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Abstract

This second part of my paper discusses the determination of the
DIRICHLET-VORONOI cell of a lattice of dimension n. We give some
concrete D-V cells and their automorphism groups, the cells of the
lattices An, Dn and En, respectively. These lattices are root lattices
to the corresponding finite root systems An, Dn, En. They have an
important role in crystallography, physics and differential geometry.
We illustrate the diagram method for visualizing very symmetric higher
dimensional polytops.
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1 Automorphism group of a lattice

One of the most important tool in the deep investigations of discrete point
system is the concept of its symmetry group. In general, a symmetry of
a discrete point system of the Euclidean n-space is an orthogonal linear
transformation which mappes the system onto itself. In the case when the
point system is a lattice, we define first the translations L which carry an
origin 0 into the other lattice points. But it is more characteristic for L to

∗Supported by Hung.Nat.Found for Sci.Reseach (OTKA) grant no.T.7351 (1993)

1



consider a transformation fixing the origin which maps an integral vector
base onto another integral base of the lattice. These transformations form
a group with the composition as group operation, written multiplicatively.
If L is a lattice with an integral base B = {b1, · · · ,bn} than we can write
its matrix M with respect to a standard orthonormed basis {ei} of the
Euclidean space. So we have bi =

∑n
j=1 ejM

j
i where M j

i is the jth-element

of the ith-column of the matrixM . (Using the Einstein convention we shortly
write that bi = ejM

j
i .) This matrix M is called a generator matrix of L.

An orthogonal linear transformation (with matrix) B : ei −→ Bei is a
symmetry of L if and only if it carries the element bi of B into another
lattice vector b′

i = Bbi = B · (ejM j
i ) = (Bej)M

j
i = ekB

k
jM

j
i and these

image vectors give another integral basis of the lattice. But bi = ejM
j
i and

there is an integral unimodular matrix U which jth column Uj gives the
integral coordinates of the jth element of the new basis {b′

i, i = 1 . . . n} with
respect to the base B, thus we have b′

i = blU
l
i = ejM

j
l U

l
i . This means that

ejM
j
l U

l
i = b′

i = ekB
k
jM

j
i or M j

l U
l
i (M

−1)ik = Bj
k which means that

MUM−1 = B.

The group of these transformations (for a fixed base {ei}) is the automor-
phism group ( or symmetry group or point group or finite Weyl group ) of
the lattice. In the usual Euclidean space it can be proved that this group de-
noted by Aut(L) is finite. On some occasions we consider the infinite group
of all distance-preserving transformations of the underlying space that take
the lattice to itself. This is obtained by adjoining the set L of translations,
written in additive lattice vectors to the former Aut(L). This is the group
of complete Euclidean affine automorphisms (or infinite Weyl group) of the
lattice (lattice means point lattice for brevity).

The automorphism groups of the lattices in dimensions up to 8 are es-
pecially interesting: they have subgroups of low index that are reflection
groups. An orthogonal transformation A of the n-space En is a general re-
flection iff there is a k-dimensional subspace N of En such that A|N = I|N
and A|N⊥ = −I|N⊥ where N⊥ is the orthogonal complement of N and the
transformation I is the identity, −I is the inversion (point reflection in the
origin) of the space. A usual hyperplane reflection (or briefly reflection) is a
general reflection with k = n− 1. We can specify each reflecting hyperplane
by a minimal lattice vector orthogonal to it, and sometimes thus we get a
generator system of the lattice. Then we say that the mentioned lattice vec-
tor is a root vector, the lattice is a root lattice and the subgroup of Aut(L)
generated by the reflections in the roots is the reflection subgroup of Aut(L).
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Figure 1: The fundamental roots of Zn.

It is clear that the elements of the symmetry group leave invariant the
D-V cells of the lattice L, which means that some of these transformations
give the symmetries of a fixed one. Thus Aut(L) can be determined as the
group of symmetries of the D-V cell (see e.g. c̃itegho).

For instance, if the lattice is the n-dimensional cubic lattice Zn of the
integer vectors in the standard orthonormed basis, the cell of the origin is the
cube with 2n vertices of all coordinates±1

2 . The symmetry group of this cube
can be described by all permutations and sign changes of these coordinates
and the automorphism group of Zn contains precisely these symmetries. As
the walls of the D-V cell give reflecting hyperplanes of Zn we have already n
vectors corresponding to these hyperplanes which generate the lattice. Thus
this lattice Zn is a root lattice, the reflection subgroup (denoted by Bn) and
the root system is generated by the roots:

(1, 0, · · · , 0)T , (1,−1, · · · , 0)T , (0, 1,−1, · · · , 0)T , . . . , (0, · · · , 1,−1)T

which are called fundamental roots. The fundamental roots give an integral
basis of the lattice. We remark that the reflections corresponding to the fun-
damental roots now generate the automorphism group of the lattice which
means that Aut(Zn) is a so-called (finite) reflection group.
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2 Coxeter groups in spherical and in Euclidean
spaces

As we saw in the previous pharagraph the groups generated by reflections
are very important for the automorphism group of a root lattice. Moreover,
the infinite Euclidean reflection groups always have invariant lattices. In
this section we characterize the finite reflection groups independently of the
lattices. This problem has a complicated interesting history, see e.g. [7].
In [3] and [4] Coxeter gave the Euclidean representatives of abstract groups
defined by the relations

(RiRj)
pij = I, pij ∈ Z, pii = 1.

