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Abstract In this paper we propose a method to construct probability measures on the

space of convex bodies. For this purpose, first, we introduce the notion of thinness of a

body. Then we show the existence of a measure with the property that its pushforward by

the thinness function is a probability measure of truncated normal distribution. Finally, we

improve this method to find a measure satisfying some important properties in geometric

measure theory.
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1 Introduction

In this paper we shall investigate the probability space of norms defined on a real, n-

dimensional Euclidean space V . A norm function on V defined by its unit ball K, which is (in

a fixed, cartesian coordinate system of the Euclidean vector space (V, 〈·, ·〉) with origin O is a

centrally symmetric in O) convex body. Such bodies give a closed proper subset K0
1 of the

space of convex bodies K of (V, 〈·, ·〉). It is known that the Hausdorff distance δh (which we

define in the next section) is a metric on K and with this metric (K, δh) is a locally compact

space (see [5 ,6]). Thus there should be many measures available on these space. Unfortunatelly

this is not so. Bandt and Baraki in [1] proved answering to a problem of McMullen [15] that

there is no positive σ-finite Borel measure on it which is invariant with respect to all isometries

of (K, δh) into itself. This result exclude the possibility of the existence of a natural volume-type

measure. It was a natural question that can whether be found such a σ-finite Borel measure

on K which holds the property that it is non-zero for any open set of K and invariant under

rigid motions of the embedding vector space. This long standing question was answered in the

last close by Hoffmann in [9]. His result can be summarized as follows. Each σ-finite rotation

∗Received May 3, 2012; revised April 3, 2013.
1We rather denote in this paper the space of O-symmetric convex bodies by K0 as the space of convex

bodies with centroid O.
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and translation invariant Borel measure on (K, δh) is the vague limit of such measures and that

each σ-finite Borel measure on (K, δh) is the vague limit of measures of the form
∞∑

i=1

αnδKn
,

where {Kn , n ∈ N} is a countable, dense subset of (K, δh), (αn) is a sequence of positive real

numbers for which
∞∑

i=1

αn < ∞ and δKn
denote the Dirac measure concentrated at Kn.

Hoffmann also observed that a result of Bárány [2] “suggest that it might not be possible to

define a “uniform” probability measure on the set of all polytopes which have rational vertices

and are contained in the unit ball”. The known concept of Gaussian random convex bodies

[13] gives a poor class of Gaussian measures because of a random convex body is Gaussian

if and only if there exists a deterministic body and a Gaussian random vector such that the

random body is the sum of the deterministic one and the random vector almost surely. He

asked whether there exists an alternative approach to “Gaussian” random convex bodies which

yields a richer class of “Gaussian” measures on (K, δh).

The investigations of the author on the generalized space-time models propose that define

“Gaussian” (or other type) probability measure on (K, δh) with respect to a given measurable

function of the space (see in [10]). Our observation is that on certain probability space the

uniformity or normality properties could be only “relative” one and thus we can require these

properties in their impacts through a given function of the space. More precisely, we require the

normality or uniformity on a pushforward measure by a given geometric function of the elements

of the space (here on the space of convex bodies). To this purpose we will use the thinness

function α0(K) of K defined by the help of the concepts of diameter d(K) and width w(K).

As a concrete construction we will give a probability measure on (K0, δ
h) which pushforward

measure by the function α0(K) has truncated normal distribution on the range interval [12 , 1)

(Theorem 2). We note that a method which sends a convex body to a well-defined O-symmetric

convex body by a continuous mapping, define a pullback measure of to the all space of convex

bodies. The pushforward of this pullback measure by the composition of the mapping of the

method and the function α0(K) has the same properties as the measure of (K0, δ
h). To this

purpose we can use the Minkowski symmetrization process sending a body K into the body
1
2 (K + (−K)) with the same diameter, width and thinness (Corollary 1). Our last statement

(Theorem 3) that the previously construction can be modified such that the set of basic bodies

will be dense and countable with smooth elements. Thus the set of polytopes has zero measure,

the set of smooth bodies has measure 1, and every neighborhood has positive measure.

