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1. Introduction

Two hundred years ago J.Ivory published a geometric theorem ([5]) whose
importance can be measured by its influence on physic. Ivory’s theorem states
that the level surfaces of the gravitational potential in the exterior domain
of an elliptic layer (which is an infinitely thin layer between two similar
concentric ellipsoids) are confocal ellipsoids. In mechanics, the counterpart of
this theorem is the so-called Newton’s theorem (generalizing the theorem on
the attraction of spheres to elliptic layers), which states that the gravitational
potential inside an elliptic layer is constant.

Some important moments of the long history of this theorem can be found in
[7]. We would like to mention here two papers were omitted there: the first
one is a characterization of confocal conics in a pseudo-Euclidean space, due
to G.Birkhoff and R.Morris [2], and the second one, written by V.V.Kozlov,
giving analogues of the mechanical variations of Newton’s and Ivory’s theo-
rems in spaces of constant curvature of dimension 3 (cf. [6]).

In this paper we deal with the property of confocality in spaces with indefinite
inner products. The origin of this investigation is the concept of confocality
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introduced in [7], where the authors proved Ivory’s theorem with respect to
this concept. Nevertheless, this definition is a variant, and not a generaliza-
tion of the original confocality of Euclidean conics. We remark also that H.
Stachel, one of the authors of [7], proved Ivory’s theorem for standard con-
focal conics in the physical Minkowski plane, without using projective tools.
The aim of this paper is to introduce a definition of confocality which in-
cludes both the standard version and the one in [7] as a special cases, and to
prove Ivory’s theorem using this definition. In our investigation, we focus on
singular selfadjoint endomorphisms, as they were not examined in [7].

Our paper basically follows the build-up of [7], uses its terminology, state-
ments and proofs. We prove only the results which are not immediate conse-
quences of the previous ones.

1.1. Notation and Terminology

In the paper, we present our results in a form that assumes that the reader
is familiar with the fundamental notions, linear algebra and real projective
geometry. In particular, we do not define the concepts of a real vector space,
a direct sum of subspaces, and so on.

In our considerations, we use the following notations:

• V , V ⋆, L(V ): A vector space, its dual space and the space of linear
transformations of V , respectively.

• dim(V ): The dimension of the vector space V . In this paper it is equal
to (n+ 1).

• P (V ): The projective space defined on V . In our paper dim(P (V )) = n.
• Q(V ): The vector space of all the quadratic forms of V .
• KerL, ImL: The kernel and the image space of the linear transformation

L, respectively.
• C, R: The field of complex and real numbers, respectively.
• ⟨·, ·⟩: The indefinite inner (scalar) product defined on the space.
• Φ(x, y),Φ, Ω: A symmetric bilinear function, its zero set defining the

corresponding quadric, and the absolute quadric associated to a fixed
projection, respectively.

• l, g, id, L,G,E: Linear mappings l, g, id : V −→ V (and also their pro-
jective classes in P (L(V ))), and their (n + 1) × (n + 1) matrices with
respect to a homogeneous coordinate system, respectively.

2. Quadrics in a finite dimensional projective space

There is a well-known theory of projective quadrics in an n-dimensional pro-
jective space P (V ) over a commutative field K of characteristic different from
2 (cf. [1]). By definition, a quadratic form q : V ×V −→ K is associated with
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a symmetric, bilinear form Φ : V × V −→ K called the polar form of q that
satisfies the equality:

Φ(x, y) =
1

2
(q(x+ y)− q(x)− q(y))

for all x, y ∈ V . Let P (V ) denote the n-dimensional projective space associ-
ated to the (n+1)-dimensional vector space V and let p : V \0 −→ P (V ) de-
note the canonical projection. The isotropic cone of q defined by p(q−1(0)\0)
does not change when we replace q by kq for some k ∈ K∗. This means that
such a projection is actually associated to a point of the projective space
P (Q(V )). The projective quadrics (in algebraic sense) are the elements of
P (Q(V )). A quadric is a conic when n = 2. It is proper if it has a non-
degenerate equation; otherwise it is called degenerate. The classification of
quadrics in real and complex cases are known, we have to determine the or-
bits of P (Q(V )) under the action of the isometry group GP (V ). If the field
K is C, then we have exactly (n + 1) orbits, classified by the rank k, where
1 ≤ k ≤ (n + 1), and in the real case the orbits are classified by pairs (r, s)
such that 1 ≤ s ≤ r ≤ n+1. In particular, there exist 1

2n(n+1)+ 1 types of
proper quadrics. (See 14.1.5.1. Theorem in [1].) In present paper we consider
only real vector spaces.

