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Abstract In this note we investigate the behavior of the volume that the convex
hull of two congruent and intersecting simplices in Euclidean n-space can have. We
prove some useful equalities and inequalities on this volume. For the regular simplex
we determine the maximal possible volume for the case when the two simplices are
related to each other via reflection at a hyperplane intersecting them.
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1 Introduction

The volume of the convex hull of two convex bodies in the Euclidean n-space �n has
been in the focus of research since the 1950s. One of the first results in this area is due
to Fáry and Rédei (1950), who proved that if one of the bodies is translated along a
line with constant velocity, then the volume of their convex hull is a convex function
of time.

The quantity c(K , L) was defined in Horváth and Lángi (2013) as follows:

Definition 1 For two convex bodies K and L in �n , let

c(K , L) = max
{
vol(conv(K ′ ∪ L ′)) : K ′ ∼= K , L ′ ∼= L and K ′ ∩ L ′ �= ∅}

,

Á. G. Horváth (B)
Department of Geometry, Budapest University of Technology,
Egry József u. 1, Budapest 1111, Hungary
e-mail: ghorvath@math.bme.hu

123

Author's personal copy



Beitr Algebra Geom

where vol denotes n-dimensional Lebesgue measure. Furthermore, if S is a set of
isometries of �n , we set

c(K |S) = 1

vol(K )
max

{
vol(conv(K ∪ K ′)) : K ∩ K ′ �= ∅, K ′ = σ(K ) for some σ ∈ S

}
.

We note that a quantity similar to c(K , L) was defined by Rogers and Shephard
(1958b), for which congruent copies were replaced by translates. Another related
quantity is investigated in Horváth (2008), where the author examines c(K , K ) in the
case that K is a regular tetrahedron and the two congruent copies have the same cen-
troid. In the case when the examined tetrahedra are in dual position, the vertices of the
maximal volume configuration forms the vertices of a cube. The author conjectured
that this combinatorial assumption can be omitted so that the maximal volume con-
figuration is in every case the vertex set of a cube (see in Horváth 2008). This position
of the simplices can be interpreted also via reflection; the respective arrangement is
obtained when the two copies are reflected images at their common centroid.

In this paper we consider only simplices. First we recall a result of Rogers and
Shephard (1958a) giving the line of a new (immediate) proof for it (Statement 1,
Theorem 2). Then, related to this result, we investigate that problem when the set of
isometries S consists of reflections at certain hyperplanes H intersecting the original
simplex S. We explicitly write the relative volume of the convex hull in Statement 2
and give upper bounds on it (see the Remark after Statement 1 and Theorem 4, respec-
tively). We also determine the number c(S, SH ) for the regular simplex in Theorem 3.

2 Simplices of dimension n

In this subsection we examine the problem when K and K ′ are simplices congruent
to each other. The first inequality was proved in Rogers and Shephard (1958a).

Theorem 1 (Rogers and Shephard 1958a) Let S be a simplex of the Euclidean n-space
with vertices 0 = s0, s1, . . . sn. Assume that x ∈ E

n is a point and S ∩x + S �= ∅. Then

1

vol(S)
max (vol(conv(S ∪ (x + S)))) = n + 1,

attained at such cases when S ∩ x + S is a vertex of both simplices.

As a consequence of the inequalities in their Theorem 1, Theorem 2 and Theorem
3 in Rogers and Shephard (1958b) the authors proved the following statement:

Theorem 2 (Rogers and Shephard 1958b) Let S denote a simplex of the Euclidean
n-space. Assume that x ∈ S a point and Sx means the simplex which is the reflected
image of S in x. Then

1

Vol(S)
max (Vol(conv(S ∪ Sx ))) = 2n

attained at such a point x which is a vertex of S.
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This theorem can be proved immediately in another way, too. We recall that P is an
extremal point of the convex body K , if there is no segment with endpoints belonging
to K which contains P in its relative interior. The following result is useful.

Lemma 1 (Main lemma) If K and K ′ give a maximal value for cK ,K ′ then the inter-
section K ∩ K ′ is an extremal point of each of the bodies.