His idea was the following: an element of such a group can be represented
by a reflection in a hyperplane of an n-dimensional Euclidean space and the
required assumption says that the product of two reflections is a rotation of
finite order about the intersection n − 2-subspace through twice the angle
between the reflecting hyperplanes. This means that the angle between the
mirror hyperplanes is commensurable with π. (Since the images of any point
are distributed on a circle of the plane orthogonal to the n− 2-dimensional
point-wise fixed axis plane of the rotation.) It will be sufficient to consider
submultiples of π so the dihedral angle between two hyperplanes is π

pij
.

Regarding the generating mirror hyperplanes and all their transforms, we get
a partition of the space into a finite or infinite number of congruent convex
regions; and the examined group is generated by reflections in the bounding
hyperplanes of any one of the regions. (In our finite case each reflection
is one in an n − 1-subspace, the examined hyperplanes are concurrent, the
common point is the origin, thus we have finite number of congruent copies
of such infinite regions.)

To determine the number and the structure of generating hyperplanes
we have to introduce the concept of irreducibility. If all the elements of
the group leave invariant an m-dimensional subspace (through the origin)
(1 ≤ m ≤ n−1), they also leave invariant the completely orthogonal (n−m)-
subspace, the group is then called reducible otherwise it is irreducible. In the
first case the reflecting hyperplanes fall into two sets: some containing the
m-space and the others containing the (n−m)-space in common. If this two
sets are non-empty, the normal vectors of the generating reflections span the
whole space. Thus the orbit of any point of the space is not parallel to a
hyperplane so the group can not be represented in a less dimensional space.
Hence the reflection group is non-degenerated and the number pij is two
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whenever Ri is in one set and Rj in the other. This means that the group
is the direct product of groups generated by the separate sets. (Irreducible
reflection group does not have such a direct product decomposition, other
one must have.)

If the reflection group is non-degenerated the normal vectors of the gen-
erating hyperplanes span the whole space. Thus the number of generators is
greater or equal to n. Consider a fundamental region and a point O within
it. Denote by ei i = 1 . . .m, m ≥ n the set of unit normal vectors of the
generating hyperplanes starting in directed inwards from the walls. The
quadratic form

m∑
i=1

m∑
j=1

< ei · ej > xixj

is not negative because it expresses the length square of the variable vector∑
xiei. This means that it is a positive definite or semidefinite quadratic

form in m variables. But each (symmetric) coefficient eij :=< ei · ej >= eji
is

− cos(
π

pij
) ≤ 0 i ̸= j

since the angle between two ei’s is the supplement of the dihedral angle of the
fundamental region. Examining the definitness and rank of this quadratic
form (see [5]) we can distinguish two cases. In the first one the quadratic
form is semidefinite and has rank n and nullity 1 i.e. m = n + 1. The
fundamental domain is an Euclidean simplex where one normal vector is
(negative) linear combination of the others. In the second case is n = m,
the form is positive definite. The fundamental domain is a corner domain
with n walls through a point and the group acts on every n− 1-sphere with
centre of the common point. Thus we have:

Theorem 1 ([5]) The fundamental region of a finite group generated by
reflections of the Euclidean n-space is a spherical simplex, and that of an
irreducible infinite group generated by reflections is an Euclidean simplex.
Furthermore, every group generated by reflections in a Euclidean space is
a direct product of groups whose fundamental regions are Euclidean and
spherical simplices.

Now we deduce the types of the finite groups generated by reflections
from the possible fundamental domains. Before enumerating the particular
groups we remark that an infinite discrete reflection group arises from a
finite reflection group. In fact, the reflecting hyperplanes determine a finite
number of different directions because the angles of the hyperplanes cannot
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be arbitrarily small by discretness. Thus the hyperplanes belong to a finite
number of families each consisting of parallel hyperplanes. Representing
every families by a single hyperplane through any fixed point O of the space
and parallel to the element of the family, we have a finite group S generated
by these reflections. The fundamental domain of S is a simplex of an n− 1-
dimensional spherical space or n-hedral angle so we have a generator system
of n elements. A fundamental domain of the original infinite group G is
bounded by the n-hyperplanes from those of the finite group S and by some
others. (Thus the fundamental region of S occurs at one corner of the
fundamental region of G.) This means any fundamental domain for G has
at least one vertex which lies in one hyperplane of every family. Let us
call this (by [3]) a special vertex of the fundamental region and S a special
subgroup of G. (In general, this is the so called point-group of the considered
space-group which is crystallographic subgroup of the isometries of En.)
For example, for a group generated by reflections in the walls of a brick
all vertices are special and the special subgroup of order 2n generated by
reflections in any n orthogonally concurrent walls. This is the largest finite
subgroup of the considered infinite group. Another instance with n = 2 is
the complete symmetry group of the regular triangular lattice generated by
reflections in the sides of a ruler triangle. We have only one special vertex
(where the angle π

6 occurs). The largest finite subgroup (the point group)
has order 12.