From geometric point of view, we can represent a quadric as the zero set
of a quadratic form (or the zero set of its symmetric bilinear form). Fixing
a regular symmetric bilinear form as an indefinite inner product ⟨·, ·⟩ any
quadric can be regarded as the zero set of a symmetric bilinear function
⟨x, l(y)⟩, where l is a selfadjoint transformation with respect to the product
⟨·, ·⟩. Every such transformation represents a quadric, but the elements of the
projective class of l belong to the same quadric. It is also possible that the
same quadric is associated to two non-equivalent selfadjoint transformations.
Every linear transformation l of V determines an endomorphism of the cor-
responding projective space P (V ). We do not use another notation for the
endomorphisms and the linear transformations corresponding to them. In a
numerical calculation, we can use matrix representations of the transforma-
tions in suitable bases. There is a fundamental result on the characterization
of a fixed symmetric bilinear form ⟨·, ·⟩ and a selfadjoint linear mapping l
by simultaneous normal form - meaning the choice of a basis with respect to
which both of them have simple coordinate elements (cf. Th. 5.3 in [4] or [3]).
The matrix representations of linear transformations are denoted by capital
letters.

Now we can introduce the dual of a quadric, which is a quadric of the dual
space. Two points x and y of P (V ) are conjugate with respect to the sym-
metric bilinear form Φ if Φ(x, y) = 0. The set of points conjugate to x is a
subspace of P (V ) of dimension at least (n−1). Since the (n−1)-dimensional
subspaces in P (V ) are the zero sets of the linear forms a∗ ∈ P (V ∗), the set
of conjugate points is a point x∗ of P (V ∗). The bilinear form

Φ̂(x∗, y∗) := Φ(x, y)
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is called the dual of the form Φ. The corresponding quadric of P (V ∗) is the
dual of the quadric defined by Φ. If there is a correspondence (distinct for
the duality) between the dual form and a bilinear symmetric quadratic form
of P (V ) then we say that we gave a representation of the dual form in P (V ).

We denote by Φ̃ this representation of Φ̂. To see this formally assume that
the bilinear form is Φ(x, y) := xTTy for a symmetric matrix T , and its dual

quadric is the zero set of Φ̂(x∗, y∗). To determine Φ̂(x∗, y∗) we must describe
the duality map. Let (·)∗ : V −→ V ∗ be defined by

x 7→ x∗ = Φx(·) := Φ(x, ·).
For a linear transformation L of V , let LT denote the transposed of L with
respect to the fixed product. Then

Φ(L(x), L(y)) = (L(x))TTL(y) = xT (LTTL)y

and
L(x)∗ = ΦL(x)(·) = Φ(L(x), ·).

If u ∈ Im T , then there is an x ∈ V for which T (x) = u, and hence
T−1u := x + Ker T is well-defined. Thus for u, v ∈ Im T , we can define

a representation Φ̃ of the dual quadric Φ̂. More specifically,

Φ̂(x∗, y∗) = Φ̂((T−1(u))∗, (T−1(v))∗) =

= Φ̂(ΦT−1u(·),ΦT−1v(·)) = uT ((T−1)TT (T−1))v,

thus the definition

Φ̃(u, v) := uT ((T−1)TT (T−1))v

yields a representation of the dual form. The set valued mapping T−1 is an
isomorphism on Im T ≤ V to the factor space V/ Ker T , thus the mapping
T (T−1) is the identity on Im T . Consequently T−1 can be considered as a
symmetric linear transformation on Im T to a subspace of V , we denote it
T−1, too. Using the symmetry of T−1 the representation of the dual quadratic
form can be defined on Im T by

Φ̃(u, v) := uT (T−1)T v = uTT−1v.

We extract now the linear transformation T−1 : Im T −→ V to V by the zero
map of the complementary subspace of Im T giving a singular transformation

which defines the singular symmetric bilinear form Φ̃(u, v) of V .

3. The confocality of conics

In this section we assume that n = 2. To define confocality in the general
case, we shortly recall the description of Euclidean confocal conics. Working
in Euclidean homogeneous coordinates, finite points and asymptotic direc-
tions (``points at infinity´´) are and given by column vectors. A row vector
specify as a line with normal the mentioned vector. The line at infinity con-
tains the infinite points. Change-of-basis transformations are represented by
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matrices. These transformations act on a point by left multiplication with the
corresponding matrix, and on planes by right multiplication with the inverse
matrix. In this way, point-line products are preserved. Euclidean transforma-
tions take the form

T =

(
A b
0 1

)
where A is a rotation matrix and b a translation vector. A becomes a re-
scaled rotation for a scaled Euclidean or similarity transformations, and an
arbitrary nonsingular 3× 3 matrix for an affine one.

Consider first the absolute quadric corresponds to the symmetric rank 2 ma-
trix

Ω =

 1 0 0
0 1 0
0 0 0

 .

