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Abstract

In this paper we will investigate an isoperimetric type problem in
lattices. If K is a bounded 0-symmetric (centrally symmetric with
respect to the origin) convex body in En of volume v(K) = 2ndet L
which does not contain non-zero lattice points in its interior, we say
that K is extremal with respect to the given lattice L. There are two
variations of the isoperimetric problem for this class of polyhedra. The
first one is: Which bodies have minimal surface area in the class of ex-
tremal bodies for a fixed n-dimensional lattice? And the second one is:
Which bodies have minimal surface area in the class of extremal bodies
with volume 1 of dimension n? We characterize the solutions of these
two problems in the plane. There is a consequence of these results,
the solutions of the above problems in the plane give the solution of
the lattice-like covering problem: Determine those centrally symmetric
convex bodies whose translated copies (with respect to a fixed lattice
L) cover the space and have minimal surface area.

1 Preliminary results, notation

A lattice L of the Euclidean n-space En is defined as the set of all integer
linear combinations of the elements of a basis of En. The vector m is a
minimal one if it is one of the shortest non-zero vectors of L. (The length
of a vector is considered with respect to the usual Euclidean norm of En.)
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The Dirichlet-Voronoi cell (briefly D-V cell) D(x) of a lattice point x is the
collection of those points of the space which are not farther to x than to
any other point of the lattice. It is clear from the definition above that L
is invariant under the translations by the lattice vectors, and the reflections
in a lattice point or in the midpoint of any lattice segment, respectively.
From this immediately follows that any two D-V cells are translated copies
of each other and, moreover, any cell and its (n−1)-dimensional faces (called
facets) are centrally symmetric convex sets, respectively. The definition of
D(0) implies (by virtue of the fact that a lattice is a discrete point system)
that it is a polyhedron defined as a finite intersection of certain half-spaces
each of which contains the origin and is bounded by the midhyperplane of
a lattice segment connecting the origin with a lattice point. The collection
of the cells D(x) for x ∈ L forms a so-called lattice tiling of the space
En. Tiling means that their union covers the space and their interiors are
mutually disjoint. This tiling is face-to-face, so in particular, any facet of the
tile D(x) is also a facet of another tile. It is obvious that the D-V cell D is
bounded and we assume in this paper that D also is closed, so this region is
compact. The volume of D is equal to the volume of a basic parallelepiped of
L which is spanned by the vectors of a basis of the lattice. (v(D) = detL.)

Minkowski proved the following basic theorem:

Theorem 1 ([?]) A bounded centrally symmetric convex body K in En with
centre at the origin 0 and volume v(K) > 2nv(D) contains at least one lattice
point different from 0. (D is the D-V cell of L, v(·) is the n-dimensional
volume function.)

From this theorem immediately follows that an 0-symmetric convex body
which does not contain non-zero lattice points in its interior (so-called empty
body) has a volume at most 2nv(D). H.MINKOWSKI introduced the con-
cept of an extremal body with respect to the lattice L which is an empty
0-symmetric closed convex body with volume 2nv(D). An example is 2D,
where D is the D-V cell of L.

In his book he investigated this class of bodies and proved some inter-
esting theorems on it. First of all he characterized the elements of this
class:

Theorem 2 ([?]) Let K be a (bounded) 0-symmetric convex body. Then K
is extremal if and only if the following two properties hold:

a, The space En is covered by the bodies 1
2K + u where u ∈ L.

b, Each point x ∈ En belongs to at most one body 1
2 intK + u,
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where intK means the interior of the body K.

Second he proved the following statements:

Theorem 3 ([?]) If the body K is an extremal one (with respect to a lattice
L) then K satisfies the conditions:

1. K is a polytope.

2. K is centrally symmetric.

3. Each facet of K is centrally symmetric.

Finally in [?] he showed that for an extremal body the following properties
hold:

1. At most 2(2n − 1) lattice points belong to the relative interiors of the
facets of K,

2. K has at most 2(2n − 1) facets,

3. On the boundary of K there lie at least 2(2n − 1) lattice points.

4. The relative interiors of the facets of K contain lattice points. -

In his works [?] and [?] VORONOI also studies this class of polyhedra.
He introduced the concept of parallelohedron as a convex polyhedron P
whose translates by a lattice L cover En and they have disjoint interiors.
So a polyhedron P is a parallelohedron if and only if 2P is extremal with
respect to a lattice L. It is clear that e.g. the D-V cell D of the lattice L is
a parallelohedron.