Now, we have reduced the enumeration of discrete groups generated by
reflections to that of spherical and Euclidean simplexes whose dihedral an-
gles are submultiples of π. For any fundamental simplex we introduce a
graph or diagram whose nodes represent the walls and whose p-marked edge
(branch) indicates a pair of walls inclined in angle π

p , p > 2. Any perpen-
dicular wall paire is represented by two nodes not joined by a branch. This
means that the number of nodes is equal to n or n + 1 and the graph is
connected or disconnected according to that the group is irreducible or re-
ducible. We remark that this diagram has been introduced first by Coxeter,
we use now first a refined version in Fig.2 which contains a little bit more
information on the simplex and the lattice related to it. This is the so-called
Coxeter-Dynkin diagram introduced by Dynkin.

In this diagram we have the following conventions, the nodes representing
the roots r and s are joined by a k-fold (directed) edge if they have the angle
Θ where 4 cos2Θ = k and cosΘ ≤ 0, the right-most roots in the fourth
column have norm 2, and the lengths of the other roots are determined by
the rule that a k-fold edge, whose arrowhead (if any) pointing from r to s,
indicates that < r, r >= k < s, s >.
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Figure 2: Diagrams (graphs) for fundamental simplices of irreducible finite
spherical and infinite Euclidean reflection groups

Two important properties has each Coxeter diagram of Euclidean reflec-
tion groups:

1. The removal of any node (together with any branches which emanate
from that node) leaves the graph for a spherical simplex, because n−1
of the n walls form the angular region at one vertex of the original
simplex independently from the fact that this is Euclidean or spherical
one. So by adding a fresh node to the graph of an Euclidean simplex
we can never obtain a new admissible connected graph.

2. New Euclidean connected Coxeter diagram cannot be obtain by in-
serting a branch between two nodes already present, nor by increasing
the mark on a branch, because such a positive semidefinite connected
quadratic form becomes indefinite when any of its coefficients are de-
creases. (See e.g. [5])
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These principles help give the standard list of Euclidean simplices which
can be found on the fifth column of the figure Fig.2. All these diagrams
represent quadratic forms being semidefinite thus they represent Euclidean
simplices. We note that in this list there are simplices which give the same
finite group (e.g. Bn and Cn), however the root lattices are different, and so
are the infinite groups obtained by adjoining the translations to the finite
group. From these Euclidean simplices we can derive spherical reflection
simplices by drawing spheres round the vertices. In practice this means that
we remove such a node from each graph which leaves the graph connected.
(We consider the irreducible groups only and n ≥ 3.) The total list of the
spherical Coxeter simplices can be found also in the Fig.2. The fact that
this list is complete follows from the above two properties of the admissible
graphs.

3 The fundamental simplices of the affine Weyl
groups Ãn, D̃n, Ẽn and their root lattices

In this section we give the fundamental simplices of the root lattices (see
e.g. [1]). First we recall an important theorem :

Theorem 2 ( [1]) For any root lattice L, the D-V cell around the origin
is the union of the images of the fundamental simplex of Wa(L) under the
finite reflection group or Weyl group W (L) of the lattice L.

Thus the D − V cell of a root lattice L can be and will be described by
the fundamental simplex of Wa(L).
Sketch of the proof: In this case the fundamental domain of the infinite or
affine Weyl group Wa(L) is a simplex S. It has the property that the origin
is the closest lattice point to any interior point of it. In fact, if a reflecting
hyperplane separates an interior point x from the closest lattice point u
then the lattice point u′ which is the mirror image of u in this hyperplane is
closer to x as u. Thus for every elements g of the group W (L) the origin is
a fixed point. Let now x be any point of the D − V -cell around the origin.
Then x is an element of an image g(S) of the fundamental simplex S for
some g ∈ Wa(L) assuming that x is an interior point of g(S) we get by the
remark above that g is in W (L) and the D-V cell covered by the images of
the fundamental simplex under the elements of the finite Weyl group W (L).
The converse statement follows by reversing the steps and discussing the
case when x is a boundary point of g(S), the origin is one of the closest
lattice points, too. Q.E.D.
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A simple consequence of this theorem that the relevant vectors of the
D-V cell of a root lattice are the minimum vectors of the lattice. In fact,
the |W (L)| copies of the fundamental simplex fil the cell, thus the images of
the facet of the simplex doesn’t contain the origin also fil the surface of the
D-V cell. So the lengths of the relevants are equal, i.e. they are the minima
of the lattice. (Each of the minimum vectors is a relevant.)