The coordinates of a point x of the absolute holds the equality x2
1 + x2

2 = 0
thus it has only one projective point (0, 0, 1)T . The representation of the dual
form is

Φ̃(u, v) = (u1, u2, 0)

 1 0 0
0 1 0
0 0 0

 v1
v2
0

 ,

where u = (u1, u2, 0)
T and v = (v1, v2, 0)

T are elements of Im Ω. The repre-
sentation of the dual quadric is also the absolute and hence it has only one
element, which is associated to the projective point (0, 0, 1)T (note that the
3×3 identity matrix as a selfadjoint transformation identical with its inverse
thus it defines a self-dual conic which is the empty set). It is easy to see that
the euclidean confocal conics with foci (0,±c) can be written in a suitable
homogeneous coordinate system in the form:

0 = (x1, x2, x3)

 1
c2+λ 0 0

0 1
λ 0

0 0 −1

 x1

x2

x3

 .

Since this quadratic form is defined by a regular matrix, the representation
of its dual is:

0 = (x1, x2, x3)

 c2 + λ 0 0
0 λ 0
0 0 −1

 x1

x2

x3

 ,

showing that the representations of the dual forms of confocal conics form
a linear subset of all forms, containing the representation of the dual of the
absolute. More precisely,

α

 c2 + λ1 0 0
0 λ1 0
0 0 −1

+ β

 c2 + λ2 0 0
0 λ2 0
0 0 −1

 =



6 Á.G. Horváth

=

 (α+ β)c2 + (αλ1 + βλ2) 0 0
0 (αλ1 + βλ2) 0
0 0 −(α+ β)

 =

=



 c2 + λ3 0 0
0 λ3 0
0 0 −1

 if (α+ β) ̸= 0 λ3 0 0
0 λ3 0
0 0 0

 if (α+ β) = 0.

On the other hand, this linear hull does not contain the 3× 3 identity trans-
formation. This implies that the definition of [7] is not a generalization of
the usual confocality of conics. As it can be seen easily, for a non-zero c the
connection between the distances 2cα and 2c of the foci of the conics Φα and
Φ for which Φ−1

α = αΦ+ βI, where I is the 3× 3 identity matrix, is

c2α =
α

α− β
c2

showing that with respect to the pencil of the conics in [7], the distances of
the foci are not constant.

Our second example is the confocal family of conics with two axes of symme-
try, belonging to the pseudo-Euclidean (Minkowski) plane. In [2] these conics
were called relativistic confocal conics in space time, and it was shown that
they are geometrically tangent to the null lines (isotropic lines) through the
foci. In [8], this configuration was called type B, and was illustrated in two
nice figures. In our setting, we have the following:

The regular bilinear function in a Cartesian homogeneous coordinate system
of the embedding Euclidean plane is:

⟨x, y⟩ = (x1, x2, x3)

 1 0 0
0 −1 0
0 0 1

 y1
y2
y3

 .

The absolute Ω can be considered as the zero set of the bilinear function:⟨
(x1, x2, x3),

 1 0 0
0 1 0
0 0 0

 y1
y2
y3

⟩
= x1y1 − x2y2,

defined by the projection

P =

 1 0 0
0 1 0
0 0 0

 .

We can write the equation:

x2
1

σ
+

x2
2

τ
= 1 with στ(σ + τ) ̸= 0,
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using the selfadjoint transformation

G =

 1
σ 0 0
0 − 1

τ 0
0 0 −1

 ,

into the form

⟨x,Gx⟩ = 0.

Thus the normal form of the pencil of the corresponding confocal conics can
be obtained from the equality

0 = ⟨x, (G−1 − tP )−1x⟩ = (x1, x2, x3)

 1
σ−t 0 0

0 1
−(−τ−t) 0

0 0 −1

 x1

x2

x3

 .

Hence, with respect to the original inhomogeneous Cartesian coordinates, we
have:

x2
1

σ − t
+

x2
2

τ + t
= 1 for t ∈ R \ {σ, τ}.

The elliptic and hyperbolic cases can be considered in a similar way. We
consider special ovals of the projective space as intersections of a family of
quadratic cones and the model planes, respectively. In the first case, the
point of the model of the elliptic plane is a pair of antipodal points the unit
sphere of V , where the lengths of the vectors are calculated using the bilinear
function

⟨x, y⟩ = (x1, x2, x3)

 1 0 0
0 1 0
0 0 1

 y1
y2
y3

 .

In the second case the bilinear function is

⟨x, y⟩ = (x1, x2, x3)

 1 0 0
0 1 0
0 0 −1

 y1
y2
y3

 ,

and a point of the model is a pair of antipodal points of the hyperboloid
containing the vectors with imaginary unit lengths. The family of cones is
defined by the equality:

x2
1

c2
+

x2
2

c2 − β2
± x2

3

c2 + γ2
= 0,

where c is a parameter and β2 ± γ2 = ±1 in the two respective cases. (The
definition in the elliptic case is also motivated by physical argument of a
gravitating arc, as we can see in [6].)