Later B.A.VENKOV [?] and P.McMULLEN [?] independently examined
the class of those polyhedra whose translates cover En and have disjoint
interiors. They introduced the concept of belt of such a polytope. This
can be defined in the following way: If G is an (n − 2)-face of K, then G
lies in two facets of K, say F and F ′. Since F is centrally symmetric, it
has an (n − 2)-face G′ opposite to G, which is the intersection of F ′ with
another facet F ′′, say. Carrying on in this way, we find a belt of facets
F, F ′, F ′′, . . . , F (k) = F , say, such that each F (i−1) ∩ F (i) is a translate of G
or of −G. Now there holds the following theorem of characterization:

Theorem 4 ([?],[?]) The conditions

1. K is a polytope,
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2. K is centrally symmetric,

3. Each facet of K is centrally symmetric,

4. Each belt of K contains 4 or 6 facets,

are necessary and sufficient for a convex body to tile En with translations.

To show that the conditions are sufficient the authors described a suitable
candidate for tiling of En by translates of K. Then they proved that the
given candidate is a tiling, and from the definition it was clear that it is also
a face-to-face and lattice-like one. This can be given by the following simple
way: if F denotes a facet of K then there is a translation vector tF carrying
−F into F , and the tiling is the family K of certain translates of K defined
by K = {K + t|t ∈ T}, where T = {∑F nF tF |nF ∈ Z}.

One of the most important concepts in the theory of the lattice covering
and packing problems is the concept of L-decomposition. We say that an
n-dimensional ball is a solid ball if it has the properties: It is an empty ball
(does not contain lattice points in its interior), and on its surface there are
at least n + 1 independent lattice points. The convex hull of the lattice
points lying on the boundary of a solid ball is an L-polyhedron, the collec-
tion of L-polyhedra gives the so-called L-partition (or L-decomposition) of
the space with respect to the original lattice. This is in fact a tiling as we
can see in Delone’s papers [?, ?]. In the 2-dimensional case the existence
of an extremal body with minimal perimeter follows from compactness con-
siderations (Blaschke selection theorem), since 0-symmetric compact convex
sets having perimeters less than some constant lie in some fixed circle about
0. (We remark that also in the n-dimensional case there exists an extremal
body of minimal surface area. This can be proved by compactness consid-
erations, and standard estimates of the semiaxis of the John’s ellipsoids,
that yield that the diameters of compact convex sets with fixed volume and
bounded surface area themselves are bounded.)

2 The problems

Our questions now are the following:

1. Which bodies have minimal surface area in the class of extremal bodies
for a fixed n-dimensional lattice?
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2. Which bodies have minimal surface area in the class of extremal bod-
ies with volume 1, of dimension n (i.e., when also the n-dimensional
lattice is varying)?

The purpose of this paper is to answer these questions in the case of
the plane. From the theorem of McMullen and Venkov we know that in
the 2-dimensional case the extremal polygons are either parallelograms or
centrally symmetric hexagons. So the answer to the second question follows
from the solution of the isoperimetric problem for convex polygons: the
optimal one is the regular hexagon. The corresponding lattice is the regular
triangular lattice. The answer to the first question is more complicated, it
will be contained in the third pharagraph.

We conjecture that the solution of the first problem is the solution of
the following one:

1’. Give that 0-symmetric convex body whose translated copies by the
given lattice L form a covering of the space and has minimal surface area in
the class of all such bodies.

We remark that in the plane the solution of problem 1 is the solution of
problem 1’ because in [?] the authors for sake of completeness described a
proof of the fact, that if 1

2K is an 0-symmetric convex body whose trans-
lated copies by the given lattice L form a covering then there is a possibly
degenerate centrally symmetric convex hexagon K ′ ⊂ 1

2K whose translated
copies by the lattice L form a tiling. It is clear that the perimeter of this
hexagon is not greater than the perimeter of 1

2K.
If this conjecture is true then the solution of the second problem is the

solution of the following one:
2’. Give that 0-symmetric convex body with volume 1 whose translated

copies by some lattice L form a covering of the space and has minimal surface
area in the class of all such bodies.

In fact a solution of the latter problem has a translation lattice L and
by the conjecture above the optimal body is an extremal one with respect
to this lattice.

3 The case of the plane

First we prove a lemma which says that the optimal polygon with respect
to a fixed lattice gives an edge-to-edge tiling of the plane.

Lemma 1 Denote by L a fixed lattice of the Euclidean plane and let K be
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Figure 2:

an extremal polygon with respect to L with minimal perimeter. Then the
midpoints of the edges of K are lattice points.