Using the diagram of the affine group we can choose the normal vectors of
the facets of the fundamental simplex. We now search for the corresponding
root lattices as the sublattices of the n-dimensional cubic lattice, so the
scalar products of any to lattice vectors are integer. Since any of the root
vectors are parallel to these normal vectors (by the above remark) the root
vector with minimal norm corresponds to the special vertex of the diagram.

3.1 Ãn and the corresponding root lattice An.

For a unified method we consider an orthonormed basis {e0, . . . , en} of the
Euclidean space En+1, and we will define An and Ãn in an n-dimensional
subspace of En+1 through the origin. From the general diagram of Ãn we
can check that the normal vectors of its walls can be defined as

ni = ei−1 − ei and nn+1 = e0 − en = n1 + · · ·+ nn

where i = 1, . . . , n, respectively.
These vectors generate the root lattice An and an integer basis of this

lattice is {n1, . . . ,nn}. This means that we can give the following description
of this lattice:

An =

{
n∑

i=0

xiei | x = (x0, . . . , xn) ∈ Zn+1
n∑

i=0

xi = 0

}
.

The walls of the fundamental simplex Ãn are

x0 = x1, . . . , xn−1 = xn, −x0 + xn = 1.

In the following we use point coordinates with subindices in accordance with
our references. Fig.3 shows the concrete facet diagrams of Ãn,D̃n, and Ẽn,
respectively.

We now determine the vertices of this simplex as the intersection of the

corresponding hyperplanes and the hyperplane
n∑

i=0
xi = 0. On the figure

Fig.4 we gave the vertex diagram of the fundamental simplices of the exam-
ined lattices. Each of the vertices of the simplex corresponds to that node
of the facet diagram which means the opposite wall of it.
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Figure 3: Concrete facet diagrams for the fundamental simplices of the root
lattices
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The order of the corresponding finite reflection group of An can be de-
termined from the quotient of the volume of the fundamental simplex and
the volume of the fundamental parallelepiped, i.e. that of the D-V cell of
the lattice. Computing these values we have that:

|W (An)| =
√
n+ 1

1
n!

√
n+1
n+1

= (n+ 1)!.

The elements of this group can be represented as the coordinate permu-
tations of the points of the n + 1-dimensional space. Since the reflection
subgroup G0 is a normal subgroup of the authomorphism group thus if we
know the factor group G1 = Aut(An)/G0 then we also know the group
Aut(An). But this group consists of the isometries of the fundamental sim-
plex of the reflection subgroup of the lattice so this group is nothing else but
the graph automorphism group of the Coxeter-Dynkin diagram of the finite
reflection group. This second group is the cyclic group of order 2. (The
non-trivial element of it can be represented in the space as the negation of
all coordinates of a point.) So the order of Aut(An) is 2(n+ 1)!.

3.2 D̃n and the lattice Dn.

In this case we choose an orthonormed basis {e1, . . . , en}, n ≥ 4, of the
n-dimensional space En. From the general diagram we can define a normal
vector system of the walls of the fundamental simplex. It is

n1 = e1 + e2,ni = ei−1 − ei and ,nn+1 = en−1 + en,

where i = 2, . . . , n, respectively. The facet diagram can be seen in Fig.3 and
the fundamental roots are:

n1 = e1 + e2 and ni = ei−1 − ei,

where i = 2, . . . , n. The algebraic definition of the lattice is

Dn =

{
n∑

i=1

xiei | x = (x1, . . . , xn) ∈ Zn
n∑

i=1

xi ≡ 0(2)

}
.
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Figure 4: Vertex diagrams for the fundamental simplices of Ãn, D̃n,Ẽ8,Ẽ7

and Ẽ6, resp. E.g. (0
5,−2

3

2
, 23) means (0, 0, 0, 0, 0,−2

3 ,−
2
3 ,

2
3).

12



The computed vertices of the simplex D̃n can be found in Fig.4. Because of
the volume of the fundamental parallelepiped is

det



1 1 0 0 0 . . . 0 0
1 −1 1 0 0 . . . 0 0
0 0 −1 1 0 . . . 0 0
0 0 0 −1 1 . . . 0 0
· · · · · · · ·
0 0 0 0 0 . . . 1 0
0 0 0 0 0 . . . −1 1
0 0 0 0 0 . . . 0 −1


= 2,

and the volume of the simplex is

1

n!
det



1 1
2

1
2

1
2 . . . 1

2
1
2

1
2

0 1
2

1
2

1
2 . . . 1

2
1
2

1
2

0 0 1
2

1
2 . . . 1

2
1
2

1
2

0 0 0 1
2 . . . 1

2
1
2

1
2

· · · · · · · ·
0 0 0 0 . . . 1

2
1
2

1
2

0 0 0 0 . . . 0 1
2

1
2

0 0 0 0 . . . 0 −1
2

1
2


=

1

n!
(
1

2
)n−2.