2 Definitions

For self-readable of this paper we recall some necessary definitions. Deeper understanding

of the subject on convex geometry and geometric measure theory I suggest to read the nice

books [6], [11] and [14] where all properties of the following concepts can be found. The

Definition 1 Let K be the set of convex bodies of an Euclidean vector space of dimension

n. It is endowed with the topology induced by the Hausdorff metric δh, which is defined as

follows:

δh(C, D) = max

{
max
x∈C

min
y∈D

‖x − y‖, max
y∈D

min
x∈C

‖x − y‖
}

for C, D ∈ K.
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If we consider a topology on K or on a subspace of it, such as the space of O-symmetric convex

bodies K0, it is always assumed that it is the topology induced by δh.

From geometric measure theory we will use the concepts of Borel, Dirac, Haar and Lebesgue-

measure. All of these concepts can be found in [3] or [7]. The definitions and properties of

Dirac and Lebesgue measures investigated by a lot of book on modern analysis. We now give

a short summary on Haar and Borel measures.

Let X be a locally compact Hausdorff space, and let B(X) be the smallest σ-algebra that

contains the open sets of it. This is the σ-algebra of Borel sets. Any measure defined on the

σ-algebra of Borel sets is called a Borel measure. A measure µ on a measurable space is called

inner regular if, for every measurable set A,

µ(A) = sup{µ(K)|K ⊆ A, K is compact}.

Analogously if for a measurable set B we have

µ(B) = inf{µ(U)|U ⊇ A, U is open},

we say that the measure is outer regular. If a Borel measure is both inner regular and outer reg-

ular, it is called a regular Borel measure. Note that a locally finite Borel measure automatically

finite for every compact sets.

A topological group is a group G which at the same time is a topological space such that

the mapping (x, y) 7→ xy−1 of G × G into G is continuous. For each a ∈ G it is easy to check

that the mappings x 7→ ax, x 7→ xa and x 7→ x−1 are homeomorphisms of G onto G. A compact

group is a topological group which is a compact space. If G is a compact group, then there is

a unique positive regular Borel measure m on G such that

• m(G) = 1;

• If U is a nonempty open subset of G, then m(U) > 0;

• If B is any Borel set of G and s ∈ G, then

m(B) = m(sB) = m(Bs) = m(B−1).

This measure m is called the Haar measure for G.

We also use some basic tools of probability theory, e.g. the concepts of truncated Gaussian

and uniform distributions, and the concept of the pushforward and pullback of a measure. The

reader can read on these concept on the internet or in basic works on probability theory e.g. in

[4] or [8].

3 The Thinness Function

Let denote by w(K) the infinum of the distances between parallel support hyperplanes

of the convex body K. This is the width of K. The diameter of K is the supremum of the

distances between two points of K. It can be regarded also as the supremum of the distances

between parallel support hyperplanes of K. By these two quantities we define a new one.

Definition 2 Let denote by α0(K) the number

α0(K) =
d(K)

w(K) + d(K)
.
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We call it the thinness of the convex body K.

The thinness is 1
2 in the case of the Euclidean ball only and it is equal to 1 if K has of

dimension less or equal to n − 1.

Let now BE be the unit ball of the embedding Euclidean space and let define the unit

sphere of K0 around BE by the equality:

K1
0 := {K ∈ K0 | δh(K, BE) = 1}.

The following lemma shows the usable of the thinness function in our investigation.

Lemma 1 If K ∈ K1
0 and α0 := α0(K) is the thinness of K then we have

δh(αK, BE) =





2α − 1 if α0 ≤ α,

2α + 1 − 2
α

α0
if 0 ≤ α < α0.

Proof Assume that δh(K, BE) is the distance of the points x ∈ bdBE and y ∈ bdK.