This is the case when K ′ is a translate of K , is a reflected image K x of K in a
point x ∈ K or is a reflected image K H at a hyperplane H , respectively. In general, to
give a proof we need a statement which is interesting for itself. It was proved first in
Fáry and Rédei (1950) and later in Rogers and Shephard (1958b), finally for convex
polyhedra of dimension three in Ahn et al. (2008).

Statement 1 The real valued function g of the real variable x defined by the fixed
vector t and the formula

g(x) := Vol(conv(K ∪ (K ′ + t (x))), where t (x) := xt,

is convex.

The proof in Ahn et al. (2008) is based on the observation that the volume change
function (by a translation in the direction of a line) can be calculated and it is an
increasing function. Since it is also the derivative of g we get that g is convex. This
calculation for the volume change can be done in the general case, too. Consider
the shadow boundary of the convex hull conv(K ∪ (K ′ + t) with respect to the line
of translation t . This is an (n − 2)-dimensional topological manifold separating the
boundary of conv(K ∪ (K ′ + t)) into two domains, the front and back sides of it,
respectively. (The translation t can be considered as a motion, hence the respective
concepts of front and back sides can be regarded with respect to the direction of it.)
Regarding a hyperplane H orthogonal to t the front side and back side are graphs of
functions over the orthogonal projection X of conv(K ∪ (K ′ + t) onto H . Thus the
volume change in t can be calculated by the formula

g′(t) = lim
ε→0

∫

X

( f t+ε(X) − f t (X)) +
∫

X

(bt+ε(X) − bt (X)),

where, at the moment t , f t and bt are the graphs of the front and back sides, respec-
tively. Since X is independent from t and for fixed X the functions

f t+ε(x) − f t (x) and bt+ε(x) − bt (x)

in t are increasing and decreasing, respectively, we get that g′ is also increasing in t
implying that g is convex. (This last statement is not simple and not obvious but it can
be proved on an analogous way as in Ahn et al. (2008)). Without loss of generality we
can assume that K is a polytope and we can use such elementary observations on the
geometric change of the front and back sides as the authors in Ahn et al. (2008).
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As a corollary we get that if we have two convex, compact bodies K and K ′ of the
Euclidean space of dimension n and they are moving uniformly on two given straight
lines then the volume of their convex hull is a convex function of the time. In fact, if
the bodies move on the orbits K + t (x) and K ′ + t ′(x), respectively, then we have

g(x, x ′) = Vol(conv
(
K + t (x), K ′ + t ′(x)

)
) = Vol(conv

(
K , K ′ + t ′(x) − t (x)

)
)

showing that

g

(
x1 + x2

2
,

x ′
1 − x ′

2

2

)
= Vol

(
conv

(
K , K ′ + t ′1 + t ′2

2
− t1 + t2

2

))

= Vol

(
conv

(
K , K ′ + (t ′1 − t1) + (t ′2 − t2)

2

))

≤ 1

2

(
Vol

(
conv

(
K , K ′ + (t ′1 − t1)

))

+Vol
(
conv

(
K , K ′ + (t ′2 − t2)

)))

= 1

2

(
g(x1, x ′

1) + g(x2, x ′
2)

)
.

Since the function g(x, x ′) is continuous we get that it is also convex as we stated.

Remark We emphasize that this statement is not true in hyperbolic space: Let K be a
segment and K ′ be a point which goes on a line in the pencil of the rays ultraparallel
to the line of the segment. Since the area function of the triangle defined by the least
convex hull of K and K ′ is bounded (from below and also from above) it cannot be
convex function.

Now a proof for the Main lemma can be obtained as follows.

