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Abstract

This paper consists of two results concerning the DIRICHLET-
VORONOI cell of a lattice. The first one is a geometric property of
the cell of an integral unimodular lattice while the second one gives a
characterization of all those lattice vectors of an arbitrary lattice whose
multiples by 1

2 are on the boundary of the cell containing the origin.
This result is a generalization of a well-known theorem of VORONOI
characterizing the so called relevants of the cell.

1 Introduction

The concept of DIRICHLET-VORONOI cell (also DIRICHLET cell or
VORONOI region, briefly D-V cell), introduced in two classical papers by
DIRICHLET [3] and VORONOI [8],[9] respectively, is useful in solving a lot
of different problems.

In the first part of this paper we deal with some questions concerning
the geometric properties of the D-V cell D of an integral, unimodular lattice
of dimension n. We define a lattice-section (orthogonal to the direction x)
of D as the intersection of D and a lattice-hyperplane orthogonal to a fixed
relevant vector x. (The relevant vectors of D are the lattice vectors actually
needed to define the region D.) We formulate some relations between the
volumes of the lattice sections and the volumes of the cells D,Dx, Dx where
the last two polyhedra are the D-V cells of the lattices L ∩ Hx, where Hx

is the subspace of En orthogonal to x and the orthogonal projection of L
to the hyperplane Hx, respectively. We investigate the lattice sections from
the point of view of symmetry, and raise some questions about it.

In the second part of this paper we prove an interesting result on a
generalization of Voronoi’s theorem on the relevants of the cell D. Using this
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theorem one can easily derive the well-known combinatorial classification of
D-V cells in dimensions two and three, respectively [5]. For the classical
derivation and other details we refer e.g. to the monographs of L.FEJES
TÓTH [4] and B.N.DELONE [2]. We think that these results will play an
important role in the solution of further classification problems on D-V cells.

2 Definitions

Let L be an n-dimensional integral, unimodular lattice. This means that L
is an integral lattice (so the scalar product of any two vectors from L is an
integer), with determinant det L = 1. Here det L = det G = det (AT · A)
where A is the coordinate matrix of a basis of L and G is the so-called
Gram-matrix of the lattice L.

Let x be a vector of L. Then there is a sublattice Lx = L ∩ affLx of
dimension (n − 1) containing the origin and orthogonal to x. (See [1] or
[6].) We denote by Hx the subspace of dimension (n − 1) spanned by Lx.
The lattice vectors corresponding to the hyperplanes which contain a proper
facet ( (n−1)-dimensional face) of the D-V cell D of L are called relevants.
( D consists of those points y of En whose distance from the origin is not
greater than its distance from any other points of the set L.) The height kx
of a vector x ∈ L is the number of those lattice-hyperplanes parallel to (and
different from ) Hx which intersect the segment [0,x].

Let x be a relevant. It is clear that the usual width of D (in the direction
x) is |x| =

√
N(x) while the lattice width ofD is equal to kx. LetDx andDx

be the D-V-cells of the lattice Lx = L ∩Hx and the orthogonal projection
Lx of L to the space Hx, respectively. In fact, the projection Lx is also
a lattice [6]. We have the following relations for the regions Dx, Dx and
D ∩Hx:

Dx ⊃ D ∩Hx ⊃ Dx.

The first relation is trivial while the second one follows from the fact that if
ζ ∈ Dx and there is a lattice vector in L for which y ̸= 0,x, N(y−ζ) < N(ζ)
then for the orthogonal projection y∗ of y the inequalities N(y∗ − ζ) ≤
N(y − ζ) < N(ζ) hold. This is impossible because y∗ ∈ Lx and ζ is in the
cell Dx.

Throughout this paper the lattice-sections of D are written in the form

D ∩ (Hx + i · ex) where i runs from−
[
kx − 1

2

]
to

[
kx
2

]
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and ex is a lattice vector with the property:

L = ∪{(Lx + i · ex) where i is integer}.

(The function [·] denotes the usual integer part function.)

3 On the volume of the lattice-sections

Let x be a relevant of the D-V-cell of the integral unimodular lattice L.
The following theorem gives a relation between the volumes of the lattice
sections and the volume of the D-V-cell of the lattice Lx.

Theorem 1 If L is a lattice then using the introduced notation we have the
following equality:

v(Dx) =

[ kx2 ]∑
i=−[ kx−1

2 ]

v(D ∩ (Hx + i · ex)),

where the function v(·) denotes the volume function of its argument. (In this
case the argument is of dimension n− 1 thus v(·) is the (n− 1)-dimensional
volume function.)

