalue zero.Z2 Since there are no
negative eigenvalues, this is the lowest of the eigenvalues of the Laplacian. Following convention,
we number the n eigenvalues of the Laplacian in ascending order: 4, </, < ... < 1,. So we always
have 4, = 0.

Note that the presence of a zero eigenvalue implies that the Laplacian has no inverse: the

determinant of the matrix is the product of its eigenvalues, and hence is always zero for the
Laplacian, so that the matrix is singular.



6.13.3 COMPONENTS AND THE ALGEBRAIC CONNECTIVITY

See the discussion of block diagonal matrices in Section 6.11.

Suppose we have a network that is divided up into ¢ different components of sizes n, n,, ..., n,. To
make the notation simple let us number the vertices of the network so that the first n, vertices are
those of the first component, the next n, are those of the second component, and so forth. With this
choice the Laplacian of the network will be block diagonal, looking something like this:

(6.54)

What is more, each block in the Laplacian is, by definition, the Laplacian of the corresponding
component: it has the degrees of the vertices in that component along its diagonal and —1 in each
position corresponding to an edge within that component. Thus we can immediately write down ¢
different vectors that are eigenvectors of L with eigenvalue zero: the vectors that have ones in all
positions corresponding to vertices in a single component and zero elsewhere. For instance, the
vector

y=i1LL,....0,00...),
\‘_'N-"_.‘I \‘_‘\f_"

H ones AOTOS

(6.55)

is an eigenvector with eigenvalue zero.

Thus in a network with ¢ components there are always at least ¢ eigenvectors with eigenvalue
zero. In fact, it can be shown that the number of zero eigenvalues is always exactly equal to the
number of components [324]. (Note that the vector 1 of all ones is just equal to the sum of the ¢
other eigenvectors, so it is not an independent eigenvector.) An important corollary of this result is
that the second eigenvalue of the graph Laplacian A, is non-zero if and only if the network is
connected, i.e., consists of a single component. The second eigenvalue of the Laplacian is called
the algebraic connectivity of the network.22 It will come up again in Section 11.5 when we look at
the technique known as spectral partitioning.



6.14 RANDOM WALKS

Another context in which the graph Laplacian arises is in the study of random walks on networks.
A random walk is a path across a network created by taking repeated random steps. Starting at
some specified initial vertex, at each step of the walk we choose uniformly at random between the
edges attached to the current vertex, move along the chosen edge to the vertex at its other end, and
repeat. Random walks are normally allowed to go along edges more than once, visit vertices more
than once, or retrace their steps along an edge just traversed. Self-avoiding walks, which do none
of these things, are also studied sometimes, but we will not discuss them here.

Random walks arise, for instance, in the random walk sampling method for social networks
discussed in Section 3.7 and in the random walk betweenness measure of Section 7.7.

Consider a random walk that starts at a specified vertex and takes 7 random steps. Let p(¥) be the

probability that the walk is at vertex i at time ¢. If the walk is at vertex j at time ¢ — 1, the
probability of taking a step along any particular one of the k; edges attached to j is 1/k;, so on an

undirected network p (¢) is given by

. il .
.FI"“JII L II} r;rl[ — ]_j:

(6.56)

or p(¢f) = AD'p(z — 1) in matrix form where p is the vector with elements p. and, as before, D is

the diagonal matrix with the degrees of the vertices down its diagonal.
There are a couple of other useful ways to write this relation. One is to define D' to be the
matrix with the square roots v #: of the degrees down the diagonal, so that

D ”:P'{.'ﬂ |_D' I..::AD |.-":J |_D !.-":F{#_ IL
(6.57)

This form is convenient in some situations because the matrix D"12AD~12 is a symmetric one. This

matrix is called the reduced adjacency matrix and has elements equal to 1/ VK&; if there is an edge
between i and j and zero otherwise. Equation (6.57) tells us that the vector D"?p gets multiplied
by one factor of the reduced adjacency matrix at each step of the random walk, and so the problem
of understanding the random walk can be reduced to one of understanding the effects of repeated
multiplication by a simple symmetric matrix.

For our purposes, however, we take a different approach. In the limit as ¢ — oo the probability
distribution over vertices is given by setting ¢ = oo: p, (00) = 34, p(0)/k;, or in matrix form:



p = AD "p_

(6.58)

Rearranging, this can also be written as

(I-AD )p = (D-A)D 'p-LD 'p-0.

(6.59)

Thus D~'p is an eigenvector of the Laplacian with eigenvalue 0.

On a connected network, for instance—one with only a single component—we know (Section
6.13.3) that there is only a single eigenvector with eigenvalue zero, the vector whose components
are all equal. Thus, D!p = al, where «a is a constant and 1 is the vector whose components are all
ones. Equivalently p = aD1, so that p, = ak. Then on a connected network the probability that a

random walk will be found at vertex 7 in the limit of long time is simply proportional to the degree
of that vertex. If we choose the value of a to normalize p, properly, this gives

(6.60)

where we have used Eq. (6.20).

The simple way to understand this result is that vertices with high degree are more likely to be
visited by the random walk because there are more ways of reaching them. We used Eq. (6.60) in
Section 3.7 in our analysis of the random-walk sampling method for social networks.

An important question about random walks concerns the first passage time. The first passage
time for a random walk from a vertex u to another vertex v is the number of steps before a walk
starting at u first reaches v. Since the walk is random, the first passage time between two vertices is
not fixed; if we repeat the random walk process more than once it can take different values on
different occasions. But we can ask for example what the mean first passage time is.

To answer this question, we modify our random walk slightly to make it into an absorbing
random walk. An absorbing walk is one that has one or more absorbing states, meaning vertices
that the walk can move to, but not leave again. We will consider just the simplest case of a single
absorbing vertex v. Any walk that arrives at vertex v must stay there ever afterwards, but on the
rest of the network the walk is just a normal random walk. We can answer questions about the first
passage time by considering the probability p (7) that a walk is at vertex v after a given amount of

time, since this is also the probability that the walk has a first passage time to v that is less than or
equal to 7. And the probability that a walk has first passage time exactly ¢ is p (f) — p (¢ — 1), which

means that the mean first passage time 7 is



£ =Y tpolt) = polt = 1)].

=0

(6.61)

To calculate the probability p (f) we could apply Eq. (6.56) (or (6.58)) repeatedly to find p(z)

and substitute the result into Eq. (6.61). Note, however, that since the random walk can move fo
vertex v but not away from it, the adjacency matrix A has elements 4, = 0 for all i but 4 ; can still

be non-zero. Thus in general A is asymmetric. Although we can work with such an asymmetric
matrix, the computations are harder than for symmetric matrices and in this case there is no need.
Instead we can use the following trick.

Consider Eq. (6.56) for any i # v:

k! ol "d'-" / . .IAnli .
pilt) L ';:';".”.‘U = 1) L, 'K_"Fr'l:f =1},

(6.62)

where the second equality applies since 4, = 0 and hence the terms with j = v don’t contribute to

the sum. But if i # v then there are no terms in Avj in the sum either. This allows us to write the
equation in the matrix form

p'() = A'D'p'(t-1),

(6.63)

where p’ is p with the vth element removed and A" and D’ are A and D with their vth row and

column removed. Note that A’ and D’ are symmetric matrices, since the rows and columns
containing the asymmetric elements have been removed. Iterating Eq. (6.63), we now get

p(t) = [AD]'p/(0).
(6.64)

Since we have removed the element p, from the vector p, we cannot calculate its value directly
using this equation, but we can calculate it indirectly by noting that } p(¢) = 1 at all times. Thus



polt) = 1— Ep;[{} 1—1-p'(t),

(6.65)

where again 1 = (1, 1, 1, ...). Using Eqgs. (6.61), (6.64), and (6.65) we then have a mean first
passage time of

=Y i1 [plt-1)—p'()] =1-[1-ADY] ' p'(0),

(6.66)

where I is the identity matrix and we have made use of the result that

it[M' oMY = [1- M|,

=0

(6.67)

for any matrix M (assuming the sum actually converges).
We can simplify Eq. (6.66) by writing

[1—A'D"! = DD —A'] = DL,

(6.68)

so that

T =1.D'L'"'.p'(0),

(6.69)

where the symmetric matrix L' is the graph Laplacian with the vth row and column removed. L'
is called the vth reduced Laplacian. Note that, even though, as we noted in Section 6.13.2, the
Laplacian has no finite inverse, the reduced Laplacian can have an inverse. The eigenvector (1, 1,
1, ...) whose zero eigenvalue causes the determinant of the Laplacian to be zero is, in general, not
an eigenvector of the reduced matrix.



For convenience, we now introduce the symmetric matrix A®, which is equal to L'! with a vth
row and column reintroduced having elements all zero:

0 ifi=vorj=rn,
[L' I]H ifi<vandj <o,
Al B & l]:' " ifi >vandj<up,
j L I]M_ | ifi<vandj>u,
2 Saals A ifi >vandj > o

(6.70)

Then we observe that for a walk starting at vertex u, the initial probability distribution p’(0) has all
elements 0 except the one corresponding to vertex u, which is 1. Thus, combining Egs. (6.69) and
(6.70), the mean first passage time for a random walk from u to v is given by

=Y kAD

(6.71)

where we have made use of the fact that the non-zero elements of the diagonal matrix D’ are the
degrees k;, of the vertices. Thus if we can calculate the inverse of the vth reduced Laplacian then a

sum over the elements in the uth column immediately gives us the mean first passage time for a
random walk from u to v. And sums over the other columns give us the first passage times from
other starting vertices to the same target vertex v—we get n first passage times from a single
matrix inversion.



6.14.1 RESISTOR NETWORKS

There are interesting mathematical connections between random walks on networks and the
calculation of current flows in networks of resistors. Suppose we have a network in which the
edges are identical resistors of resistance R and the vertices are junctions between resistors, as
shown in Fig. 6.16, and suppose we apply a voltage between two vertices S and t such that a
current | flows from s to t through the network. What then is the current flow through any given
resistor in the network?

Figure 6.16: A resistor network with applied voltage. A network in which the edges are
resistors and the vertices are electrical junctions between them, with a voltage applied between
vertices S and t so as to generate a total current .

The currents in the network obey Kirchhoff’s current law, which is essentially a statement that
electricity is conserved, so that the net current flowing in or out of any vertex is zero. Let V, be the

voltage at vertex i, measured relative to any convenient reference potential. Then Kirchhoff’s law
says that

_4“_-;.._';. =i
R

(6.72)

where |, represents any current injected into vertex i by an external current source. In our case
this external current is non-zero only for the two vertices S and t connected to the external voltage:

+1 fori — &,
Ii —1 fori = t,

0 otherwise.



(6.73)

(In theory there’s no reason why one could not impose more complex current source arrangements
by applying additional voltages to the network and making more elements |, non-zero, but let us

stick to our simple case in this discussion.)

Noting that 3 A; = k;, Eq. (6.72) can also be written as kV— >;A;V; =R, or

Z(i‘ji:k: -'d!.ll:lv." R-r.'-

(6.74)

which in matrix form is

LV = RI,

(6.75)

where L. = D - A is once again the graph Laplacian.

As discussed in Section 6.13.2, the Laplacian has no inverse because it always has at least one
eigenvalue that is zero, so we cannot simply invert Eq. (6.75) to get the voltage vector V. We can,
however, solve for V by once again making use of the reduced Laplacian of Section 6.14.

The reason why we cannot invert Eq. (6.75) is that the equation does not in fact fix the absolute
value of the voltages V,. We can add any multiple of the vector 1 = (1, 1, 1, ...) to the solution of

this equation and get another solution, since 1 is an eigenvector of L with eigenvalue zero:

L(V+4+cl)=LV+L1=LV=RL

(6.76)

In physical terms these different solutions correspond to different choices of the reference potential
against which we measure our voltages. The actual currents flowing around the system are
identical no matter what reference potential we choose. If we fix our reference potential at a
particular value, then we will fix the solution for the voltages as well, and our equation for V will
become solvable.

Let us choose, arbitrarily, to set our reference potential equal to the potential at the target vertex
t where the current exits the network. (We could choose any other vertex just as well, but this
choice is the simplest.) That is, the voltage at this vertex is chosen to be zero and all others are
measured in terms of their potential difference from vertex t. But now we can remove the element
V, = 0 from V in Eq. (6.75), along with the corresponding column t in the Laplacian, without



affecting the result, since they contribute zero to the matrix multiplication anyway. And we can
also remove row t from both sides of the equation, since we already know the value of V,, so
there’s no need to calculate it. That leaves us with a modified equation L'V’ = RI’, with L’ being
the tth reduced Laplacian, which in general has a well-defined inverse. Then

v = RLY,

(6.77)

and once we have the voltages we can calculate in a straightforward manner any other quantity
of interest, such as the current along a given edge in the network.

Note that, for the simple case discussed here in which current is injected into the network at just
one vertex and removed at another, I’ has only one non-zero element. (The other one, I, has been

removed.) Thus the vector V' on the left-hand side of Eq. (6.77) is simply proportional to the
column of the inverse reduced Laplacian corresponding to vertex S. To use the notation of Section
6.14, if A® is the inverse of the tth reduced Laplacian with the tth row and column reintroduced
having elements all zero (see Eq. (6.70)), then

Vi, = RIAY.

(6.78)




PROBLEMS

6.1 Consider the following two networks:

(a)

(b)

Network (a) is a directed network. Network (b) is undirected but bipartite. Write down:

a. the adjacency matrix of network (a);
b. the cocitation matrix of network (a);
c. the incidence matrix of network (b);
d. the projection matrix (Eq. (6.17)) for the projection of network (b) onto its black vertices.

6.2 Let A be the adjacency matrix of an undirected network and 1 be the column vector whose
elements are all 1. In terms of these quantities write expressions for:

a. the vector k whose elements are the degrees £, of the vertices;

b. the number m of edges in the network;

c. the matrix N whose element N, is equal to the number of common neighbors of vertices i
and j;

d. the total number of triangles in the network, where a triangle means three vertices, each
connected by edges to both of the others.



6.3 Consider an acyclic directed network of » vertices, labeled i = 1 ... n, and suppose that the
labels are assigned in the manner of Fig. 6.3 on page 119, such that all edges run from vertices
with higher labels to vertices with lower.

a. Find an expression for the total number of edges ingoing to vertices 1 ... » and another for
the total number of edges outgoing from vertices 1 ... r, in terms of the in- and out-degrees
k" and "' of the vertices.

b. Hence find an expression for the total number of edges running to vertices 1 ... » from
verticesr+ 1 ... n.

c. Show that in any acyclic network the in- and out-degrees must satisfy

for all r.

6.4 Consider a bipartite network, with its two types of vertex, and suppose that there are n, vertices
of type 1 and n, vertices of type 2. Show that the mean degrees c, and c, of the two types are
related by

6.6 Consider a connected planar network with n vertices and m edges. Let f be the number of

“faces” of the network, i.e., areas bounded by edges when the network is drawn in planar form.
The “outside” of the network, the area extending to infinity on all sides, is also considered a face.
The network can have multiedges and self-edges:



\

a. Write down the values of n, m, and f for a network with a single vertex and no edges.

b. How do n, m, and f change when we add a single vertex to the network along with a single
edge attaching it to another vertex?

c. How do »n, m, and f change when we add a single edge between two extant vertices (or a
self-edge attached to just one vertex), in such a way as to maintain the planarity of the
network?

d. Hence by induction prove a general relation between n, m, and f for all connected planar
networks.

e. Now suppose that our network is simple (i.e., it contains no multiedges or self-edges).
Show that the mean degree ¢ of such a network is strictly less than six.

6.7 Consider the set of all paths from vertex s to vertex ¢ on an undirected graph with adjacency
matrix A. Let us give each path a weight equal to o”, where 7 is the length of the path.

a. Show that the sum of the weights of all the paths from s to ¢ is given by Z_ which is the st

element of the matrix Z = (I - aA), where 1 is the identity matrix.
b. What condition must « satisfy for the sum to converge?
c. Hence, or otherwise, show that the length £, of a geodesic path from s to ¢, if there is one,

IS

. dlog £
lim el

Es m — ]
v loga

6.8 What is the difference between a 2-component and a 2-core? Draw a small network that has
one 2-core but two 2-components.

6.9 In Section 5.3.1, we gave one possible definition of the trophic level x; of a species in a
(directed) food web as the mean of the trophic levels of the species’ prey, plus one.

a. Show that x, when defined in this way, is the ith element of the vector
x=D-A-"D - 1,
where D is the diagonal matrix of in-degrees, A is the (asymmetric) adjacency matrix, and 1 =

(1,1,1,..).
b. This expression does not work for autotrophs—species with no prey—because the



corresponding vector element diverges. Such species are usually given a trophic level of one.
Suggest a modification of the calculation that will correctly assign trophic levels to these
species, and hence to all species.

6.10 What is the size & of the minimum vertex cut set between s and ¢ in this network?

Prove your result by finding one possible cut set of size k£ and one possible set of £ independent
paths between s and ¢. Why do these two actions constitute a proof that the minimum cut set has
size k?



CHAPTER 7

MEASURES AND METRICS

An introduction to some standard measures and metrics for quantifying network structure,
many of which were introduced first in the study of social networks, although they are now in
wide use in many other areas

IF WE KNOW the structure of a network we can calculate from it a variety of useful quantities or
measures that capture particular features of the network topology. In this chapter we look at some
of these measures. Many of the most important ideas in this area come from the social sciences,
from the discipline of social network analysis, which was developed to aid our understanding of
social network data such as those described in Chapter 3, and much of the language used to
describe these ideas reflects their sociological origin. Nonetheless, the methods described are now
widely used in areas outside the social sciences, including computer science, physics, and biology,
and form an important part of the basic network toolbox.ZZ

In the chapter following this one we will apply some of the measures developed here to the
analysis of network data from a variety of fields and in the process reveal some intriguing features
and patterns that will play an important role in later developments.



7.1 DEGREE CENTRALITY

A large volume of research on networks has been devoted to the concept of centrality. This
research addresses the question, “Which are the most important or central vertices in a network?”
There are of course many possible definitions of importance, and correspondingly many centrality
measures for networks. In this and the following several sections we describe some of the most
widely used such measures.

Perhaps the simplest centrality measure in a network is just the degree of a vertex, the number of
edges connected to it (see Section 6.9). Degree is sometimes called degree centrality in the social
networks literature, to emphasize its use as a centrality measure. In directed networks, vertices
have both an in-degree and an out-degree, and both may be useful as measures of centrality in the
appropriate circumstances.

Although degree centrality is a simple centrality measure, it can be very illuminating. In a social
network, for instance, it seems reasonable to suppose that individuals who have connections to
many others might have more influence, more access to information, or more prestige than those
who have fewer connections. A non-social network example is the use of citation counts in the
evaluation of scientific papers. The number of citations a paper receives from other papers, which
is simply its in-degree in the citation network, gives a crude measure of whether the paper has been
influential or not and is widely used as a metric for judging the impact of scientific research.



7.2 EIGENVECTOR CENTRALITY

A natural extension of the simple degree centrality is eigenvector centrality. We can think of
degree centrality as awarding one “centrality point” for every network neighbor a vertex has. But
not all neighbors are equivalent. In many circumstances a vertex’s importance in a network is
increased by having connections to other vertices that are themselves important. This is the concept
behind eigenvector centrality. Instead of awarding vertices just one point for each neighbor,
eigenvector centrality gives each vertex a score proportional to the sum of the scores of its
neighbors. Here’s how it works.

Let us make some initial guess about the centrality x,; of each vertex i. For instance, we could

start off by setting x, = 1 for all i. Obviously this is not a useful measure of centrality, but we can

use it to calculate a better one ¥/, which we define to be the sum of the centralities of i's neighbors
thus:

x=Y Ayx;

(7.1)

where 4, is an element of the adjacency matrix. We can also write this expression in matrix
notation as x’ = Ax, where x is the vector with elements x,. Repeating this process to make better
estimates, we have after 7 steps a vector of centralities x(¢) given by

x(t) = A'x(D).

(7.2)

Now let us write x(0) as a linear combination of the eigenvectors v, of the adjacency matrix thus:

x(0) En,v,,

(7.3)

for some appropriate choice of constants c,. Then



__|
x(t) ﬁ");r,v,: Eljr,-rc:'v,.- rc',zf:c,[:—:] Vi,

(7.4)

where the x, are the eigenvalues of A, and «, is the largest of them. Since x/x; <1 for all i # 1, all

terms in the sum other than the first decay exponentially as ¢ becomes large, and hence in the limit
BaX g

t —> o we get x(t) “MYTIn other words, the limiting vector of centralities is simply

proportional to the leading eigenvector of the adjacency matrix. Equivalently we could say that the

centrality x satisfies

Ax o KX

(7.5)

This then is the eigenvector centrality, first proposed by Bonacich [49] in 1987. As promised the
centrality x, of vertex i is proportional to the sum of the centralities of i's neighbors:

X Ky : Z, "qlu'-"!‘llr

(7.6)

which gives the eigenvector centrality the nice property that it can be large either because a vertex
has many neighbors or because it has important neighbors (or both). An individual in a social
network, for instance, can be important, by this measure, because he or she knows lots of people
(even though those people may not be important themselves) or knows a few people in high
places.

Note also that the eigenvector centralities of all vertices are non-negative. To see this, consider
what happens if the initial vector x(0) happens to have only non-negative elements. Since all
elements of the adjacency matrix are also non-negative, multiplication by A can never introduce
any negative elements to the vector and x(¢) in Eq. (7.2) must have all elements non-negative.Z

Equation (7.5) does not fix the normalization of the eigenvector centrality, although typically
this doesn’t matter because we care only about which vertices have high or low centrality and not
about absolute values. If we wish, however, we can normalize the centralities by, for instance,
requiring that they sum to » (which insures that average centrality stays constant as the network
gets larger).



Figure 7.1: A portion of a directed network. Vertex A in this network has only outgoing edges
and hence will have eigenvector centrality zero. Vertex B has outgoing edges and one ingoing
edge, but the ingoing one originates at A, and hence vertex B will also have centrality zero.