Proof of the Main lemma From the convexity of g it follows that the maximal values
of g is attained on the boundary of the admissible domain. From this it immediately
follows that in the maximal case the intersection contains only one point, and thus it
is an extremal point of one of the bodies (e.g., of K ′). Moreover, if we have a segment
belonging to K whose points would be common points of the intersection, then only its
endpoints are possible places of the intersection if our bodies giving maximal volume,
because in a relative inner point of this segment in one of the opposite directions the
investigated volume is increasing by convexity. �

An immediate proof of Theorem 2 now can be obtained as follows:

Proof of Theorem 2 Consider the facet F0 := conv{S1, . . . , Sn} of S and the (n + 1)th

vertex S0. Then we have two possibilities for the convex hull of the union S ∪ Sx .
Denote the reflected images of S0 and F0 at x by Sx

0 and F x
0 , respectively. If Sx

0 is
also in S then the examined convex hull is the convex hull of the opposite (n − 1)-
dimensional simplices F0 and F x

0 , and if Sx
0 is separated from S0 by the hyperplane

aff F0, then it is the union of the disjoint parts conv(F0 ∪ F x
0 ), conv(F0 ∪ Sx

0 ) and
conv(S0 ∪ F x

0 ). In the first case, the volume is
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Vol(conv(F0 ∪ F x
0 )) = 2n−1

n
Voln−1(F0)dF0 ,

where Voln−1(F0) and dF0 means the relative volume of F0 and the distance of
the two parallel hyperplanes, respectively. We also have that dF0 ≤ 2m F0 . The
above formula is probably known but the author could not find it in the literature.
Thus it is proved here. Dissect the body into two congruent parts by a hyperplane
aff{S1, . . . , Sn−1, Sx

1 , . . . , Sx
n−1}. Then we get two congruent pyramids based on a

body of smaller dimension with analogous properties. If the volume function is vn we
have

vn = 2
1

n
vn−1an,

where an is the height of the obtained pyramid corresponding to its base. Using induc-
tion we get that

vn = 2n−1

n! v1an · · · a2 = 2n−1

n! an · · · a2a1

where v1 = a1 is the distance of the points S1 and Sx
1 . The geometric meaning of the

product 1
n!a1 · · · an is the volume of the simplex conv{S1, . . . , Sn−1, Sn, Sx

1 }; thus it
is equal to 1

n Voln−1(F0)dF0 showing our formula.
In the second case we have that

2n−1

n
Voln−1(F0)dF0 + 2

n
Voln−1(F0)cF0 = 2n−1

n
Voln−1(F0)

(
dF0 + 2−(n−2)cF0

)
,

where m F0 = dF0 + cF0 . Observe that the possible values of the second function are
smaller than the values of the first one. This implies that the maximal value can be
attained only in the first case when 2m F0 = dF0 . In this case x is equal to S0 which is
a vertex of S, and the volume is equal to

2n−1

n
Voln−1(F0)dF0 = 2n−1

n
Voln−1(F0)2m F0 = 2nVol(S),

as we stated. �
Before formulating the new results we need some further notation. Assume that the

intersecting simplices S and SH are reflected copies of each other in the hyperplane H .
Then H intersects each of them in the same set. By the Main lemma we have that the
intersection of the simplices in an optimal case is a common vertex. Let s0 ∈ H and
si ∈ H+ for i ≥ 1. We imagine that H is horizontal and H+ is the upper half-space.
Define the upper side of S as the collection of those facets in which a ray orthogonal to
H and terminated in a far point of H+ is first intersecting S. The volume of the convex
hull is the union of those prisms which are based on the orthogonal projection of a
facet of the simplex of the upper side. Let denote Fi1 , . . . , Fik the simplex of the upper
side, F ′

i1
, . . . , F ′

ik
its orthogonal projections on H and ui1 , . . . , uik its respective unit
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normals, directed outwardly. We also introduce the notation s = ∑n
i=0 si = ∑n

i=1 si .
Now we have

Statement 2

1

Voln(S)
Vol(conv(S, SH )) = 2n

k∑

l=1

〈uil , u〉〈u, s − sil 〉
|〈uil , (n + 1)sil − s〉| .