Proof: Let R be a large real number and consider the ball G of dimension
(n−1) with the radius R and center 0. Furthermore, letN0

R be the number of
those lattice points which are in this ball. Similarly, let N i

R be the number
of those lattice points of Lx + i · ex whose orthogonal projections to the
subspace Hx are in the ball G. It is clear that the volume of the ball can
be calculated asymptotically (for large R) as the product of the volume of
Dx and the number N0

R and in another way as the sum of the numbers

N i
R · v(D ∩ (Hx + i · ex)) when i runs from −

[
kx−1
2

]
to

[
kx
2

]
since v(D ∩

(Hx + i · e)) = v(D+ i · e∩ (Hx)). But the numbers N i
R are asymptotically

equal to each other so we have the required equality:

v(Dx) =

[ kx2 ]∑
i=−[ kx−1

2 ]

v(D ∩ (Hx + i · ex)). Q.E.D.

We remark that the above statement holds for general lattices and gen-
eral ”lattice hyperplane” H, taking all the sections of D with lattice hyper-
planes parallel to H. The proof is word by word the same, only projecting
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along some lattice direction not parallel to H (or it follows as the union
of the projections of the sections onto H is a (possible disconnected) tile
for the projection of L). The volume of the D-V-cell Dx of the orthogonal
projection lattice Lx can be given in the following way:

Lemma 1

v(Dx) =
1

kx
v(Dx).

From the definition of the dual (or polar) lattice L−1
x of Lx it is obvious

that for an integral lattice L we have L−1
x ⊇ Lx and this relation is an

equality if and only if the number kx is equal to 1. Moreover, if y1 ∈ Lx

then there is an element y ∈ L for which y = y1 + αx where α is a real
number. If now z ∈ Lx is arbitrary then z ·y = z ·y1 so y1 ∈ L−1

x . (Here the
product ” · ” means the inner product of the vectors.) Therefore Lx ⊂ L−1

x

hence we have:
Lx ⊂ Lx ⊂ L−1

x .

This relation holds for every integral lattice. If the examined lattice is
unimodular and x is one of its relevants we can say a little bit more.

Lemma 2 Let L be an integral unimodular lattice with a relevant x. Then

Lx = L−1
x .

These two lemmas are simple consequences of Lemma 1 and Theorem
1 of the paper [7]. In fact, from the second part of Lemma 1 of [7] we get
that det (Lx) =

1
|x| . where det (lattice) = v( DV-cell) and from Theorem

1 (a) and Theorem 1 (b) of [7] we have the equalities det (Lx) = |x|, and
kx = |x|2, respectively. Now Lemma 1 is obvious and also Lemma 2:

det (Lx) =
1

|x|
=

1

det (Lx)
= det L−1

x .

We remark that Lemma 2 holds for any x not only for relevants.
The following theorem is an interesting consequence of the above lemma.

Theorem 2 Let D be the D-V cell of an integral, unimodular lattice L, and
x be one of its relevant. Then

v(D) =
|x|
kx

·
[ kx2 ]∑

i=−[ kx−1
2 ]

v(D ∩ (Hx + i · ex)) = |x| ·Mx

where Mx is the average value of the volume of the lattice sections of D
perpendicular to the direction x.
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Proof: From the equations

k2x
|x|2

= det(Lx) = |x|2

(see in the proof of Lemma 2) we have the equality |x|2 = kx. So from
Theorem 1 and Lemma 1 we get

v(Dx) =
1

kx

[ kx2 ]∑
i=−[ kx−1

2 ]

v(D ∩ (Hx + i · ex)) =
|x|
kx

.

This gives the required formula:

v(D) = 1 =
|x|
kx

·
[ kx2 ]∑

i=−[ kx−1
2 ]

v(D ∩ (Hx + i · ex)). Q.E.D.

It is well-known that the D-V cell and its (n− 1)-dimensional faces are
centrally symmetric. This means that we have one or two lattice-sections
which are centrally symmetric corresponding to the cases kx is odd (i = 0)
or kx is even (i = 0, i = [kx2 ]), respectively. The following natural question is
unsolved: What is the necessary and sufficient condition that all the lattice-
sections should be centrally symmetric? If the norm of a relevant is one or
two the value kx is the same. This means that the corresponding lattice
sections are centrally symmetric. We think that the converse statement is
also true, if each lattice section perpendicular to the relevant x is centrally
symmetric then the norm of x is one or two. Since the lattice vectors with
norms one or two are precisely the roots of the lattice this conjecture says
that all the lattice sections of x are centrally symmetric if and only if x is a
root of the lattice.