In theory eigenvector centrality can be calculated for either undirected or directed networks. It
works best however for the undirected case. In the directed case other complications arise. First of
all, a directed network has an adjacency matrix that is, in general, asymmetric (see Section 6.4).
This means that it has two sets of eigenvectors, the left eigenvectors and the right eigenvectors,
and hence two leading eigenvectors. So which of the two should we use to define the centrality? In
most cases the correct answer is to use the right eigenvector. The reason is that centrality in
directed networks is usually bestowed by other vertices pointing towards you, rather than by you
pointing to others. On the World Wide Web, for instance, the number and stature of web pages that
point to your page can give a reasonable indication of how important or useful your page is. On the
other hand, the fact that your page might point to other important pages is neither here nor there.
Anyone can set up a page that points to a thousand others, but that does not make the page
important.2 Similar considerations apply also to citation networks and other directed networks.
Thus the correct definition of eigenvector centrality for a vertex i in a directed network makes it
proportional to the centralities of the vertices that point to i thus:

x=n1Y Ay,

(7.7)

which gives Ax = kX in matrix notation, where x is the right leading eigenvector.

However, there are still problems with eigenvector centrality on directed networks. Consider
Fig. 7.1. Vertex A in this figure is connected to the rest of the network, but has only outgoing
edges and no incoming ones. Such a vertex will always have centrality zero because there are no
terms in the sum in Eq. (7.7). This might not seem to be a problem: perhaps a vertex that no one
points to should have centrality zero. But then consider vertex B, which has one ingoing edge, but
that edge originates at vertex A, and hence B also has centrality zero, because the one term in its
sum in Eq. (7.7) is zero. Taking this argument further, we see that a vertex may be pointed to by
others that themselves are pointed to by many more, and so on through many generations, but if
the progression ends up at a vertex or vertices that have in-degree zero, it is all for nothing—the
final value of the centrality will still be zero.

In mathematical terms, only vertices that are in a strongly connected component of two or more
vertices, or the out-component of such a component, can have non-zero eigenvector centrality.82 In
many cases, however, it is appropriate for vertices with high in-degree to have high centrality even



if they are not in a strongly-connected component or its out-component. Web pages with many
links, for instance, can reasonably be considered important even if they are not in a strongly
connected component. Recall also that acyclic networks, such as citation networks, have no
strongly connected components of more than one vertex (see Section 6.11.1), so all vertices will
have centrality zero. Clearly this make the standard eigenvector centrality completely useless for
acyclic networks.

A variation on eigenvector centrality that addresses these problems is the Katz centrality, which
is the subject of the next section.



7.3 KATZ CENTRALITY

One solution to the issues of the previous section is the following: we simply give each vertex a
small amount of centrality “for free,” regardless of its position in the network or the centrality of
its neighbors. In other words, we define

X REA._..‘{.. B,

(7.8)

where a and £ are positive constants. The first term is the normal eigenvector centrality term in
which the centralities of the vertices linking to i are summed, and the second term is the “free”
part, the constant extra term that all vertices receive. By adding this second term, even vertices
with zero in-degree still get centrality f, and once they have a non-zero centrality, then the vertices
they point to derive some advantage from being pointed to. This means that any vertex that is
pointed to by many others will have a high centrality, although those that are pointed to by others
with high centrality themselves will still do better.
In matrix terms, Eq. (7.8) can be written

X = aAx -+ p1,

(7.9)

where 1 is the vector (1, 1, 1 ...). Rearranging for x, we find that x = (I - aA)! + 1. As we
have said, we normally don’t care about the absolute magnitude of the centrality, only about which
vertices have high or low centrality values, so the overall multiplier £ is unimportant. For
convenience we usually set f = 1, giving

x=(I-aA)' 1
(7.10)

This centrality measure was first proposed by Katz in 1953 [169] and we will refer to it as the Katz
centrality.

The Katz centrality differs from ordinary eigenvector centrality in the important respect of
having a free parameter a, which governs the balance between the eigenvector term and the



constant term in Eq. (7.8). If we wish to make use of the Katz centrality we must first choose a
value for this constant. In doing so it is important to understand that o cannot be arbitrarily large. If
we let @ — 0, then only the constant term survives in Eq. (7.8) and all vertices have the same
centrality f (which we have set to 1). As we increase o from zero the centralities increase and
eventually there comes a point at which they diverge. This happens at the point where (I - 0A)!
diverges in Eq. (7.10), i.e., when det (I - aA) passes through zero. Rewriting this condition as

det(A —a 1) =0,

(7.11)

we see that it is simply the characteristic equation whose roots a'! are equal to the eigenvalues of
the adjacency matrix.8l As a increases, the determinant first crosses zero when a'! = «,, the largest

eigenvalue of A, or alternatively when a = 1/k,. Thus, we should choose a value of « less than this

if we wish the expression for the centrality to converge.82
Beyond this, however, there is little guidance to be had as to the value that a should take. Most
researchers have employed values close to the maximum of 1/x,, which places the maximum

amount of weight on the eigenvector term and the smallest amount on the constant term. This
returns a centrality that is numerically quite close to the ordinary eigenvector centrality, but gives
small non-zero values to vertices that are not in the strongly connected components or their out-
components.

The Katz centrality can be calculated directly from Eq. (7.10) by inverting the matrix on the
right-hand side, but often this isn’t the best way to do it. Inverting a matrix on a computer takes an
amount of time proportional to 73, where n is the number of vertices. This makes direct calculation
of the Katz centrality prohibitively slow for large networks. Networks of more than a thousand
vertices or so present serious problems.

A better approach in many cases is to evaluate the centrality directly from Eq. (7.8) (or
equivalently, Eq. (7.9)). One makes an initial estimate of x—probably a bad one, such as x = 0—
and uses that to calculate a better estimate

F

x = aAx + Bl

(7.12)

Repeating the process many times, X converges to a value close to the correct centrality. Since A
has m non-zero elements, each iteration requires m multiplication operations and the total time for
the calculation is proportional to rm, where r is the number of iterations necessary for the
calculation to converge. Unfortunately, » depends on the details of the network and on the choice
of a, so we cannot give a general guide to how many iterations will be necessary. Instead one must
watch the values of x, to observe when they converge to constant values. Nonetheless, for large

networks it is almost always worthwhile to evaluate the centrality this way rather than by inverting
the matrix.

We have presented the Katz centrality as a solution to the problems encountered with ordinary
eigenvector centrality in directed networks. However, there is no reason in principle why one
cannot use Katz centrality in undirected networks as well, and there are times when this might be
useful. The idea of adding a constant term to the centrality so that each vertex gets some weight



just by virtue of existing is a natural one. It allows a vertex that has many neighbors to have high
centrality regardless of whether those neighbors themselves have high centrality, and this could be
desirable in some applications.

A possible extension of the Katz centrality is to consider cases in which the additive constant

term in Eq. (7.8) is not the same for all vertices. One could define a generalized centrality measure
by

X; X EA-'.'I.' 1 }r};,

(7.13)

where f; is some intrinsic, non-network contribution to the centrality for each vertex. For

example, in a social network the importance of an individual might depend on non-network factors
such as their age or income and if we had information about these factors we could incorporate it
into the values of the £.. Then the vector x of centralities is given by

x = (I-aA)"'3,

(7.14)

where B is the vector whose elements are the £,. One nice feature of this approach is that the

difficult part of the calculation—the inversion of the matrix—only has to be done once for a given
network and choice of a. For difference choices of the 8, we need not recalculate the inverse, but

simply multiply the inverse into different vectors .



7.4 PAGERANK

The Katz centrality of the previous section has one feature that can be undesirable. If a vertex with
high Katz centrality points to many others then those others also get high centrality. A high-
centrality vertex pointing to one million others gives all one million of them high centrality. One
could argue—and many have—that this is not always appropriate. In many cases it means less if a
vertex is only one among many that are pointed to. The centrality gained by virtue of receiving an
edge from a prestigious vertex is diluted by being shared with so many others. For instance, the
famous Yahoo! web directory might contain a link to my web page, but it also has links to millions
of other pages. Yahoo! is an important website, and would have high centrality by any sensible
measure, but should I therefore be considered very important by association? Most people would
say not: the high centrality of Yahoo! will get diluted and its contribution to the centrality of my
page should be small because my page is only one of millions.

We can allow for this by defining a variation on the Katz centrality in which the centrality |
derive from my network neighbors is proportional to their centrality divided by their out-degree.
Then vertices that point to many others pass only a small amount of centrality on to each of those
others, even if their own centrality is high.

In mathematical terms this centrality is defined by

IL=un L Ajj ;_.I +p-
(7.15)

This gives problems however if there are vertices in the network with out-degree &' = 0. If there
are any such vertices then the first term in Eq. (7.15) is indeterminate—it is equal to zero divided
by zero (because 4, = 0 for all 7). This problem is easily fixed however. It is clear that vertices with
no out-going edges should contribute zero to the centrality of any other vertex, which we can
contrive by artificially setting &** = 1 for all such vertices. (In fact, we could set ™ to any non-
zero value and the calculation would give the same answer.)

In matrix terms, Eq. (7.15), is then

x = aAD 'x | 1,

(7.16)

with 1 being again the vector (1, 1, 1, ...) and D being the diagonal matrix with elements
Di; = max (k™. 1), Rearranging, we find that x = A(l - tADY)* - 1, and thus, as before, £ plays the
role only of an unimportant overall multiplier for the centrality. Conventionally we set f = 1,
giving



x=(I-aAD 'y "1 =D(D-aA) 'L
(7.17)

Web search is discussed in more detail in Section 19.1.

This centrality measure is commonly known as PageRank, which is the trade name given it by
the Google web search corporation, which uses it as a central part of their web ranking technology
[55]. The aim of the Google web search engine is to generate lists of useful web pages from a
preassembled index of pages in response to text queries. It does this by first searching the index for
pages matching a given query using relatively simple criteria such as text matching, and then
ranking the answers according to scores based on a combination of ingredients of which PageRank
is one. Google returns useful answers to queries not because it is better at finding relevant pages,
but because it is better at deciding what order to present its findings in: its perceived accuracy
arises because the results at the top of the list of answers it returns are often highly relevant to the
query, but it is possible and indeed likely that many irrelevant answers also appear on the list,
lower down.

PageRank works on the Web precisely because having links to your page from important pages
elsewhere is a good indication that your page may be important too. But the added ingredient of
dividing by the out-degrees of pages insures that pages that simply point to an enormous number
of others do not pass much centrality on to any of them, so that, for instance, network hubs like
Yahoo! do not have a disproportionate influence on the rankings.

As with the Katz centrality, the formula for PageRank, Eq. (7.17), contains one free parameter
a, whose value must be chosen somehow before the algorithm can be used. By analogy with Eq.
(7.11) and the argument that follows it, we can see that the value of a should be less than the
inverse of the largest eigenvalue of AD-. For an undirected network this largest eigenvalue turns
out to be 1 and the corresponding eigenvector is (k,, k,, k,, ...), where £, is the degree of the ith

vertex.£ Thus « should be chosen less than 1. For a directed network, this result does not follow
and in general the leading eigenvalue will be different from 1, although in practical cases it is
usually still roughly of order 1.

The Google search engine uses a value of « = 0.85 in its calculations, although it’s not clear that
there is any rigorous theory behind this choice. More likely it is just a shrewd guess based on
experimentation to find out what works well.

As with the Katz centrality we can generalize PageRank to the case where the additive constant
term in Eq. (7.15) is different for different vertices:

“ X
.T_- i L .lq.,i_| Fl:l- 1 ;;_..
(7.18)

In matrix form this gives a solution for the centrality vector of

x =D(D-aA) '8



(7.19)

One could, for instance, use this for ranking web pages, giving S, a value based perhaps on textual

relevance to a search query. Pages that contained the word or words being searched for more often
or in more prominent places could be given a higher intrinsic centrality than others, thereby
pushing them up the rankings. The author is not aware, however, of any cases in which this
technique has been implemented in practice.

Finally, one can also imagine a version of PageRank that did not have the additive constant term
initatall:

.Tj X E: .fql,'_l %:-

(7.20)

which is similar to the original eigenvector centrality introduced back in Section 7.2, but now
with the extra division by &, For an undirected network, however, this measure is trivial: it is easy

to see that it gives simply x, = £, and therefore is just the same as ordinary degree centrality. For a

directed network, on the other hand, it does not reduce to any equivalent simple value and it might
potentially be of use, although it does not seem to have found use in any prominent application. (It
does suffer from the same problem as the original eigenvector centrality, that it gives non-zero
scores only to vertices that fall in a strongly connected component of two or more vertices or in the
out-component of such a component. All other vertices get a zero score.)

In Table 7.1 we give a summary of the different matrix centrality measures we have discussed,
organized according to their definitions and properties. If you want to use one of these measures in
your own calculations and find the many alternatives bewildering, eigenvector centrality and
PageRank are probably the two measures to focus on initially. They are the two most commonly
used measures of this type. The Katz centrality has found widespread use in the past but has been
favored less in recent work, while the PageRank measure without the constant term, Eq. (7.20), is
the same as degree centrality for undirected networks and not in common use for directed ones.

with constant term withouk constant term
divide by x=D(D—aA) -1 x = AD 'x
out-degree PageRank degree centrality
x = [I—aA) -1 X = Ky AX
no division . : ;
Katz centrality eigenvector centrality

Table 7.1: Four centrality measures. The four matrix-based centrality measures discussed in the
text are distinguished by whether or not they include an additive constant term in their definition
and whether they are normalized by dividing by the degrees of neighboring vertices. Note that the
diagonal matrix D, which normally has elements D = k, must be defined slightly differently for

PageRank, as D, = max(1, k,)—see Eq. (7.15) and the following discussion. Each of the measures

can be applied to directed networks as well as undirected ones, although only three of the four are
commonly used in this way. (The measure that appears in the top right corner of the table is



equivalent to degree centrality in the undirected case but takes more complicated values in the
directed case and is not widely used.)



7.5 HUBS AND AUTHORITIES

In the case of directed networks, there is another twist to the centrality measures introduced in this
section. So far we have considered measures that accord a vertex high centrality if those that point
to it have high centrality. However, in some networks it is appropriate also to accord a vertex high
centrality if it points to others with high centrality. For instance, in a citation network a paper such
as a review article may cite other articles that are authoritative sources for information on a
particular subject. The review itself may contain relatively little information on the subject, but it
tells us where to find the information, and this on its own makes the review useful. Similarly, there
are many examples of web pages that consist primarily of links to other pages on a given topic or
topics and such a page of links could be very useful even if it does not itself contain explicit
information on the topic in question.

Thus there are really two types of important node in these networks: authorities are nodes that
contain useful information on a topic of interest; hubs are nodes that tell us where the best
authorities are to be found. An authority may also be a hub, and vice versa: review articles often
contain useful discussions of the topic at hand as well as citations to other discussions. Clearly
hubs and authorities only exist in directed networks, since in the undirected case there is no
distinction between pointing to a vertex and being pointed to.

One can imagine defining two different types of centrality for directed networks, the authority
centrality and the hub centrality, which quantify vertices’ prominence in the two roles. This idea
was first put forward by Kleinberg [176] and developed by him into a centrality algorithm called
hyperlink-induced topic search or HITS.

The HITS algorithm gives each vertex i in a network an authority centrality x, and a hub

centrality y. The defining characteristic of a vertex with high authority centrality is that it is

pointed to by many hubs, i.e., by many other vertices with high hub centrality. And the defining
characteristic of a vertex with high hub centrality is that it points to many vertices with high
authority centrality.

Thus an important scientific paper (in the authority sense) would be one cited in many important
reviews (in the hub sense). An important review is one that cites many important papers. Reviews,
however, are not the only publications that can have high hub centrality. Ordinary papers can have
high hub centrality too if they cite many other important papers, and papers can have both high
authority and high hub centrality. Reviews too may be cited by other hubs and hence have high
authority centrality as well as high hub centrality.

In Kleinberg’s approach, the authority centrality of a vertex is defined to be proportional to the
sum of the hub centralities of the vertices that point to it:

Xi i E-Al.'_lf.':

(7.21)

where « is a constant. Similarly the hub centrality of a vertex is proportional to the sum of the
authority centralities of the vertices it points to:
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(7.22)

with A another constant. Notice that the indices on the matrix element 4, are swapped around in

this second equation: it is the vertices that ; points to that define its hub centrality.
In matrix terms these equations can be written as

x=aAy, y=pATx

(7.23)

or, combining the two,

AATx = Ax, ATAy = )y,

(7.24)

where 1 = (af)*. Thus the authority and hub centralities are respectively given by eigenvectors
of AAT and ATA with the same eigenvalue. By an argument similar to the one we used for the
standard eigenvector centrality in Section 7.1 we can show that we should in each case take the
eigenvector corresponding to the leading eigenvalue.

A crucial condition for this approach to work, is that AA” and ATA have the same leading
eigenvalue A, otherwise we cannot satisfy both conditions in Eq. (7.24). It is easily proved,
however, that this is the case, and in fact that all eigenvalues are the same for the two matrices. If
AA”Xx = Ax then multiplying both sides by AT gives

ATA(ATx) = AM(ATx),

(7.25)

and hence A’x is an eigenvector of ATA with the same eigenvalue 2. Comparing with Eq. (7.24)
this means that

¥ ATx,

(7.26)



which gives us a fast way of calculating the hub centralities once we have the authority ones—
there is no need to solve both the eigenvalue equations in Eq. (7.24) separately.

Note that AAT is precisely the cocitation matrix defined in Section 6.4.1 (Eq. (6.8)) and the
authority centrality is thus, roughly speaking, the eigenvector centrality for the cocitation
network.& Similarly AA is the bibliographic coupling matrix, Eq. (6.11), and hub centrality is the
eigenvector centrality for the bibliographic coupling network.

A nice feature of the hub and authority centralities is that they circumvent the problems that
ordinary eigenvector centrality has with directed networks, that vertices outside of strongly
connected components or their out-components always have centrality zero. In the hubs and
authorities approach vertices not cited by any others have authority centrality zero (which is
reasonable), but they can still have non-zero hub centrality. And the vertices that ey cite can then
have non-zero authority centrality by virtue of being cited. This is perhaps a more elegant solution
to the problems of eigenvector centrality in directed networks than the more ad hoc method of
introducing an additive constant term as we did in Eq. (7.8). We can still introduce such a constant
term into the HITS algorithm if we wish, or employ any of the other variations considered in
previous sections, such as normalizing vertex centralities by the degrees of the vertices that point
to them. Some variations along these lines are explored in Refs. [52, 256], but we leave the pursuit
of such details to the enthusiastic reader.

The HITS algorithm is an elegant construction that should in theory provide more information
about vertex centrality than the simpler measures of previous sections, but in practice it has not yet
found much application. It is used as the basis for the web search engines Teoma and Ask.com, and
will perhaps in future find further use, particularly in citation networks, where it holds clear
advantages over other eigenvector measures.



7.6 CLOSENESS CENTRALITY

An entirely different measure of centrality is provided by the closeness centrality, which measures
the mean distance from a vertex to other vertices. In Section 6.10.1 we encountered the concept of
the geodesic path, the shortest path through a network between two vertices. Suppose dij is the

length of a geodesic path from i to j, meaning the number of edges along the path.8 Then the mean
geodesic distance from i to |, averaged over all vertices j in the network, is

(7.27)

This quantity takes low values for vertices that are separated from others by only a short geodesic
distance on average. Such vertices might have better access to information at other vertices or
more direct influence on other vertices. In a social network, for instance, a person with lower mean
distance to others might find that their opinions reach others in the community more quickly than
the opinions of someone with higher mean distance.

In calculating the average distance some authors exclude from the sum in (7.27) the term for j =
i, so that
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(7.28)

which is a reasonable strategy, since a vertex’s influence on itself is usually not relevant to the
working of the network. On the other hand, the distance d,, from i to itself is zero by definition, so
this term in fact contributes nothing to the sum. The only difference the change makes to £; is in
the leading divisor, which becomes 1/(n - 1) instead of 1/n, meaning that £, changes by a factor of
n/(n - 1). Since this factor is independent of i and since, as we have said, we usually care only
about the relative centralities of different vertices and not about their absolute values, we can in
most cases ignore the difference between Egs. (7.27) and (7.28). In this book we use (7.27)
because it tends to give slightly more elegant analytic results.

The mean distance £; is not a centrality measure in the same sense as the others in this chapter,
since it gives low values for more central vertices and high values for less central ones, which is
the opposite of our other measures. In the social networks literature, therefore, researchers
commonly calculate the inverse of £, rather than £, itself. This inverse is called the closeness
centrality C;:



(7.29)

Closeness centrality is a very natural measure of centrality and is often used in social and other
network studies. But it has some problems. One issue is that its values tend to span a rather small
dynamic range from largest to smallest. As discussed in Sections 3.6, 8.2, and 12.7, geodesic
distances d; between vertices in most networks tend to be small, the typical distance increasing

only logarithmically with the size of the entire network. This means that the ratio between the
smallest distance, which is 1, and the largest, which is of order log n, is itself only of order log n,
which is small. But the smallest and largest distances provide lower and upper bounds on the
average distance £;, and hence the range of values of £, and similarly of C, is also small. In a

typical network the values of C, might span a factor of five or less. What this means in practice is

that it is difficult to distinguish between central and less central vertices using this measure: the
values tend to be cramped together with the differences between adjacent values showing up only
when you examine the trailing digits. This means that even small fluctuations in the structure of
the network can change the order of the values substantially.