Proof The volume of the convex hull is

Vol(conv(S, SH ) = 2
k∑

l=1

Vol(conv(Fil , F ′
il )) = 2

k∑

l=1

Voln−1(F ′
il )mil ,

where mil is the length of the segment from the centroid of Fil to the centroid of F ′
il

.
Let Fil be the face spanned by the vectors si ∈ S, where i �= il , and assume that
si1 = s0 = 0. Then

mil =
{ 1

n

∑n
i=1〈u, si 〉 if il = 0

1
n

∑n
i=1,i �=il 〈u, si 〉 if il �= 0

We now have in the case 0 �∈ {i1, . . . , ik}

Vol(conv(S, SH ))=2
k∑

l=1

1

n

∑

i �=il

〈u, si 〉 · Voln−1(F ′
il )=

2

n

k∑

l=1

∑

i �=il

〈
uVoln−1

(
F ′

il

)
, si

〉

= 2

n

k∑

l=1

〈

uVoln−1(F ′
il ),

∑

i �=il

si

〉

= 2

n

k∑

l=1

〈
Voln−1(F ′

il )u, s − sil

〉
,

and

Vol(conv(S, SH )) = 2

n

〈
Voln−1(F ′

0)u, s
〉 + 2

n

k∑

l=2

〈
Voln−1(F ′

il )u, s − sil

〉

in the other case. The two formulas can be written in the following common form:

Vol(conv(S, SH )) = 2

n

k∑

l=1

〈Voln−1(F ′
il )u, s − sil 〉

in which il also can be zero.
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For all si we have the inequality 〈u, si 〉 ≥ 0 and we know that the equalities

Voln(S) = 1

n

∣
∣
∣
∣

〈
uil , sil − 1

n
(s − sil )

〉∣∣
∣
∣ Voln−1(Fil )

= 1

n2

∣
∣〈uil , (n + 1)sil − s

〉∣∣ Voln−1(Fil )

hold, where uil is the unit normal vector of the hyperplane of Fil . On the other hand
we have a connection between Voln−1(F ′

il
) and Voln−1(Fil ) of the form

Voln−1(F ′
il ) = 〈uil , u〉Voln−1(Fil )

showing that

Voln−1(F ′
il ) = 〈uil , u〉

|〈uil , (n + 1)sil − s〉|n2Voln(S).

From the above two formulas we have

Vol(conv(S, SH )) = 2n
k∑

l=1

〈uil , u〉〈u, s − sil 〉
|〈uil , (n + 1)sil − s〉|Voln(S)

as we stated. �
Remark The denominator of the l th term of the formula of the statement has a geo-
metric meaning; it is equal to n-times the height mil of the simplex corresponding to
the vertex sil . In fact, we have

|〈uil , (n + 1)sil − s〉| = (n + 1)

∣
∣
∣
∣〈uil , sil − 1

n + 1
s〉

∣
∣
∣
∣ = (n + 1)

n

n + 1
|〈uil , s′′

il 〉|,

where s′′
il

is the vector from sil to the centroid of the corresponding facet with normal
vector uil . The geometric definition of inner product proves this observation. Thus we
have an upper bound on the relative volume:

1

Voln(S)
Vol(conv(S, SH )) ≤ 2

k∑

l=1

∑

i �=il

‖si‖
mil

≤ 2k(n − 1) max

{‖si‖
m j

i �= j

}
.

Observe that this bound is not sharp. However, for those simplices which have a
small height the relative volume can be large.

3 Regular simplices

The last thought of the previous section motivates the investigation of such simplices

for which the ratios
{ ‖si ‖

m j
i �= j

}
are not too large. For example we can solve the
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original problem in the case of the regular simplex. Denote the Euclidean norm of a
vector x by ‖x‖.

Theorem 3 If S is the regular simplex of dimension n, then

c(S, SH ) := 1

Voln(S)
Vol(conv(S, SH )) = 2n,

attained only in the case when u = u0 = s
‖s‖ .

Proof Observe that in this case

uil =

⎧
⎪⎨

⎪⎩

(n + 1)sil − s

‖(n + 1)sil − s‖ if il �= 0

s

‖s‖ if il = 0,

and

‖(n + 1)sil − s‖ = |〈uil , (n + 1)sil − s〉| = |(n + 1)〈uil , sil 〉 − 〈uil , sil 〉|

= n

√
n + 1

2n
‖s1‖.