Proof: Using the statement 4 of the introduction we know that the relative
interiors of the edges of K contain lattice points.

Suppose that there is an edge AB of K with lattice point v which is
a relative inner point but it is not the midpoint of AB. There is a lattice
translate 1

2K +v of 1
2K, that also is the mirror image of 1

2K in 1
2v. Let the

mirror image of AB be A′B′. (See Fig.1.) Since 1
2v is not the midpoint of

AB, therefore e.g. A′ is a relative inner point of AB. Then there is a lattice
translate 1

2K + w of 1
2K, such that its vertex B′ + w− v, that corresponds

by the lattice translation to the veretex B′ of 1
2K + v, coincides with A′.

This is clearly impossible for 1
2K a hexagon. So 1

2K is a parallelogram, and
the lattice tiling of translates of 1

2K is composed of rows, which correspond
to one-dimensional lattices {n ·AB}, cf. Fig.2.

Now we prove that in this case K is not an optimal polygon. Consider the
construction of Fig.3. Here the parallelogram partly drawn with broken lines
is K = (2A)(2B)(−2A)(−2B) and has on its boundary six lattice points, C,
D = v, E = w, F , G, H. Let I be the mirror image of O in the idpoint of
CD. Then the perimeter of K is 4((2A)C + (2A)D + (2A)I). However, in
the case that each angle of the triangle CDI is less than 2π

3 , (2A) is not the
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Figure 3: Definition of a tile better than a parallelogram one for a not
edge-to-edge tiling

isogonal point of this triangle, and in the contrary case (2A) is not a vertex
of this triangle. Therefore there exists a point P1 in this triangle, such that

(2A)C + (2A)D + (2A)I > P1C + P1D + P1I.

Let us now reflect P1 in D, obtaining P2, P2 in E, obtaining P3, etc. Thus we
obtain six points P1, . . . , P6, whose convex hull is a hexagon K ′, of perimeter
(P1C + P1D + P1I), that is less than that of K. Hence K is not an optimal
polygon, as claimed. 2

The corollary of this lemma is that the lattice tiling containing the op-
timal extremal polygon is an edge-to-edge one. From this we can prove
that

Lemma 2 For every lattice the optimal extremal polygon is a hexagon.

Proof: By the above proved facts it suffices to exclude the case of an edge-
to-edge lattice tiling of parallelograms. Suppose we have an edge-to-edge
tiling of parallelograms. Then Fig.3. degenerates, and we may suppose
2B = E, 2A = I, and (2B)(2A)(−2B) ≤ π

2 . Than 2A = I is a vertex of the
triangle CDI, with CID 6 < 2π

3 . Therefore there exists a point P1 like in
the proof of Lemma 1, which yields a contradiction. 2

Now we introduce some new notation. If H is an 0-symmetric, con-
vex lattice hexagon whose centre is the origin, vertices are lattice points
and which does not contain another lattice point in its interior or in its
edges, then it can be decomposed into six empty lattice triangles, denoted
by 1, 2, . . . , 6. (See in Fig.4.) We denote the triangles which are the reflected
images of the triangles 1, 2, . . . , 6 in the centres of their edges opposite to
the origin by 1′, 2′, . . . , 6′, respectively.
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Figure 4: Extremal polygon is defined by reflections

Lemma 3 Let H be an 0-symmetric, convex lattice-hexagon which does not
contain another lattice point in its interior or in its edges. Now let K be
an extremal polygon with the property that the midpoints of its edges are
the vertices of H. Then the perimeter of K is minimal if and only if its
vertices are the isogonal points of the triangles 1′, 2′, . . . , 6′. Provided each
angle of these triangles is less than 2π

3 , and the vertices with angles at least
2π
3 , provided there are such vertices.

Proof: From the property that the midpoints of the edges of K are the
vertices of H we see that the vertices of K can be obtained by successive
reflections in the vertices of H. Denote by I, II, . . . , V I the vertices of K
corresponding to the triangles 1′, 2′, . . . , 6′. (The edges containing the vertex
I also contain two vertices of the triangle 1′.) If now the successive reflections
take 1′ into 2′, 2′ into 3′ ,. . . then the image of I is II, that of II is III
and so on. Now let the three vertices of the triangle 1′ be P1, P2 and P3,
respectively. By the reflections we get that the perimeter of K is equal to

P (K) = 4(|IP1|+ |IP2|+ |IP3|).
This proves the lemma. 2

We remark that in this lemma we did not use that the point I is a point
of the closed triangle 1′. It is easy to see that for a fixed hexagon H there
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is no such extremal polygon K which can arise from an outer point of 1′ by
successive reflections in the vertices of H. On the other hand if the point I
is a point of the closed triangle 1′, then the above method gives an extremal
polygon. In fact, if the first four vertices of H are A,B,C, D respectively,
then the half of the polygon K has area

a(
1
2
K) = 3a(∆0AB) + a(∆AIB) + a(∆BIIC) + a(∆CIIID) = 4a(∆0AB).