For example, it has become popular in recent years to rank film actors according to their
closeness centrality in the network of who has appeared in films with who else [323]. Using data
from the Internet Movie Database, 2 we find that in the largest component of the network, which
includes more than 98% of all actors, the smallest closeness centrality of any actor is 2.4138 for
the actor Christopher Lee,® while the largest is 8.6681 for an Iranian actress named Leia
Zanganeh. The ratio of the two is just 3.6 and about half a million other actors lie in between. As
we can immediately see, the values must be very closely spaced. The second best centrality score
belongs to actor Donald Pleasence, who scores 2.4164, just a tenth of a percent less than winner
Lee. Because of the close spacing of values, the leaders under this dubious measure of superiority
change frequently as the small details of the film network shift when new films are made or old
ones added to the database. In an analysis using an earlier version of the database, Watts and
Strogatz [323] proclaimed Rod Steiger to be the actor with the lowest closeness centrality. Steiger
falls in sixth place in our analysis and it is entirely possible that the rankings will have changed
again by the time you read this. Other centrality measures, including degree centrality and
eigenvector centrality, typically don’t suffer from this problem because they have a wider dynamic
range and the centrality values, particular those of the leaders, tend to be widely separated.

The closeness centrality has another problem too. If, as discussed in Section 6.10.1, we define
the geodesic distance between two vertices to be infinite if the vertices fall in different components
of the network, then £, is infinite for all i in any network with more than one component and C, is

zero. There are two strategies for getting around this. The most common one is simply to average
over only those vertices in the same component as i. Then n in Eq. (7.29) becomes the number of
vertices in the component and the sum is over only that component. This gives us a finite measure,
but one that has its own problems. In particular, distances tend to be smaller between vertices in
small components, so that vertices in such components get lower values of £, and higher closeness

centrality than their counterparts in larger components. This is usually undesirable: in most cases
vertices in small components are considered less well connected than those in larger ones and
should therefore be given lower centrality.

Perhaps a better solution, therefore, is to redefine closeness in terms of the harmonic mean
distance between vertices, i.€., the average of the inverse distances:
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(Notice that we are obliged in this case to exclude from the sum the term for j = i, since d,, = 0
which would make this term infinite. This means that the sum has only n - 1 terms in it, hence the
leading factor of 1/(n - 1).)

This definition has a couple of nice properties. First, if dij = o because i and j are in different
components, then the corresponding term in the sum is simply zero and drops out. Second, the
measure naturally gives more weight to vertices that are close to i than to those far away.
Intuitively we might imagine that the distance to close vertices is what matters in most practical
situations—once a vertex is far away in a network it matters less exactly how far away it is, and
Eq. (7.30) reflects this, having contributions close to zero from all such vertices.

Despite its desirable qualities, however, Eq. (7.30) is rarely used in practice. We have seen it
employed only occasionally.

An interesting property of entire networks, which is related to the closeness centrality, is the
mean geodesic distance between vertices. In Section 8.2 we will use measurements of mean
distance in networks to study the so-called “small-world effect.”

For a network with only one component, the mean distance between pairs of vertices,
conventionally denoted just £ (now without the subscript), is
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(7.31)

In other words £ is just the mean of £, over all vertices.
For a network with more than one component we run into the same problems as before, that dij

is infinite when i and j are in different components and hence £ is also infinite. The most common
way around this problem is to average only over paths that run between vertices in the same
component. Let {Cm} be the set of components of a network, with m =1, 2 ... Then we define
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where n_ is the number of vertices in component C_ . This measure is now finite for all
networks, although it is not now equal to a simple average over the values of £, for each vertex.



An alternative and perhaps better approach would be to use the trick from Eq. (7.30) and define
a harmonic mean distance £’ according to
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(7.33)

or equivalently

(7.34)

where C! is the harmonic mean closeness of Eq. (7.30). (Note that, as in (7.30), we exclude from
the first sum in (7.33) the terms for i = j, which would be infinite since d; = 0.)

Equation (7.34) automatically removes any contributions from vertex pairs for which dij = o0,
Despite its elegance, however, Eq. (7.34), like Eq. (7.30), is hardly ever used.



7.7 BETWEENNESS CENTRALITY

A very different concept of centrality is betweenness centrality, which measures the extent to
which a vertex lies on paths between other vertices. The idea of betweenness is usually attributed
to Freeman [128] in 1977, although as Freeman himself has pointed out [129], it was
independently proposed some years earlier by Anthonisse [19] in an unpublished technical report.

Suppose we have a network with something flowing around it from vertex to vertex along the
edges. For instance, in a social network we might have messages, news, information, or rumors
being passed from one person to another. In the Internet we have data packets moving around. Let
us initially make the simple assumption that every pair of vertices in the network exchanges a
message with equal probability per unit time (more precisely every pair that is actually connected
by a path) and that messages always take the shortest (geodesic) path though the network, or one
such path, chosen at random, if there are several. Then let us ask the following question: if we wait
a suitably long time until many messages have passed between each pair of vertices, how many
messages, on average, will have passed through each vertex en route to their destination? The
answer is that, since messages are passing down each geodesic path at the same rate, the number
passing through each vertex is simply proportional to the number of geodesic paths the vertex lies
on. This number of geodesic paths is what we call the betweenness centrality, or just betweenness
for short.

Vertices with high betweenness centrality may have considerable influence within a network by
virtue of their control over information passing between others. The vertices with highest
betweenness in our message-passing scenario are the ones through which the largest number of
messages pass, and if those vertices get to see the messages in question as they pass, or if they get
paid for passing the messages along, they could derive a lot of power from their position within the
network. The vertices with highest betweenness are also the ones whose removal from the network
will most disrupt communications between other vertices because they lie on the largest number of
paths taken by messages. In real-world situations, of course, not all vertices exchange
communications with the same frequency, and in most cases communications do not always take
the shortest path. Nonetheless, betweenness centrality may still be an approximate guide to the
influence vertices have over the flow of information between others.

Having seen the basic idea of betweenness centrality, let us make things more precise. For the
sake of simplicity, suppose for the moment that we have an undirected network in which there is at
most one geodesic path between any pair of vertices. (There may be zero paths if the vertices in
question are in different components.) Consider the set of all geodesic paths in such a network.
Then the betweenness centrality of a vertex i is defined to be the number of those paths that pass
through i. _

Mathematically, let 1 be 1 if vertex i lies on the geodesic path from s to t and 0 if it does not or
if there is no such path (because s and t lie in different components of the network). Then the
betweenness centrality x; is given by

xi = Y.
af

(7.35)



Note that this definition counts separately the geodesic paths in either direction between each
vertex pair. Since these paths are the same on an undirected network this effectively counts each
path twice. One could compensate for this by dividing x; by 2, and often this is done, but we prefer

the definition given here for a couple of reasons. First, it makes little difference in practice whether
one divides the centrality by 2, since one is usually concerned only with the relative magnitudes of
the centralities and not with their absolute values. Second, as discussed below, Eq. (7.35) has the
advantage that it can be applied unmodified to directed networks, in which the paths in either
direction between a vertex pair can differ.

Note also that Eq. (7.35) includes paths from each vertex to itself. Some people prefer to

exclude such paths from the definition, so that ¥ = L=+ "4 but again the difference is typically not
important. Each vertex lies on one path from itself to itself, so the inclusion of these terms simply
increases the betweenness by 1, but does not change the rankings of the vertices—which ones have
higher or lower betweenness—relative to one another.

There is also a choice to be made about whether the path from s to t should be considered to
pass through the vertices s and t themselves. In the social networks literature it is usually assumed
that it does not. We prefer the definition where it does: it seems reasonable to define a vertex to be
on a path between itself and someone else, since normally a vertex has control over information
flowing from itself to other vertices or vice versa. If, however, we exclude the endpoints of the
path as sociologists commonly do, the only effect is to reduce the number of paths through each
vertex by twice the size of the component to which the vertex belongs. Thus the betweennesses of
all vertices within a single component are just reduced by an additive constant and the ranking of
vertices within the component is again unchanged. (The rankings of vertices in different
components can change relative to one another, but this is rarely an issue because betweenness
centrality is not typically used to compare vertices in different components, since such vertices are
not competing for influence in the same arena.)
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Vertices A and B are connected by two geodesic paths. Vertex C lies on both paths.

These developments are all for the case in which there is at most one geodesic path between
each vertex pair. More generally, however, there may be more than one. The standard extension of
betweenness to this case gives each path a weight equal to the inverse of the number of paths. For
instance, if there are two geodesic paths between a given pair of vertices, each of them g ets weight
1. Then the betweenness of a vertex is defined to be the sum of the weights of all geodesic paths
passing through that vertex.

Note that the geodesic paths between a pair of vertices need not be vertex-independent, meaning
they may pass through some of the same vertices (see figure). If two or more paths pass through
the same vertex then the betweenness sum includes contributions from each of them. Thus if there
are, say, three geodesic paths between a given pair of vertices and two of them pass through a
particular vertex, then they contribute 3 to that vertex’s betweenness.

Formally, we can express the betweenness for a general network by redefining ' to be the
number of geodesic paths from s to t that pass through i. And we define g, to be the total number

of geodesic paths from s to t. Then the betweenness centrality of vertex i is
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where we adopt the convention that /&« — Uifbothu, and g are zero. This definition is
equivalent to our message-passing thought experiment above, in which messages pass between all
pairs of vertices in a network at the same average rate, traveling along shortest paths, and in the
case of several shortest paths between a given pair of vertices they choose at random between
those several paths. Then x; is proportional to the average rate at which traffic passes though vertex

i.

Betweenness centrality can be applied to directed networks as well. In a directed network the
shortest path between two vertices depends, in general, on the direction you travel in. The shortest
path from A to B is different from the shortest path from B to A. Indeed there may be a path in one
direction and no path at all in the other. Thus it is important in a directed network explicitly to
include the path counts in either direction between each vertex pair. The definition in Eq. (7.36)
already does this and so, as mentioned above, we can use the same definition without modification
for the directed case. This is one reason why we prefer this definition to other slight variants that
are sometimes used.

Although the generalization of betweenness to directed networks is straightforward, however, it
is rarely if ever used, so we won’t discuss it further here, concentrating instead on the much more
common undirected case.

Betweenness centrality differs from the other centrality measures we have considered in being
not principally a measure of how well-connected a vertex is. Instead it measures how much a
vertex falls “between” others. Indeed a vertex can have quite low degree, be connected to others
that have low degree, even be a long way from others on average, and still have high betweenness.
Consider the situation depicted in Fig. 7.2. Vertex A lies on a bridge between two groups within a
network. Since any shortest path (or indeed any path whatsoever) between a vertex in one group
and a vertex in the other must pass along this bridge, A acquires very high betweenness, even
though it is itself on the periphery of both groups and in other respects may be not well connected:
probably A would not have particularly impressive values for eigenvector or closeness centrality,
and its degree centrality is only 2, but nonetheless it might have a lot of influence in the network as
a result of its control over the flow of information between others. Vertices in roles like this are
sometimes referred to in the sociological literature as brokers.&
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Figure 7.2: A low-degree vertex with high betweenness. In this sketch of a network, vertex A
lies on a bridge joining two groups of other vertices. All paths between the groups must pass
through A, so it has a high betweenness even though its degree is low.

Betweenness centrality also has another interesting property: its values are typically distributed
over a wide range. The maximum possible value for the betweenness of a vertex occurs when the



vertex lies on the shortest path between every other pair of vertices. This occurs for the central
vertex in a star graph, a network composed of a vertex attached to n - 1 others by single edges. In
this situation the central vertex lies on all n? shortest paths between vertex pairs except for the n - 1
paths from the peripheral vertices to themselves. Thus the betweenness centrality of the central
vertex is n? - n + 1. At the other end of the scale, the smallest possible value of betweenness in a
network with a single component is 2n - 1, since at a minimum each vertex lies on every path that
starts or ends with itself. (There are n - 1 paths from a vertex to others, n - 1 paths from others to
the vertex, and one path from the vertex to itself, for a total of 2(n - 1) + 1 = 2n - 1.) This situation
occurs, for instance, when a network has a “leaf” attached to it, a vertex connected to the rest of
the network by just a single edge.

A star graph.

Thus the ratio of largest and smallest possible betweenness values is

w—n+1 G
2n—-1 — 7

(7.37)

where the equality becomes exact in the limit of large n. Thus in theory there could be a factor
of almost "' between the largest and smallest betweenness centralities, which could become very
large for large networks. In real networks the range is usually considerably smaller than this, but is
nonetheless large and typically increasing with increasing n.

Taking again the example of the network of film actors from the previous section, the individual
with the highest betweenness centrality in the largest component of the actor network is the great
Spanish actor Fernando Rey, most famous in the English-speaking world for his 1971 starring role
next to Gene Hackman in The French Connection.2 Rey has a betweenness score of 7.47 x 108,
while the lowest score of any actor2 in the large component is just 8.91 x 10°. Thus there is a ratio
of almost a thousand between the two limits—a much larger dynamic range than the ratio of 3.6
we saw in the case of closeness centrality. One consequence of this is that there are very clear
winners and losers in the betweenness centrality competition. The second highest betweenness in
the actor network is that of Christopher Lee (again), with 6.46 x 108, a 14% percent difference
from winner Fernando Rey. Although betweenness values may shift a little as new movies are
made and new actors added to the network, the changes are typically small compared with these
large gaps between the leaders, so that the ordering at the top of the list changes relatively



infrequently, giving betweenness centrality results a robustness not shared by those for
closeness centrality.

The values of betweenness calculated here are raw path counts, but it is sometimes convenient
to normalize betweenness in some way. Several of the standard computer programs for network
analysis, such as Pajek and UCINET, perform such normalizations. One natural choice is to
normalize the path count by dividing by the total number of (ordered) vertex pairs, which is n?, so
that betweenness becomes the fraction (rather than the number) of paths that run through a given
vertex:

(7.38)

With this definition, the values of the betweenness lie strictly between zero and one.

Some other variations on the betweenness centrality idea are worth mentioning. Betweenness
gets at an important idea in network analysis, that of the flow of information or other traffic and of
the influence vertices might have over that flow. However, betweenness as defined by Freeman is
based on counting only the shortest paths between vertex pairs, effectively assuming that all or at
least most traffic passes along those shortest paths. In reality traffic flows along paths other than
the shortest in many networks. Most of us, for instance, will have had the experience of hearing
news about one of our friends not from that friend directly but from another mutual
acquaintance—the message has passed along a path of length two via the mutual acquaintance,
rather than along the direct (geodesic) path of length one.

A version of betweenness centrality that makes some allowance for effects like this is the flow
betweenness, which was proposed by Freeman et al. [130] and is based on the idea of maximum
flow. Imagine each edge in a network as a pipe that can carry a unit flow of some fluid. We can
ask what the maximum possible flow then is between a given source vertex s and target vertex t
through these pipes. In general the answer is that more than a single unit of flow can be carried
between source and target by making simultaneous use of several different paths through the
network. The flow betweenness of a vertex i is defined according to Eq. (7.35), but with #.: being
now the amount of flow through vertex i when the maximum flow is transmitted from s to t.

See Section 6.12 for a discussion of maximum flow in networks.

As we saw in Section 6.12, the maximum flow between vertices s and t is also equal to the
number of edge-independent paths between them. Thus another way equivalent to look at the flow
betweenness would be to consider " to be the number of independent paths between s and t that
run through vertex i.

A slight problem arises because the independent paths between a given pair of vertices are not
necessarily unique. For instance, the network shown in Fig. 7.3 has two edge-independent paths
between s and t but we have two choices about what those paths are, either the paths denoted by
the solid arrows, or those denoted by the dashed ones. Furthermore, our result for the flow
betweenness will depend on which choice we make; the vertices labeled A and B fall on one set of
paths but not the other. To get around this problem, Freeman et al. define the flow through a vertex
for their purposes to be the maximum possible flow over all possible choices of paths, or
equivalently the maximum number of independent paths. Thus in the network of Fig. 7.3, the
contribution of the flow between s and t to the betweenness of vertex A would be 1, since this is
the maximum value it takes over all possible choices of flow paths.
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Figure 7.3: Edge-independent paths in a small network. The vertices s and t in this network
have two independent paths between them, but there are two distinct ways of choosing those paths,
represented by the solid and dashed curves.

In terms of our information analogy, one can think of flow betweenness as measuring the
betweenness of vertices in a network in which a maximal amount of information is continuously
pumped between all sources and targets. Flow betweenness takes account of more than just the
geodesic paths between vertices, since flow can go along non-geodesic paths as well as geodesic
ones. (For example, the paths through vertices A and B in the example above are not geodesic.)
Indeed, in some cases none of the paths that appear in the solution of the maximum flow problem
are geodesic paths, so geodesic paths may not be counted at all by this measure.

But this point highlights a problem with flow betweenness: although it typically counts more
paths than the standard shortest-path betweenness, flow betweenness still only counts a subset of
possible paths, and some important ones (such as geodesic paths) may be missed out altogether.
One way to look at the issue is that both shortest-path betweenness and flow betweenness assume
flows that are optimal in some sense—passing only along shortest paths in the first case and
maximizing total flow in the second. Just as there is no reason to suppose that information or other
traffic always takes the shortest path, there is no reason in general to suppose it should act to
maximize flow (although of course there may be special cases in which it does).

See Section 6.14 for a discussion of random walks.

A betweenness variant that does count all paths is the random-walk betweenness [243]. In this
variant traffic between vertices s and t is thought of as performing an (absorbing) random walk that
starts at vertex s and continues un til it reaches vertex t. The betweenness is defined according to
T = L.y but with % now being the number of times that the random walk from s to t passes
through i on its journey, averaged over many repetitions of the walk.

Note that in this case "% # ™ in general, even on an undirected network. For instance, consider
this portion of a network:

A random walk from s to t may pass through vertex A before returning to s and stepping thence to
t, but a walk from t to s will never pass through A because its first step away from t will always
take it to s and then the walk will finish.



Since every possible path from s to t occurs in a random walk with some probability (albeit a
very small one) the random-walk betweenness includes contributions from all paths.22 Note,
however, that different paths appear in general with different probabilities, so paths do not
contribute equally to the betweenness scores, longer paths typically making smaller contributions
than shorter ones, a bias that is plausible in some but by no means all cases.

Random walk betweenness would be an appropriate betweenness measure for traffic that
traverses a network with no idea of where it is going—it simply wanders around at random until it
reaches its destination. Shortest-path betweenness is the exact opposite. It is the appropriate
measure for information that knows exactly where it is going and takes the most direct path to get
there. It seems likely that most real-world situations fall somewhere in between these two
extremes. However, it is found in practice [243] that the two measures often give quite similar
results, in which case one can with reasonable justification assume that the “correct” answer, the
one lying between the limits set by the shortest-path and random-walk measures, is similar to both.
In cases where the two differ by a considerable margin, however, we should be wary of attributing
too much authority to either measure—there is no guarantee that either is telling us a great deal
about true information flow in the network.

Other generalizations of betweenness are also possible, based on other models of diffusion,
transmission, or flow along network edges. We refer the interested reader to the article by Borgatti
[51], which draws together many of the possibilities into a broad general framework for
betweenness measures.



7.8 GROUPS OF VERTICES

Many networks, including social and other networks, divide naturally into groups or communities.
Networks of people divide into groups of friends, coworkers, or business partners; the World Wide
Web divides into groups of related web pages; biochemical networks divide into functional
modules, and so forth. The definition and analysis of groups within networks is a large and fruitful
area of network theory. In Chapter 11 we discuss some of the sophisticated computer methods that
have been developed for detecting groups, such as hierarchical clustering and spectral partitioning.
In this section we discuss some simpler concepts of network groups which can be useful for
probing and describing the local structure of networks. The primary constructs we look at are
cliques, plexes, cores, and components.



7.8.1 CLIQUES, PLEXES, AND CORES

A clique is a maximal subset of the vertices in an undirected network such that every member of
the set is connected by an edge to every other. The word “maximal” here means that there is no
other vertex in the network that can be added to the subset while preserving the property that every
vertex is connected to every other. Thus a set of four vertices in a network would be a clique if
(and only if) each of the four is directly connected by edges to the other three and if there is no
other vertex anywhere in the network that could be added to make a group of five vertices all
connected to each other. Note that cliques can overlap, meaning that they can share one or more of
the same vertices.

The occurrence of a clique in an otherwise sparse network is normally an indication of a highly
cohesive subgroup. In a social network, for instance, one might encounter a set of individuals each
of whom was acquainted with each of the others, and such a clique would probably indicate that
the individuals in question are closely connected—a set of coworkers in an office for example or a
group of classmates in a school.

A clique of four vertices within a network.

Two overlapping cliques. Vertices A and B in this network both belong to two cliques of four
vertices.



However, it’s also the case that many circles of friends form only nearcliques, rather than
perfect cliques. There may be some members of the group who are unacquainted, even if most
members know one another. The requirement that every possible edge be present within a clique is
a very stringent one, and it seems natural to consider how we might relax this requirement. One
construct that does this is the k-plex. A k-plex of size n is a maximal subset of n vertices within a
network such that each vertex is connected to at least n - k of the others. If k = 1, we recover the
definition of an ordinary cligue—a 1-plex is the same as a clique. If k = 2, then each vertex must
be connected to all or all-but-one of the others. And so forth.22 Like cliques, k-plexes can overlap
one another; a single vertex can belong to more than one k-plex.

The k-plex is a useful concept for discovering groups within networks: in real life many groups
in social and other networks form k-plexes. There is no solid rule about what value k should take.
Experimentation starting from small values is the usual way to proceed. Smaller values of k tend to
be meaningful for smaller groups, whereas in large groups the smaller values impose too stringent
a constraint but larger values often give useful results. This suggests another possible
generalization of the clique idea: one could specify that each member be connected to a certain
fraction of the others, say 75% or 50%. (As far as we know, this variant doesn’t have a name and it
is not in wide use, but perhaps it should be.)