Without loss of generality we can assume that ‖s1‖ = · · · = ‖sn‖ = 1. It is easy
to see that in the case of the regular simplex i1 = 0 corresponds to an upper facet and
thus

Vol(conv(S, SH ))

Voln(S)
= 2n

k∑

l=1

〈uil , u〉〈u, s − sil 〉
|〈uil , (n + 1)sil − s〉|

= 2n

(

〈u0, u〉2 +
k∑

l=2

2〈−(n + 1)sil + s, u〉〈u, s − sil 〉
(n + 1)n

)

= 2n

(

〈u0, u〉2 +
k∑

l=2

2
(−(n + 1)〈sil , u〉 + 〈s, u〉) (〈u, s〉 − 〈u, sil 〉

)

(n + 1)n

)

= 2n

(

〈u0, u〉2 +
k∑

l=2

2
(
(n + 1)〈sil , u〉2 − (n + 2)〈s, u〉〈u, sil 〉 + 〈u, s〉2

)

(n + 1)n

)

= 2n

(

〈u0, u〉2 + 2

(n + 1)n

k∑

l=2

(
(n + 1)

〈
sil , u

〉2 − (n + 2)〈s, u〉 〈
u, sil

〉 + 〈u, s〉2
)
)

= 2n

(

〈u0, u〉2 +
k∑

l=2

(
2

n

〈
sil , u

〉2 − 2(n + 2)

n(n + 1)
〈s, u〉 〈

sil , u
〉 + 2

n(n + 1)
〈u, s〉2

))

.

If the only upper facet corresponds to the normal vector u0, then only the first term
in the formula of Statement 2 occurs—meaning that k = 1—and the maximal value
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of the right hand side is less than or equal to 2n with equality in the case mentioned
in the statement.

Assume now that k ≥ 2. By the regularity of the simplex we have that s =√
(n+1)n

2 u0, hence we get that

Vol(conv(S, SH ))

Voln(S)
:= 2n f

(〈
s0

2,k, u
〉
, 〈u0, u〉

)

= 2n

(

〈u0, u〉2 +
k∑

l=2

(
2

n

〈
sil , u

〉2 −
√

2

n

(n + 2)√
n + 1

〈u0, u〉 〈
sil , u

〉 + 〈u0, u〉2

))

≤ 2n

(

〈u0, u〉2 +
(

2

n

〈
k∑

l=2

sil , u

〉

−
√

2

n

(n + 2)√
n + 1

〈u0, u〉
〈

k∑

l=2

sil , u

〉

+(k − 1)〈u0, u〉2

))

= 2n

((√
2(k − 1)k

n

〈
s0

2,k, u
〉
−

√
(k − 1)k

n(n + 1)
(n + 2)〈u0, u〉

〈
s0

2,k, u
〉
+ k〈u0, u〉2

))

=: 2ng
(〈

s0
2,k, u

〉
, 〈u0, u〉

)
,

where s2,k := ∑
i �=il sil and s0

2,k := s2,k
‖s2,k‖ . Here we used that 0 ≤ 〈

sil , u
〉 ≤ 1, implying

that
〈
sil , u

〉2 ≤ 〈
sil , u

〉
. First we remark that we have 1

n ≤ 〈u0, u〉 ≤
√

1 − 1
n2 , since

the simplex is in the upper half-space determined by the hyperplane of reflection.
Furthermore we can observe that if a vertex sil gives an upper facet then

〈
∑

i �=il

(
si − sil

)
, u

〉

≥ 0,

implying that

〈
s − (n + 1)sil , u

〉 ≥ 0.

From this we get a new connection between the parameters
〈
sil , u

〉
and 〈u0, u〉. We

get that

〈
sil , u

〉 ≤ ‖s‖2

(n + 1)
〈u0, u〉 =

√
n

2(n + 1)
〈u0, u〉.

This implies that

〈
s0

2,k, u
〉
≤ (k − 1)

√
2

(k − 1)k

√
n

2(n + 1)
〈u0, u〉 =

√
(k − 1)n

k(n + 1)
〈u0, u〉.
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On the other hand, if we write that

〈u0, u〉 := cos α,〈s0
2,k, u0〉 := cos β and 〈s0

2,k, u〉 := cos γ,

then we get that γ ≤ α + β, and so cos α cos β − sin α sin β ≤ cos γ . But

cos β = (k − 1) + 1
2 (k − 1)(n − 1)

√
(k−1)kn(n+1)

4

=
√

1 − n − k + 1

nk
and sin β =

√
n − k + 1

nk
,

hence we have a second inequality which is:

〈u0, u〉
√

(n + 1)(k − 1)

nk
−

√
1 − 〈u0, u〉2

√
n − k + 1

nk
≤ 〈s0

2,k, u〉.

