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Abstract

This paper is basicly a survey that discusses some actual questions
on the so-called DIRICHLET-VORONOI cell of a lattice of dimension
n. The first part is about the classical results and some principal prob-
lems of this subject while we plan a second part on some constructive
and algorithmic questions concerned with our topic.
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1 Introduction

The concept of DIRICHLET-VORONOI cell (also DIRICHLET cell or
VORONOI region, briefly D-V cell) was introduced in two classical paper by
DIRICHLET [10] and VORONOI [24], respectively. Let us given a discrete
point set L in the n-dimensional Euclidean space En. The DIRICHLET-
VORONOI tiling of L is a tiling with convex tiles

D(z) = {y ∈ En | |y − z| ≤ |y − x| for all x ∈ L} z ∈ L.
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That means, D(z) consists of those points y of En whose distance from the
point z (the origin of D) is not greater than its distance from any other
points of the set L. The tile D(z) is called the cell of z where the function
| · | is the usual Euclidean norm of En. In the case when L is a lattice
(i.e. the endpoint set of the integer linear combinations of a fixed linearly
independent vector system of En ) these cells are translated copies of the
cell D(0) of the origin. In this paper we investigate only cells of lattices
thus in most cases we apply the notation D only. The concept of D-V cell
is useful in solving a lot of various problem.

First of all, we say some words about applications in discrete geometry.
For example, the classical ball packing problem is to find out how densely
a large number of balls can be packed together. This problem is in general
unsolved even today. For measuring the density of such a packing we natu-
rally come to the idea of D-V cell. The precise definition of density ∆ of a
lattice packing is the following:

∆ =
volume of one ball

volume of a basic lattice parallelepiped
=

volume of one ball

volume of the cell D
.

In the plane this problem is solved, the optimal arrangement is the regu-
lar triangle (simplicial) (or regular hexagonal) lattice defined by two edge
vectors of a regular triangle. For this arrangement the density is:

∆ =
π√
12

.

(See Figure 1.) A lot of papers deal with this problem and its analogous
concerned with the optimal arrangements of convex bodies in a space of
dimension n. The most important classical results is due to GAUSS [12],
KORKINE-ZOLOTAREFF [19],[20], BLICHFELDT [4],[5],[6].

Second, we mention the so-called quantization of data problem. This
is the following: Suppose that certain data (symbols) are uniformly dis-
tributed over a large set S in En. If we have a lattice L with basis vectors of
determinant 1 and each point of S we substitute for vector x to the nearest
lattice point, the average squared error per symbol related to L is defined
by the integral

G(L) =

∫
D

|x|2dx

over the D-V cell D of L. The problem is to minimize this average over
all lattices of determinant 1. CONWAY and SLOANE in [7] support the
conjecture that for higher dimensions the solution is provided by the polar
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Figure 1: The regular triangle lattice and its D-V tiling.

(or dual) lattice of that lattice which gives the densest ball packing in En.
The normalized form of this quantity called the normalized second moment
of D, is a dimensionless real number defined

G∗(L) =
1

n
Vol(D)−1− 2

n

∫
D

|x|2dx.

(It is introduced by H.DAVENPORT in the paper [8].)
The last problem in this introduction is related to the numerical in-

tegration. Let G be a JORDAN measurable set of the plane E2, and ω a
continuous non-decreasing real function on [0,∞) with ω(0) = 0. Let Hω(G)
denote the set of real functions f on G such that

|f(x)− f(y)| ≤ ω(|x− y|) for x,y ∈ G

Then we want to choose points x1, . . . ,xk ∈ G and real numbers α1, . . . , αk

for fixed k = 1, 2, . . . such that the maximal error

max


∣∣∣∣∣∣
∫
G

f(x)dx−
k∑

i=1

αif(xi)

∣∣∣∣∣∣ f ∈ Hω(G)


let be minimal. Using the concept of D-V cells and some other results due
to L.FEJES-TÓTH, BABENKO [1] found an optimal choice for xi and αi in
the asymptotic sense as k tends to infinity. To extend this result to higher
dimensions seems to be very difficult.
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Figure 2: Non face-to-face lattice tiling.