Then ‖y‖E = ‖x‖E + 1 = 2 and 0, x, y are collinear. (We note that the norm of the point y

is also the half of the diameter d(K) of K with respect to the Euclidean metric.) This implies

that for α > 1 the points 1
α
x and y give a segment with length δh

(
K, 1

α
BE

)
and thus

δh

(
K,

1

α
BE

)
=

∥∥∥∥y − 1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2 − 1

α

holds. If α < 1 then the situation is a little bit more complicated. In this case there is a real

number α0 ∈
[

1
2 , 1
)

such that if α0 ≤ α < 1 then again

δh

(
K,

1

α
BE

)
=

∥∥∥∥y − 1

α
x

∥∥∥∥
E

= ‖y‖E − 1

α
‖x‖E = 2 − 1

α

but for α0 ≥ α > 0 we have a new pair of points y′ ∈ bdK and x′ ∈ bdBE where the distance

attained. The point y′ is a point of bdK with minimal norm and we have the equality

1

α0
− ‖y′‖ = 2 − 1

α0
.

Thus the norm of y′ is equal to 2( 1
α0

− 1). In this case

δh

(
K,

1

α
BE

)
=

∥∥∥∥−y′ +
1

α
x′

∥∥∥∥
E

=
1

α
− 2

(
1

α0
− 1

)
= 2 +

1

α
− 2

α0
.

We thus have the equality

δh(αK, BE) = αδh

(
K,

1

α
BE

)
=





2α − 1 if α0 ≤ α

2α + 1 − 2
α

α0
if 0 ≤ α < α0.

The constant α0 depends only on the body K and it has the following geometric meaning.

‖y′‖E = 2
α0

− 2 is the half of the width w(K) of the centrally symmetric body K, because it is

a point on bdK with minimal norm. So we can see that

1

2
≤ α0 =

2

‖y′‖E + 2
=

d(K)

w(K) + d(K)
< 1

as we stated. 2
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4 Measure on K
1

0
with Uniform Pushforward

We now construct a measure on K1
0 which pushforward by the thinness function has uniform

distribution. To this (following Hoffmann’s paper) we introduce the orbits of a body K about

the special orthogonal group SO(n) by [K]. These are compact subsets of K1
0, and if we consider

an open subset of K1
0 then the union of the corresponding orbits is also open. Hence there exists

a measurable mapping s : K1
0 −→ K1

0 such that s(K) = s(K ′) if and only if K and K ′ are on

the same orbit. Let K̃1
0 := {K ∈ K1

0 , s(K) = K} which is measurable subset of K1
0. We equip

it with the induced topology of K1
0. Finally let Φ1

2a : K̃1
0×SO(n) −→ K1

0 is the mapping defined

by the equality:

Φ1
2a(K, Θ) = ΘK.

Our notation is analogous with the notation of [9]. It was proved in [9] (Lemma 2) that a

non-trivial σ-finite measure µ0 on K0 is invariant under rotations (meaning that for Θ ∈ SO(n)

we have µ0(A) = µ(ΘA) for all Borel sets A of K0) if and only if there exists a σ-finite measure

µ̃0 on K̃0 such that µ0 = Φ2a(µ̃0 ⊗ νn), where νn is the Haar measure on SO(n). It is obvious

that in the case of K1
0 there is a similar result by our mapping Φ1

2a(K, Θ) which is the restriction

of Hoffmann’s map Φ2a(K, Θ) onto the set K1
0.

First choose a countable system of bodies Km to define a probability measure on K̃1
0.

Without loss of generality we may assume that each of the bodies of K̃1
0 has a common diameter

of length 4 denoted by d, which lies on the n-th axe of coordinates (hence it is the convex hull

of the points {2en,−2en}). Consider the set of diadic rational numbers in (0, 2]. We can write

them as follows:
{

m(n, k) :=
k

2n
where n = 0, · · · ,∞ and for a fixed n, 0 < k ≤ 2n+1

}
.