4 Lattice vectors in 2D.

G.F.VORONOI proved in [9] that the lattice vector x is a relevant of the
cell D if and only if it is a minimum vector of the coset x + 2L and if the
vector y is another minimal element of this coset then y = ±x. In this
paragraph we generalize this result. The geometric meaning of this theorem
is the following: The lattice vectors ±x are in the relative interior of an
(n − 1)-dimensional face of the body 2D if and only if they are the unique
pair of minima of the coset x+ 2L if and only if the hyperplane orthogonal
to x through 1

2x intersects D. We show the following theorem:
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Theorem 3 If a lattice vector x is on the boundary of the body 2D then it
is a minimum vector of its coset x+ 2L. If moreover the rank of the set

Mx := {m ∈ L|m is a minimum vector of the coset x+ 2L} ∋ x

is equal to k (k = 1, . . . , n) then the elements of Mx are in the relative
interiors of certain (n − k)-dimensional parallel faces of 2D, these faces
being distinct for distinct elements of Mx.

Proof: If x is in the relative interior of an (n − k)-dimensional face of 2D
then the point 1

2x is in the corresponding (n − k)-dimensional face of the
D-V cell D. Let y be an arbitrary element of L\0 then the closed halfspace

Hy := {α ∈ En | y · α ≤ 1

2
y · y}

contains the point 1
2x which means that x · y ≤ y · y. Regarding now the

norm of the element x− 2y we get that

N(x− 2y) = N(x) + 4N(y)− 4x · y ≥ N(x)

which proves the first part of the statement.
Let x be a shortest element of its coset. Then for every lattice vector

y ∈ L \ 0 the inequality

N(x− 2y) = N(x) + 4N(y)− 4x · y ≥ N(x)

implies that the vector 1
2x is in the halfspaces

Hy := {α ∈ En|y · α ≤ 1

2
y · y}, for every y of L \ 0

which means that it is on the boundary of D. In this case there is a face Π
of dimension n− l of D the relative interior of which contains the point 1

2x
(1 ≤ l ≤ n). Since those tac-hyperplanes of D which contain the point 1

2x
also contain the face Π, we can see that the intersection of the hyperplanes
corresponding to the lattice vectors y ∈ L defined by the equality N(x −
2y) = N(x) contains Π, too. So the flat ∩{bd(Hy)|y ∈ Mx} is of dimension
not less than (n − l). This means that the rank of Mx (which is k by the
assumption) is at most l therefore k ≤ l. On the other hand we show
k ≥ l. Namely there are at least l independent facet hyperplanes bd(Hyi),
i = 1, . . . , σ of D which contain an (n − l)-dimensional face of D (see e.g.
[6]). But for these relevants yi we have the same property that x−2yi ∈ Mx
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Figure 1: The regular simplex lattice and its body 2D.

so k = rank(Mx) ≥ l. This means that k = l. If now x − 2y ∈ Mx, then
N(x − 2y) = N(x) = min{N(x − 2y − 2z) | z ∈ L}, whence x − 2y ∈
bd (2D). Therefore we can repeat for x − 2y the considerations made for
x, which proves the second part of the statement, except the distinctness of
the (n − k)-faces whose relative interiors contain distinct elements of Mx.
Let now e.g. x ̸= x − 2y ∈ Mx,

1
2x ∈ relintΠ, 1

2x − y ∈ relintΠ∗, where
Π, Π∗ are (n− k)-faces of D. By the above proved facts we have that affΠ
( affΠ∗, respectively ) is the translate of ∩{bd(Hy | y ∈ Mx} containing
1
2x (12x−y respectively). Moreover ∩{bd(Hy | y ∈ Mx} is orthogonal to
y, hence Π ̸= Π∗. Q.E.D.
Remark 1: The number of elements of Mx depends on the lattice. In the
three-dimensional cubic lattice there are three types of lattice points belong-
ing to the closed body 2D. The vertex coordinates of 2D are congruent to
(1, 1, 1) componentwise mod2 (we take the coordinates with respect to the
edge vectors of the basic cube of the lattice). The vertices are the minimal
elements of the coset of (1, 1, 1). So |M(1,1,1)| = 8 and rank M(1,1,1) = 3.