From these introductory remarks we can see that the concept of D-V
cells is important. In this paper we summarize some classical results on
the geometric properties of D-V cell. The author will arise some problems
solved and open as well. A new concept will also be introduced; the idea
of k-dimensional coveredness of a lattice parallelepiped. We examine its
connection with a lattice geometric problem discussed in the papers [3],[13].

2 Definitions, elementary properties of D

A lattice L of the Euclidean n-space En is defined by a linearly independent
vector system of En as the set of all integral linear combinations of this
system like a basis. We say that the lattice L′ of dimension k (1 ≤ k ≤ n)
is a sublattice of L if L′ ⊂ L. The vector m is a minimal one if it is one of
the shortest non-zero vector of L. (The length of a vector is regarded with
respect to the usual Euclidean norm of En.) As in the introduction, the D-V
cellD(x) of a lattice poin x is the collection of those points of the space which
are closer to x as any other points of the lattice. It is clear from the definition
above that L is invariant under the translations by the lattice vectors and
the reflections in a lattice point or in the midpoint of any lattice segment,
respectively. From theese follows that any two D-V cell are translated copies
of each other and, moreover, any cell and its (n−1)-dimensional faces (called
facets) are centrally symmetric convex bodies, respectively. The definition
of D implies (by virtue of the fact that a lattice is a discrete point system)
that it is a polyhedron defined by finite intersections of certain half-spaces
each of them contains the origin and is bounded by the midhyperplane of a
lattice segment connecting the origin with a lattice points. The collection
of the cells D(x) for x ∈ L forms a so-called lattice tiling of the space En.
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Figure 3: Non primitive D-V cell system.

This means that their union covers the space and their interiors are mutually
disjoint. This tiling is face-to-face, so in particular, any facet of the tile D(x)
is also a facet of another tile. In Fig. 2 we pictured a non face-to-face lattice
tiling formed by the translated copies of a rectangle. It is obvious that the
D-V cell D is bounded and we assume in this paper that D also is closed,
so this region is compact. The volume of D is equal to the volume of a
basic-parallelepiped of L which is spanned by vectors of a basis of the lattice.

An important class of lattice tilings (whose convex tiles will be called
parallelohedra as well) is the class of primitive tilings. An n-dimensional
tiling is primitive if any vertex of a tile belongs to and is a vertex of precisely
n other tiles. In the plane the D-V cells of the regular triangle lattice (see in
Fig.1 ) form a primitive tiling, however, the D-V cells of the square lattice
is not primitive (see fig.3).

3 Parallelohedron, extremal body

The concept of extremal body is due to H.MINKOWSKI, he proved the
fundamental theorem of bounded centralsymmetric convex bodies. This is
one of the most important theorem in the geometry of numbers and has a
lot of consequences and applications in other parts of mathematics. (See in
[21])

Theorem 1 ([21]) A bounded central symmetric convex body K in En with
the origin 0 in its centre and volume v(K) > 2nv(D) contains at least
one lattice point different from 0. (D is the D-V cell of L, v(·) is the n-
dimensional volume function.)
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An elegant proof of this theorem can be found e.g. in the book of P.GRUBER
and G.LEKKERKERKER [18]. From this theorem immediately follows that
such an 0-symmetric convex body which does not contain non-zero lattice
points (so-called empty body) has a volume at most 2nv(D). H.MINKOWSKI
introduced the concept of extremal body with respect to the lattice L which is
an empty 0-symmetric closed convex body with volume 2nv(D) . In his book
he investigated this class of bodies and proved some interesting theorems on
it. First of all he characterized the elements of this class:

Theorem 2 ([22]) Let K be a (bounded) 0-symmetric convex body. Then
K is extremal if and only if the following two properties hold:

a, The space En is covered by the bodies L-translates of 1
2K.

b, Each point x ∈ En belongs to at most one body 1
2 intK + u

where intK means the interior of the body K.