The order of the reflection group is 2n−1 · n!. The automorphism group of
the diagram Dn is a second order cyclic group if n > 4 and the permutation
group of 3 symbols if n = 4. Thus the order of the authomorphism group is
2nn! if n > 4, and 27 · 32 if n = 4.

3.3 Ẽ8 and the lattice E8.

Using the diagram of Fig.2 we know that we have only one special vertex (in
the diagram) that corresponds to the hyperplane not containing the origin.
First we fix the normal vector of this wall it is the vector
(0, 0, 0, 0, 0, 0, 1, 1)T . Since the walls are perpendicular to each other or have
an angles π

3 between two of them, we can choose other 6 hyperplanes of the
six elements chain x7 = x6, x6 = x5, x5 = x4, . . . x2 = x1, respectively. At
the wall of the hyperplane x2 = x3, we have to search a further hyperplane
perpendicular the others and has an angle π

3 between its and x2 = x3. The
good hyperplane is x1 = −x2. The normal vector n = (n1, . . . , n8)

T of the
last hyperplane now can be choosen by solving of the linear equation array:

n1 = −n2 n2 = n3 n3 = n4 n4 = n5

n5 = n6 n6 = n7 n7 = −n8 n1 = 1.
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This means that the corresponding hyperplane is x1+x8 = x2+· · ·+x7 with
normal vector n(1,−1,−1,−1,−1,−1,−1, 1)T . The corresponding root is
the vector 1

2n and a basis of the root lattice E8 is

n1 = e1 + e2,ni = ei−1 − ei, and
1

2
n,

where i = 2, . . . , 7. The algebraic definition of this lattice is

E8 =

{
8∑

i=1

xiei | x = (x1, . . . , x8) ∈ Z8 or x ∈ (Z+
1

2
)8

8∑
i=1

xi ≡ 0(2)

}
.

The facet diagram of the fundamental simplex can be seen in Fig.3 and
it is easy to determine the vertices. (See Fig.4.) Computing the volumes
of the fundamental parallelepiped of E8 and the fundamental simplex Ẽ8,
respectively we get the order of the reflection group:

v(E8) = 1, v(Ẽ8) =
1

214 · 35 · 52 · 7
and |W (E8)| = 214 · 35 · 52 · 7.

The automorphism group of this lattice E8 is the reflection group because the
automorphism group of its diagram is trivial. A nice theorem characterizes
this reflection group, W.L. Edge proved that

Theorem 3 ([8]) A reflection group of order 214 · 35 · 52 · 7 is generated by
all permutations of 8 letters, all even sign changes, and the matrix:

H := diag{H4,H4} =
1

2



1 1 1 1 0 0 0 0
1 −1 1 −1 0 0 0 0
1 1 −1 −1 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 −1 1 −1
0 0 0 0 1 1 −1 −1
0 0 0 0 1 −1 −1 1


.

This matrix corresponds to the general reflection in the 4-space orthogonal to
the (lattice) subspace of dimension 4, spanned by the orthogonal minimum
system:

m1 = [0,−1, 1, 0, 0, 0, 0, 0]T m2 = [0, 0, 0, 0, 0,−1, 1, 0]T

m3 =
[
−1

2 ,
1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2

]T
m4 =

[
−1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

]T
.
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Figure 5: The full-dimensional Coxeter-Dynkin diagram of the fundamental
simplex of Ẽ7.

3.4 Ẽ7 and its lattice E7.

In this case seven walls of the simplex are the same as those of the simplex
Ẽ8. This means that the normal vector system

n1 = e1 + e2,ni = ei−1 − ei,
1

2
n7(1,−1,−1,−1,−1,−1,−1, 1)T ,

where i = 2, . . . , 6, can be chosen first in the space E8 and the coordinates
of the last vector n(n1, . . . , n8) satisfies the following equation array:

n1 = . . . = n6, n1 = −n2, −n7 + n8 =
√
2(n2

7 + n2
8).

So the last normal vector is (06, 1,−1)T where 06 means that the first six
coordinates are zero. We see that the fundamental simplex and the lattice
lie in the hyperplane x7 + x8 = 0 and change the standard basis to the
new orthonormed system {e1 · · · e6, e∗7 = 1√

2
(e7 − e8)}. Then we get the

full-dimensional description of Ẽ7, i.e. in the 7-dimensional Euclidean space
E7. (See in Fig.5) The algebraic description of the root lattice generated by
the fundamental roots:

E7 =

{
8∑

i=1

xiei | x = (x1, . . . , x8) ∈ E8

8∑
i=1

xi = 0

}
.