Comparing the two inequalities we get a new one on 〈u0, u〉. More precisely we
have that

〈u0, u〉
√

(n + 1)(k − 1)

nk
−

√
1 − 〈u0, u〉2

√
n − k + 1

nk
≤

√
(k − 1)n

k(n + 1)
〈, u0, u〉

implying that

〈u0, u〉2 ≤ (n + 1)(n − k + 1)

(k − 1) + (n + 1)(n − k + 1)
.

Observe that the examined function g
(〈

s0
2,k, u

〉
, 〈u0, u〉

)
of two variables is a

parable if we fix its first variable 〈s0
2,k, u〉. Its maximal value can be found at the

boundary of the domain which are at the endpoints 〈u0, u〉 = 1
n and 〈u0, u〉 =√

(n+1)(n−k+1)
(k−1)+(n+1)(n−k+1)

, respectively.

If now we assume that 〈u0, u〉 = 1
n , then we omit the negative (middle) part of the

sum and use the inequality on 2n f
(〈

s0
2,k, u

〉
, 〈u0, u〉

)
to determine an upper bound.

We get that it is equal to

√
2(k − 1)k

n

√
(k − 1)n

k(n + 1)

1

n
+ k

n2 =
√

2 n
n+1 (k − 1) + k

n2 < 1,

since k ≤ n − 1 and n ≥ 3.

In the other case 〈u0, u〉 =
√

(n+1)(n−k+1)
(k−1)+(n+1)(n−k+1)

, and we get two equalities

〈s0
2,k, u〉 =

√
(k − 1)n(n − k + 1)

k ((k − 1) + (n + 1)(n − k + 1))
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and

〈sil , u〉 =
√

n(n − k + 1)

2 ((k − 1) + (n + 1)(n − k + 1))
,

respectively. Using these parameters the value of the original function is

Vol(conv(S, SH ))

Voln(S)

= 2n

(

〈u0, u〉2 +
k∑

l=2

(
2

n

〈
sil , u

〉2 −
√

2

n

(n + 2)√
n + 1

〈u0, u〉 〈
sil , u

〉 + 〈u0, u〉2

))

= 2n

(
(n + 1)(n − k + 1)

(k − 1) + (n + 1)(n − k + 1)
+

k∑

l=2

(
n − k + 1

(k − 1) + (n + 1)(n − k + 1)

−(n + 2)
n − k + 1

(k − 1) + (n + 1)(n − k + 1)

+(n + 1)
n − k + 1

(k − 1) + (n + 1)(n − k + 1)

))

< 2n,

showing the truth of the statement. �

4 Again general simplices

We note that the result of the case of reflection at a hyperplane gives an intermediate
value between the results corresponding to translates and point reflections. The part of
the previous proof corresponding to the case of a single upper facet can be extended to
a general simplex, too. Let G denote the Gram matrix of the vector system {s1, . . . , sn},
defined by the product MT M , where M = [s1, . . . , sn] is the matrix with columns si .
In the following theorem, we use the notation ‖ · ‖1 for the l1 norm of a vector or a
matrix, respectively.

Theorem 4 If the only upper facet is F0 with unit normal vector u0, then we have the
inequality

1

Voln(S)
Vol(conv(S, SH )) ≤ n

(
1 + ‖s‖

〈u0, s〉
)

=
(

n +
√∥

∥(1, . . . , 1)G−1
∥
∥

1 ‖M(1, . . . , 1)‖
)

.

Equality is attained if and only if the normal vector u of H is equal to u0+s′
‖u0+s′‖ ,

where s′ = s
‖s‖ is the unit vector of the direction of s.
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Before the proof we remark that for the regular simplex

G =

⎛

⎜
⎜
⎜
⎜
⎝

1 1
2 · · · 1

2

1
2 1 · · · 1

2
...