Many other variations on the clique idea have been proposed in the literature. For instance Flake
et al. [122] proposed a definition of a group as a subset of vertices such that each has at least as
many connections to vertices inside the group as to vertices outside. Radicchi et al. [276] proposed
a weaker definition of a group as a subset of vertices such that the total number of connections of
all vertices in the group to others in the group is greater than the total number of connections to
vertices outside.2

Another concept closely related to the k-plex is the k-core. A k-core is a maximal subset of
vertices such that each is connected to at least k others in the subset.22 It should be obvious (or you
can easily prove it for yourself) that a k-core of n vertices is also an (n - k)-plex. However, the set
of all k-cores for a given value of k is not the same as the set of all k-plexes for any value of k,
since n, the size of the group, can vary from one k-core to another. Also, unlike k-plexes (and
cliques), k-cores cannot overlap, since by their definition two k-cores that shared one or more
vertices would just form a single larger k-core.

The k-core is of particular interest in network analysis for the practical reason that it is very easy
to find the set of all k-cores in a network. A simple algorithm is to start with your whole network
and remove from it any vertices that have degree less than k, since clearly such vertices cannot
under any circumstances be members of a k-core. In so doing, one will normally also reduce the
degrees of some other vertices in the network—those that were connected to the vertices just
removed. So we then go through the network again to see if there are any more vertices that now
have degree less than k and if there are we remove those too. And so we proceed, repeatedly
pruning the network to remove vertices with degree less than k until no such vertices remain.%
What is left over will, by definition, be a k-core or a set of k-cores, since each vertex is connected
to at least k others. Note that we are not necessarily left with a single k-core—there’s no guarantee
that the network will be connected once we are done pruning it, even if it was connected to start
with.

Two other generalizations of cliques merit a brief mention. A k-clique is a maximal subset of
vertices such that each is no more than a distance k away from any of the others via the edges of
the network. For k = 1 this just recovers the definition of an ordinary clique. For larger Kk it
constitutes a relaxation of the stringent requirements of the usual clique definition. Unfortunately it
is not a very well-behaved one, since a k-clique by this definition need not be connected via paths
that run within the subset (see figure). If we restrict ourselves to paths that run only within the
subset then the resulting object is known as either a k-clan or a k-club. (The difference between the
two lies in whether we impose the restriction that paths stay within the group from the outset, or
whether we first find k-cliques and then discard those with outside paths. The end results can be
different in the two cases. For more details see Wasserman and Faust [320].).



The outlined set of three vertices in this network constitute a 2-clique, but one that is not connected
via paths within the 2-clique.



7.8.2 COMPONENTS AND k-COMPONENTS

In Section 6.11 we introduced the concept of a component. A component in an undirected network
is a maximal subset of vertices such that each is reachable by some path from each of the others. A
useful generalization of this concept is the k-component. A k-component (sometimes also called a
k-connected component) is a maximal subset of vertices such that each is reachable from each of
the others by at least k vertex-independent paths—see Fig. 7.4. (Recall that two paths are said to be
vertex-independent if they share none of the same vertices, except the starting and ending
vertices—see Section 6.12.) For the common special cases k =2 and k = 3, k-components are also
called bicomponents and tricomponents respectively.

A 1l-component by this definition is just an ordinary component—there is at least one path
between every pair of vertices—and k-components for k > 2 are nested within each other. A 2-
component or bicomponent, for example, is necessarily a subset of a 1-component, since any pair
of vertices that are connected by at least two paths are also connected by at least one path.
Similarly a tricomponent is necessarily a subset of a bicomponent, and so forth. (See Fig. 7.4
again.)

As discussed in Section 6.12, the number of vertex-independent paths between two vertices is
equal to the size of the vertex cut set between the same two vertices, i.e., the number of vertices
that would have to be removed in order to disconnect the two. So another way of defining a k-
component would be to say that it is a maximal subset of vertices such that no pair of vertices can
be disconnected from each other by removing less than K vertices.

A variant of the k-component can also be defined using edge-independent paths, so that vertices
are in the same k-component if they are connected by k or more edge-independent paths, or
equivalently if they cannot be disconnected by the removal of less than k edges. In principal this
variant could be useful in certain circumstances but in practice it is rarely used.

|—component

2—component

3—component

Figure 7.4: The k-components in a small network. The shaded regions denote the k-components
in this small network, which has a single 1-component, two 2-components, one 3-component, and
no k-components for any higher value of k. Note that the k-components are nested within one
another, the 2-components falling inside the 1-component and the 3-component falling inside one
of the 2-components.

The idea of a k-component is a natural one in network analysis, being connected with the idea of
network robustness. For instance, in a data network such as the Internet, the number of vertex-
independent paths between two vertices is also the number of independent routes that data might



take between the same two vertices, and the size of the cut set between them is the number of
vertices in the network—typically routers—that would have to fail or otherwise be knocked out to
sever the data connection between the two endpoints. Thus a pair of vertices connected by two
independent paths cannot be disconnected from one another by the failure of any single router. A
pair of vertices connected by three paths cannot be disconnected by the failure of any two routers.
And so forth. A k-component with k > 2 in a network like the Internet is a subset of the network
that has robust connectivity in this sense. One would hope, for instance, that most of the network
backbone—the system of high volume world-spanning links that carry long-distance data (see
Section 2.1)—is a k-component with high Kk, so that it would be difficult for points on the backbone
to lose connection with one another.

The two highlighted vertices in this network form a tricomponent, even though they are not
directly connected to each other. The other three vertices are not in the tricomponent.

Note that for k > 3, the k-components in a network can be non-contiguous (see figure). Ordinary
components (1-components) and bicomponents, by contrast, are always contiguous. Within the
social networks literature, where non-contiguous components are often considered undesirable, k-
components are sometimes defined slightly differently: a k-component is defined to be a maximal
subset of vertices such that every pair in the set is connected by at least k vertex-independent paths
that themselves are contained entirely within the subset. This definition rules out non-contiguous
k-components, but it is also mathematically and computationally more difficult to work with than
the standard definition. For this reason, and because there are also plenty of cases in which it is
appropriate to count non-contiguous K-components, the standard definition remains the most
widely used one in fields other than sociology.



7.9 TRANSITIVITY

A property very important in social networks, and useful to a lesser degree in other networks too,
is transitivity. In mathematics a relation “o” is said to be transitive if a b and b ©c together imply
a .c. An example would be equality. If a = b and b = c, then it follows that a = ¢ also, so “=" is
a transitive relation. Other examples are “greater than,” “less than,” and “implies.”

In a network there are various relations between pairs of vertices, the simplest of which is

“connected by an edge.” If the “connected by an edge” relation were transitive it would mean that
if vertex U is connected to vertex Vv, and V is connected to W, then U is also connected to w. In
common parlance, “the friend of my friend is also my friend.” Although this is only one possible
kind of network transitivity—other network relations could be transitive too—it is the only one
that is commonly considered, and networks showing this property are themselves said to be
transitive. This definition of network transitivity could apply to either directed or undirected
networks, but let us take the undirected case first, since it’s simpler.

Perfect transitivity only occurs in networks where each component is a fully connected subgraph
or clique, i.e., a subgraph in which all vertices are connected to all others.2Z Perfect transitivity is
therefore pretty much a useless concept in networks. However, partial transitivity can be very
useful. In many networks, particularly social networks, the fact that u knows v and v knows w
doesn’t guarantee that u knows w, but makes it much more likely. The friend of my friend is not
necessarily my friend, but is far more likely to be my friend than some randomly chosen member
of the population.

The path uvw (solid edges) is said to be closed if the third edge directly from u to W is present
(dashed edge).

We can quantify the level of transitivity in a network as follows. If u knows v and v knows w,
then we have a path uvw of two edges in the network. If u also knows w, we say that the path is
closed—it forms a loop of length three, or a triangle, in the network. In the social network jargon,
u, v, and w are said to form a closed triad. We define the clustering coefficient?® to be the fraction
of paths of length two in the network that are closed. That is, we count all paths of length two, and
we count how many of them are closed, and we divide the second number by the first to get a
clustering coefficient C that lies in the range from zero to one:

c (number of closed paths of length two)
(number of paths of length two)

(7.39)



C = 1 implies perfect transitivity, i.e., a network whose components are all cliques. C = 0
implies no closed triads, which happens for various topologies, such as a tree (which has no closed
loops of any kind—see Section 6.7) or a square lattice (which has closed loops with even numbers
of vertices only and no closed triads).

Note that paths in networks, as defined in Section 6.10 have a direction and two paths that
traverse the same edges but in opposite directions are counted separately in Eq. (7.39). Thus uvw
and wvu are distinct paths and are counted separately. Similarly, closed paths are counted
separately in each direction.2

An alternative way to write the clustering coefficient is

. (number of triangles) x 6
(number of paths of length two)

(7.40)

Why the factor of six? It arises because each triangle in the network gets counted six times over
when we count up the number of closed paths of length two. Suppose we have a triangle uvw.
Then there are six paths of length two in it: uvw, vwu, wuv, wvu, vuw, and uwv. Each of these six is
closed, so the number of closed paths is six times the number of triangles.




A triangle contains six distinct paths of length two, all of them closed.

Yet another way to write the clustering coefficient would be to note that if we have a path of
length two, uvw, then it is also true to say that vertices U and w have a common neighbor in v—
they share a mutual acquaintance in social network terms. If the triad uvw is closed then u and w
are themselves acquainted, so the clustering coefficient can be thought of also as the fraction of
pairs of people with a common friend who are themselves friends or equivalently as the mean
probability that two people with a common friend are themselves friends. This is perhaps the most
common way of defining the clustering coefficient. In mathematical notation:

. (number of triangles) x 3
(number of connected triples)’

(7.41)

Here a “connected triple” means three vertices uvw with edges (u, v) and (v, w). (The edge (u, w)
can be present or not.) The factor of three in the numerator arises because each triangle gets
counted three times when we count the connected triples in the network. The triangle uvw for
instance contains the triples uvw, vwu, and wuv. In the older social networks literature the
clustering coefficient is sometimes referred to as the “fraction of transitive triples,” which is a
reference to this definition of the coefficient.

Social networks tend to have quite high values of the clustering coefficient. For example, the
network of film actor collaborations discussed earlier has been found to have C = 0.20 [241]; a
network of collaborations between biologists has been found to have C = 0.09 [236]; a network of
who sends email to whom in a large university has C = 0.16 [103]. These are typical values for
social networks. Some denser networks have even higher values, as high as 0.5 or 0.6.
(Technological and biological networks by contrast tend to have somewhat lower values. The
Internet at the autonomous system level, for instance, has a clustering coefficient of only about
0.01. This point is discussed in more detail in Section 8.6.)

In what sense are these clustering coefficients for social networks high? Well, let us assume, to
make things simple, that everyone in a network has about the same number C of friends. Consider
one of my friends in this network and suppose they pick their friends completely at random from
the whole population. Then the chance that one of their ¢ friends happens to be a particular one of
my other friends would be c/n, where n is the size of the network. Thus in this network the
probability of two of my friends being acquainted, which is by definition the clustering coefficient,
would be just ¢/n. Of course it is not the case that everyone in a network has the same number of
friends, and we will see how to perform better calculations of the clustering coefficient later
(Section 13.4), but this crude calculation will serve our purposes for the moment.

For the networks cited above, the value of ¢/n is 0.0003 (film actors), 0.00001 (biology
collaborations), and 0.00002 (email messages). Thus the measured clustering coefficients are much
larger than this estimate based on the assumption of random network connections. Even though the
estimate ignores, as we have said, any variation in the number of friends people have, the disparity
between the calculated and observed values of the clustering coefficient is so large that it seems
unlikely it could be eliminated just by allowing the number of friends to vary. A much more likely
explanation is that our other assumption, that people pick their friends at random, is seriously
flawed. The numbers suggest that there is a much greater chance that two people will be
acquainted if they have another common acquaintance than if they don’t.

Although this argument is admittedly crude, we will see in Section 8.6 how to make it more



accurate and so show that our basic conclusion is indeed correct.

Some social networks, such as the email network above, are directed networks. In calculating
clustering coefficients for direct networks, scientists have typically just ignored their directed
nature and applied Eq. (7.41) as if the edges were undirected. It is however possible to generalize
transitivity to take account of directed links. If we have a directed relation between vertices such as

“U likes v’ then we can say that a triple of vertices is closed or transitive if u likes v, v likes w,
and also u likes w. (Note that there are many distinct ways for such a triple to be transitive,
depending on the directions of the edges. The example given here is only one of six different
possibilities.) One can calculate a clustering coefficient or fraction of transitive triples in the
obvious fashion for the directed case, counting all directed paths of length two that are closed and
dividing by the total number of directed paths of length two. For some reason, however, such
measurements have not often appeared in the literature.

i W
x -
‘.l

A transitive triple of vertices in a directed network.



7.9.1 LOCAL CLUSTERING AND REDUNDANCY

We can also define a clustering coefficient for a single vertex. For a vertex i, we define

{number of pairs of neighbors of i that are connected)

C; :
: {number of pairs of neighbors of i)

(7.42)

That is, to calculate C; we go through all distinct pairs of vertices that are neighbors of 7 in the
network, count the number of such pairs that are connected to each other, and divide by the total
number of pairs, which is tkilki = 1) where k; is the degree of i,. C, is sometimes called the local

clustering coefficient and it represents the average probability that a pair of i's friends are friends
of one another.

Local clustering is interesting for several reasons. First, in many networks it is found empirically
to have a rough dependence on degree, vertices with higher degree having a lower local clustering
coefficient on average. This point is discussed in detail in Section 8.6.1.

Second, local clustering can be used as a probe for the existence of so-called “structural holes”
in a network. While it is common in many networks, especially social networks, for the neighbors
of a vertex to be connected among themselves, it happens sometimes that these expected
connections between neighbors are missing. The missing links are called structural holes and were
first studied in this context by Burt [60]. If we are interested in efficient spread of information or
other traffic around a network, as we were in Section 7.7, then structural holes are a bad thing—
they reduce the number of alternative routes information can take through the network. On the
other hand structural holes can be a good thing for the central vertex i whose friends lack
connections, because they give i power over information flow between those friends. If two friends
of i are not connected directly and their information about one another comes instead via their
mutual connection with i then i can control the flow of that information. The local clustering
coefficient measures how influential i is in this sense, taking lower values the more structural holes
there are in the network around i. Thus local clustering can be regarded as a type of centrality
measure, albeit one that takes small values for powerful individuals rather than large ones.

Structural holes




When the neighbors of a node are not connected to one another we say the network contains
“structural holes.”

In this sense, local clustering can also be thought of as akin to the betweenness centrality of
Section 7.7. Where betweenness measures a vertex’s control over information flowing between all
pairs of vertices in its component, local clustering is like a local version of betweenness that
measures control over flows between just the immediate neighbors of a vertex. One measure is not
necessarily better than another. There may be cases in which we want to take all vertices into
account and others where we want to consider only immediate neighbors—the choice will depend
on the particular questions we want to answer. It is worth pointing out however that betweenness is
much more computationally intensive to calculate than local clustering (see Section 10.3.6), and
that in practice betweenness and local clustering are strongly correlated [60]. There may in many
cases be little to be gained by performing the more costly full calculation of betweenness and
much to be saved by sticking with clustering, given that the two contain much the same
information.1%

In his original studies of structural holes, Burt [60] did not in fact make use of the local
clustering coefficient as a measure of the presence of holes.l2 Instead, he used another measure,
which he called redundancy. The original definition of redundancy was rather complicated, but
Borgatti [50] has shown that it can be simplified to the following: the redundancy R, of a vertex i is

the mean number of connections from a neighbor of i to other neighbors of i. Consider the example
shown in Fig. 7.5 in which vertex i has four neighbors. Each of those four could be acquainted
with any of the three others, but in this case none of them is connected to all three. One is

connected to none of the others, two are connected to one other, and the last is connected to two

others. The redundancy is the average of these numbers Ri— @1+ 142 = 1 The minimum

possible value of the redundancy of a vertex is zero and the maximum is k, — 1, where £, is the
degree of vertex i.

Figure 7.5: Redundancy. The neighbors of the central vertex in this figure have 0, 1, 1, and 2

connections to other neighbors respectively. The redundancy is the mean of these values:
R=1o+1+1+2)=1

It’s probably obvious that R, is related to the local clustering C. To see precisely what the
relation is, we note that if the average number of connections from a friend of i to other friends is

d

R, then the total number of connections between friends is > " . And the total number of pairs of

friends of 7 is 2%k —1)  The local clustering coefficient, Eq. (7.42), is the ratio of these two
quantities:




(7.43)

Given that k£, — 1 is the maximum value of R, the local clustering coefficient can be thought of as

simply a version of the redundancy rescaled to have a maximum value of 1. Applying Eq. (7.43) to
the example of Fig. 7.5 implies that the local clustering coefficient for the central vertex should be

G %, and the reader can easily verify that this is indeed the case.

A third context in which the local clustering coefficient arises is in the calculation of the global
clustering coefficient itself. Watts and Strogatz [323] proposed calculating a clustering coefficient
for an entire network as the mean of the local clustering coefficients for each vertex:
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(7.44)

where 7 is the number of vertices in the network. This is a different definition for the clustering
coefficient from the one given earlier, Eq. (7.41), and the two definitions are not equivalent.
Furthermore, they can give substantially different numbers for a given network and because both
definitions are in reasonably common use this can give rise to confusion. We favor our first
definition for C, Eq. (7.41), because it has a simple interpretation and because it is normally easier
to calculate. Also the second definition, Eq. (7.44), tends to be dominated by vertices with low
degree, since they have small denominators in Eq. (7.42), and the measure thus gives a rather poor
picture of the overall properties of any network with a significant number of such vertices.1% It’s
worth noting, however, that the definition of Eq. (7.44) was actually proposed before Eq. (7.41)
and, perhaps because of this, it finds moderately wide use in network studies. So you need at least
to be aware of both definitions and clear which is being used in any particular situation.



7.10 RECIPROCITY

The clustering coefficient of Section 7.9 measures the frequency with which loops of length
three—triangles—appear in a network. Of course, there is no reason why one should concentrate
only on loops of length three, and people have occasionally looked at the frequency of loops of
length four or more [44, 61,133,140, 238]. Triangles occupy a special place however because in an
undirected simple graph the triangle is the shortest loop we can have (and usually the most
commonly occurring). However, in a directed network this is not the case. In a directed network,
we can have loops of length two—a pair of vertices between which there are directed edges
running in both directions—and it is interesting to ask about the frequency of occurrence of these
loops also.

A loop of length two in a directed network.

The frequency of loops of length two is measured by the reciprocity, and tells you how likely it
is that a vertex that you point to also points back at you. For instance, on the World Wide Web if
my web page links to your web page, how likely is it, on average, that yours link back again to
mine? In general, it’s found that you are much more likely to link to me if I link to you than if |
don’t. (That probably isn’t an Earth-shattering surprise, but it’s good to know when the data bear
out one’s intuitions.) Similarly in friendship networks, such as the networks of schoolchildren
described in Section 3.2 where respondents were asked to name their friends, it is much more
likely that you will name me if | name you than if | do not.

If there is a directed edge from vertex i to vertex j in a directed network and there is also an edge
from j to i then we say the edge from i to j is reciprocated. (Obviously the edge from j to i is also
reciprocated.) Pairs of edges like this are also sometimes called co-links, particularly in the context
of the World Wide Web [104].

The reciprocity r is defined as the fraction of edges that are reciprocated. Noting that the product
of adjacency matrix elements A;A;; is 1 if and only if there is an edge from i to j and an edge from j
to i and is zero otherwise, we can sum over all vertex pairs i, j to get an expression for the
reciprocity:
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(7.45)



where m is, as usual, the total number of (directed) edges in the network.
Consider for example this small network of four vertices:

AN

There are seven directed edges in this network and four of them are reciprocated, so the reciprocity

is © = 7 =057 In fact, this is about the same value as seen on the World Wide Web. There is
about a 57% percent chance that if web page A links to web page B then B also links back to A.1%
As another example, in a study of a network of who has whom in their email address book it was
found that the reciprocity was about r = 0.23 [248].



7.11 SIGNED EDGES AND STRUCTURAL BALANCE

In some social networks, and occasionally in other networks, edges are allowed to be either
“positive” or “negative.” For instance, in an acquaintance network we could denote friendship by
a positive edge and animosity by a negative edge:

i
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Friends

One could also consider varying degrees of friendship or animosity—networks with more strongly
positive or negative edges in them—but for the moment let’s stick to the simple case where each
edge is in just one of two states, positive or negative, like or dislike. Such networks are called
signed networks and their edges are called signed edges.

It is important to be clear here that a negative edge is not the same as the absence of an edge. A
negative edge indicates, for example, two people who interact regularly but dislike each other. The
absence of an edge represents two people who do not interact. Whether they would like one
another if they did interact is not recorded.

Now consider the possible configurations of three edges in a triangle in a signed network, as
depicted in Fig. 7.6. If “+” and “~” represent like and dislike, then we can imagine some of
these configurations creating social problems if they were to arise between three people in the real
world. Configuration (a) is fine: everyone likes everyone else. Configuration (b) is probably also
fine, although the situation is more subtle than (a). Individuals u and v like one another and both
dislike w, but the configuration can still be regarded as stable in the sense that u and v can agree
over their dislike of w and get along just fine, while w hates both of them. No one is conflicted
about their allegiances.

Put another way, W is U§ enemy and v is W § enemy, but there is no problem with u and v being

friends if one considers that the “enemy of my enemy is my friend.”
Configuration (¢) however could be problematic. Individual u likes individual v and v likes w,
but u thinks w is an idiot. This is going to place a strain on the friendship between U and v because

u thinks v § friend is an idiot. Alternatively, from the point of view of v, v has two friends, u and w

and they don’t get along, which puts v in an awkward position. In many real-life situations of this
kind the tension would be resolved by one of the acquaintances being broken, i.e., the edge would
be removed altogether. Perhaps v would simply stop talking to one of his friends, for instance.

W W W W
W —/\: —/\* —,e_’ \:—
n . + : v I _|_ v M . _|_ Vv i —_— vV

(i} (b (<) {d}



Figure 7.6: Possible triad configurations in a signed network. Configurations (a) and (b) are
balanced and hence relatively stable, but configurations (c¢) and (d) are unbalanced and liable to
break apart.