H.MINKOWSKI also proved that an extremal body is necessarily a closed
polyhedron for which the following properties hold:

1. At most 2(2n − 1) lattice points belong to the relative interiors of the
faces of K,

2. K has at most 2(2n − 1) faces,

3. On the boundary of K there lie at least 2(2n − 1) lattice points.

In his famous works [24] and [25] VORONOI also studies this class of
polyhedra. He introduced the concept of parallelohedron as a convex poly-
hedron P whose translates by a lattice L cover En and they have disjoint
interiors. By a theorem of H.MINKOWSKI a polyhedron P parallelohedron
if and only if 2P is extremal with respect to a lattice L. It is clear that the
D-V cell D of the lattice L is a parallelohedron. Conversely Figure 4 shows
a parallelohedron P which is not the cell of its lattice, but that prototile P
is an affine image of the unit square D. Since this square is the D-V cell of
the corresponding lattice it can be asked for the following question due to
VORONOI:

Whether each parallelohedron is an affine image of a D-V cell?
This is one of the most famous open problems of this theme. For dimen-

sions n ≤ 4 this conjecture was proved by DELONE [9] while in the papers
[24] and [25] VORONOI showed that in the space En each parallelohedron
which is the prototile of a primitive lattice tiling is an affine image of a D-V
cell. This result was refined later on by some authors. The history of this
problem has been surveyed in the book [18].
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Figure 4: Non-primitive parallelohedron on the plane

We now revert to the problem on the number of lattice points on the
boundary of an extremal body. In general we can not tell more than in
the properties 1,2, and 3. We now investigate the special case when the
extremal body is an enlarged copy 2D of the D-V cell of its lattice.We
need to introduce the definition of relevant vector due to VORONOI. A
lattice vector x is called relevant vector if it is actually needed to define the
cell D. This means that the hyperplane containing the midpoint of x and
perpendicular to x, intersects the D-V cell D in a facet of dimension (n−1).
VORONOI proved the following characterization of relevant vectors:

Theorem 3 ([24]) The lattice vector x ∈ L is a relevant one if and only
if it is an unique minimal norm element of the coset x + 2L. In this term
”unique” means the property that if y is a minimal norm element of x+2L
then it is equal to x or −x.

This result says that ±x is a unique pair of minima of its coset if and
only if their endpoints are in the interiors of opposite facets of the extremal
body 2D. The author has generalized this result as follows :

Theorem 4 ([14]) If a lattice vector x is in the relative interior of an
(n− k)-dimensional face of the body 2D (for certain k = 1, . . . , n− 1) then
it is a minimum vector of its coset x+2L. Conversely if the rank of the set

Mx := {m ∈ L|m is a minimum vector of the coset x+ 2L}

is equal to k then the elements of Mx are in the relative interior of certain
(pairwise distinct) (n−k)-dimensional faces of 2D. Furthermore in the case
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of k = n the lattice vector x is a vertex of the body 2D if and only if x is a
minimum vector of the coset x+ 2L and the rank of Mx is equal to n.

Here the rank of a vector set means its dimension. Now we give some
examples to illustrate this theorem. The number of elements of Mx depends
on the lattice. In the three-dimensional cubic lattice there are three types
of lattice points belonging to the closed body 2D. The vertex coordinates of
2D are congruent to (1, 1, 1) componentwise mod2 (we take the coordinates
with respect to the edge vectors of the basic cube of the lattice). The
vertices are the minimal elements of the coset of (1, 1, 1). So |M(1,1,1)| = 8
and rank M(1,1,1) = 3.

Regard now the so-called regular-simplex lattice of dimension 3. We can
construct this lattice from the cubic lattice taking in addition the centers
of the 2-dimensional faces of the basic cube also to lattice points. A basis
{ ei | i = 1, 2, 3} of this lattice points to centres of any three cube faces
meeting in a cube vertex as origin. In Fig. 5 we see the body 2D which
is a rhombic dodecahedron. We have two types of lattice vectors on the
boundary of 2D. E.g. the vertex (−1, 1, 1) of 2D is a lattice point. The
minimal elements of the coset of this point – denoted by double circles in
Fig.5 – are the endpoints of the longer diagonals of the rhombic faces. This
means that |M(−1,1,1)| = 6 and rank M(−1,1,1) = 3. By these two examples
we see that the number of the minimal elements of a coset depends on the
lattice and the combinatorial type of the corresponding face of 2D.

These examples suggest the following theorem which gives an algebraic
relation among the lattice points lying on the boundary of 2D. The proof
of this theorem can be found also in [14].

Theorem 5 ([14]) Let x be a lattice point in the relative interior of an
(n− k)-dimensional face Π of 2D. (1 ≤ k ≤ n). Then there are q facets of
2D (denoted by Π1, · · · ,Πq) each containing the face Π such that the sum of
their relevants y1, · · · ,yq is equal to x:

x = y1 + . . .+ yq.