Using the selfadjoint transformation

G =

 1
c2 0 0
0 1

c2−β2 0

0 0 1
c2+γ2

 ,
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we can rewrite the last equality in the form

⟨x,Gx⟩ = 0.

The normal form of the pencil of the corresponding confocal conics can be
obtained from the equality

0 = ⟨x, (G−1 − tI)−1x⟩ =

= (x1, x2, x3)


1

c2−t 0 0

0 1
(c2−t)−β2 0

0 0 1
(c2−t)+γ2


 x1

x2

x3

 ,

where

I =

 1 0 0
0 1 0
0 0 1


is the matrix of the identity. Thus the normal form of this pencil of conics is

x2
1

c2 − t
+

x2
2

(c2 − t)− β2
± x2

3

(c2 − t) + γ2
= 0 where x2

1 + x2
2 ± x2

3 = ±1.

We can conclude that for the description of confocality we must use both the
singular and the nonsingular projections of the space V . This motivates our
further examination.

On the Euclidean and the hyperbolic plane the different types of conics are the
ellipses (with no ideal points) and hyperbolas (with two ideal points). Within
the family of all conics, the singular quadrics (determining the common line
of the two foci) separate the family into these two types. This situation can
be observed in the elliptic case, too, but there is no other (metric or affine)
possibility to distinguish the ovals of the two class to each other.

In the previously investigated case of the pseudo-Euclidean plane there are
three types of conics as it can be seen either in [8] or in [2].

4. The Ivory property, projection pencils of quadrics and
p-quadrics

The planar Euclidean version of Ivory’s theorem states that the two diagonals
of a certain curvilinear quadrangle formed by four confocal conics have the
same length. With respect to the scalar product this equality means:

ρ2(x, y′) = ⟨x− y′, x− y′⟩ = ⟨y − x′, y − x′⟩ = ρ2(x′, y),

where the pairs of points {x, y}, {x, x′}, {y, y′}, {x′, y′} are on four confocal
quadrics which intersect each other at the examined points. Also in the Eu-
clidean space, there is an equivalent reformulation of this theorem, using the
language of affine mappings, since if we have two confocal conics of the same
type (e.g. ellipses) then there exists an affine mapping l, with the property
that whenever a conic of the other type (hyperbola) intersects the first ellipse
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at a point, then it intersects the other one in at the point which is the image
of the first one under this affinity. Both intersections are orthogonal, and now
Ivory’s theorem states that:

ρ(x, l(y)) = ρ(y, l(x)),

where ρ is the Euclidean distance. In a projective pseudo-Euclidean space the
hyperbolic and the elliptic metrics (based on the inner product) are functions
of the quantity

ρ(x, y) :=
⟨x, y⟩√

|⟨x, x⟩⟨y, y⟩|
,

and thus, it was a natural idea to compute the lengths of the diagonals by
substituting its endpoints into the function ρ (cf. [7]).

A linear transformation p : V −→ V is a projection if the equality p2 = p
holds. The vector space V can be regarded as the direct sum of its subspaces
Ker p and Im p. The restriction of the projection to its image spaces and to
its kernel is the identity mapping and the zero map, respectively.

Note that the property of a linear transformation defined in the previous
paragraph is not a ``projective property´´: in the projective class of the
projection p the only projection is the transformation p itself. Indeed, if
λ ̸= 0, 1 then (λp)2 = λ2p ̸= λp, showing that the transformation λp is
not a projection. Therefore we say that a point of P (L(V )) is a projection if
there is a member of its class which is a projection in L(V ).

Definition 4.1. A maximal set of quadrics is called a pencil of quadrics if
the set of the selfadjoint linear transformations corresponding to their duals
belongs to a two-dimensional subspace of the vector space L(V ). We say that
a pencil of quadrics is a projection pencil associated to the projection p, if the
corresponding two-space contains p. Within a projection pencil of quadrics
spanned by the invertible linear transformation l0 and the projection p, the
connected components of

{(λ, µ) | λ(l−1
0 + µp) λ, µ ∈ R}

correspond to quadrics of different type.

Lemmas 9 and 10 in [7] imply a theorem stating that the special case in-
vestigated in Lemmas 6,7 and 8 is actually the general case of the proof of
Ivory’s theorem. Our goal is to describe a more general situation when this
representation is possible. For this reason we introduce a new concept, the
concept of p-quadric.

Definition 4.2. Let p be a projection. The quadric Φ generated by the self-
adjoint transformation g is a p-quadric if for every w = u+ v ∈ V for which
u ∈ Im p and v ∈ Ker p we have g(u+ v) = p (g(u))− v.

We remark that every quadric is an id-quadric. Furthermore, if Φ is a p-
quadric, then Im p is an invariant subspace of g, because if u ∈ Im p then

g(u) = p(g(u)),
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which yields that g(u) is also an element of Im p.