Define the body Km(n,k) as the convex hull of the union of the segment d and the ball around

the origin with radius m(n, k). For each n we have 2n+1 such bodies, thus the definition

µ̃1
0 := lim

n→∞

2n+1∑

k=1

1

2n+1
δKm(n,k)

define a probability measure on K̃1
0. (The limit is the vague limit (or limit with respect to weak

convergence) of measures.) In fact,

µ̃1
0

(
K̃1

0

)
= lim

n→∞

2n+1∑

k=0

1

2n+1
δKm(n,k)

(
K̃1

0

)
= 1

Lemma 2 The pushforward measure w(K)−1(µ̃1
0) has uniform distribution on the inter-

val (0, 4]. (w(K) means the width of the body K.)

Proof Let B′ = (0, x] be a level set of (0, 4]. By definition

w(K)−1(µ̃1
0)(B

′) = µ̃1
0

({
K ∈ K̃1

0 | w(K) ∈ B′
})

= lim
n→∞

∑

Km(n,k)∈w(K)−1(B′)

0<k≤2n+1

1

2n+1
= lim

n→∞

∑

2m(n,k)∈B′

1

2n+1
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= lim
n→∞

∑

2m(n,k)<x

1

2n+1
= lim

n→∞

2n−1x∑

k=1

1

2n+1
=

x

4

showing that w(K)−1(µ̃1
0) is the uniform distribution of the interval (0, 4]. 2

The Gaussian measure γ of the n2-dimensional matrix space R
n×n defined by the density

function G(X)

G(X)dλn2

:=
1

(√
2π
)n2 e−

1
2Tr(XT X)dλn2

,

where dλn2

is the n2-dimensional Lebesgue measure. The Haar measure νn of R
n×n is the

pushforward measure of the Gaussian measure by the mapping M defined by the Gram-Schmidt

process (see [12]). In fact, if GL(n, R) is the group of nonsingular matrices then M is a mapping

from GL(n, R) to O(n) with the following properties:

1. surjective;

2. if B is a Borel set then we have M(QB) = QM(B) for every Q ∈ O(n);

3. M−1(QB) = QM−1(B).

It can be proved that for a Borel set B of O(n) we have

νn(B) = γ
(
M−1(B)

)
.

Furthermore νn is a probability measure because a matrix is invertible (with respect to the

Gaussian measure) with probability 1 and thus

νn(O(n)) = γ(GL(n, R)) = 1.

Since Haar measure by definition invariant under orthogonal transformations it is the unique

“uniform” (geometric volume) distribution on O(n) and thus on SO(n), too.

We now state the following:

Theorem 1 Let define the measure ν̃1
0 by density function dν̃1

0 = 4
(w+4)2 dµ̃1

0. Then

α0(K)−1
(
Φ1

2a

(
ν̃1
0 ⊗ νn

))

is a probability measure with uniform distribution on [12 , 1).

Proof We are stating that the pushforward measure α0(K)−1
(
Φ1

2a

((
ν̃1
0 ⊗ νn

)))
has

uniform distribution on [12 , 1) if and only if the pushforward measure w(K)−1
(
µ̃1

0

)
has uniform

distribution on (0, 4]. To prove this consider a Borel set B of [12 , 1) and its image B′ under the

bijective transformation

τ : t 7→ τ(t) :=
4

t
− 4.

Of course B′ is a Borel set of the interval (0, 4] which is the image of [12 , 1) with respect to τ .