The number of these facets is not greater than k (for instance in the previous
example k = 3 and q = 2). The relevants yi above are orthogonal to each
other and so

x2 = y2
1 + . . .+ y2

q .
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Figure 5: The regular simplex lattice and its extremal body 2D.

4 On the nearest lattice point problem

The so-called nearest lattice point problem is an important problem of lattice
geometry, convex optimization and other fields of mathematics. This is the
following: How to find a lattice point of a fixed lattice L which is the nearest
one to a given point of the space En? It is clear that the given point ζ ∈ En

is in a D-V cell D(x) of the D-V tiling of the lattice L, and the center x of
this cell is the nearest lattice point to ζ. If we can choose a lattice hyperplane
with the property that it is covered by all the D-V cells of L whose centers
lie in this hyperplane, then the nearest lattice point problem for ζ and L
can be simplified to the nearest lattice point problem for the orthogonal
projection of ζ to this hyperplane and the (n− 1)-dimensional sublattice of
L lying the hyperplane considered. This principle would give the idea of
a good algorithm to solve the original problem. Unfortunatelly, in general,
there is no such a sublattice in higher dimensional spaces. Precisely the
following theorem holds:

Theorem 6 ([13]) For dimensions n=6,7,8 there exists an n-lattice L in
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which there is no sublattice L∗ of dimension (n−1) satisfying the assumption

∪(D + v | v ∈ L∗) ⊃ Lin[L∗]

where D and Lin[L∗] denote the D-V cell of L and the subspace of dimension
(n− 1) spanned by the sublattice L∗, respectively.

The proof of this theorem (see [13]) relies on the fact that if the sublattice L∗

has the above-mentioned property then the difference between the number
of minima of L and L∗ is not greater than 4(n − 1). On the other hand
K.BEZDEK and T.ÓDOR proved in [3] that in the cases n ≤ 3 we can
choose such a sublattice L∗ of the given lattice L. (See the problem survey
[3].) By the papers [2] of BARNES and WALL and the other one [23]
of Leech we proved that there is an infinite sequence of lattices in which
the number of minima is not a polynomial function of the dimension n.
(For details we refer to the papers [15],[16]). As a consequence there is an
infinite series of lattices in which the required condition does not hold for
its sublattices of dimension (n− 1).

The nearest lattice point problem motivates the following strict version
of the previous one.

Whether a nearest lattice point can be found among the vertices of a
given type of basic-parallelepiped containing this point?

In the paper [17] we have found a quantity which is characteristic for a
lattice, if it is sufficiently small then the base has the desired property.

Let {e1, . . . , en} be independent lattice vectors and denote by
G = (< ei, ej >) i, j = 1 . . . n the Gram matrix of this system. The following
matrix A is a modification of G:

A =


1 <e1,e2>

e21
· · · <e1,en>

e21
<e2,e1>

e22
1 · · · <e2,en>

e22
· · · · · · · · · · · ·

<en,e1>
e2n

<en,e2>
e2n

· · · 1

 .

Here e2i =< ei, ei >. The quantity mentioned above is the maximum norm
of the inverse of this matrix A. We remark that the maximum norm of a
vector x of En is defined as the maximal absolute value of its coordinates
with respect to a fixed orthonormal basis of En and the maximum norm of
the matrix A is defined by:

∥A∥∞ = max


n∑

j=1

|aij | | i = 1 . . . n

 .
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The theorem is the following:

Theorem 7 ([17]) If ∥A−1∥∞ ≤ 2 then for every point ζ of the paral-
lelepiped spanned by the vectors {e1, . . . , en} holds the property: The nearest
lattice point to ζ lies among the vertices of its parallelepiped.

The following example shows that this condition is only sufficient but
not necessary.

Consider the lattice that is spanned by the vectors {e1, e2} having the
same length. Assume that the angle of these vectors is acute. Since the
basic-parallelogram P [e1, e2] of this lattice is covered by the D-V cells of
the vertices of P , one of the lattice points nearest to the point ζ of P is a
vertex of P . At the same time for the system {e1, e2}

A−1 =
1

1− <e1,e2>2

e21e
2
2

·

 1 −<e1,e2>
e21

−<e1,e2>
e22

1


and so

∥A−1∥∞ = ∥A∥∞ · 1

1− cos2 α
≥ 1

1− cos2 α
,

where α is the angle of the examined vectors. Of cours this quantity is
graeter than two if 0 < α < π

6 .
A simple proof of Theorem 7 is the following:

Proof: By continuity, it sufficies to consider the case when the point ζ is
an inner point of P . Let the lattice vector x∗ be a solution of the problem
for ζ. Then

(x∗ − ζ)2 ≤ (x∗ − ζ ± ek)
2 for k = 1 . . . n.