Consider now the so-called regular-simplex lattice of dimension 3. We
can construct this lattice from the cubic lattice taking in addition the centers
of the 2-dimensional faces of the basic cube also to lattice points. A basis
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{ ei | i = 1, 2, 3} of this lattice points to centres of any three cube faces
meeting in a cube vertex as origin. In Fig.1 we see the body 2D which
is a rhombic dodecahedron. We have two types of lattice vectors on the
boundary of 2D. E.g. the vertex (−1, 1, 1) of 2D is a lattice point. The
minimal elements of the coset of this point – denoted by double circles in
Fig.1 – are the endpoints of the longer diagonals of the rhombic faces. This
means that |M(−1,1,1)| = 6 and rank M(−1,1,1) = 3. By these two examples
we see that the number of the minimal elements of a coset depends on the
lattice and the combinatorial type of 2D.

These examples suggest the following theorem which gives an algebraic
relation among the lattice points lying on the boundary of 2D.

Theorem 4 Let x be a lattice point in the relative interior of an (n − k)-
dimensional face Π of 2D (1 ≤ k ≤ n). Then there are q facets of 2D
(denoted by Π1, · · · ,Πq) each containing the face Π such that the sum of
their relevants y1, · · · ,yq is equal to x:

x = y1 + . . .+ yq.

The number of these facets is not greater than k (for instance in the previous
example k = 3 and q = 2). The relevants yi above are orthogonal to each
other and so

x2 = y2
1 + . . .+ y2

q .

Proof: We note that if x is a relative interior point of an (n−k)-dimensional
face Π of 2D then, for each relevant y ̸= x, that corresponds to a facet
of 2D containing the face Π we have that the vector x − y is an inner
point of an (n − l)-dimensional face of 2D, where l < k. In fact the vector
x − y is the midpoint of the segment with the respective endpoints x and
x − 2y. Here we have |x| = |x − 2y| and thus x − 2y ∈ Mx. In fact,
|x| = |y + (x − y)| = |y − (x − y)| = |x − 2y|, since both x and y lie in
a hyperplane with normal y. From the the proof of the previous theorem
we can see that these endpoints x and x − 2y are relative inner points of
one of two parallel faces of dimension (n− k), Π and, say, Π∗, respectively.
(affΠ∗ = aff(Π− 2y)). But x− y is not the zero vector thus it is not in the
interior of 2D so it is in the relative interior of an (n − l)-dimensional face
Π1 of 2D where l is less than k. So for an arbitrary relevant y1 like above,
x is the sum of the vectors y1 and x− y1 where the second vector is in the
relative interior of a face Π1 of dimension greater than (n−k). The original
face Π belongs to this new face so facet containing Π1 also contains Π. Let
Π2 be such a facet and Π1 be the facet which corresponds to the relevant
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y1. If y2 is the relevant of the new facet then the lattice vector x− y1 can
be decomposed to the vectors y2 and (x− y1)− y2, respectively. Here the
new vector (x − y1) − y2 is in the relative interior of such a face Π2 which
contains the face Π1 and has a dimension strictly greater than that of Π1.
This means that the statement of the theorem related to the decomposition
is easy to prove by induction. The orthogonality of the relevants can be seen
in the following way. The second facet Π2 contains the second face Π1 so also
contains the segment parallel to y1 with the endpoints x and x− 2y1. Thus
the normal vector y2 of Π2 is orthogonal to y1. In the following step of the
above construction we define a face Π2 which contains the face Π1 therefore
also contains the above segment. The affin hull of this new face Π2 contains
the affine hull of the sets Π1 and Π1 − 2y2. From this definition we see
that the facet Π3 containing the face Π2 (and thus Π1) contains the segment
parallel to y2 with the respective endpoints x− y1 and (x− y1)− 2y2 (and
the segment parallel to y1 with the endpoints x and x− 2y1). This means
that the normal vector y3 of this facet is perpendicular to the vectors y1 and
y2. From this follows the orthogonality of the vectors yi by induction. The
last statement of the theorem is obvious from the orthogonality. Q.E.D.
Corollary: For every n-dimensional lattice if the length of a lattice vector
is greater than n

1
2 ·max{|yi| | yi is a relevant of the cell D} then it is not

in the closed body 2D.
Acknowledgement: I am grateful to Uwe Schnell for his comments, his
proposals for Section 3 made it shorter and more concise.
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