We now have that
∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃1
0 ⊗ νn

))

= α0(K)−1
(
Φ1

2a

(
ν̃1
0 ⊗ νn

))
(B) = Φ1

2a

(
ν̃1
0 ⊗ νn

)
(α0(K)−1(B))

= ν̃1
0

((
Φ1

2a

)−1

1

(
(α0(K)−1(B))

))
νn

((
Φ1

2a

)−1

2

(
α0(K)−1(B))

))
,



No.6 Á.G. Horváth: NORMALLY DISTRIBUTED PROBABILITY MEASURE 7

where
(
Φ1

2a

)−1

1
and

(
Φ1

2a

)−1

2
means the components of the set-valued inverse of the function

Φ1
2a, respectively. Since

(
Φ1

2a

)−1

2

(
α0(K)−1(B))

)
is the group O(n) we have that

∫

B

dα0(K)−1
(
Φ1

2a

(
ν̃1
0 ⊗ νn

))
= ν̃1

0

((
Φ1

2a

)−1

1

(
α0(K)−1(B)

))
=

∫

(Φ1
2a)

−1

1
(α

−1
0 (B))

dν̃1
0 .

On the other hand

(
Φ1

2a

)−1

1

(
α−1

0 (B)
)

=

{
K̃ ∈ K̃1

0 | α0(K̃) =
4

w(K̃) + 4
∈ B

}

=

{
K̃ ∈ K̃1

0 | w(K̃) ∈ B′ =
4

B
− 4

}

implying that ∫

(Φ1
2a)

−1

1
(α−1

0 (B))
dν̃1

0 =

∫
{

K̃∈K̃1
0|w(K̃)∈B′

}
4

(w + 4)2
dµ̃1

0,

and it is equal to ∫

τ∈B′

4

(4 + τ)2
dτ =

∫

t∈B

dt,

if and only if w(K)−1
(
µ̃1

0

)
has uniform distribution on (0, 4] as we stated.

Since Lemma 2 says that w(K)−1
(
µ̃1

0

)
has uniform distribution on the interval [0, 4] we

also proved the theorem. 2

Let denote by ν1
0 the measure Φ1

2a

(
ν̃1
0 ⊗ νn

)
.

5 Measure on K0 with Normal Pushforward

Finally we can identify K0 with K1
0 × [0,∞). To this end let Φ4 be the mapping

Φ4 : (K, α) 7→ αK.

Lemma 3 From the image K ′ = Φ4(K) we can determine uniquely the body K and the

constant α.

Proof K ′ = αK implies that α0(K) = α0(K
′) = d(K′)

w(K′)+d(K′) and thus α0(K) is uniquely

determined. We also know the value of

α′ := δh(αK, BE).

We consider two cases. In the first case we assume that α ≥ α0 and hence by Lemma 1 we get

that

α′ = 2α − 1 or α =
α′ + 1

2
,

and in the second one we assume 0 ≤ α ≤ α0 then we have

α′ = 2α + 1 − 2
α

α0
or α =

α′ − 1

2 − 2
α0

=
α0(α

′ − 1)

2(α0 − 1)
.

From these equalities we get that the first case implies

α0 ≤ α′ + 1

2
so α′ ≥ 2α0 − 1,
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and in the second one we have

α0 ≥ α0(α
′ − 1)

2(α0 − 1)
≥ 0.

Hence we have

2α0 − 1 ≥ α′ ≥ 0.

So first we determine α′ and the value

2α0 − 1 =
2d(K)

w(K) + d(K)
− 1 =

d(K) − w(K)

d(K) + w(K)
.

Then using the above equalities we can calculate α which is uniquely determined. Now K is

equal to 1
α
K ′. 2

Denote by Φ−1
4 (K ′) :=

((
Φ−1

4

)
1
(K ′),

(
Φ−1

4

)
2
(K ′)

)
the pair (K, α) determined by the

method of Lemma 3. If we have a σ-finite measure ν1
0 on K1

0 then we also have a σ-finite

measure ν0 on K0 by the definition ν0 = Φ4(ν
1
0 ⊗ ν), where ν is a σ-finite measure on (0,∞).

Let define now the set function p(A) as follows. If A ⊂ K0 ν0 is a measurable set let be

p(A) :=
1√

2πσ2

∫

K′∈A

e−


δh


BE,

α0(K′)

Φ
−1
4 (K′)2

K′






2

2σ2 dν0.