Using the method of H.Stachel and J.Wallner, we prove the following theorem.

Theorem 4.3 (A generalization of Ivory’s theorem). Let P (V ) be a projective
space with the metric

δ(x, y) :=
⟨x, y⟩√

|⟨x, x⟩⟨y, y⟩|
where ⟨·, ·⟩ is a fixed indefinite inner product of V . Let p be a projection of
V and denoted by Φ0 = {x | 0 = ⟨x, l(x)⟩} and Φ1 = l1(Φ0) two regular p-
quadrics of the same type which belong to the projection pencil L associated to
l and p. Then there is a smooth family Φλ = lλ(Φ0) (0 ≤ λ ≤ 1) of p-quadrics
of L , such that lλ is selfadjoint and has the Ivory property:

δ(x, lλ(y)) = δ(lλ(x), y) for all x, y ∈ Φ0 ∩ Im p.

Any further p-quadric Ψ corresponding to the same projection pencil and
containing a point x ∈ Φ0 ∩ Im p, also contains the entire path lλ(x), which
intersects all quadrics Φλ orthogonally in Im p.

5. The complete list of the cited definitions and statements

We now give the complete list of statements and definitions in [7]. This is
necessary to understand the present modificated proof.

Definition 1. A (nondegenerate) quadric Φ is the zero set of a (nondegenerate)
symmetric bilinear form σ(x, y) = ⟨x, l(y)⟩, with a selfadjoint (nonsingular)
linear endomorphism l. The endomorphism l = id corresponds to the absolute
quadric Ω, which is the set of absolute points.

Definition 2. The quadric Φ̂ = {v | σ̂(v, v) = ⟨v, l−1(v)⟩ = 0} in the dual space
is called the dual of the original quadric Φ defined by σ(v, w) = ⟨v, l(w)⟩.

Definition 3. If k is a linear endomorphism and the quadric Φ is given by the
endomorphism l, then we define the dual k-image of Φ to have the equation

σ̂(v, v) = 0, with σ̂(v, v) = ⟨v, kl−1k∗(w)⟩
σ̂ is understood to apply to gradients.

Definition 4. Φ0 and Φ1 are said to be confocal (or homofocal ), if one of the
following equivalent conditions holds true:

(i) the bilinear forms σ̂0, σ̂1, ⟨̂·, ·⟩ = ⟨·, ·⟩ are linearly dependent,

(ii) the linear endomorphisms l−1
0 , l−1

1 , id are linearly dependent,

(iii) the coordinate matrices Q−1
1 , Q−1

2 , H−1 are linearly dependent.

The family of quadrics Φ confocal to Φ0 is defined by the endomorphisms l
which satisfy l−1 = λl−1

0 + µid, (λ, µ) ∈ R2, λ ̸= 0.
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Definition 5. Within the family of confocal bilinear forms spanned by l0, the
connected components of {(λ, µ) | λ(l−1

0 + µid) nonsingular} correspond to
quadrics of different types.

Lemma 3 In the n-dimensional elliptic or hyperbolic space (n > 1) all confocal
families possess at least two types of quadrics.

Lemma 4 If the confocal quadrics Φ0 and Φλ intersect, they do so orthogo-
nally.

Lemma 5 Assume that Φ is a quadric, possibly singular but not contained in
a hyperplane, and that there is a mapping x −→ x′ such that

⟨x′
1, x2⟩ = ⟨x1, x

′
2⟩ for all x1, x2 ∈ Φ,

then there is a selfadjoint linear endomorphism l of Rn+1 such that x′ = l(x)
for all x ∈ Φ.

Lemma 6 If the linear endomorphism l is selfadjoint, then the quadric

Φ0 : σ(x, x) := ⟨x, x⟩ − ⟨l(x), l(x)⟩ = 0

together with its l-image Φ1 has the Ivory property

δ(l(x), y) = δ(x, l(y)) for all x, y ∈ Φ with ⟨x, x⟩, ⟨y, y⟩ ̸= 0.

The restriction of l to any linear subspace contained in Φ0 is isometric in the
sense of δ.

Lemma 7 Assume that l is selfadjoint and that the quadric Φ0 given in Lemma
6 is regular. Then Φ0 and Φ1 = l(Φ0) are confocal. (The dual of l(Φ0) defined
by the endomorphism lg−1

0 l∗ if Φ0 given by g0.)

Lemma 8 If l is selfadjoint, then in most cases the quadric Φ0 as defined in
Lemma 6 is of the same type as l(Φ0) provided both are regular. Different
types are only possible when the normal form of l contains a block matrix
R2(0, b) or R2k(0, b, 1).

Lemma 9 Consider two regular confocal quadrics Φ0, Φ1 which are of the
same type. Then there is a selfadjoint endomorphism l such that Φ1 = l(Φ0)
and the equation of Φ0 is given by ⟨x, x⟩ − ⟨l(x), l(x)⟩ = 0.