The fundamental volume of this lattice is
√
2 while the volume of the funda-

mental simplex of Ẽ7 can be computed from the vertex diagram (see in Fig.4)

it is
√
2

210·34·5·7 . The order of the reflection group is 210 · 34 · 5 · 7. The full au-
tomorphism group is the reflection group because the automorphism group
of the diagram is trivial. We note that from our first geometric presentation
we also can verify this result. In fact the automorphism group Aut(E7) of
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E7 is a subgroup of Aut(E8). This follows from the fact that the lattice E7

is just the sublattice of E8 which lies in the plane x7+x8 = 0 (parallel to the
wall x7+x8 = 1 of Ẽ8). Hence any authomorphism of Aut(E8) which leaves
invariant the hyperplane x7 + x8 = 0, by fixing its normal vector e7 + e8
is just the corresponding authomorphism of E7, too. These automorphisms
obviously form a subgroup of Aut(E8). (This subgroup isn’t normal because
for a β ∈ Aut(E8) fixing the vector e7 + e8, and for an α ∈ Aut(E8), the
authomorphism α−1βα in general does not fix the vector e7+e8.) The index
of Aut(E7) in Aut(E8) is 240 which is the number of facets of the examined
D-V cell of E8.

3.5 Ẽ6 and its lattice E6

In this case we fix two hyperplanes x7 + x8 = 0 and x6 − x7 = 0 in the
lattice E8. These hyperplanes will contain the fundamental simplex of Ẽ6.
The normal vectors of the simplex of E6 are

n1 = e1 + e2,ni = ei−1 − ei,
1

2
n7(1,−1,−1,−1,−1,−1,−1, 1)T ,

where i = 2, . . . , 5. A normal vector n(n1, . . . , n8) of the last hyperplane
satisfies the conditions:

n1 = . . . = n6, −n1 − n8 +
7∑

i=2

ni = 0, n7 + n8 = 0 and n1 + n2 =
|n|√
2
.

The normal vector is n(15,−12, 1)T and we take 1
2n. With respect to the

basis {e1 · · · e5, e∗6 = 1√
3
(−e6 − e7 + e8)} these vectors have the form:

(1,−1, 04)T , . . . (04, 1,−1)T , (1, 1, 04)T , ((
1

2
)5,

√
3

2
)T .

The volume of the fundamental parallelepiped is
√
3. The facet diagram can

be seen in Fig.3, the vertex diagram in Fig.4. The order of the corresponding
reflection group is

v(parallelepiped)

v(simplex)
= 27 · 34 · 5.

The automorphism group has order 28 · 34 · 5 because of the graph automor-
phism group of E6.

The algebraic description of the corresponding root-lattice is

E6 =

{
8∑

i=1

xiei | x = (x1, . . . , x8) ∈ E8 x1 + x8 =
7∑

i=2

xi = 0

}
.
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4 An algorithmic setting up of the D-V cell of E8

In this paragraph we illustrate mainly on the base of c̃itecox2 how to imag-
ine and construct higher dimensional polyhedra, i.e. polytopes by diagram
methods. So we obtain a tool for visualizing very symmetric polytopes re-
lated to very symmetric lattices. The question now is the following:

How we can describe the combinatorial and geometric structure of a facet
of the D-V cell D of the lattice E8?

In Theorem 2 we have seen the general strategy: We have to construct
the simplex of Ẽ8 and form the union of its images under the finite reflection
group W (E8) of the root lattice E8. We know that the facet, meeting the
midpoint of its normal vector e7+ e8 from the origin, is invariant under the
subgroup Aute7+e8(E8) hence those 7-dimensional wall S of the fundamental
simplex Ẽ8 which lies on the hyperplane x7+x8 = 1 is a fundamental simplex
S of this facet with respect to the group Aute7+e8(E8). Translating the facet
and its fundamental simplex S into the origin we get congruent copies of
these polyhedra. Hence we can regard this translated facet as the non-
overlapping union of the images of the simplex S′ = S − 1

2(e7 + e8) under
the complete authomorphism group Aut(E7). In the following we give the
vertex and facet diagrams of the simplex S′. The vertices of S′ are:

(06,−1
2 ,

1
2)

T (−1
8 ,

1
8

5
,−3

8 ,
3
8)

T (16
6
,−1

3 ,
1
3)

T (02, 16
4
,−1

3 ,
1
3)

T

(03, 15
3
,− 3

10 ,
3
10)

T (04, 14
2
,−1

4 ,
1
4)

T (05, 13 ,−
1
6 ,

1
6)

T (08)T .