The following theorem is our main result.

Theorem 2 If ν1
0 is such a probability measure on K1

0 for which α0(K)−1(ν1
0 ) has uniform

distribution, ν0 = Φ4(ν
1
0⊗ν) where ν is a probability measure on (0,∞) and Φ is the probability

function of the standard normal distribution then

P (A) :=
4p(A)(

Φ
(

1
σ

)
− Φ(0)

) =
4(

Φ
(

1
σ

)
− Φ(0)

)√
2πσ2

∫

K′∈A

e−


δh


BE,

α0(K′)

Φ
−1
4 (K′)2

K′






2

2σ2 dν0

is a probability measure on K0. Moreover α0(K)−1(P ) has truncated normal distribution on

the interval [12 , 1), (with mean 1
2 and variance

(
σ
2

)2
), so

α0(K)−1(P )

({
1

2
≤ t ≤ c

})
= P ({K ∈ K0 | α0(K) ≤ c}) =

Φ
(

c− 1
2

σ
2

)
− Φ(0)

Φ
(

1
σ

)
− Φ(0)

.

Proof

p(A) =
1√

2πσ2

∫

K∈(Φ−1
4 )

1
(A)

∫

α∈(Φ−1
4 )

2
(A)

e−

(
δh

(
BE ,

α0(K′)
α

αK

))2

2σ2 dνdν1
0

however α0(K
′) = α0(K) so it is equal to

1√
2πσ2

∫

K∈(Φ−1
4 )

1
(A)

(∫

α∈(Φ−1
4 )

2
(A)

e−
α0(K)′2

2σ2 dν

)
dν1

0

=
1√

2πσ2

∫

K∈(Φ−1
4 )

1
(A)

(∫

αK∈A,
α≥α0(K)

e−
(2α0(K)−1)2

2σ2 dν

+

∫

αK∈A
0≤α≤α0(K)

e−

(
2α0(K)+1−2

α0(K)
α0(K)

)2

2σ2 dν


dν1

0
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=
1√

2πσ2

∫

K∈(Φ−1
4 )(A)1

(∫

α∈(Φ−1
4 )

2
(A)

e−
(2α0(K)−1)2

2σ2 dν

)
dν1

0

=
ν
(
α ∈

(
Φ−1

4

)
2
(A)
)

√
2πσ2

∫

K∈(Φ−1
4 )(A)1

e−
(2α0(K)−1)2

2σ2 dν1
0 .

For A = K0 we have that it is equal to

=
ν((0,∞))√

2πσ2

∫ 1

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν1

0 )(t)
)
.

Since ν is a probability measure on (0,∞) and α0(K)−1(ν1
0) has uniform distribution on [12 , 1)

so we have that

p(K0) =
1

2
√

2π σ
2

1

2

(∫ 1

−∞

e
− 1

2

(
t− 1

2
σ
2

)2

dt −
∫ 1

2

−∞

e
− 1

2

(
t− 1

2
σ
2

)2

dt

)
=

Φ
(

1
σ

)
− Φ(0)

4
,

where the function

Φ(x) =
1√
2π

∫ x

∞

e

(
−u2

2

)

du

is the standard normal distribution function.

Analogously, for the set K0(c) := {K ′ ∈ K0 | α0(K
′) = α0(K) ≤ c} we have

p(K0(c)) =
ν((0,∞))√

2πσ2

∫ c

1
2

e
− 1

2

(
t− 1

2
σ
2

)2

d
(
α0(K)−1(ν1

0 )(t)
)

=
Φ
(

c− 1
2

σ
2

)
− Φ(0)

4
,

thus the measure

P (A) :=
4

Φ
(

1
σ

)
− Φ(0)

p(A)

is such a probability measure on K0 which pushforward by the function α0(K) has normal

distribution. 2

Corollary 1 From Theorem 2 follows the existence of a measure with similar properties

on the space K of convex bodies. Let denote by m(K) := 1
2 (K + (−K)) where the addition

means the Minkowski sum of convex bodies. The mapping

m : K −→ K0

is a continuous function on K and thus it defines a pullback measure µ on K by the rule

µ(H) = P (m(H)) where H = m−1(H ′) for a Borel set H ′ ∈ K0.