This means that

±2 < x∗ − ζ), ek > +(ek)
2 ≥ 0 fork = 1 . . . n.

From this inequality we have∣∣∣∣< x∗ − ζ), ek >

(ek)2

∣∣∣∣ ≤ 1

2
.

But the vector (x∗ − ζ) can be written as linear combination of the vectors
ei so

x∗ − ζ =
n∑

i=1

(xi − ζi)ei
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where by the assumptions 0 < ζi < 1 and x′is are integers. This means that∣∣∣∣< x∗ − ζ), ek >

(ek)2

∣∣∣∣ =
∣∣∣∣∣
n∑

i=1

(xi − ζi)
< ei, ek >

(ek)2

∣∣∣∣∣ ≤ 1

2
.

In this formula the sum is a coordinate of the vector A(x∗ − ζ). Hence

∥A(x∗ − ζ)∥∞ ≤ 1

2

and so

∥(x∗ − ζ)∥∞ = ∥A−1A(x∗ − ζ)∥∞ ≤ ∥A−1∥∞ · ∥A(x∗ − ζ)∥∞ ≤ 1.

This shows that |xi−ζi| ≤ 1 for every i where xi are integers and 0 < ζi < 1.
Thus xi equal to 0 or 1 which proves the statement. Q.E.D

Note that if the parallelepiped is spanned by vectors ei which have the
same length, say m, then A = 1

m · G where G is the Gram matrix of the
lattice. This means that A−1 = m ·G−1 so the norm of A−1 is the product
of the length of the edges of P and the maximum norm of the Gram matrix
of the dual to the system {e1, . . . , en}. This is a basis of the dual lattice L−1

to L. The elements of the dual basis {f1, . . . , fn} are defined as normal vec-
tors of the faces P [e2, . . . , en],. . .,P [e1, . . . , en−1] furthermore, the lengthes
of these vectors are equal to the reciprocal distances of the corresponding
parallel opposite faces of P , say 1

m1
, . . . , 1

mn
, respectively. This means that

the maximum norm of G−1 is ”small” if there are orthogonal walls of the
parallelepiped P . Thus the condition can be used in that cases if the walls
of the parallelepiped nearly perpendicular to each other.

On the other hand it is clear that a parallelepiped spanned by a regular
simplex holds the desired property, the nearest lattice point to an inner
point of the parallelepiped can be found among the vertices of it. This
motivates the following discussion of this pharagraph. We first introduce
the concept of the k-dimensional coveredness of a lattice parallelepiped. We
now assume that L is generated by the basis {e1, . . . , en}. Denote by P the
lattice parallelepiped spanned by these vectors, and let Dn(Q) be the D-V
cell of a vertex Q of P and denote D the cell of the origin.

Definition 1 The k-dimensional skeleton of a parallelepiped P is the
union of its k-dimensional faces. The parallelepiped P of the lattice L is
k-dimensionally covered if its k-dimensional skeleton is covered by the union
of n-dimensional D-V cells Dn(Q) where Q runs over the vertices of P .
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Figure 6:

It is clear that every lattice-parallelepiped P is 0-dimensionally covered,
furthermore P is 1-dimensionally covered if and only if the endpoints of its
edges {e1, . . . , en} are on the boundary of the extremal body 2D. It is not
surprising that the k-dimensional coverdness implies the l-dimensional one
if l ≤ k. As a particular case the n-dimensional coveredness means that the
nearest lattice point to a fixed point of P can be found among the vertices of
P . The question is now how we can guarantee the n-dimensional coveredness
of a lattice parallelepiped P? The following statement formulates the fact
that the n and (n− 1)-dimensional coverednesses are equivalent properties.

Theorem 8 If the parallelepiped is (n− 1)-dimensionally covered then it is
n-dimensionally covered, too.