...
...

...
1
2 · · · 1

2 1

⎞

⎟
⎟
⎟
⎟
⎠

and G−1 =

⎛

⎜
⎜
⎜
⎜
⎝

2n
n+1 − 2

n+1 · · · − 2n
n+1

− 2
n+1

2n
n+1 · · · − 2

n+1
...

...
...

...

− 2
n+1 · · · − 2

n+1
2n

n+1

⎞

⎟
⎟
⎟
⎟
⎠

,

implying that

n +
√∥

∥(1, . . . , 1)G−1
∥
∥

1 ‖M(1, . . . , 1)‖ = n +
√

2n

n + 1

√
n(n + 1)

2
= 2n.

Proof From our formula we get that in the case when the only upper facet is F0 we
have that

Vol(conv(S, SH ))=2n
k∑

l=1

〈uil , u〉〈u, s − sil 〉
|〈uil , (n + 1)sil −s〉|Voln(S)=2n

〈u0, u〉〈u, s〉
|〈u0,−s〉| Voln(S)

= 2n
〈u0, u〉〈u, s′〉
|〈u0,−s′〉| Voln(S),

where s′ = s
‖s‖ . Since 〈u0,−s′〉 is independent from the choice of u we have to

determine the maximal value of

〈u0, u〉〈u, s′〉.

Using the positivity of these numbers we can see that

〈u0, u〉〈u, s′〉 ≤
( 〈u0, u〉 + 〈u, s′〉

2

)2

=
(〈

u0 + s′

2
, u

〉)2

≤
∥
∥
∥
∥

u0 + s′

2

∥
∥
∥
∥

2

,

with equality if and only if 〈u0, u〉 = 〈u, s′〉 and u is parallel to u0+s′
2 . The second

condition implies the first one. Thus we have

u = u0 + s′

‖u0 + s′‖ ,

and hence

Vol(conv(S, SH )) ≤ 2n

∥
∥
∥ u0+s′

2

∥
∥
∥

2

|〈u0,−s′〉|Voln(S) = n
1 + 〈u0, s′〉

〈u0, s′〉 Voln(S)

= n

(
1 + ‖s‖

〈u0, s〉
)

Voln(S),
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with equality if and only if

u = u0 + s′

‖u0 + s′‖ ,

as we stated.
On the other hand, the geometric condition in the statement algebraically means

that there are non-negative coefficients αi such that

u0 =
n∑

i=1

αi si .

By the definition of u0 for each pair of indices 1 ≤ i < j ≤ n the equality
〈u0, si 〉 = 〈u0, s j 〉 is also valid. We can explicitly determine the coefficients αi . In
fact, we have 1 = ∑n

i=1 αi 〈u0, si 〉 and so 1∑n
i=1 αi

= 〈u0, s1〉 = · · · = 〈u0, sn〉.
Writing M = [s1, . . . , sn] we get that u0 = M(α1, . . . , αn)T , and thus

1
∑n

i=1 αi
(1, . . . , 1) = uT

0 M = (α1, . . . , αn)G

where G is the Gram matrix of the vector system {s1, . . . , sn}, so G =[gi, j ]= MT M . If

(1, . . . , 1)G−1 =: (β1, . . . , βn) =
√√
√
√

n∑

i=1

βi

⎛

⎝ β1√∑n
i=1 βi

, . . . ,
βn√∑n
i=1 βi

⎞

⎠ ,

then

αi = βi√∑n
i=1 βi

,

since this choice implies

n∑

i=1

αi =
√√
√
√

n∑

i=1

βi .

Thus we have

(α1, . . . , αn) =
√

1
∥
∥(1, . . . , 1)G−1

∥
∥

1

(1, . . . , 1)G−1,

and so

〈u0, s〉 = 1
√∥

∥(1, . . . , 1)G−1
∥
∥

1

(1, . . . , 1)G−1G(1, . . . , 1)T = n
√∥

∥(1, . . . , 1)G−1
∥
∥

1

,

proving the equality in the statement. �
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