Observe that m has the following properties:

1. surjective

2. for any set S ⊂ K and a vector t ∈ R
n we have m(S + t) = m(S)

3. for any K ∈ K holds that d(K) = d(m(K)), w(K) = w(m(K) implying that α0(K) =

α0(m(K)).

This implies that the function α0 is well-defined on K and for any Borel set B ∈
[
1
2 , 1
)

µ
(
α−1

0 (B)
)

= P (m
(
α−1

0 (B)
)
) = P (α−1

0 |K0(B)),

showing that the pushforward of the measure µ has truncated normal distribution on the interval[
1
2 , 1
)
.
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6 Geometric Measure with Normal Pushforward

In this section we reformulate the preceding construction such a way that it will be useful

to stochastic-geometric examination. Note that our constructed measure is a geometric measure

in the sense that invariant under rigid motions. The basic questions on such a measure are:

”Do the convex polytopes have measure zero, do the smooth bodies have positive measure, or

does a neighborhood always have positive measure?” The improved construction gives positive

answer to these questions. There is no polytope among our bodies Km(n,k) thus already for

this system holds that the set of convex polytopes has measure zero. More precisely we have:

Lemma 4 Denote by P0 the set of O-symmetric convex polytopes. Then we have

P (P0) = 0.

Proof Introduce the sets P1
0 and P̃1

0 as we did in the case of the O-symmetric bodies

K0. By definition

µ̃1
0

(
K̃1

0 \ P̃1
0

)
= 1,

showing that

µ̃1
0

(
P̃1

0

)
= 0.

Thus

ν̃1
0

(
P̃1

0

)
=

∫

P̃1
0

dν̃1
0 =

∫

P̃1
0

4

(w + 4)
2 dµ̃1

0 = 0,

and so

ν1
0

(
P1

0

)
= Φ1

2a

(
P̃1

0 ⊗ νn

)(
P̃1

0 , SO(n)
)

= 0.

Finally, we have

ν0 (P0) = Φ4

(
ν1
0 ⊗ ν

) (
P1

0 , [0,∞)
)

= 0,

hence p (P0) = P (P0) = 0, as we stated. 2

Changing in the constructions the bodies Km(n,k) to smooth ones the calculation of Lemma

4 is also valid for the set of polytopes and gives the value 1 for the set of smooth O-symmetric

bodies. On the other hand the measure of a neighborhood will be positive if and only if the

system of the bodies for which the measure concentrated will be dense in K̃1
0. In the following

subsection we give such a system.

The new system of bodies

We define the new system in two steps.

• Change the the body Km(n,k) to a smooth body K l
m(n,k) defined by the convex hull of

the ball around the origin with radius m(n, k) and the two balls of radius εl = 1
2l m(n, k) with

centers ±(2 − εl)en.

• Substitute each elements of the system of the bodies K l
m(n,k) with a new count-

able system of bodies. Consider a dense, countable and centrally symmetric point system

{P1,−P1, P2,−P2 · · ·} in the closed ball of radius 2 with the additional property that there is

no two distances between the pairs of points which are equals to each other. (Such a point

system is exist.) We assume that the first point P1 is the endpoint of 2en and denote by Si a

gha
Öntapadó jegyzet
a "the" in excess
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similarity of En which sends P1 into Pi and the ball of radius 2 at the origin into the ball of

radius OPi centered at the origin O, too. Consider the countable set of bodies

S
(
K l

m(n,k)

)
:=
{
Si

(
K l

m(n,k)

)
, i = 1, 2, · · ·

}
,

and define the elements of the new set Hl
m(n,k) by induction as follows:

− The first element is itself the set K l
m(n,k) := S1

(
K l

m(n,k)

)
.