Lemma 10 We use the notation of the proof of Lemma 9. There is δ > 0 such
that id − λg0 has a square root which smoothly depends on λ, for −δ < λ <
1 + δ.

Lemma 11 Suppose that P,Φ0,Φ1, g0, g1, l are as in Lemma 9 and its proof.
Then there is a smooth family lλ of transformations with l0 = id and l1 = l,
such that the quadric Φλ = lλ(Φ0) is defined by the endomorphism gλ with

g−1
λ = g−1

0 − λid.

All quadrics Φλ are confocal with Φ0. They orthogonally intersect the path
lλ(x) of a point x ∈ Φ0.
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Lemma 12 We use the notations of Lemma 11 and consider the quadrics Φλ,
defined by endomorphisms gλ. If Ψ ̸= Φ0 is confocal with Φ0, and x ∈ Φ0∩Ψ,
then also lλ(x) ∈ Ψ.

Theorem 2 Let P (V ) be a projective space with the metric

δ(x, y) :=
⟨x, y⟩√

|⟨x, x⟩⟨y, y⟩|
where ⟨·, ·⟩ is a fixed indefinite inner product of V . Let Φ0 and Φ1 = l1(Φ0)
denote two regular confocal quadrics of the same type. Then there is a smooth
family Φλ = lλ(Φ0) (0 ≤ λ ≤ 1) of quadrics confocal with Φ0 and Φ1, such
that lλ is selfadjoint and has the Ivory property:

δ(x, lλ(y)) = δ(lλ(x), y) for all x, y ∈ Φ0 ∩ Imp.

Any further quadric Ψ confocal with Φ0 which contains a point x ∈ Φ0 con-
tains the entire path lλ(x), which intersects all quadrics Φλ orthogonally.

6. The proof of Theorem 4.3

Now we modify the statements of the previous section where necessary. By
the definition of a projection p, the proof of Lemma 3 can be applied in our
case, too. Lemma 4 for our projection pencil of quadrics can be formulated
in the following way:

Proposition 6.1 (Lemma 4’). If quadrics Φ0 and Φλ corresponding to a pro-
jection pencil intersect, they do so orthogonally with respect to the quadratic
form of p. Thus, if x is a common point, then we have 0 = ⟨p(g0(x)), gλ(x)⟩.

Proof. We have

0 = ⟨x, g0(x)⟩ = ⟨x, v⟩ = ⟨g−1
λ (w), v⟩ = ⟨(g−1

0 + µp)(w), v⟩ =

= ⟨g−1
0 (w), v⟩+ µ⟨p(w), v⟩ = ⟨w, g−1

0 v⟩+ µ⟨p(w), v⟩ =
= ⟨gλ(x), x⟩+ µ⟨p(w), v⟩ = µ⟨p(w), v⟩,

as we stated.

�

Lemma 5 on the Ivory property is also holds in our setting. In Lemma 6-8
we change the selfadjoint transformation l to the selfadjoint transformation
l′ = lp+ (id− p) and consider the quadric Φ′

0 with the equation:

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0.

We remark that Im p ∩ Φ′
0 = Im p ∩ Φ0, where Φ0 is defined by the equality

⟨x, x⟩ − ⟨l(x), l(x)⟩ = 0.

It is also true that Ker p ∩ Φ′
0 = {x ∈ Ker p | ⟨x, x⟩ = 0}.
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As it can be seen easily, the following variation of Lemma 6 is true for every
projection pencil of quadrics:

Proposition 6.2 (Lemma 6’). If the linear endomorphism l is selfadjoint and
invariant on the subspace Im p then the quadric

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0

together with its l′ image Φ1 = l′(Φ0) has the Ivory property

δ(l′(x), y) = δ(x, l′(y)) for all x, y ∈ Φ with ⟨x, x⟩, ⟨y, y⟩ ̸= 0.

The restriction of l′ to any linear subspace contained in Φ0 is isometric in
the sense of δ.

The following modification is more interesting:

Proposition 6.3 (Lemma 7’). Assume that Im p is an invariant subspace of l,
and that the quadric Φ0 given by the equality:

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0, where l′ = lp+ (id− p)

is regular. Then Φ1 = l′(Φ0) is in the projection pencil of Φ0 and p.

Proof. Rewriting the equation of Φ0, we obtain:

0 = ⟨x, p(x)⟩ − ⟨l′(x), l′(x)⟩ = ⟨x, (p− (l′)2)x⟩.
V is a direct sum of Ker p and Im p for arbitrary p. Furthermore l′ = l on
Im p and l′ = id on Ker p. The dual of Φ0 is represented by

0 = ⟨x, (p− (l′)2)−1x⟩,
and the dual l′-image of Φ0, according to Def. 3 in [7], is defined by

0 = ⟨x, l′(p− (l′)2)−1l′x⟩.
Consider now the transformation

(p− (l′)2)−1 − l′(p− (l′)2)−1l′.