Proof: Assume that the union of D-V cells

K = ∪{Dn(Q) | Q is a vertex of P}

doesn’t cover the parallelepiped P but it covers the (n−1)-skeleton P \ intP .
Then there exists a point x in the interior of P which is lying in the set
Dn(R) \ K, where R is lattice point out of P . But Dn(R) is convex (so
connected), thus there exists such a point S on the (n − 1)-dimensional
skeleton of P which is lying in Dn(R) and –by assumption– also covered by
K. As our D-V cells have disjoint interiors hence we have a contradiction.
Q.E.D.
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The following example shows that the k-dimensional coveredness does
not implies the n-dimensional one if k ≤ (n− 2).

Assume that n = 3 and k = 1 and regard the lattice L spanned by the
basis:

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 1
3
1
3
1
3

 .

As in Figure 6 we can readily verify that the orthogonal projection R′ of
the point R on the plane [e1, e2] is in the cell Dn(R). Hence the analogous
projection Q of R∗ on the plane [e1, e2] in the region Dn(R∗) and P is not 2
or 3-dimensionally covered. However, P is 1-dimensionally covered because
the minimal distance of the midpoints of the vectors {e1, e2} to the lattice
points is equal to 1

2 . (The closed cells around the endpoints of the edges of
the parallelepiped contain the midpoint of the edges.)

The following theorem relates to the k and (k− 1)-dimensional covered-
ness. Before the formulation of this theorem we introduce some notations.

Let Di1,...,ik be the D-V cell of the origin with respect to the lattice
Li1,...,ik is spanned by the vectors ei1 , . . . , eik . Denote by Pi1,...,ik the k-
dimensional face of P containing the origin and being spanned by the vectors
ei1 , . . . , eik . Furthermore, letVi1,...,ik be the k-dimensional subspace of En

containing the face Pi1,...,ik .

Theorem 9 If the number k is less than n the following two statements are
equivalent:

1. The parallelepiped P is k-dimensionally covered in the lattice L.

2. P is (k−1)-dimensionally covered and for each set of indices for which
1 ≤1< . . . < ik ≤ n the following equality holds:

Di1,...,ik = D ∩ Vi1,...,ik .

The staightforward proof is of technical character and omitted here.
Using this theorem it is not to hard to show that a parallelepiped which

is spanned by a super acute simplex is n-dimensionally covered. We define
by induction this type of simplices.

Definition 2 A two dimensional simplex is super acute if it is acute tri-
angle. A k-dimensional simplex super acute if its (k − 1)-dimensional faces
are super acute and the angles of its (k − 1)-dimensional faces are acute.
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Our definition has been motivated by the fact that an l-dimensional face
of such a simplex contains the centre of its circumscribed ball. From this
observation we can see that for all k (1 ≤ k ≤ n − 1) the D-V cell Di1,...,ik

of the sublattice Li1,...,ik is just equal to D ∩ Vi1,...,ik in the theorem above.
In case k = 2 the k-dimensional coveredness follows from the assumption of
super acuteness hence a parallelepiped spanned by a super acute simplex is
always n-dimensionally covered.

We remark that the regular n-simplex is a super acute one, this implies
that its well-known lattice An (see [7]) solves of nearest lattice point problem.

5 D-V cells in E2 and E3

Using Theorem 4 and Theorem 5 in the preceding section we derive the
well-known combinatorial classification of D-V cells in dimensions two and
three, respectively. For the classical derivation and other details we refer
e.g. to the monograph of L.FEJES TÓTH [11].

In the plane E2 we have only two combinatorial types of D-V cells like
in Fig.1 and Fig.3, respectively. To prove this, we refer to our Theorem 4
about the relevant vectors. The double lattice 2L has 3 (non-zero) cosets in
the original lattice L. From among these 3 cosets at least two contain an
opposite pair of relevant vectors. If in the third coset thereis only one pair
of shortest vectors then our D-V cell is a central symmetric hexagon, while
being two pairs of minima then our D-V cell is a rectangle by Theorem 5.
vectors mod2 from which at least two contain an opposite pair of relevant
vectors. If in the third coset there is only one pair of shortest vectors then
the D-V cell is a central symmetric convex hexagon and if in this coset
being two distinct pair of minima then (by the Theorem 5) the D-V cell is
a rectangle.

The situation in the space is more complicated. Before the discussion
this classification we give an elementary lemma without proof.