These points are lying on the hyperplane x7+x8 = 0. Observe that the non-
zero position vectors pairwise parallel to the corresponding position vectors
of the fundamental simplex Ẽ7 so the hyperplanes containing those walls of
S′ which contain the origin are the same as of the simplex Ẽ7. Hence, we
have to determine only such a hyperplane which intersects the hyperplane
x7+x8 = 0, i.e. we search for the six-dimensional affine subspace containing
the wall of S′ opposite to the origin. From this hyperplane we have seven
non-zero points and know that doesn’t contain the origin. The normal vector
of it is orthogonal to the six difference vectors:



−1 1 1 1 1 1 1 −1
1 1 1 1 1 1 1 −1
0 0 1 1 1 1 1 −1
0 0 0 1 1 1 1 −1
0 0 0 0 1 1 1 −1
0 0 0 0 0 1 1 −1

 ·



n1

n2

n3

n4

n5

n6

n7

n8


=



0
0
0
0
0
0

 ,
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Figure 6: The Coxeter-Dynkin diagram of the simplex S’.

which means that n1 = n2 = n3 = n4 = n5 = 0 and n6 + n7 − n8 = 0. Let
now be n6 = n7 = 1 so n8 = 2. Then the equation of this hyperplane is
x6 + x7 + 2x8 =

1
2 and the walls of the simplex S′ are on the 6-planes:

{x7 + x8 = 0 ∩ x2 = x3} {x7 + x8 = 0 ∩ x1 + x8 = x2 + . . .+ x7}
{x7 + x8 = 0 ∩ x3 = x4} {x7 + x8 = 0 ∩ x4 = x5}
{x7 + x8 = 0 ∩ x5 = x6} {x7 + x8 = 0 ∩ x1 = −x2}
{x7 + x8 = 0 ∩ x1 = x2} {x7 + x8 = 0 ∩ x6 + x7 + 2x8 =

1
2}

.

Now we can draw the facet diagram of this simplex, see in Fig.6. The branch
denoted by double dotted line means that the angle of the corresponding
facets is φ = arccos 1

2
√
3
. The full-dimensional variation of this diagram is

better for determining the geometric properties of the polyhedra built up by
this simplex. First we have to change the coordinate system. If {e1 · · · e8}
was the original orthonormed base we consider the new orthonormed system
{e1 · · · e6, e∗7 = 1√

2
(e7 − e8)}. Seven normal vector are in the hyperplane

spanned by this system but the last vector (05, 1, 1, 2)T is not here. We
have to take the orthogonal projection of the vector (05, 1, 1, 2)T onto the
hyperplane x7+x8 = 0. This vector (05, 1,−1

2 ,
1
2)

T has to be expressed in the
new base. Thus the normal vectors of the examined intersection six-planes
with respect to this base have the form:

(1,−1, 05)T (0, 1,−1, 04)T (02, 1,−1, 03)T (03, 1,−1, 02)T

(04, 1,−1, 0)T (12 ,−
1
2

5
,
√
2
2 )T (1, 1, 05)T (05, 1,− 1√

2
)T

.

The corresponding diagrams can be seen in the figure Fig.7. The branch
denoted by dotted line means that the angle of corresponding facets is φ =
arccos 1√

3
.

Taking the images of S′ under the automorphism group of E7 we get a
polyhedra
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Figure 7: The full-dimensional facet diagram of S′.

P =
∪
{α(S′) : α ∈ Aut(E7)} which is congruent to the facets of the D-V

cell of the lattice E8. Translate this polyhedron with the vector 1
2(e7 + e8),

and transform with the coset representatives of Aute7+e8(E8) in Aut(E8)
then we get the surface of the D-V cell of the lattice E8. As a summary we
have the following theorem:

Theorem 4 The D-V cell D of the lattice E8 can be built up by the following
algorithmic way:

D =
∪{

β

(
1

2
(e7 + e8) + ∪{α(S′) α ∈ Aute7+e8(E8)}

)
β ∈ H

}
where S′ is the simplex in Fig.6 and 7, and H is a coset representative
system of Aute7+e8(E8) in Aut(E8).

From the full-dimensional diagrams we can read the difference between
the seven-cell of Ẽ7 and the facet of the eigth-cell D of the lattice E8. The
fundamental seven-simplex S′ of the latter is such an affine image of the
simplex Ẽ7) which changes only two dihedral angles between the facet of
the special vertex and the other walls.

We note that there is a more geometric diagram description of the D-V
cells of the lattices En. Gosset investigated some semi-regular polyhedra in
[10], and obtained three important polyhedra in dimensions n = 6, 7 and
8, respectively. His essay started with the systematic investigation of the
problem to find the n-dimensional semi-regular polytopes. His method, as
Burnside wrote in a letter to Glaisher, is ”a sort of geometrical intuition” and
his idea of regarding an (n− 1)-dimensional honeycomb as a degenerated n-
dimensional polytope seemed ”fanciful”. Later his results were rediscovered
by Elte in [9] and Coxeter in [6]. The polytopes defined in a similar way as
the original polyhedra made by Gosset is called Gosset polytopes. The D-V
cells of the lattices En are the reciprocal or polar to the Gosset polytopes
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Figure 8: What does it mean the symbol kij?