Observe that Im p is an invariant subspace of (p− (l′)2), as for any u ∈ Im p,
we also have (p − (l′)2)(u) = u − l2(u) ∈ Im p. Thus Im p is an invariant
subspace of its inverse, and for a vector u ∈ Im p, applying the argument of
Lemma 7 to the invariant subspace Im p, we have

(p− (l′)2)−1 − l′(p− (l′)2)−1l′(u) = ((id− l2)−1 − l(id− l2)−1l)(u) = u.

On the other hand for a vector v ∈ Ker p,

(p− (l′)2)(v) = −v

showing that v ∈ Ker p and that (p− (l′)2) is a reflection on Ker p. Thus

((p− (l′)2)−1 − l′(p− (l′)2)−1l′)(v) = (p− (l′)2)−1(v)− (p− (l′)2)−1(v) = 0,

implying the required equality:

(p− (l′)2)−1 − l′(p− (l′)2)−1l′ = p.

�
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In the remaining part, we consider only those selfadjoint transformations that
leave Im p invariant.

Proposition 6.4 (Lemma 8’). If l is selfadjoint with the invariant subspace
Im p, then the quadric Φ0, defined by g0 = (p− (l′)2), is of the same type as
Φ1 = l′(Φ0) provided both are regular and unless the normal form of l′|Im p

contains a block matrix R2(0, b) or R2k(0, b, 1) (see Th.1 in [7] or Th.5.3. in
[4]).

Proof. The convex combination of the selfadjoint transformations g−1
0 = (p−

(l′)2)−1 and g−1
1 = l′(p− (l′)2)−1l′ can be investigated in the same way as in

Lemma 8, using the result of our Prop. 6.2:

g−1
λ := (1− λ)g−1

0 + λg−1
1 = g−1

0 − λp = (p− (l′)2)−1 − λp,

if 0 ≤ λ ≤ 1. For u ∈ Imp we have(
(p− (l′)2)−1 − λp

)
(u) =

(
(id− l2)−1 − λid

)
(u)

and the proof of Lemma 8 can be applied. For v ∈ Ker p, we obtain that(
(p− (l′)2)−1 − λp

)
(v) = −id(v)

which is always non-singular. �

Since the quadric g0 used in Lemmas 6’-8’ is a p-quadric, we can give a
representation theorem only for p-quadrics.

Proposition 6.5 (Lemma 9’). Consider two regular p-quadrics of a projection
pencil, say Φ0 and Φ1. Assume that they are of the same type with respect to
the projection p. Then there is a selfadjoint transformation l invariant on the
subspace Im p such that Φ1 = l′(Φ0) where l′ = lp+(id−p), and the equation
of Φ0 is given by

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0.

Proof. Without changing the quadrics we can consider regular representing
selfadjoint transformation g0 and g1 for which Im p is an invariant subspace
and

g−1
0 − g−1

1 = p.

We have to show that there exists l such that it is invariant on the subspace
Imp and g0 = p − (l′)2. From the equality containing g−1

i , we can see that

on Im p we have g−1
0 − g−1

1 = id, and on Ker p g−1
0 = g−1

1 = −id. Now
g0 is a regular transformation of Im p thus the proof of Lemma 9 shows that

there exist an invertible selfadjoint transformation l̃ : Im p −→ Im p for which

g0 = id|Im p−l̃2. Extract this transformation to an l : V −→ V transformation
by the equalities:

l(u) =

{
l̃(u) if u ∈ Im p
u if u ∈ Ker p

Now for an element u of Im p, we have

g0(u) = u− l̃2(u) = u− l2(u) = (p− (l′)2)(u),
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and for v ∈ Ker p,

g0(v) = −v = (p− (lp+ (id− p))2)(v) = (p− (l′)2(v),

showing that g0 = p− (l′)2 and that Φ0 is defined by the equality

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0.

It remains to show that, indeed, l′(Φ0) = Φ1. But by Lemma 7’, l′(Φ0) is
defined by a transformation g1 with the property that

g−1
0 − (g1)

−1 = p

and thus, (g1)
−1 = g−1

1 . �

Proposition 6.6 (Lemma 10’). Using the notation of Lemma 9’, there is a
value δ > 0 such that p − λg0 = (l′)2λ, which smoothly depends on λ for
−δ < λ < 1 + δ.

The proof of this proposition is a straightforward modification of the proof of
Lemma 10, which we omit. Lemma 11 states the existence of a smooth family
of regular transformations corresponding to two ”confocal quadrics which
are of the same type”. Our method of generalization leads to the following
proposition:

Proposition 6.7 (Lemma 11’). Suppose that p,Φ0,Φ1, g0, g1, l are as in Lemma
9’ and its proof. Then there is a smooth family lλ of transformations with
l0 = id and l1 = l, such that the quadric Φλ = l′(Φ0) is defined by the
transformation gλ with

g−1
λ = g−1

0 − λp.