Configuration (d) is somewhat ambiguous. On the one hand, it consists of three people who all
dislike each other, so no one is in doubt about where things stand: everyone just hates everyone
else. On the other hand, the “enemy of my enemy” rule does not apply here. Individuals U and v
might like to form an alliance in recognition of their joint dislike of w, but find it difficult to do so
because they also dislike each other. In some circumstances this might cause tension. (Think of the
uneasy alliance of the US and Russia against Germany during World War II, for instance.) But
what one can say definitely is that configuration (d) is often unstable. There may be little reason
for the three to stay together when none of them likes the others. Quite probably three enemies
such as these would simply sever their connections and go their separate ways.

+ +

Two stable configurations in loops of length four.

The feature that distinguishes the two stable configurations in Fig. 7.6 from the unstable ones is
that they have an even number of minus signs around the loop.l2 One can enumerate similar
configurations for longer loops, of length four or greater, and again find that loops with even
numbers of minus signs appear stable and those with odd numbers unstable.

This alone would be an observation of only slight interest, where it not for the intriguing fact
that this type of stability really does appear have an effect on the structure of networks. In surveys
it is found that the unstable configurations in Fig. 7.6, the ones with odd numbers of minus signs,
occur far less often in real social networks than the stable configurations with even numbers of
minus signs.

Networks containing only loops with even numbers of minus signs are said to show structural

balance, or sometimes just balance. An important consequence of balance in networks was proved
by Harary [154]:

A balanced network can be divided into connected groups of vertices such that all
connections between members of the same group are positive and all connections between
members of different groups are negative.



Note that the groups in question can consist of a single vertex or many vertices, and there may be
only one group or there may be very many. Figure 7.7 shows a balanced network and its division
into groups. Networks that can be divided into groups like this are said to be clusterable. Harary’s
theorem tells us that all balanced networks are clusterable.

Figure 7.7: A balanced, clusterable network. Every loop in this network contains an even
number of minus signs. The dotted lines indicate the division of the network into clusters such that
all acquaintances within clusters have positive connections and all acquaintances in different
clusters have negative connections.

Harary’s theorem is straightforward to prove, and the proof is “constructive,” meaning that it
shows not only when a network is clusterable but also tells us what the groups are.l% We consider
initially only networks that are connected—they have just one component. In a moment we will
relax this condition. We will color in the vertices of the network each in one of two colors, denoted
by the open and filled circles in Fig. 7.7, for instance. We start with any vertex we please and color
it with whichever color we please. Then we color in the others according to the following
algorithm:

1. A vertex vV connected by a positive edge to another U that has already been colored gets
colored the same as u.

2. A vertex vV connected by a negative edge to another u that has already been colored gets
colored the opposite color from u.

For most networks it will happen in the course of this coloring process that we sometimes come
upon a vertex whose color has already been assigned. When this happens there is the possibility of
a conflict arising between the previously assigned color and the one that we would like to assign to
it now according to the rules above. However, as we now show, this conflict only arises if the
network as a whole is unbalanced.

If in coloring in a network we come upon a vertex that has already been colored in, it
immediately implies that there must be another path by which that vertex can be reached from our
starting point and hence that there is at least one, and possibly more than one, loop in the network
to which this vertex belongs—the loop consisting of the two paths between the starting point and
the vertex. Since the network is balanced, every loop to which our vertex belongs must have an
even number of negative edges around it. Now let us suppose that the color already assigned to the
vertex is in conflict with the one we would like to assign it now. There are two ways in which this
could happen, as illustrated in Fig. 7.8. In case (a), we color in a vertex U and then move onto its
neighbor Vv, only to find that v has already been colored the opposite color to U, even though the
edge between them is positive. This presents a problem. But if U and v are opposite colors, then
around any loop containing them both there must be an odd number of minus signs, so that the
color changes an odd number of times and ends up the opposite of what it started out as. And if
there is an odd number of minus signs around the loop, then the network is not balanced.
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Figure 7.8: Proof that a balanced network is clusterable. If we fail to color a network in two
colors as described in the text, then there must exist a loop in the network that has one or other of
the two configurations shown here, both of which have an odd number of minus signs around them
(counting the one between the vertices U and V), and hence the network is not balanced.

In case (b) vertices U and v have the same color but the edge between them is negative. Again
we have a problem. But if u and v are the same color then there must be an even number of
negative edges around the rest of the loop connecting them which, along with the negative edge
between U and v, gives us again an odd total number of negative edges around the entire loop, and
hence the network is again not balanced.

Either way, if we ever encounter a conflict about what color a vertex should have then the
network must be unbalanced. If the network is balanced, therefore, we will never encounter such a
conflict and we will be able to color the entire network with just two colors while obeying the
rules.

Once we have colored the network in this way, we can immediately deduce the identity of the
groups that satisfy Harary’s theorem: we simply divide the network into contiguous clusters of
vertices that have the same color—see Fig. 7.7 again. In every such cluster, since all vertices have
the same color, they must be joined by positive edges. Conversely, all edges that connected
different clusters must be negative, since the clusters have different colors. (If they did not have
different colors they would be considered the same cluster.)

Thus Harary’s theorem is proved and at the same time we have deduced a method for

constructing the clusters.XZ It only remains to extend the proof to networks that have more than
one component, but this is trivial, since we can simply repeat the proof above for each component
separately.

The practical importance of Harary’s result rests on the fact that, as mentioned earlier, many real
social networks are found naturally to be in a balanced or mostly balanced state. In such cases it
would be possible, therefore, for the network to form into groups such that everyone likes others
within their group with whom they have contact and dislikes those in other groups. It is widely
assumed in social network theory that this does indeed often happen. Structural balance and
clusterability in networks are thus a model for cliquishness or insularity, with people tending to
stick together in like-minded groups and disdaining everyone outside their immediate community.

It is worth asking whether the inverse of Harary’s clusterability theorem is also true. Is it also
the case that a network that is clusterable is necessarily balanced? The answer is no, as this simple
counter-example shows:



In this network all three vertices dislike each other, so there is an odd number of minus signs
around the loop, but there is no problem dividing the network into three clusters of one vertex each

such that everyone dislikes the members of the other clusters. This network is clusterable but not
balanced.



7.12 SIMILARITY

Another central concept in social network analysis is that of similarity between vertices. In what ways
can vertices in a network be similar, and how can we quantify that similarity? Which vertices in a given
network are most similar to one another? Which vertex v is most similar to a given vertex u? Answers to
questions like these can help us tease apart the types and relationships of vertices in social networks,
information networks, and others. For instance, one could imagine that it might be useful to have a list of
web pages that are similar—in some appropriate sense—to another page that we specify. In fact, several
web search engines already provide a feature like this: “Click here for pages similar to this one.”

Similarity can be determined in many different ways and most of them have nothing to do with
networks. For example, commercial dating and matchmaking services try to match people with others to
whom they are similar by using descriptions of people’s interests, background, likes, and dislikes. In
effect, these services are computing similarity measures between people based on personal
characteristics. Our focus in this book, however, is on networks, so we will concentrate on the more
limited problem of determining similarity between the vertices of a network using the information
contained in the network structure.

There are two fundamental approaches to constructing measures of network similarity, called
structural equivalence and regular equivalence. The names are rather opaque, but the ideas they
represent are simple enough. Two vertices in a network are structurally equivalent if they share many of
the same network neighbors. In Fig. 7.9a we show a sketch depicting structural equivalence between two
vertices i and j—the two share, in this case, three of the same neighbors, although both also have other
neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent vertices do not necessarily share the
same neighbors, but they have neighbors who are themselves similar. Two history students at different
universities, for example, may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so forth. Similarly, two CEOs
at two different companies may have no colleagues in common, but they are similar in the sense that they
have professional ties to their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.9b.

(a} Structural equivalence (b} Regular equivalence

Figure 7.9: Structural equivalence and regular equivalence. (a) Vertices i and j are structurally
equivalent if they share many of the same neighbors. (b) Vertices i and j are regularly equivalent if their
neighbors are themselves equivalent (indicated here by the different shades of vertices).

In the next few sections we describe some mathematical measures that quantify these ideas of
similarity. As we will see, measures for structural equivalence are considerably better developed than
those for regular equivalence.



7.12.1 COSINE SIMILARITY

We start by looking at measures of structural equivalence and we will concentrate on undirected
networks. Perhaps the simplest and most obvious measure of structural equivalence would be just
a count of the number of common neighbors two vertices have. In an undirected network the
number n;, of common neighbors of vertices i and j is given by
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(7.46)

which is the ijth element of A2 This quantity is closely related to the “cocitation” measure
introduced in Section 6.4.1. Cocitation is defined for directed networks whereas we are here
considering undirected ones, but otherwise it is essentially the same thing.

However, a simple count of common neighbors for two vertices is not on its own a very good
measure of similarity. If two vertices have three common neighbors is that a lot or a little? It’s hard
to tell unless we know, for instance, what the degrees of the vertices are, or how many common
neighbors other pairs of vertices share. What we need is some sort of normalization that places the
similarity value on some easily understood scale. One strategy might be simply to divide by the
total number of vertices in the network 7, since this is the maximum number of common neighbors
two vertices can have in a simple graph. (Technically the maximum is actually » — 2, but the
difference is small when # is large.) However, this unduly penalizes vertices with low degree: if a
vertex has degree three, then it can have at most three neighbors in common with another vertex,
but the two vertices would still receive a small similarity value if the divisor n were very large. A
better measure would allow for the varying degrees of vertices. Such a measure is the cosine
similarity, sometimes also called Salton’s cosine.

In geometry, the inner or dot product of two vectors X and y is given by X « y= |X| |y| cos 6,

where |X| is the magnitude of X and 6 is the angle between the two vectors. Rearranging, we can
write the cosine of the angle as
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(7.47)

Salton [290] proposed that we regard the ith and jth rows (or columns) of the adjacency matrix as
two vectors and use the cosine of the angle between them as our similarity measure. Noting that
the dot product of two rows is simply 4,4, for an undirected network, this gives us a similarity
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Assuming our network is an unweighted simple graph, the elements of the adjacency matrix take

only the values 0 and 1, so that A% = Aii for all i, j. Then L A% — Ly A — K. where £, is the degree
of vertex i (see Eq. (6.19)). Thus
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The cosine similarity of i and j is therefore the number of common neighbors of the two vertices
divided by the geometric mean of their degrees. For the vertices i and j depicted in Fig. 7.9a, for
instance, the cosine similarity would be
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(7.50)

Notice that the cosine similarity is technically undefined if one or both of the vertices has degree
zero, but by convention we normally say in that case that o, = 0.

The cosine similarity provides a natural scale for our similarity measure. Its value always lies in
the range from 0 to 1. A cosine similarity of 1 indicates that two vertices have exactly the same
neighbors. A cosine similarity of zero indicates that they have none of the same neighbors. Notice
that the cosine similarity can never be negative, being a sum of positive terms, even though cosines
in general can of course be negative.



7.12.2 PEARSON COEFFICIENTS

An alternative way to normalize the count of common neighbors is to compare it with the expected
value that count would take on a network in which vertices choose their neighbors at random. This
line of argument leads us to the Pearson correlation coefficient.

Suppose vertices i and j have degrees k; and k; respectively. How many common neighbors

should we expect them to have? This is straightforward to calculate if they choose their neighbors
purely at random. Imagine that vertex i chooses k, neighbors uniformly at random from the n

possibilities open to it (or n» — 1 on a network without self-loops, but the distinction is slight for a
large network), and vertex j similarly chooses &, neighbors at random. For the first neighbor that

chooses there is a probability of k/n that it will choose one of the ones £, chose, and similarly for

each succeeding choice. (We neglect the possibility of choosing the same neighbor twice, since it
is small for a large network.) Then in total the expected number of common neighbors between the
two vertices will be £; times this, or kk/n.

A reasonable measure of similarity between two vertices is the actual number of common
neighbors they have minus the expected number that they would have if they chose their neighbors
at random:
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(7.51)

where 04,00 denotes the mean n! ), 4, of the elements of the ith row of the adjacency matrix.

Equation (7.51) will be zero if the number of common neighbors of i and j is exactly what we
would expect on the basis of random chance. If it is positive, then 7 and j have more neighbors than
we would expect by chance, which we take as an indication of similarity between the two.
Equation (7.51) can also be negative, indicating that i and j have fewer neighbors than we would
expect, a possible sign of dissimilarity.

Equation (7.51) is simply # times the covariance cov(4,, 4)) of the two rows of the adjacency
matrix. It is common to normalize the covariance, as we did with the cosine similarity, so that its
maximum value is 1. The maximum value of the covariance of any two sets of quantities occurs
when the sets are exactly the same, in WhiCl;l case their covariance is just equal to the variance of

either set, which we could write as @ or 77, or in symmetric form as 0,0, Normalizing by this
quantity then gives us the standard Pearson correlation coefficient:
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This quantity lies strictly in the range -1 <r, < 1.

The Pearson coefficient is a widely used measure of similarity. It allows us to say when vertices
are both similar or dissimilar compared with what we would expect if connections in the network
were formed at random.



7.12.3 OTHER MEASURES OF STRUCTURAL EQUIVALENCE

There are many other possible measures of structural equivalence. For instance, one could also
normalize the number n; of common neighbors by dividing by (rather than subtracting) the

expected value of kk/n. That would give us a similarity of
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This quantity will be 1 if the number of common neighbors is exactly as expected on the basis of
chance, greater than one if there are more common neighbors than that, and less than one for
dissimilar vertices with fewer common neighbors than we would expect by chance. It is never
negative and has the nice property that it is zero when the vertices in question have no common
neighbors. This measure could be looked upon as an alternative to the cosine similarity: the two
differ in that one has the product of the degrees kk; in the denominator while the other has the

square root of the product VEK; 1t has been suggested that Eqg. (7.53) may in some cases be a
superior measure to the cosine similarity because, by normalizing with respect to the expected
number of common neighbors rather than the maximum number, it allows us to easily identify
statistically surprising coincidences between the neighborhoods of vertices, which cosine similarity
does not [195].

Another measure of structural equivalence is the so-called Euclidean distance ,22 which is equal
to the number of neighbors that differ between two vertices. That is, it is the number of vertices
that are neighbors of i but not of j, or vice versa. Euclidean distance is really a dissimilarity
measure, since it is larger for vertices that differ more.

In terms of the adjacency matrix the Euclidean distance d;; between two vertices can be written
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(7.54)

As with our other measures it is sometimes convenient to normalize the Euclidean distance by
dividing by its possible maximum value. The maximum value of d;; occurs when two vertices have

no neighbors in common, in which case the distance is equal to the sum of the degrees of the
vertices: d; = k; + k;. Dividing by this maximum value the normalized distance is
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where we have made use of the fact that A5 ~ “i because A; is always zero or one, and n; is again

the number of neighbors that i and j have in common. To within additive and multiplicative
constants, this normalized Euclidean distance can thus be regarded as just another alternative
normalization of the number of common neighbors.



7.12.4 REGULAR EQUIVALENCE

The similarity measures discussed in the preceding sections are all measures of structural
equivalence, i.e., they are measures of the extent to which two vertices share the same neighbors.
The other main type of similarity considered in social network analysis is regular equivalence. As
described above, regularly equivalent vertices are vertices that, while they do not necessarily share
neighbors, have neighbors who are themselves similar—see Fig. 7.9b again.

Quantitative measures of regular equivalence are less well developed than measures of structural
equivalence. In the 1970s social network analysts came up with some rather complicated computer
algorithms, such as the “REGE” algorithm of White and Reitz [320, 327], that were intended to
discover regular equivalence in networks, but the operation of these algorithms is involved and not
easy to interpret. More recently, however, some simpler algebraic measures have been developed
that appear to work reasonably well. The basic idea [45, 162, 195] is to define a similarity score o,

such that i and j have high similarity if they have neighbors k& and / that themselves have high
similarity. For an undirected network we can write this as
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or in matrix terms ¢ = aAcA. Although it may not be immediately clear, this expression is a
type of eigenvector equation, where the entire matrix ¢ of similarities is the eigenvector. The
parameter « is the eigenvalue (or more correctly, its inverse) and, as with the eigenvector centrality
of Section 7.2, we are normally interested in the leading eigenvalue, which can be found by
standard methods.

Vertices i and j are considered similar (dashed line) if they have respective neighbors & and / that
are themselves similar.

See Section 11.1 for a discussion of computer algorithms for finding eigenvectors.

This formula however has some problems. First, it doesn’t necessarily give a high value for the
“self-similarity” o, of a vertex to itself, which is counter-intuitive. Presumably, all vertices are



highly similar to themselves! As a consequence of this, Eq. (7.56) also doesn’t necessarily give
a high similarity score to vertex pairs that have a lot of common neighbors, which in the light of
our examination of structural equivalence in the preceding few sections we perhaps feel it should.
If we had high self-similarity scores for all vertices, on the other hand, then Eq. (7.56) would
automatically give high similarity also to vertices with many common neighbors.

We can fix these problems by introducing an extra diagonal term in the similarity thus:
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or in matrix notation

o — tAcA + L

(7.58)

However, while expressions like this have been proposed as similarity measures, they still suffer
from some problems. Suppose we evaluate Eq. (7.58) by repeated iteration, taking a starting value,
for example, of 6(© = 0 and using it to compute 6() = aAcA + I, and then repeating the process
many times until o converges. On the first few iterations we will get the following results:

(7.59a)

(7.59b)
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(7.59¢)



In the modified definition of regular equivalence vertex i is considered similar to vertex j (dashed
line) if it has a neighbor £ that is itself similar to ;.

The pattern is clear: in the limit of many iterations, we will get a sum over even powers of the
adjacency matrix. However, as discussed in Section 6.10, the elements of the rth power of the
adjacency matrix count paths of length » between vertices, and hence this measure of similarity is a
weighted sum over the numbers of paths of even length between pairs of vertices.

But why should we consider only paths of even length? Why not consider paths of all lengths?
These questions lead us to a better definition of regular equivalence as follows: vertices i and j are
similar if 7 has a neighbor £ that is itself similar to ;.12 Again we assume that vertices are similar to
themselves, which we can represent with a diagonal J, term in the similarity, and our similarity

measure then looks like

7ii = Y Apoy; + 8,
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(7.60)

or

o= atAo + 1,

(7.61)

in matrix notation. Evaluating this expression by iterating again starting from ¢ = 0, we get

(7.62a)
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In the limit of a large number of iterations this gives

o= Y (xA)" = (I1-aA)~,
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(7.63)

which we could also have deduced directly by rearranging Eq. (7.61). Now our similarity measure
includes counts of paths at all lengths, not just even paths. In fact, we can see now that this
similarity measure could be defined a completely different way, as a weighted count of all the
paths between the vertices i and j with paths of length » getting weight a". So long as a < 1, longer
paths will get less weight than shorter ones, which seems sensible: in effect we are saying that
vertices are similar if they are connected either by a few short paths or by very many long ones.
Equation (7.63) is reminiscent of the formula for the Katz centrality, Eq. (7.10). We could call
Eq. (7.63) the “Katz similarity” perhaps, although Katz himself never discussed it. The Katz
centrality of a vertex would then be simply the sum of the Katz similarities of that vertex to all
others. Vertices that are similar to many others would get high centrality, a concept that certainly
makes intuitive sense. As with the Katz centrality, the value of the parameter a is undetermined—
we are free to choose it as we see fit—but it must satisfy a < 1/k, if the sum in Eq. (7.63) is to

converge, where x, is the largest eigenvalue of the adjacency matrix.

In a sense, this regular equivalence measure can be seen as a generalization of our structural
equivalence measures in earlier sections. With those measures we were counting the common
neighbors of a pair of vertices, but the number of common neighbors is also of course the number
of paths of length two between the vertices. Our “Katz similarity” measure merely extends this
concept to counting paths of all lengths.

Some variations of this similarity measure are possible. As defined it tends to give high
similarity to vertices that have high degree, because if a vertex has many neighbors it tends to
increase the number of those neighbors that are similar to any other given vertex and hence
increases the total similarity to that vertex. In some cases this might be desirable: maybe the person
with many friends should be considered more similar to others than the person with few. However,
in other cases it gives an unwanted bias in favor of high-degree nodes. Who is to say that two
hermits are not “similar” in an interesting sense? If we wish, we can remove the bias in favor of
high degree by dividing by vertex degree thus:
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or in matrix notation ¢ = aD'Ac¢ + I, where, as previously, D is the diagonal matrix with
elements D, = k. This expression can be rearranged to read:

o= (I1-aD'A)!' = (D-aA)'D.

(7.65)

Another useful variant is to consider cases where the last term in Egs. (7.60) or (7.64) is not
simply diagonal, but includes off-diagonal terms too. Such a generalization would allow us to
specify explicitly that particular pairs of vertices are similar, based on some other (probably non-
network) information that we have at our disposal. Going back to the example of CEOs at
companies that we gave at the beginning of Section 7.12, we might, for example, want to state
explicitly that the CFOs and CIOs and so forth at different companies are similar, and then our
similarity measure would, we hope, correctly deduce from the network structure that the CEOs are
similar also. This kind of approach is particularly useful in the case of networks that consist of
more than one component, so that some pairs of vertices are not connected at all. If, for instance,
we have two separate components representing people in two different companies, then there will
be no paths of any length between individuals in different companies, and hence a measure like
(7.60) or (7.64) will never assign a non-zero similarity to such individuals. If however, we
explicitly insert some similarities between members of the different companies, our measure will
then be able to generalize and extend those inputs to deduce similarities between other members.

This idea of generalizing from a few given similarities arises in other contexts too. For example,
in the fields of machine learning and information retrieval there is a considerable literature on how
to generalize known similarities between a subset of the objects in a collection of, say, text
documents to the rest of the collection, based on network data or other information.