Lemma 1 Let P be a central symmetric convex hexagon in the plane. All
the combinatorially possible decompositions of P into 2,3 or 4 central sym-
metric convex parts like a face-to-face tiling of P can be seen in Fig.7 .

We need the concept of zone of a D-V cell of the space. Since the faces of
such a polyhedron are central symmetric any edge e determines a zone of
faces in which each face has two sides equal and parallel to the given edge
e. The following lemma describes the types of the zones of a D-V cell.
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Figure 7: Decompositions of a central symmetric convex hexagon .

Lemma 2 The number of the opposite pairs of relevant faces corresponding
to a given zone is two or three. If it is two then the corresponding faces are
orthogonal to each other.

Proof: In fact, the D-V tiling decomposes into layers, each being uniquely
determined by one of its cells, starting, for instance, with D at the origin.
The considered zone of D determines a whole set of equal zones meeting one
another along whole faces. The layer of D consists of the cells surrounded
by these zones. The relevant vectors of the faces of this zone are orthogonal
to the given edge e (which determines the zone) thus they are in a plane
perpendicular to e at the origin. This means that the centres of D-V cells
belonging to this layer lie on this plane. Furthermore the orthogonal pro-
jection of this layer on this plane is a lattice tiling where the tiles are D-V
cells of the lattice of the considered centres. From the classification of the
types of D-V cells of the plane we get the statements of the lemma. Q.E.D.

Now we can formulate the theorem.

Theorem 10 There are only five different combinatorial types of D-V cells
in the Euclidean 3-space E3. The most symmetric representatives of them
are the cub, the regular hexagonal prism, the elongated dodecahedron (bounded
by a tetrahedral zone of regular hexagons and two caps each consisting of
four rhombi), the rhombic dodecahedron and the truncated octahedron, re-
spectively. These most important representatives are pictured in Fig.8 in
combinatorially equivalent form.

Proof: The basis of our discussion is the number σ of opposite pairs of
relevants. Referring to the statements of Theorem 4, we have to discuss the
respective cases of σ = 3, 4, 5, 6 and 7. We show that corresponding to the
cases of σ = 3, 4, 5 there is only one type of D-V cells, in the case σ = 6
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Figure 8: D-V cells of the space

there are two different types while if σ = 5 there is no such a topological
face-edge-vertex complex which can be realized as a D-V cell. These types
of polyhedra are illustrated in Fig.8 I,II,III, IV, and V, respectively, and we
have Fig. 9 showing those D-V cells III,IV,V which are realizable as the
cells of certain centered brick lattices. Let start our discussion with the case
of

1. σ = 3. Since the number of faces of the polyhedron is six by the
Lemma 2 the D-V cell is a brick. (See in Fig.8 I.)

2. When σ = 4 the D-V cell has eight faces. On the base of Lemma 2
again, there is a hexagonal zone of D that means that the polyhedron
is a hexagonal prism. (See Fig.8 II.) (If there is no hexagonal zone of
D then by Lemma 2 would exist four pairwise ortogonal vectors of the
three-dimensional space which is a contradiction.)

3. In the third case σ = 5. This means that the polyhedron has ten faces
and at least one hexagonal zone. The orthogonal projection of a cap
to the plane of relevants of this zone decomposes the projection of the
zone into two central symmetric convex components. (A cap would
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Figure 9: The possible D-V cells of a centered brick lattice

have two central symmetric faces by central symmetry of D.) But
the projection of the zone is a central symmetric convex hexagon by
Lemma 2 thus by virtue of Lemma 1 there is no D-V cell in this case.

4. Let now be σ = 6. Since the D-V cell has 12 faces, analogously to
the previous case, we have to decompose a convex central symmetric
hexagon into three parts, each of them is a central symmetric convex
polygon. By Lemma 1 we get two different combinatorial types of
decompositions, the first contains a hexagon and two parallelograms,
the second consists of three parallelograms. Both possibilities can be
realize as a D-V cell. See Fig.8 III,IV and Fig.9, respectively.

5. Finally, if σ = 7 then the D-V cell has 14 walls. By Lemma 1 a cap
of the polyhedron consists of two hexagons and two parallelograms,
respectively. The corresponding D-V cell is pictured in Fig.8 V and
Fig.9, respectively.

Q.E.D.
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