421, 231, 122 of the same dimension, resp. The notation kij means that the
vertex diagram of the fundamental simplex has unmarked branches which
connected to each other on the way of Fig.8, where the black node means that
vertex of the fundamental simplex (which is also vertex of the honeycomb)
which all transforms give the vertices of the polyhedron. These diagram was
introduced by Wythoff in [14] and [15]. The reciprocal (or polar body) of a
polyhedron with respect to a point of its interior as the origin, collects those
points of the space whose scalar product with any point of the body is not
greater than 1. The above observations are a consequences of the following
theorem:

Theorem 5 ([1]) If the relevant vectors of a lattice are precisely the min-
imal vectors, then the D-V cell of the lattice is similar to the reciprocal of
the polytope whose vertices are the minimal vectors of the lattice.

Imagine the cubic lattice, whose 6 relevants point to the 6 vertices of a
regular octahedron whose reciprocal is just the cube, i.e. the D − V -cell.

Finally we collect the main properties of the D-V cells of the lattices En.

Theorem 6 ([1],[5]) Let us denote Ni the number of i-dimensional faces
of the D-V cell, the radius of its circumscribed ball is R and the radius of
its inscribed ball is r. Then these parameters for the D-V cells of the root
lattices En n = 6, 7, 8 can be found in the following tables:

N0 N1 N2 N3 N4 N5 N6 N7

E8 19440 207360 483840 483840 241920 60480 6720 240

E7 632 4788 14112 20160 10080 2016 126 -

E6 54 702 2160 2160 720 72 - -
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Figure 9: Wythoff diagrams of the vertex figures of En.

R r det

E8 1 1√
2

1

E7

√
3
2

1√
2

2

E6
2√
3

1√
2

3

Sketch of the proof: By Theorem 5 in the case of the lattices En we
have to determine the number of faces of dimension i of the polytope whose
vertices are the endpoints of the minimal vectors of the lattice. Since the
automorphism group of the lattice is En these polytopes can be built up
from the vertex diagram of (suitable) fundamental simplices by drawing a
ring round one of their nodes. These ringed (black) nodes have to be a
midpoint of a minimal norm lattice vectors so in Fig.9 we can state the
Wythoff diagram of these lattices from the given diagrams of them. These
are 122, 231 and 421, respectively. In the case of n = 8 the numbers Ni can
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Figure 10: The number of faces of the polytope 122.

be found in [5], the numbers r,R in all cases in [1]. As a new illustration of
the method, we determine the number of faces when n = 6 or n = 7.

First, we take the diagram 122. Removal an unringed (white) node (and
its branches) from the diagram yields that of a 5-face of the polytope iff
the graph remains connected. Since this diagram is a tree we have only two
possibilities for it, we can remove only a free end of the graph which are
unringed node belonging to only one branch. The nodes of the remaining
diagram represent hyperplanes of symmetry of this 5-face. These, regardless
of the ring, represent the fundamental simplex for the subgroup leaving
invariant this 5-face. The congruent image facets correspond to the cosets
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Figure 11: The number of faces of the polytope 231.

by this subgroup. This means that the number of congruent 5-faces is equal
to the index of this subgroup in the original group. From the diagram we
see that the 5-cells of the examined polytope fall into two congruent classes,
both has the diagram D5. Thus the cardinality M5 = N0 by c̃itecox2 is

N0 = 2 · |E6|
|D5|

= 2 · 72 · 6!
24 · 5!

= 54

by the polarity.
It is clear that if we remove now a free end of the diagram of each above

5-face we get the diagram of any 4-face. The diagram of a 4-face will be a
ringed piece of the full diagram. Dropping the neighbouring branches and
nodes of this piece from the full diagram, we have a new diagram which has
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two parts. (The new diagram is not connected.) If we consider a node which
belongs to the ringed piece as a hyperplane of symmetry of the polytope it
is also a symmetry of the 4-face of it. Simultaneously, the symmetry hyper-
planes, corresponding to the nodes of the other piece of this unconnected
diagram, mean hyperplanes containing the regarded 4-face. Thus the graph
for this 4-face, regardless of the ring, represents the fundamental region for
the subgroup leaving this 4-face invariant. This means that the image copies
of this face correspond to the cosets of the above subgroup, so the number of
this image 4-faces is the index of this subgroup in the full symmetry group.

Continuing this process, we can determine from the diagram the number
of the faces of dimension k for every possible k. If we denote by Mk this
numbers we have that Nk = M5−k by the reciprocity. In Fig.10 we can see
the steps of the calculation.

Similar arguments shows the case of the reciprocal to the polytope 231
for the lattice E7 (see Fig.11). Q.E.D.

Finally we remark that the analogous data of the other root lattices can
be calculated in a similar way. The most detailed description of the D-V
cells of the lattices An, Dn and their reciprocals A∗

n and D∗
n can be found

in the works [1] and [2].
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