7.13 HOMOPHILY AND ASSORTATIVE MIXING

Consider Fig. 7.10, which shows a friendship network of children at an American school,
determined from a questionnaire of the type discussed in Section 3.2.111 One very clear feature that
emerges from the figure is the division of the network into two groups. It turns out that this
division is principally along lines of race. The different shades of the vertices in the picture
correspond to students of different race as denoted in the legend, and reveal that the school is
sharply divided between a group composed principally of black children and a group composed
principally of white.

o Black
o White
@ Other

Figure 7.10: Friendship network at a US high school. The vertices in this network represent 470
students at a US high school (ages 14 to 18 years). The vertices are color coded by race as
indicated in the key. Data from the National Longitudinal Study of Adolescent Health [34, 314].

This is not news to sociologists, who have long observed and discussed such divisions [225].
Nor is the effect specific to race. People are found to form friendships, acquaintances, business
relations, and many other types of tie based on all sorts of characteristics, including age,
nationality, language, income, educational level, and many others. Almost any social parameter
you can imagine plays into people’s selection of their friends. People have, it appears, a strong
tendency to associate with others whom they perceive as being similar to themselves in some way.
This tendency is called homophily or assortative mixing.

More rarely, one also encounters disassortative mixing, the tendency for people to associate
with others who are unlike them. Probably the most widespread and familiar example of



disassortative mixing is mixing by gender in sexual contact networks. The majority of sexual
partnerships are between individuals of opposite sex, so they represent connections between people
who differ in their gender. Of course, same-sex partnerships do also occur, but they are a much
smaller fraction of the ties in the network.

Assortative (or disassortative) mixing is also seen in some nonsocial networks. Papers in a
citation network, for instance, tend to cite other papers in the same field more than they do papers
in different fields. Web pages written in a particular language tend to link to others in the same
language.

In this section we look at how assortative mixing can be quantified. Assortative mixing by
discrete characteristics such as race, gender, or nationality is fundamentally different from mixing
by a scalar characteristic like age or income, so we treat the two cases separately.



7.13.1 ASSORTATIVE MIXING BY ENUMERATIVE CHARACTERISTICS

Suppose we have a network in which the vertices are classified according to some characteristic
that has a finite set of possible values. The values are merely enumerative—they don’t fall in any
particular order. For instance, the vertices could represent people and be classified according to
nationality, race, or gender. Or they could be web pages classified by what language they are
written in, or biological species classified by habitat, or any of many other possibilities.

The network is assortative if a significant fraction of the edges in the network run between
vertices of the same type, and a simple way to quantify assortativity would be to measure that
fraction. However, this is not a very good measure because, for instance, it is 1 if all vertices
belong to the same single type. This is a trivial sort of assortativity: all friends of a human being,
for example, are also human beings,212 but this is not really an interesting statement. What we
would like instead is a measure that is large in non-trivial cases but small in trivial ones.

A good measure turns out to be the following. We find the fraction of edges that run between
vertices of the same type, and then we subtract from that figure the fraction of such edges we
would expect to find if edges were positioned at random without regard for vertex type. For the
trivial case in which all vertices are of a single type, for instance, 100% of edges run between
vertices of the same type, but this is also the expected figure, since there is nowhere else for the
edges to fall. The difference of the two numbers is then zero, telling us that there is no non-trivial
assortativity in this case. Only when the fraction of edges between vertices of the same type is
significantly greater than we would expect on the basis of chance will our measure give a positive
score.

In mathematical terms, let us denote by c, the class or type of vertex i, which is an integer 1 ...

n. , with n_ being the total number of classes. Then the total number of edges that run between
vertices of the same type is
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where o(m, n) is the Kronecker delta and the factor of : accounts for the fact that every vertex
pair , j is counted twice in the second sum.

Calculating the expected number of edges between vertices if edges are placed at random takes a
little more work. Consider a particular edge attached to vertex i, which has degree k.. There are by

definition 2m ends of edges in the entire network, where m is as usual the total number of edges,
and the chances that the other end of our particular edge is one of the k, ends attached to vertex j is

thus &/2m if connections are made purely at random.L2 Counting all £, edges attached to i, the total
expected number of edges between vertices i and j is then kk/2m, and the expected number of
edges between all pairs of vertices of the same type is
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where the factor of l as before, prevents us from double-counting vertex pairs. Taking the
difference of (7.66) and (7.67) then gives us an expression for the difference between the actual
and expected number of edges in the network that join vertices of like types:
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Conventionally, one calculates not the number of such edges but the fraction, which is given by
this same expression divided by the number m of edges:
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This quantity Q is called the modularity [239, 250] and is a measure of the extent to which like is
connected to like in a network. It is strictly less than 1, takes positive values if there are more
edges between vertices of the same type than we would expect by chance, and negative ones if
there are less.

For Fig. 7.10, for instance, where the types are the three ethnic classifications “black,” “white,”
and “other,” we find a modularity value of O = 0.305, indicating (positive) assortative mixing by
race in this particular network.14 Negative values of the modularity indicate disassortative mixing.
We might see a negative modularity, for example, in a network of sexual partnerships where most
partnerships were between individuals of opposite sex.

The quantity

(7.70)

in Eq. (7.69) appears in a number of situations in the study of networks. We will encounter it,
for instance, in Section 11.8 when we study community detection in networks. In some contexts it
is useful to consider B, to be an element of a matrix B, which itself is called the modularity matrix.

The modularity, Eq. (7.69), is always less than 1 but in general it does not achieve the value Q =
1 even for a perfectly mixed network, one in which every vertex is connected only to others of the



same type. Depending on the sizes of the groups and the degrees of vertices, the maximum value
of O can be considerably less than 1. This is in some ways unsatisfactory: how is one to know
when one has strong assortative mixing and when one doesn’t? To rectify the problem, we can
normalize O by dividing by its value for the perfectly mixed network. With perfect mixing all
edges fall between vertices of the same type and hence d(c,c;) = 1 whenever 4, = 1. This means

that the first term in the sum in Eq. (7.69) sums to 2m and the modularity for the perfectly mixed
network is

(7.71)

Then the normalized value of the modularity is given by
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This quantity, sometimes called an assortativity coefficient, now takes a maximum value of 1 on a
perfectly mixed network.

Although it can be a useful measure in some circumstances, however, Eq. (7.72) is only rarely
used. Most often, the modularity is used in its unnormalized form, Eq. (7.69).

An alternative form for the modularity, which is sometimes useful in practical situations, can be
derived in terms of the quantities
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which is the fraction of edges that join vertices of type r to vertices of type s, and
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which is the fraction of ends of edges attached to vertices of type ». Then, noting that
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we have, from Eqg. (7.69)
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This form can be useful, for instance, when we have network data in the form of a list of edges and
the types of the vertices at their ends, but no explicit data on vertex degrees. In such a case e and
a, are relatively easy to calculate, while Eq. (7.69) is quite awkward.



7.13.2 ASSORTATIVE MIXING BY SCALAR CHARACTERISTICS

We can also have homophily in a network according to scalar characteristics like age or income.
These are characteristics whose values come in a particular order, so that it is possible say not only
when two vertices are exactly the same according to the characteristic but also when they are
approximately the same. For instance, while two people can certainly be of exactly the same age—
born on the same day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose who they associate
with on the basis of such approximate ages. There is no equivalent approximate similarity for the
enumerative characteristics of the previous section: there is no sense in which people from France
and Germany, say, are more nearly of the same nationality than people from France and Spain.l12

If network vertices with similar values of a scalar characteristic tend to be connected together
more often that those with different values then the network is considered assortatively mixed
according to that characteristic. If, for example, people are friends with others around the same age
as them, then the network is assortatively mixed by age. Sometimes you may also hear it said that
the network is stratified by age, which means the same thing—one can think of age as a one-
dimensional scale or axis, with individuals of different ages forming connected “strata” within the
network.

A sketch of stratified network in which most connections run between vertices at or near the same
“level” in the network, with level along the vertical axis in this case and also denoted by the
shades of the vertices.

Consider Fig. 7.11, which shows friendship data for the same set of US schoolchildren as Fig.
7.10 but now as a function of age. Each dot in the figure corresponds to one pair of friends and the
position of the dot along the two axes gives the ages of the friends, with ages measured by school
grades.ll® Ag the figure shows, there is substantial assortative mixing by age among the students:
many dots lie within the boxes close to the diagonal line that represent friendships between



students in the same grade. There is also, in this case, a notable tendency for students to have
more friends of a wider range of ages as their age increases so there is a lower density of points in
the top right box than in the lower left one.
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Figure 7.11: Ages of pairs of friends in high school. In this scatter plot each dot corresponds to
one of the edges in Fig. 7.10, and its position along the horizontal and vertical axes gives the ages
of the two individuals at either end of that edge. The ages are measured in terms of the grades of
the students, which run from 9 to 12. In fact, grades in the US school system don’t correspond
precisely to age since students can start or end their high-school careers early or late, and can
repeat grades. (Each student is positioned at random within the interval representing their grade, so
as to spread the points out on the plot. Note also that each friendship appears twice, above and
below the diagonal.)

One could make a crude measure of assortative mixing by scalar characteristics by adapting the
ideas of the previous section. One could group the vertices into bins according to the characteristic
of interest (say age) and then treat the bins as separate “types” of vertex in the sense of Section
7.13.1. For instance, we might group people by age in ranges of one year or ten years. This
however misses much of the point about scalar characteristics, since it considers vertices falling in
the same bin to be of identical types when they may be only approximately so, and vertices falling
in different bins to be entirely different when in fact they may be quite similar.

A better approach is to use a covariance measure as follows. Let x; be the value for vertex i of

the scalar quantity (age, income, etc.) that we are interested in. Consider the pairs of values (x;, x))

for the vertices at the ends of each edge (i, j) in the network and let us calculate their covariance
over all edges as follows. We define the mean u of the value of x; at the end of an edge thus:
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Note that this is not simply the mean value of x; averaged over all vertices. It is an average over
edges, and since a vertex with degree £, lies at the ends of k; edges it appears k, times in the average
(hence the factor of k; in the sum).

Then the covariance of x, and x; over edges is
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where we have made use of Egs. (6.21) and (7.77). Note the strong similarity between this
expression and Eq. (7.69) for the modularity—only the delta function d(c; , ¢;) in (7.69) has

changed, being replaced by xx..
The covariance will be positive if, on balance, values x, x; at either end of an edge tend to be

both large or both small and negative if they tend to vary in opposite directions. In other words, the
covariance will be positive when we have assortative mixing and negative for disassortative
mixing.

Just as with the modularity measure of Section 7.13.1, it is sometimes convenient to normalize
the covariance so that it takes the value 1 in a perfectly mixed network—one in which all edges
fall between vertices with precisely equal values of x, (although in most cases such an occurrence

would be extremely unlikely in practice). Putting x; = x, in Eq. (7.78) gives a perfect mixing value
of
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and the normalized measure, sometimes called an assortativity coefficient, is the ratio of the
two:
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(7.80)

Although it may not be immediately obvious, this is in fact an example of a (Pearson) correlation
coefficient, having a covariance in its numerator and a variance in the denominator. We
encountered another example in a different context in Section 7.12.2. The correlation coefficient
varies in value between a maximum of 1 for a perfectly assortative network and a minimum of —1
for a perfectly disassortative one. A value of zero implies that the values of x; at the ends of edges

are uncorrelated..Z

For the data of Fig. 7.11 the correlation coefficient is found to take a value of » = 0.616,
indicating that the student friendship network has significant assortative mixing by age—students
tend to be friends with others who have ages close to theirs.

It would be possible in principle also to have assortative (or disassortative) mixing according to
vector characteristics, with vertices whose vectors have similar values, as measured by some
appropriate metric, being more (or less) likely to be connected by an edge. One example of such
mixing is the formation of friendships between individuals according to their geographic locations,
location being specified by a two-dimensional vector of, for example, latitude/longitude
coordinates. It is certainly the case that in general people tend to be friends with others who live
geographically close to them, so one would expect mixing of this type to be assortative. Formal
treatments of vector assortative mixing, however, have not been much pursued in the network
literature so far.



7.13.3 ASSORTATIVE MIXING BY DEGREE

A special case of assortative mixing according to a scalar quantity, and one of particular interest, is
that of mixing by degree. In a network that shows assortative mixing by degree the high-degree
vertices will be preferentially connected to other high-degree vertices, and the low to low. In a
social network, for example, we have assortative mixing by degree if the gregarious people are
friends with other gregarious people and the hermits with other hermits. Conversely, we could
have disassortative mixing by degree, which would mean that the gregarious people were hanging
out with hermits and vice versa.

The reason this particular case is interesting is because, unlike age or income, degree is itself a
property of the network structure. Having one structural property (the degrees) dictate another (the
positions of the edges) gives rise to some interesting features in networks. In particular, in an
assortative network, where the high-degree nodes tend to stick together, one expects to get a clump
or core of such high-degree nodes in the network surrounded by a less dense periphery of nodes
with lower-degree. This core/periphery structure is a common feature of social networks, many of
which are found to be assortatively mixed by degree. Figure 7.12a shows a small assortatively
mixed network in which the core/periphery structure is clearly visible.

On the other hand, if a network is disassortatively mixed by degree then high-degree vertices
tend to connected to low-degree ones, creating star-like features in the network that are often
readily visible. Figure 7.12b shows an example of a small disassortative network. Disassortatively
networks do not usually have a core/periphery split but are instead more uniform.

Assortative mixing by degree can be measured in the same way as mixing according to any
other scalar quantity. We define a covariance of the type described by Eq. (7.78), but with x, now

equal to the degree k;:
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or if we wish we can normalize by the maximum value of the covariance to get a correlation
coefficient or assortativity coefficient:
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We give examples of the application of this formula to a number of networks in Section 8.7.
One point to notice is that the evaluation of Eq. (7.81) or Eq. (7.82) requires only the structure
of the network and no other information (unlike the calculations for other forms of assortative



mixing). Once we know the adjacency matrix (and hence the degrees) of all vertices we can
calculate r. Perhaps for this reason mixing by degree is one of the most frequently studied types of
assortative mixing.

(in) ()

Figure 7.12: Assortative and disassortative networks. These two small networks are not real
networks—they were computer generated to display the phenomenon of assortativity by degree.
(@) A network that is assortative by degree, displaying the characteristic dense core of high-degree
vertices surrounded by a periphery of lower-degree ones. (b) A disassortative network, displaying
the star-like structures characteristic of this case. Figure from Newman and Girvan [249].
Copyright 2003 Springer-Verlag Berlin Heidelberg. Reproduced with kind permission of Springer
Science and Business Media.




PROBLEMS

7.1 Consider a k-regular undirected network (i.e., a network in which every vertex has degree k).

a. Show that the vector 1 = (1, 1, 1, ...) is an eigenvector of the adjacency matrix with
eigenvalue £.

b. By making use of the fact that eigenvectors are orthogonal (or otherwise), show that there
is no other eigenvector that has all elements positive. The Perron- Frobenius theorem says
that the eigenvector with the largest eigenvalue always has all elements non-negative (see
footnote 2 on page 346), and hence the eigenvector 1 gives, by definition, the eigenvector
centrality of our k-regular network and the centralities are the same for every vertex.

c. Find the Katz centralities of all vertices in a k-regular network.

d. You should have found that, as with the eigenvector centrality, the Katz centralities of all
vertices in the network are the same. Name a centrality measure that could give different
centrality values for different vertices in a regular network.

7.2 Suppose a directed network takes the form of a tree with all edges pointing inward towards a
central vertex:

What is the PageRank centrality of the central vertex in terms of the single parameter a appearing
in the definition of PageRank and the geodesic distances d; from each vertex i to the central

vertex?

7.3 Consider an undirected tree of n vertices. A particular edge in the tree joins vertices 1 and 2
and divides the tree into two disjoint regions of n, and n, vertices as sketched here:



Show that the closeness centralities C, and C, of the two vertices, defined according to Eq. (7.29),
are related by

7.4 Consider an undirected (connected) tree of n vertices. Suppose that a particular vertex in the
tree has degree k, so that its removal would divide the tree into & disjoint regions, and suppose that
the sizes of those regions are n, ... n,.

a. Show that the unnormalized betweenness centrality x of the vertex, as defined in Eq. (7.36),
1s
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b. Hence, or otherwise, calculate the betweenness of the ith vertex from the end of a “line
graph” of n vertices, i.e., n vertices in a row like this:

7.5 Consider these three networks:

a. Find a 3-core in the first network.
b. What is the reciprocity of the second network?
c. What is the cosine similarity of vertices A and B in the third network?



7.6 Among all pairs of vertices in a directed network that are connected by an edge or edges,
suppose that half are connected in only one direction and the rest are connected in both directions.
What is the reciprocity of the network?

7.7 In this network + and — indicate pairs of people who like each other or don't, respectively:

a. Is the network structurally balanced and why?
b. Is it clusterable and, if so, what are the clusters?

7.8 In a survey of couples in the US city of San Francisco, Catania et al. [65] recorded, among
other things, the ethnicity of their interviewees and calculated the fraction of couples whose
members were from each possible pairing of ethnic groups. The fractions were as follows:

Women
Black  Hispanic  White Other | Total
Black | 0.258 (.01 (.035 0.013 | 0.323
g | Hispanic | 0.012 0.157 0.058  0.019 | 0.247
= White | 0.013 0023 0306 0035 | 0377
Other | 00005 0.007 0.024 0.016 0053
Total | 0.289 (0.204 (0.423 0.084

Assuming the couples interviewed to be a representative sample of the edges in the undirected
network of relationships for the community studied, and treating the vertices as being of four
types—black, Hispanic, white, and other—calculate the numbers e and a, that appear in Eq.

(7.76) for each type. Hence calculate the modularity of the network with respect to ethnicity.



CHAPTER 8

THE LARGE-SCALE STRUCTURE OF NETWORKS

A discussion of some of the recurring patterns and structures revealed when we apply the
concepts developed in previous chapters to the study of real-world networks

IN PREVIOUS chapters of this book we have looked at different types of natural and man-made
networks and techniques for determining their structure (Chapters 2 to 5), the mathematics used to
represent networks formally (Chapter 6), and the measures and metrics used to quantify network
structure (Chapter 7). In this chapter we combine what we have learned so far, applying our
theoretical ideas and measures to empirical network data to get a picture of what networks look
like in the real world.

As we will see, there are a number of common recurring patterns seen in network structures,
patterns that can have a profound effect on the way networked systems work. Among other things,
we discuss in this chapter component sizes, path lengths and the small-world effect, degree
distributions and power laws, and clustering coefficients.



8.1 COMPONENTS

We begin our discussion of the structure of real-world networks with a look at component sizes. In
an undirected network, we typically find that there is a large component that fills most of the
network—usually more than half and not infrequently over 90%—while the rest of the network is
divided into a large number of small components disconnected from the rest. This situation is
sketched in Fig. 8.1. (The large component is often referred to as the “giant component,” although
this is a slightly sloppy usage. As discussed in Section 12.5, the words “giant component” have a
specific meaning in network theory and are not precisely synonymous with “largest component.”
In this book we will be careful to distinguish between “largest” and “giant.”)

A typical example of this kind of behavior is the network of film actors discussed in Section 3.5.
In this network the vertices represent actors in movies and there is an edge between two actors if
they have ever appeared in the same movie. In a version of the network from May 2000 [253], it
was found that 440 971 out of 449 913 actors were connected together in the largest component, or
about 98%. Thus just 2% of actors were not part of the largest component.

0—0\.
/.

Figure 8.1: Components in an undirected network. In most undirected networks there is a
single large component occupying a majority, or at least a significant fraction, of the network,
along with a number of small components, typically consisting of only a handful of vertices each.

See Section 6.11.1 for the definition of a weakly connected component.

Table 8.1 summarizes the properties of many of the networks discussed in this chapter, and
gives, among other things, the size S of the largest component in each case as a fraction of total



network size. (For the directed networks in the table it is the size of the largest weakly
connected component that is quoted. Component sizes in directed networks are discussed further in
the following section.) As we can see from the table our figure for the actor network is quite
typical for the networks listed and not unusually large.

As the table also shows, there are quite a few networks for which the largest component fills the
entire network so that S = 1, i.e., the network has only a single component and no smaller
components. In the cases where this happens there is usually a good reason. For instance, the
Internet is a communication network—its reason for existence is to provide connections between
its nodes. There must be at least one path from your vertex to your friend’s vertex if the network is
to serve its purpose of allowing your and your friend to communicate. To put it another way, there
would be no point in being a part of the Internet if you are not part of its largest component, since
that would mean that you are disconnected from and unable to communicate with almost everyone
else. Thus there is a strong pressure on every vertex of the Internet to be part of the largest
component and thus for the largest component to fill the entire network. In other cases the largest
component fills the network because of the way the network is measured. The first Web network
listed in the table, for instance, is derived from a single web crawl, as described in Section 4.1.
Since a crawler can only find a web page if that page is linked to by another page, it follows
automatically that all pages found by a single crawl will be connected into a single component. A

Web network may, however, have more than one component if, like the “Alta Vista” network in
the table, it is assembled using several web crawls starting from different locations.

Metwork Ty pe H m C 5 { x O Cis

Film actors Undirected d4u 913 25516452 113.43  (LUB0 348 23 0320 L78 o,

Company directors Undirected TET3 55392 1444 OE7O 4.60 - 059 (.68 o

Math coauthorship Undirected 253339 495455 392 (822 757 - 15 .34 .