All quadrics Φλ are p-quadric belonging to the projection pencil of p. Their
restrictions to Im p intersect the path lλ(u) of a point u ∈ Φ0 ∩ Im p orthogo-
nally.

Proof. By definition, g0 = p− (l′)2 and g−1
1 = g−1

0 − p. Consider λg0 instead
of g0. Then λg0 = −id on Ker p. We define lλ by the equalities

λg0 = id− (lλ)
2 on Im p,

lλ = id|Ker p on Ker p.

By Lemma 10’, (l′λ) = lp+ (id− p) exists and depends smoothly on λ. Now
(l′λ)p = p(l′λ), since on Imp it is the identity and on Ker p both sides are zero
(we note that l′λ = id|Ker p is invariant on Ker p by its definition). Thus for a
non-zero λ on Im p, we have

(lλ)g0 = (lλ)λ
−1(id|Imp − (lλ)

2) = λ−1(id|Imp − (lλ)
2)(lλ) = g0(lλ).

Hence on Im p,

g−1
λ = lλg

−1
0 lλ = (lλ)

2g−1
0 = (id|Imp − λg0)g

−1
0 = g−1

0 − λid.

On the other hand, for an element of Ker p, by definition,

g−1
λ = g−1

0
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showing that on V we have

g−1
λ = l′λg

−1
0 l′λ = g−1

0 − λp

as we stated. From Lemma 7’, we can see that Φ0 and l′λ(Φ0) generates a pro-
jection pencil corresponding to the projection p. Finally, we must prove the
statement on orthogonality. We can compute the derivative of the mapping
lλ(x) : R −→ V if we use the direct product structure of V . Let w = u+v ∈ V
where u ∈ Im p and v ∈ Ker p. Then we have:

λg0(u+ v) = (u− lλ(u)lλ(u))− v.

Differentiating both sides with respect to λ, we obtain

g0(u+ v) = −2 ˙lλ(u)lλ(u),

implying

˙lλ(u) = −1

2
g0(u+ v)(lλ(u))

−1
= −1

2
gλ(u+ v)lλ(u),

as in [7]. Thus if v = 0, then the tangent hyperplane of Φλ in lλ(u) has the
gradient vector gλlλ(u), which yields that in P (V ) the corresponding point
is conjugate to the tangent hyperplane with respect to the identity quadric
of ImP , namely to p. �

We can modify Lemma 12 as well, in a natural way.

Proposition 6.8 (Lemma 12’). Using the notation of the previous lemmas, if
Ψ ̸= Φ0 are p-quadrics belonging to the same projection pencil (of p and g0

−1,
and if u ∈ Φ0 ∩Ψ ∩ Im p, then lλ(u) ∈ Ψ.

Proof. We have

x ∈ Φ0 ⇐⇒ ⟨x, g0(x)⟩ = 0 and x ∈ Ψ ⇐⇒ ⟨x, gµ(x)⟩ = 0.

By definition, g−1
µ = g−1

0 −µp with µ ̸= 0. Consider the following expression:

λg0g
−1
µ − µlλgµlλg

−1
µ − (λ− µ)gµg

−1
µ =

= λg0(g
−1
0 − µp)− µlλgµlλg

−1
µ − (λ− µ)id =

= λid− λµg0p− µl2λ − (λ− µ)id =

= λid− λµg0p− µ(p− λg0)− (λ− µ)id =

µ(−p+ id)(λg0 + id).

For a point of Im p, this expression is zero, since p = id. Thus we also have
that

λg0 − µlλgµlλ − (λ− µ)gµ = 0

on Im p. Hence on Im p we obtain

µ⟨lλ(u), gµlλ(u)⟩ = µ⟨u, lλgµlλ(u)⟩ = λ⟨u, g0(u)⟩ − (λ− µ)⟨u, gµ(u)⟩ = 0,

showing that lλ(u) ⊂ Ψ ∩ Imp. �
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Now to prove Theorem 4.3, we need only replace the lemmas in the proof
of Theorem 2 of [7] by our modified versions. More specifically, by Lemma
9’ (Prop. 6.5), there exists l such that Φ1 = l′(Φ0) with the transformation
l′ = lp+ (id− p) and the equation of Φ0 is given by

⟨p(x), p(x)⟩ − ⟨l′(x), l′(x)⟩ = 0.

Lemma 11’ (Prop. 6.7 ) shows the existence of Φλ and lλ. By Lemma 6’
(Prop. 6.2), lλ has the Ivory property. Finally, Lemma 12’ (Prop 6.8) shows
the statement about the quadric Ψ, if it exists.
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