− In the second step consider such pairs from the list S
(
K l

m(n,k)

)
one of which has

diameter 4 and construct their convex hulls. Add these bodies also to the set Hl
m(n,k).

− In the third step construct the convex hull of the triplet from which one has diameter

4. Add these bodies to Hl
m(n,k), too.

− ... and so on.

Hence we have a countable system of centrally symmetric convex bodies with diameter 4. The

getting set Hl
m(n,k) has a partition into countable subsets. So we have:

Hl
m(n,k) = K l

m(n,k)∪̇
{
conv

{
Si

(
K l

m(n,k)

)
, Sj

(
K l

m(n,k)

)}
for i, j

}

∪̇
{
conv

{
Si

(
K l

m(n,k)

)
, Sj

(
K l

m(n,k)

)
, Sk

(
K l

m(n,k)

)}
for i, j, k

}
∪̇ · · · ,

where all of the elements are smooth bodies having diameter 4. The following technical lemma

is important.

Lemma 5 The bodies of

H =
{
Hl

m(n,k) m, n, k, l ∈ N

}

are pairwise non-congruent. For an arbitrary polytope Q ∈ P0 and for a given number ε we

can choose an element R ∈ H for which hold that δh (Q, R) < ε.

Proof The first statement follows from the fact that each of the bodies of H contains a

maximal flat part which is the convex hulls of the points Pi. By the choice of the point system

{Pi} these parts are pairwise non-congruent. The proof of the second statement based on the

fact that for large l, m(n, k) with a small k the bodies S
(
K l

m(n,k)

)
essentially are O-symmetric

segments and thus their convex hull is close to a polytope in Hausdorff distance. We here omit

the straightforward argument. 2

The last subsection of the present section contains the definition of the new measure and

the corresponding Theorem 3.

Definition of the measure

We distribute the part of the measure µ̃1
0 which originally concentrated on K l

m(n,k) among

the elements of Hl
m(n,k).

For a fixed r ∈ N consider a sequence (αr
i ) of positive numbers which holds the property

∞∑
i=1

αr
i = 1. Let Lr

i (l) be the i-th element of the r-th subset of the above partition of Hl
m(n,k).

Thus it is a convex hull of exactly r copies of bodies from S
(
K l

m(n,k)

)
. We give it the weight

αr
i

2r .

gha
Öntapadó jegyzet
hull (delete 's')
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Definition 3 Choose a sequence of positive numbers βl with again the property
∞∑
l=1

βl =

1. Define a measure
˜̃
µ1

0 by the equality:

˜̃
µ1

0 := lim
n→∞

2n+1∑

k=1

∞∑

l=1

∞∑

r=1

∞∑

i=1

βlα
r
i

2n+1+r
δLr

i
(l).

We state the following:

Theorem 3 On the space of norms there is a probability measure P with the following

properties:

• The neighborhoods has positive measure.

• The set of polytopes has zero measure.

• The set of smooth bodies has measure 1.

• The pushforward α0(K)−1(P ) of P has truncated normal distribution on the interval

[12 , 1).

Proof Consider the measure
˜̃
µ1

0 without the measure µ̃1
0 and expand it for K0 on the

way as we did it with µ̃1
0. The final measure P by Lemma 4 on the set of polytopes has zero

value. By the remark before the definition of the new system we know that the set of smooth

bodies of K0 has measure 1 since the elements of H are smooth. The required property on the

approximation of polytopes follows from Lemma 5 since for each polytope we can find a body

from Hl
m(n,k) close to them. The definition of

˜̃
µ1

0 guarantees that the distribution of
˜̃
µ1

0 and µ̃1
0

are agree proving our last statement. 2
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