Physics coauthorship  Undirected 52 G040 245 300 0237 (08318 &4 - 045 {156 LN
= Biology coauthorship  Undirected 1520251 11 803 064 1553 0918 4.92 - 0088 060 o
;_: Telephone call graph Undirected 47 D00 O B0 000000 ila 21

Email messages Drirected 59812 B 300 144 (952 495 1.5/20 016

Email address books Drirected I6858] 57029 3358 0590 5.22 17 013 o

Student dating Undirected 573 477 e 0503 1601 - 0005 000 o

Sewual contacts Undirected 2810 32
s WWWnd. edu [hrected 28 504 1497135 RS 1000 1127 21524 011 (29 i
% WWW AlraVista Dhirected 2003 Bt Deb 1 & DO (0 720 0914 1616 21727
E Citation network Lxirected FR3339 6716198 B.57 304 =
_E Roget's Thesaurus Dhirecked 1022 5108 499 0977 4.87 - 013 015 o
=  Word co-ocourrence Undirected 40902 16 100000 669 1000 27 (44

Internet Undirected 10 &Y 3lou2 598  1.000 3.3 25 0035 039 o
T [ower grid Undirected 4941 £ 594 267 100D 1899 - 010 (L0850 o
‘5 Train routes Undirected 587 196053 66,79 LD 216 - 069 o
'_5 Software packages Dhrecked 1439 1723 .20 0098 242 16/14 0070 0082 o
_—f Software classes Dhirected 1376 2213 161 1000 540 - 33 2 W
= Electronic dreuits Undirected 24097 53248 43 LoD 1105 3.0 0010 0030 o

Peer-to-peer network Undirected BA(0 1296 147 (LB05 4.28 21 a2 001l o

Metabolic network Undirected 765 3686 G654 WY9H 2.56 22 00 067 o
_";_,E Protein interactions Undirected 2115 2240 212 (B89 .50 24 00F2 0071 .
2;:: Marine food wel irected 134 RUR 446 1.000 205 - 0l1s6 023 .
2 Freshwater food wob  Directed 92 9o7 1084 1000 1.90 = 020 0067 o
T Neural network [irected 07 2359 768 (L9aT 397 - {18 (.28 o

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of
network, directed or undirected; total number of vertices »; total number of edges m; mean degree
c; fraction of vertices in the largest component S (or the largest weakly connected component in
the case of a directed network); mean geodesic distance between connected vertex pairs /;
exponent o of the degree distribution if the distribution follows a power law (or “-” if not; in/out-
degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41);
clustering coefficient C,, from the alternative definition of Eq. (7.44); and the degree correlation



coefficient » from Eq. (7.82). The last column gives the citation(s) for each network in the
bibliography. Blank entries indicate unavailable data.

Can a network have two or more large components that fill a sizable fraction of the entire graph?
Usually the answer to this question is no. We will study this point in more detail in Section 12.6,
but the basic argument is this. If we had a network of » vertices that was divided into two large

components of about " vertices each, then there would be i possible pairs of vertices such that
one vertex was in one large component and the other vertex in the other large component. If there
is an edge between any of these pairs of vertices, then the two components are joined together and
are in fact just one component. For example, in our network of movie actors, with half a million
vertices, there would about 50 billion pairs, only one of which would have to be joined by an edge
to join the two large components into one. Except in very special cases, it is highly unlikely that
not one such pair would be connected, and hence also highly unlikely that we will have two large
components.

And what about networks with no large component? It is certainly possible for networks to
consist only of small components, small groups of vertices connected among themselves but not
connected to the rest of the world. An example would be the network of immediate family ties, in
which two people are considered connected if they are family members living under the same roof.
Such a network is clearly broken into many small components consisting of individual families,
with no large component at all. In practice, however, situations like this arise rather infrequently in
the study of networks for the anthropocentric reason that people don’t usually bother to represent
such situations by networks at all. Network representations of systems are normally only useful if
most of the network is connected together. If a network is so sparse as to be made only of small
components, then there is normally little to be gained by applying techniques like those described
in this book. Thus, essentially all of the networks we will be looking at do contain a large
component (and certainly all those in Table 8.1, although for some of them the size of that
component has not been measured and the relevant entry in the table is blank).

So the basic picture we have of the structure of most networks is that of Fig. 8.1, of a large
component filling most of the network, sometimes all of it, and perhaps some other small
components that are not connected to the bulk of the network.



8.1.1 COMPONENTS IN DIRECTED NETWORKS

As discussed in Section 6.11, the component structure of directed networks is more complicated
than for undirected ones. Directed graphs have weakly and strongly connected components. The
weakly connected components correspond closely to the concept of a component in an undirected
graph, and the typical situation for weakly connected components is similar to that for undirected
graphs: there is usually one large weakly connected component plus, optionally, other small ones.
Figures for the sizes of the largest weakly connected components in several directed network are
given in Table 8.1.

A strongly connected component, as described in Section 6.11, is a maximal subset of vertices
in a network such that each can reach and is reachable from all of the others along a directed path.
As with weakly connected components, there is typically one large strongly connected component
in a directed network and a selection of small ones. The largest strongly connected component of
the World Wide Web, for instance, fills about a quarter of network [56].

Associated with each strongly connected component is an out-component (the set of all vertices
that can be reached from any starting point in the strongly connected component along a directed
path) and an in-component (the set of vertices from which the strongly connected component can
be reached). By their definition, in—and out-components are supersets of the strongly connected
component to which they belong and if there is a large strongly connected component then the
corresponding in—-and out-components will often contain many vertices that lie outside the strongly
connected component. In the Web, for example, the portion of the in—and out-components that lie
outside the largest strongly connected component each also occupy about a quarter of the network
[56].

Each of the small strongly connected components will have its own in—and out-components
also. Often these will themselves be small, but they need not be. It can happen that a small strongly
connected component C is connected by a directed path to the large strongly connected
component, in which case the out-component of the large strongly connected component belongs

to (and probably forms the bulk of) C’s out-component. Notice that the large out-component can

be reachable from many small components in this way—the out-components of different strongly
connected components can overlap in directed networks and any vertex can and usually does
belong to many out-components. Similar arguments apply, of course, for in-components as well.
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Figure 8.2: The “bow tie” diagram of components in a directed network. The typical directed



network consists of one large strongly connected component and many small ones, each with an
in-component and an out-component. Note that by definition each in-component includes the
corresponding strongly connected component as a subset, as does each out-component. The largest
strongly connected component and its inand out-components typically occupy a significant fraction
of the whole network. The percentages shown here indicate how much of the network is taken up
by each part of the bow tie in the case of the World Wide Web. After Broder et al. [56].

The overall picture for a directed network can be represented using the “bow tie” diagram
introduced by Broder and co-workers [56]. In Fig. 8.2 we show the bow tie for the case of the
World Wide Web, including percentages (from Ref. [56]) for the fraction of the network occupied
by its different parts.

Not all directed networks have a large strongly connected component. In particular, any acyclic
directed network has no strongly connected components of size greater than one since if two
vertices belong to the same strongly connected component then by definition there exists a directed
path through the network in both directions between them, and hence there is a cycle from one
vertex to the other and back. Thus if there are no cycles in a network there can be no strongly
connected components with two or more vertices. Real-life networks are not usually perfectly
acyclic, but some, such as citation networks (Section 4.2) are approximately so. Such networks
typically have a few small strongly connected components of two or perhaps three vertices each,
but no large ones.



8.2 SHORTEST PATHS AND THE SMALL-WORLD EFFECT

One of the most remarkable and widely discussed of network phenomena is the small-world effect,
the finding that in many—perhaps most—networks the typical network distances between vertices
are surprisingly small. In Section 3.6 we discussed Stanley Milgram’s letter-passing experiment in
the 1960s, in which people were asked to get a letter from an initial holder to a distant target
person by passing it from acquaintance to acquaintance through the social network. The letters that
made it to the target did so in a remarkably small number of steps, around six on average.
Milgram’s experiment is a beautiful and powerful demonstration of the small-world effect,
although also a rather poorly controlled one. But with the very complete network data we have for
many networks these days it is now possible to measure directly the path lengths between vertices
and verify the small-world effect explicitly.

In Section 7.6 we defined the mean distance £ between vertices in a network (see Egs. (7.31)
and (7.32)). In mathematical terms, the small-world effect is the hypothesis that this mean distance
is small, in a sense that will be defined shortly. In Table 8.1 we list the value of £ for each of the
networks in the table, and we see that indeed it takes quite small values, always less than 20 and
usually less than 10, even though some of the networks have millions of vertices.

One can well imagine that the small-world effect could have substantial implications for
networked systems. Suppose a rumor is spread over a social network for instance (or a disease for
that matter). Clearly it will reach people much faster if it is only about six steps from any person to
any other than if it is a hundred, or a million. Similarly, the speed with which one can get a
response from another computer on the Internet depends on how many steps or “hops” data
packets have to make as they traverse the network. Clearly a network in which the typical number
of hops is only ten or twenty will perform much better than one in which it is ten times as much.
(While this point was not articulated by the original designers of the Internet in the 1960s, they
must have had some idea of its truth, even if only vaguely, to believe that a network like the
Internet could be built and made to work.)

In fact, once one looks more deeply into the mathematics of networks, which we will do in later
chapters, one discovers that the small-world effect is not so surprising after all. As we will see in
Section 12.7, mathematical models of networks suggest that path lengths in networks should
typically scale as log n with the number n of network vertices, and should therefore tend to remain
small even for large networks because the logarithm is a slowly growing function of its argument.
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The shortest path from i to j in this network has length 1, but the shortest path from j to i has length
2.

One can ask about path lengths on directed networks as well, although the situation is more
complicated there. Since in general the path from vertex i to vertex j is different in a directed



network from the path from j to i, the two paths can have different lengths. Our average distance
4 should therefore include terms for both distances separately. It’s also possible for there to be no
path in one direction between two vertices, which we would conventionally denote by setting d;; =

. As before we could get around the problems caused by the infinite values by defining £ as an
average over only the finite ones, as in Eq. (7.32). Values calculated in this way are given for the
directed networks in Table 8.1. One could also (and perhaps more elegantly) use a harmonic mean
as in Eq. (7.34), although this is rarely done.

One can also examine the diameter of a network, which, as described in Section 6.10.1, is the
length of the longest finite geodesic path anywhere in the network. The diameter is usually found
to be relatively small as well and calculations using network models suggest that it should scale
logarithmically with n just as the average distance does. The diameter is in general a less useful
measure of real-world network behavior than mean distance, since it really only measures the
distance between one specific pair of vertices at the extreme end of the distribution of distances.
Moreover, the diameter of a network could be affected substantially by a small change to only a
single vertex or a few vertices, which makes it a poor indicator of the behavior of the network as a
whole. Nonetheless, there are cases where it is of interest. In Section 8.4 we discuss so-called

“scale-free” networks, i.e., networks with power-law degree distributions. Such networks are
believed to have an unusual structure consisting of a central “core” to the network that contains
most of the vertices and has a mean geodesic distance between vertex pairs that scales only as log
log n with network size, and not as log n, making the mean distance for the whole network scale as
log log n also. Outside of this core there are longer “streamers” or “tendrils” of vertices attached to
the core like hair, which have length typically of order log n, making the diameter of the network
of order log n [67, 75]. This sort of behavior could be detected by measuring separately the mean
geodesic distance and diameter of networks of various sizes to confirm that they vary differently
with n. (It’s worth noting, however, that behavior of the form log log n is very difficult to confirm
in real-world data because log log n is a very slowly varying function of n.)

Another interesting twist on the small-world effect was discussed by Milgram in his original
paper on the problem. He noticed, in the course of his letter-passing experiments, that most of the
letters destined for a given target person passed through just one or two acquaintances of the target.
Thus, it appeared, most people who knew the target person knew him through these one or two
people. This idea, that one or two of your acquaintances are especially well connected and
responsible for most of the connection between you and the rest of the world has been dubbed
funneling, and it too is something we can test against complete networks with the copious data
available to us today. If, for instance, we focus on geodesic paths between vertices, as we have
been doing in this section, then we could measure what fraction of the shortest paths between a
vertex 1 and every other reachable vertex go through each of i’s neighbors in the network. For
many networks, this measurement does reveal a funneling effect. For instance, in the coauthorship
network of physicists from Table 8.1 it is found that, for physicists having five or more
collaborators, 48% of geodesic paths go through one neighbor of the average vertex, the remaining
52% being distributed over the other four or more neighbors. A similar result is seen in the
Internet. Among nodes having degree five or greater in a May 2005 snapshot of Internet structure
at the autonomous system level, an average of 49% of geodesic paths go through one neighbor of
the average vertex. It is tempting to draw conclusions about the routing of Internet packets from
this latter result—perhaps that the network will tend to overload a small number of well-connected
nodes rather than distributing load more evenly—but it is worth noticing that, although Internet
packets tended to be routed along shortest paths during the early days of the Internet, much more
sophisticated routing strategies are in place today, so statistics for shortest paths may not reflect
actual packet flows very closely.

Milgram referred to these people as “sociometric superstars.” We discussed them previously
in Section 3.6.



8.3 DEGREE DISTRIBUTIONS

In this section, we look at one of the most fundamental of network properties, the frequency
distribution of vertex degrees. This distribution will come up time and again throughout this book
as a defining characteristic of network structure.

As described in Section 6.9, the degree of a vertex is the number of edges attached to it. Let us
first consider undirected networks. We define p, to be the fraction of vertices in such a network

that have degree k. For example, consider this network:

It has n = 10 vertices, of which 1 has degree 0, 2 have degree 1, 4 have degree 2, 2 have degree 3,
and 1 has degree 4. Thus the values of p, fork =0,..., 4 are

W=qge R =gee BT qp0 B 100

(8.1)

and p, = 0 for all k > 4. The quantities p, represent the degree distribution of the network.
The value p, can also be thought of as a probability: it is the probability that a randomly chosen

vertex in the network has degree k. This will be a useful viewpoint when we study theoretical
models of networks in Chapters 12 to 15.

Sometimes, rather than the fraction of vertices with a given degree, we will want the total
number of such vertices. This is easily calculated from the degree distribution, being given simply
by np,, where n is as usual the total number of vertices.

Another construct containing essentially the same information as the degree distribution is the
degree sequence, which is the set {k,, k,, k,,...} of degrees for all the vertices. For instance, the

degree sequence of the small graph above is {0, 1, 1, 2, 2, 2, 2, 3, 3, 4}. (The degree sequence need
not necessarily be given in ascending order of degrees as here. For instance, in many cases the
vertices are given numeric labels and their degrees are then listed in the order of the labels.)

It is probably obvious, but bears saying anyway, that a knowledge of the degree distribution (or
degree sequence) does not, in most cases, tell us the complete structure of a network. For most
choices of vertex degrees there is more than one network with those degrees. These two networks,
for instance, are different but have the same degrees:
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Figure 8.3: The degree distribution of the Internet. A histogram of the degree distribution of
the vertices of the Internet graph at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degrees alone. The degree
sequence certainly gives us very important information about a network, but it doesn’t give us
complete information.

It is often illuminating to make a plot of the degree distribution of a large network as a function
of k. Figure 8.3 shows an example of such a plot for the Internet at the level of autonomous
systems. The figure reveals something interesting: most of the vertices in the network have low
degree—one or two or three—Dbut there is a significant “tail” to the distribution, corresponding to
vertices with substantially higher degree.18 The plot cuts off at degree 20, but in fact the tail goes
much further than this. The highest degree vertex in the network has degree 2407. Since there are,
for this particular data set, a total of 19 956 vertices in the network, that means that the most highly
connected vertex is connected to about 12% of all other vertices in the network. We call such a
well-connected vertex a hubi2 Hubs will play an important role in the developments of the
following chapters.
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Figure 8.4: The degree distributions of the World Wide Web. Histograms of the distributions
of in—and out-degrees of pages on the World Wide Web. Data are from the study by Broder et al.
[56].

In fact, it turns out that almost all real-world networks have degree distributions with a tail of
high-degree hubs like this. In the language of statistics we say that the degree distribution is right-
skewed. Right-skewed degree distributions are discussed further in Section 8.4, and will reappear
repeatedly throughout this book.

One can also calculate degree distributions for directed networks. As discussed in Section 6.9,
directed networks have two different degrees for each vertex, the in-degree and the out-degree,
which are, respectively, the number of edges ingoing and outgoing at the vertex of interest. There
are, correspondingly, two different degree distributions in a directed network, the in-degree and
out-degree distributions, and one can make a plot of either, or both. Figure 8.4, for example, shows
the degree distributions for the World Wide Web.

If we wish to be more sophisticated, we might observe that the true degree distribution of a
directed network is really a joint distribution of in-and out- degrees. We can define p, to be the

fraction of vertices having simultaneously an in-degree j and an out-degree k. This is a two-
dimensional distribution that cannot be plotted as a simple histogram, although it could be plotted
as a two-dimensional density plot or as a surface plot. By using a joint distribution in this way we
can allow for the possibility that the in—and out-degrees of vertices might be correlated. For
instance, if vertices with high in-degree also tended to have high out-degree, then we would see
this reflected in large values of p, when both j and k were large. If we only have the separate

distributions of inand out-degree individually, but not the joint distribution, then there is no way of
telling whether the network contains such correlations.

In practice, the joint in/out degree distribution of directed networks has rarely been measured or
studied, so there is relatively little data on it. This is, in some ways, a pity, since many of our
theories of directed networks depend on a knowledge of the joint distribution to give accurate
answers (see Section 13.11), while others make predictions about the joint distribution that we
would like to test against empirical data. For the moment, however, this is an area awaiting more
thorough exploration.



8.4 POWER LAWS AND SCALE-FREE NETWORKS

Returning to the Internet, another interesting feature of its degree distribution is shown in Fig. 8.5,
where we have replotted the histogram of Fig. 8.3 using logarithmic scales. (That is, both axes are
logarithmic. We have also made the range of the bins bigger in the histogram to make the effect
clearer—they are of width five in Fig. 8.5 where they were only of width one before.) As the
figure shows, when viewed in this way, the degree distribution follows, roughly speaking, a
straight line. In mathematical terms, the logarithm of the degree distribution p, is a linear function

of degree £ thus:

Inp, = —alnk +c,

(8.2)

where a and ¢ are constants. The minus sign here is optional—we could have omitted it—but it is

convenient, since the slope of the line in Fig. 8.5 is clearly negative, making o a positive constant

equal to minus the slope in the figure. In this case, the slope gives us a value for a of about 2.1.
Taking the exponential of both sizes of Eq. (8.2), we can also write this logarithmic relation as

pr = Ck™%,

(8.3)

where C = e¢ is another constant. Distributions of this form, varying as a power of %, are called
power laws. Based on the evidence of Fig. 8.5 we can say that, roughly speaking, the degree
distribution of the Internet follows a power law.
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Figure 8.5: The power-law degree distribution of the Internet. Another histogram of the degree
distribution of the Internet graph, plotted this time on logarithmic scales. The approximate straight-
line form of the histogram indicates that the degree distribution roughly follows a power law of the
form (8.3).

This is, in fact, a common pattern seen in quite a few different networks. For instance, as shown
in Fig. 8.8 on page 253, both the in—and out-degrees of the World Wide Web roughly follow
power-law distributions, as do the indegrees in many citation networks (but not the out-degrees).

The constant o is known as the exponent of the power law. Values in the range 2 < o < 3 are
typical, although values slightly outside this range are possible and are observed occasionally.
Table 8.1 gives the measured values of the exponents for a number of networks that have power-
law or approximately power-law degree distributions, and we see that most of them fall in this
range. The constant C in Eq. (8.3) is mostly uninteresting, being fixed by the requirement of
normalization, as described in Section 8.4.2.

Degree distributions do not usually follow Eq. (8.3) over their entire range. Looking at Fig. 8.3,
for example, we can see that the degree distribution is not monotonic for small &, even allowing for
statistical fluctuations in the histogram. A true power-law distribution is monotonically decreasing
over its entire range and hence the degree distribution must in this case deviate from the true power
law in the small-k regime. This is typical. A common situation is that the power law is obeyed in
the tail of the distribution, for large values of &, but not in the small-k regime. When one says that a
particular network has a power-law degree distribution one normally means only that the tail of the
distribution has this form. In some cases, the distribution may also deviate from the power-law
form for high k as well. For instance, there is often a cut-off of some type that limits the maximum
degree of vertices in the tail.

Networks with power-law degree distributions are sometimes called scale-free networks, and we
will use this terminology occasionally. Of course, there are also many networks that are not scale-
free, that have degree distributions with non-power-law forms, but the scale-free ones will be of
particular interest to us because they have a number of intriguing properties. Telling the scale-free
ones from the non-scale-free is not always easy however. The simplest strategy is to look at a
histogram of the degree distribution on a log-log plot, as we did in Fig. 8.5, to see if we have a
straight line. There are, however, a number of problems with this approach and where possible we
recommend you use other methods, as we now explain.



8.4.1 DETECTING AND VISUALIZING POWER LAWS

As a tool for visualizing or detecting power-law behavior, a simple histogram like Fig. 8.5 presents
some problems. One problem obvious from the figure is that the statistics of the histogram are
poor in the tail of the distribution, the large-k region, which is precisely the region in which the
power law is normally followed most closely. Each bin of the histogram in this region contains
only a few samples, which means that statistical fluctuations in the number of samples from bin to
bin are large. This is visible as a “noisy signal” at the righthand end of Fig. 8.5 that makes it
difficult to determine whether the histogram really follows a straight line or not, and what the
slope of that line is.

There are a number of solutions to this problem. The simplest is to use a histogram with larger
bins, so that more samples fall into each bin. In fact, we already did this in going from Fig. 8.3 to
Fig. 8.5—we increased the bin width from one to five between the two figures. Larger bins contain
more samples and hence give less noise in the tail of the histogram, but at the expense of less detail
overall, since the number of bins is correspondingly reduced. Bin width in this situation is always
something of a compromise: we would like to use very wide bins in the tail of the distribution
where noise is a problem, but narrower ones at the left-hand end of the histogram where there are
many samples and we would prefer to have more bins if possible.

Alternatively, we could try to get the best of both worlds by using bins of different sizes in
different parts of the histogram. For example, we could use bins of width one for low degrees and
switch to width five for higher degrees. In doing this we must be careful to normalize the bins
correctly: a bin of width five will on average accrue five times as many samples as a similarly
placed bin of width one, so if we wish to compare counts in the two we should divide the number
of samples in the larger bin by five. More generally, we should divide sample counts by the width
of their bins to make counts in bins of different widths comparable.

We need not restrict ourselves to only two different sizes of bin. We could use larger and larger
bins as we go further out in the tail. We can even make every bin a different size, each one a little
larger than the one before it. One commonly used version of this idea is called logarithmic
binning. In this scheme, each bin is made wider than its predecessor by a constant factor a. For
instance, if the first bin in a histogram covers the interval 1 < k < 2 (meaning that all vertices of
degree 1 fall in this bin) and a = 2, then the second would cover the interval 2 < k < 4 (vertices of
degrees 2 and 3), the third the interval 4 < k£ < 8, and so forth. In general the nth bin would cover
the interval a! < k < @" and have width a” — a™! = (a -1) a™'. The most common choice for a is a =
2, since larger values tend to give bins that are too coarse while smaller ones give bins with non-
integer limits.

Figure 8.6 shows the degree distribution of the Internet binned logarithmically in this way. We
have been careful to normalize each bin by dividing by its width, as described above. As we can
see, the histogram is now much less noisy in the tail and it is considerably easier to see the
straight-line behavior of the degree distribution. The figure also reveals a nice property of
logarithmically binned histograms, namely that when plotted on logarithmic scales as here, the
bins in such a histogram appear to have equal width. This is, in fact, the principal reason for this
particular choice of bins and also the origin of the name “logarithmic binning.”

Note that on a logarithmically binned histogram there is never any bin that contains vertices of
degree zero. Since there is no zero on logarithmic scales like those of Fig. 8.6, this doesn’t usually
make much difference, but if we do want to know how many vertices there are of degree zero we
will have to measure this number separately.

A different solution to the problem of visualizing a power-law distribution is to construct the
cumulative distribution function, which is defined by
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Figure 8.6: Histogram of the degree distribution if the Internet, created using logarithmic
binning. In this histogram the widths of the bins are constant on a logarithmic scale, meaning that
on a linear scale each bin is wider by a constant factor than the one to its left. The counts in the
bins are normalized by dividing by bin width to make counts in different bins comparable.

(8.4)

In other words, P, is the fraction of vertices that have degree k or greater. (Alternatively, it is the

probability at a randomly chosen vertex has degree k or greater.)
Suppose the degree distribution p, follows a power law in its tail. To be precise, let us say that p,

= Ck*for k>k_. forsomek .. Then fork>k_ . we have

— "min min

p=chwtsc ¥t
k'=k i
-

(8.5)

where we have approximated the sum by an integral, which is reasonable since the power law is
a slowly varying function for large k. (We are also assuming that o > 1 so that the integral



converges.) Thus we see that if the distribution p, follows a power law, then so does the
cumulative distribution function P,, but with an exponent a — 1 that is I less than the original
exponent.
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Figure 8.7: Cumulative distribution function for the degrees of vertices on the Internet. For a
distribution with a power-law tail, as is approximately the case for the degree distribution of the
Internet, the cumulative distribution function, Eq. (8.4), also follows a power law, but with a slope
1 less than that of the original distribution.

This gives us another — way of visualizing a power-law distribution: we plot the cumulative
distribution function on log-log scales, as we did for the original histogram, and again look for
straight-line behavior. We have done this in Fig. 8.7 for the case of the Internet, and the
(approximate) straight-line form is clearly visible. Three more examples are shown in Fig. 8.8, for
the in—and out-degree distributions of the World Wide Web and for the in-degree distribution of a
citation network.

This approach has some advantages. In particular, the calculation of P, does not require us to bin

the values of k& as we do with a normal histogram. P, is perfectly well defined for any value of k

and can be plotted just as a normal function. When bins in a histogram contain more than one
value of k~—i.e., when their width is greater than 1—the binning of data necessarily throws away
quite a lot of the information contained in the data, eliminating, as it does, the distinction between
any two values that fall into the same bin. The cumulative distribution function on the other hand
preserves all of the information contained in the data, because no bins are involved. The most
obvious manifestation of this difference is that the number of points in a plot like Fig. 8.5 or Fig.
8.6 is relatively small, whereas in a cumulative distribution plot like Fig. 8.7 there are as many
points along the k (horizontal) axis as there are distinct values of £.
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Figure 8.8: Cumulative distribution functions for in—and out-degrees in three directed
networks. (a) The in-degree distribution of the World Wide Web, from the data of Broder et al.
[56]. (b) The out-degree distribution for the same Web data set. (c) The in-degree distribution of a
citation network, from the data of Redner [280]. The distributions follow approximate power-law
forms in each case.

The cumulative distribution function is also easy to calculate. The number of vertices with
degree greater than or equal to that of the rth-highest-degree vertex in a network is, by definition,
r. Thus the fraction with degree greater than or equal to that of the rth-highest-degree vertex in a
network is P, = r/n. So a simple way of finding P, is to sort the degrees of the vertices in
descending order and then number them from 1 to # in that order. These numbers are the so-called
ranks r, of the vertices. A plot of 7/n as a function of degree k,, with the vertices in rank order, then
gives us our cumulative distribution plot.12

For instance, consider again the small example network we looked at at the beginning of Section
8.3, on page 244. The degrees of the vertices in that case were {0, 1, 1, 2, 2, 2, 2, 3, 3, 4}. Listing
these in decreasing order and numbering them, we can easily calculate P, as follows:

Degreek  Rankr FB=r/n
4 1 0.1

3 2 0.2
3 3 0.3
2 4 0.4
i 5 0.5
2 5] 0.6
2 7 0.7
1 8 0.8
1 9 0.9

—_—
et
=

1.0

Then a plot of the last column as a function of the first gives us our cumulative distribution
function.

Cumulative distributions do have some disadvantages. One is that they are less easy to interpret
than ordinary histograms, since they are only indirectly related to the actual distribution of vertex



degrees. A more serious disadvantage is that the successive points on a cumulative plot are
correlated—the cumulative distribution function in general only changes a little from one point to
the next, so adjacent values are not at all independent. This means that it is not valid for instance to
extract the exponent of a power-law distribution by fitting the slope of the straight-line portion of a
plot like Fig. 8.7 and equating the result with o — 1, at least if the fitting is done using standard
methods such as least squares that assume independence between the data points.

In fact, it is in general not good practice to evaluate exponents by performing straight-line fits to
either cumulative distribution functions or ordinary histograms. Both are known to give biased
answers, although for different reasons [72, 141]. Instead, it is usually better to calculate a directly
from the data, using the formula
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Here, k_. is the minimum degree for which the power law holds, as before, and N is the number of
vertices with degree greater than or equal to k. . The sum is performed over only those vertices
with k> k_. , and not over all vertices.

We can also calculate the statistical error on a from the formula:
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For example, applying Eqgs. (8.6) and (8.7) to the degree sequence of the Internet from Fig. 8.3
gives an exponent value of o =2.11 = 0.01.

The derivation of these formulas, which makes use of maximum likelihood techniques, would
take us some way from our primary topic of networks, so we will not go into it here. The interested
reader can find a discussion in Ref. [72], along with many other details such as methods for
determining the value of k_. and methods for telling whether a particular distribution follows a

power law at all.



8.4.2 PROPERTIES OF POWER-LAW DISTRIBUTIONS

Quantities with power-law distributions behave in some surprising ways. We take a few pages here
to look at some of the properties of power-law distributions, since the results will be of use to us
later on.

Power laws turn up in a wide variety of places, not just in networks. They are found in the sizes
of city populations [24, 336], earthquakes [153], moon craters [230], solar flares [203], computer
files [84], and wars [283]; in the frequency of use of words in human languages [109, 336], the
frequency of occurrence of personal names in most cultures [335], the numbers of papers scientists
write [201], and the number of hits on web pages [5]; in the sales of books, music recordings, and
almost every other branded commodity [83, 185]; and in the numbers of species in biological taxa
[58, 330]. A review of the data and some mathematical properties of power laws can be found in
Ref. [244]. Here we highlight just a few issues that will be relevant for our study of networks.

Normalization: The constant C appearing in Eq. (8.3) is fixed by the requirement that the degree
distribution be normalized. That is, when we add up the total fraction of vertices having all
possible degrees k=0 ... co, we must get 1:

Ej”"t 1.

k=0

(8.8)

If our degree distribution truly follows a pure power law, obeying Eq. (8.3) for all &, then no
vertices of degree zero are allowed, because p, would then be infinite, which is impossible since it

is a probability and must lie between 0 and 1. Let us suppose therefore that the distribution starts at
k= 1. Substituting from Eq. (8.3) we then find that C, k*=1, or

1 I
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(8.9)

where ¢ (o) is the Riemann zeta function. Thus the correctly normalized power-law distribution is

Pi

-y
—
- 3
S

~

(8.10)



for k> 0 with p, = 0.

This is a reasonable starting point for mathematical models of scale-free networks—we will use
it in Chapter 13—but it’s not a very good representation of most real-world networks, which
deviate from pure power-law behavior for small k as described above and seen in Fig. 8.3. In that
case, the normalization constant will take some other value dependent on the particular shape of
the distribution, but nonetheless it is still fixed by the requirement of normalization and we must
make sure we get it right in our calculations.

For some of our calculations we will be interested only in the tail of the distribution where the
power-law behavior holds and can discard the rest of the data. In such cases, we normalize over
only the tail, starting from the minimum value k_. for which the power law holds, as above. This

gives
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where (' (a, k.. ) 1s the so-called generalized or incomplete zeta function.

Alternatively, we could observe, as we did for Eq. (8.5), that in the tail of the distribution the
sum over k is well approximated by an integral, so that the normalization constant can written

C =~ 1 (& — k=)

- __I;‘:;" m in f

(8.12)

or
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In the same approximation the cumulative distribution function, Eq. (8.5), is given by
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Moments: Of great interest to us will be the moments of the degree distribution. The first moment
of a distribution is its mean:

iK) i kpy.
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The second moment is the mean square:

) = K
k=0
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And the mth moment is
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Suppose we have a degree distribution p, that has a power-law tail for k£ > k_. , in the manner of

the Internet or the World Wide Web. Then
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Since the power law is a slowly varying function of & for large k, we can again approximate the
second sum by an integral thus:



ki —1

.::_km:. ~ E kl”f".‘_ i C /“-' k4 Ak

k

mim 1 i

Ty i C |- mr—a+1 "~
Lkp“'{m—n&l:k -

k=0 Hman

(8.19)

The first term here is some finite number whose value depends on the particular (non-power-law)
form of the degree distribution for small k. The second term however depends on the values of m
and a. If m — o + 1 <0, then the bracket has a finite value, and 0”0 is well-defined. But if m -a +

1 > 0 then the bracket diverges and with it the value of Ok [. Thus, the mth moment of the degree

distribution is finite if and only if @ > m + 1. Put another way, for a given value of a all moments
will diverge for whichm > o — 1.
Of particular interest to us will be the second moment UA*>0), which arises in many calculations

to do with networks (such as mean degree of neighbors, Section 13.3, robustness calculations,
Section 16.2.1, epidemiological processes, Section 17.8.1, and many others). The second moment
is finite if and only if @ > 3. As discussed above, however, most real-world networks with power-
law degree distributions have values of a in the range 2 < a < 3, which means that the second
moment should diverge, an observation that has a number of remarkable implications for the
properties of scale-free networks, some of which we will explore in coming chapters. Notice that
this applies even for networks where the power law only holds in the tail of the distribution—the
distribution does not have to follow a power law everywhere for the second moment to diverge.

These conclusions, however, are slightly misleading. In any real network all the moments of the
degree distribution will actually be finite. We can always calculate the mth moment directly from
the degree sequence thus:
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and since all the £, are finite, so must the sum be. When we say that the mth moment is infinite,

what we mean is that if we were to calculate it for an arbitrarily large network with the same
power-law degree distribution the value would be infinite. But for any finite network Eq. (8.20)
applies and all moments are finite.

There is however another factor that limits the values of the higher moments of the degree
distribution, namely that most real-world networks are simple graphs. That is, they have no
multiedges and no self-loops, which means that a vertex can have, at most, one edge to every other
vertex in the network, giving it a maximum degree of n — 1, where n is the total number of
vertices. In practice, the power-law behavior of the degree distribution may be cut off for other
reasons before we reach this limit, but in the worst case, an integral such as that of Eq. (8.19) will
be cut off in a simple graph at k = n so that
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as n — o for m > a — 1. This again gives moments that are finite on finite networks but become
infinite as the size of the network becomes infinite. For instance, the second moment goes as

() ~ no,

(8.22)

In a network with ® = 2., this diverges as n'2 as the network becomes large.

We will throughout this book derive results that depend on moments of the degree distributions
of networks. Some of those results will show unusual behavior in power-law networks because of
the divergence of the moments. On practical, finite networks that divergence is replaced by large
finite values of the moments. In many cases, however, this produces similar results to a true
divergence. On the Internet, for instance, with its power-law degree distribution and a total of
about n = 20 000 autonomous systems as vertices, we can expect the second (and all higher
moments) to take not infinite but very large values. For the Internet data we used in Figs. 8.3 and
8.5 the second moment has the value 0? 00 = 1159, which can in practice be treated as infinite for

many purposes.

Top-heavy distributions: Another interesting quantity is the fraction of edges in a network that
connect to the vertices with the highest degrees. For a pure power-law degree distribution, it can be
shown [244] that a fraction ¥ of ends of edges attach to a fraction P of the highest-degree vertices
in the network, where

(8.23)

A set of curves of W against P is shown in Fig. 8.9 for various values of a. Curves of this kind are
called Lorenz curves, after Max Lorenz, who first studied them around the turn of the twentieth
century [200]. As the figure shows, the curves are concave downward for all values of a, and for
values only a little above 2 they have a very fast initial increase, meaning that a large fraction of
the edges are connected to a small fraction of the highest degree nodes.

Thus, for example, the in-degree distribution of the World Wide Web follows a power law
above about k. = 20 with exponent around a = 2.2. Equation (8.23) with P~ 1 then tells us that
we would expect that about W = 0.89 or 89% of all hyperlinks link to pages in the top half of the
degree distribution, while the bottom half gets a mere 11%. Conversely, if we set WV 7 in Eq.



(8.23) we get P = 0.015, implying that 50% of all the links go to less than 2% of the “richest”
vertices. Thus the degree distribution is in a sense “top-heavy,” a large fraction of the “wealth”—
meaning incoming hyperlinks in this case—falling to a small fraction of the vertices.

This calculation assumes a degree distribution that follows a perfect power law, whereas in
reality, as we have seen, degree distributions usually only follow a power law in their high-degree
tail. The basic principle still holds, however, and even if we cannot write an exact formula like Eq.
(8.23) for a particular network we can easily evaluate I as a function of P directly from degree
data. For the real degree distribution of the Web!22 we find that 50% of the incoming hyperlinks
point to just 1.1% of the richest vertices (so Eq. (8.23) was not too bad in this case).
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Figure 8.9: Lorenz curves for scale-free networks. The curves show the fraction ¥ of the total
number of ends of edges in a scale-free network that are attached to the fraction P of vertices with
the highest degrees, for various values of the power-law exponent «.

Similarly, for paper citations 8.3% of the highest cited papers get 50% of all the citations!2 and
on the Internet just 3.3% of the most highly connected nodes have 50% of the connections.12

In the remaining chapters of this book we will see many examples of networks with power-law
degree distributions, and we will make use of the results of this section to develop an
understanding of their behavior.



8.5 DISTRIBUTIONS OF OTHER CENTRALITY MEASURES

Vertex degree is just one of a variety of centrality measures for vertices in networks, as discussed in Chapter
7. Other centrality measures include eigenvector centrality and its variations (Sections 7.2 to 7.5), closeness
centrality (Section 7.6), and betweenness centrality (Section 7.7). The distributions of these other measures,
while of lesser importance in the study of networks than the degree distribution, are nonetheless of some
interest.

Eigenvector centrality can be thought of as an extended form of degree centrality, in which we take into
account not only how many neighbors a vertex has but also how central those neighbors themselves are
(Section 7.2). Given its similarity to degree centrality, it is perhaps not surprising to learn that eigenvector
centrality often has a highly right-skewed distribution. The left panel of Fig. 8.10 shows the cumulative
distribution of eigenvector centralities for the vertices of the Internet, using again the autonomous-system-
level data that we used in Section 8.3. As the figure shows, the tail of the distribution approximately follows
a power law but the distribution rolls off for vertices with low centrality. Similar roughly power-law
behavior is also seen in eigenvector centralities for other scale-free networks, such as the World Wide Web
and citation networks, while other networks show right-skewed but non-power-law distributions.

Betweenness centrality (Section 7.7) also tends to have right-skewed distributions on most networks. The
right panel of Fig. 8.10 shows the cumulative distribution of betweenness for the vertices of the Internet and,
as we can see, this distribution is again roughly power-law in form. Again there are some other networks that
also have power-law betweenness distributions and others still that have skewed but non-power-law
distributions.

An exception to this pattern is the closeness centrality (Section 7.6), which is the mean geodesic distance
from a vertex to all other reachable vertices. As discussed in Section 7.6 the values of the closeness
centrality are typically limited to a rather small range from a lower bound of 1 to an upper bound of order log
n, and this means that their distribution cannot have a long tail. In Fig. 8.11, for instance, we show the
distributions of closeness centralities for our snapshot of the Internet, and the distribution spans well under
an order of magnitude from a minimum of 2.30 to a maximum of 7.32. There is no long tail to the
distribution, and the distribution is not even roughly monotonically decreasing (as our others have been) but
shows clear peaks and dips.
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Figure 8.10: Cumulative distribution functions for centralities of vertices on the Internet. Left panel:
eigenvector centrality. Right panel: betweenness centrality.



8.6 CLUSTERING COEFFICIENTS

See Section 7.9 for a discussion of clustering coefficients.

The clustering coefficient measures the average probability that two neighbors of a vertex are
themselves neighbors. In effect it measures the density of triangles in the networks and it is of
interest because in many cases it is found to have values sharply different from what one would
expect on the basis of chance. To see what we mean by this, look again at Table 8.1 on page 237,
which gives measured values of the clustering coefficient for a variety of networks. (Look at the
column denoted C, which gives values for the coefficient defined by Eq. (7.41).) Most of the
values are of the order of tens of percent—there is typically a probability between about 10% and
maybe 60% that two neighbors of a vertex will be neighbors themselves. However, as we will see
in Section 13.4, if we consider a network with a given degree distribution in which connections
between vertices are made at random, the clustering coefficient takes the value

1[() - 0]’
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(8.24)

In networks where k>0 and UKD have fixed finite values, this quantity becomes small as N — oo

and hence we expect the clustering coefficient to be very small on large networks. This makes the
values in Table 8.1, which are of order 1, quite surprising, and indeed many of them turn out to be
much larger than the estimate given by Eq. (8.24). For instance, the collaboration network of
physicists is measured to have a clustering coefficient of 0.45. Plugging the appropriate values for
n, OkO, and Ok?>0 into Eq. (8.24) on the other hand gives C = 0.0023. Thus the measured value is

more than a hundred times greater than the value we would expect if physicists chose their
collaborators at random.
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Figure 8.11: Histogram of closeness centralities of vertices on the Internet. Unlike Fig. 8.10
this is a normal non-cumulative histogram showing the actual distribution of closeness centralities.
This distribution does not follow a power law.

Presumably this large difference is indicative of real social effects at work. There are a number
of reasons why a real collaboration network might contain more triangles than one would expect
by chance, but for example it might be that people introduce pairs of their collaborators to one
another and those pairs then go on to collaborate themselves. This is an example of the process that
social network analysts call triadic closure: an “open” triad of vertices (i.e., a triad in which one
vertex is linked to the other two, but the third possible edge is absent) is “closed” by the addition
of the last edge, forming a triangle.

One can study triadic closure processes directly if one has time-resolved data on the formation
of a network. The network of physics collaborators discussed here was studied in this way in Ref.
[233], where it was shown that pairs of individuals who have not previously collaborated, but who
have another mutual collaborator, are enormously more likely to collaborate in future than pairs
who do not—a factor of 45 times as likely in that particular study. Furthermore, the probability of
future collaboration also goes up sharply as the number of mutual collaborators increases, with
pairs having two mutual collaborators being more than twice as likely to collaborate in future as
those having just one.

However, it is not always the case that the measured clustering coefficient greatly exceeds the
expected value given by Eq. (8.24). Take the example of the Internet again. For the data set we
examined earlier the measured clustering coefficient is just 0.012. The expected value, if
connections were made at random, is 0.84. (The large value arises because, as discussed in Section
8.4, the Internet has a highly right-skewed degree distribution, which makes Ok?>0] large.) Clearly

in this case the clustering is far less than one would expect on the basis of chance, suggesting that
in the Internet there are forces at work that shy away from the creation of triangles.122

In some other networks, such as food webs or the World Wide Web, clustering is neither higher
nor lower than expected, taking values roughly comparable with those given by Eq. (8.24). It is not
yet well understood why clustering coefficients take such different values in different types of
network, although one theory is that it may be connected with the formation of groups or
communities in networks [252].

The clustering coefficient measures the density of triangles in a network. There is no reason,
however, for us to limit ourselves to studying only triangles. We can also look at the densities of



other small groups of vertices, or motifs, as they are often called. One can define coefficients
similar to the clustering coefficient to measure the densities of different motifs, although more
often one simply counts the numbers of the motifs of interest in a network. And, as with triangles,
one can compare the results with the values one would expect to find if connections in the network
are made at random. In general, one can find counts that are higher, lower, or about the same as the
expected values, all of which can have implications for the understanding of the networks in
question. For example, Milo et al. [221] looked at motif counts in genetic regulatory networks and
neural networks and found certain small motifs that occurred far more often than was expected on
the basis of chance. They conjectured that these motifs were playing the role of functional “circuit
elements,” such as filters or pulse generators, and that their frequent occurrence in these networks
might be an evolutionary result of their usefulness to the organisms involved.



8.6.1 LOCAL CLUSTERING COEFFICIENT

In Section 7.9.1 we introduced the local clustering coefficient for a vertex:

c {number of pairs of neighbors of § that are connected)

(number of pairs of neighbors of §)

(8.25)

which is the fraction of pairs of neighbors of vertex i that are themselves neighbors. If we calculate
the local clusterin