So the area of K is 22det L. (See Fig.4.)
Now we prove the main result of this paper. We note that in the case

when the L-partition contains rectangles as L-polygons, we call L-triangle
such a triangle whose three vertices are vertices of an L-rectangle. In this
case there will be an ambiguity for K in the next theorem.

Theorem 5 Let L be a fixed lattice of the plane, K be an extremal polygon
with minimal perimeter. Then the vertices of K are the isogonal points of
the triangles 1′, 2′, . . . , 6′, which arise from a lattice-hexagon H consisting of
six L-triangles of L having a common vertex (see Fig.4).

Proof: From Lemma 2 we know that the optimal extremal polygon is a
hexagon. By Lemma 1 we get that the midpoints of its edges are lattice
points, and the convex hull of these points is an affine regular lattice-hexagon
H containing only one lattice point in its interior and no lattice points in
the relative interiors of its edges. (Assuming that there are at least two
points in the interior of the hexagon, these points are in the interior of K,
which is a contradiction. Assuming that e.g. the relative interior of AB
contains a lattice point then also the relative interior of OC contains one a
contradiction again.) The interior lattice point is the origin 0, and thus the
common vertex of the empty lattice triangles 1, 2, . . . , 6 with union H, is
the origin. Now by Lemma 3 we get that the vertices of K are the isogonal
points of the triangles 1′, 2′, . . . , 6′ or their vertices with angles at least 2π

3 .
(See Fig.4.) Since the perimeter of K is

P (K) = 4(|IP1|+ |IP2|+ |IP3|)

we have to minimize the quantity (|IP1|+ |IP2|+ |IP3|).
First we assume that the point I is an inner point of the triangle 1′.

This means that triangle 1′ has no angle greater than or equal to 2π
3 , and
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the angles PiIPj 6 are equal to 2π
3 . Using the fact that if I is the isogonal

point of the triangle ∆P1,P2,P3 , then

|PiPj |2 = |IPi|2 + |IPj |2 + |IPi||IPj |
for i 6= j, we get that

(|IP1|+ |IP2|+ |IP3|)2 =
(|IP1|2 + |IP2|2 + |IP3|2) + 2(|IP1||IP2|+ |IP2||IP3|+ |IP1||IP3|) =

= 1
2(|P1P2|2 + |P2P3|2 + |P1P3|2) + 3

2(|IP1||IP2|+ |IP2||IP3|+ |IP1||IP3|).
We have

a(1′) =
1
2
(|IP1||IP2|+ |IP2||IP3|+ |IP1||IP3|)

√
3

2
,

which means that the second examined sum

(|IP1||IP2|+ |IP2||IP3|+ |IP1||IP3|)
is constant. (We know that the areas of the empty lattice-triangles are
equal.) So in this case the perimeter of K is minimal if and only if the
sum (|P1P2|2 + |P2P3|2 + |P1P3|2) is minimal. But the triangle ∆P1,P2,P3 is
a lattice-triangle whose two edges give a basis of the lattice, so

(|P1P2|2 + |P2P3|2 + |P1P3|2) ≥ m1 + m2 + l,

where m1 is the square of the length of a minimal vector m1 of the lattice,
m2 is the square of the length of such a shortest lattice vector m2 which
is linearly independent from m1 and satisfies < m1|m2 >≥ 0, and l is the
square of the length of the vector m1 −m2. In fact it can be proved easily
that the lengths of the edges of the triangle above are not greater than the
lengths of the corresponding edges of any other empty non-degenerate lattice
triangle. (We compare the shortest edge with the shortest edge of the other
triangle and so on. We distinguish two cases:

1,: ∆P1P2P3 has a side parallel to m1. Then it suffices to investigate the
case P1 = 0, P2 = m1, P3 = m2 + im1, i integer.

2,: ∆P1P2P3 has no side parallel to m1. Then in the basis {m1,m2}
e.g. P1, P3 have second coordinates differing by atleast 2, and the minimal
distance of any such points is greater than ‖m2 −m1‖.)

In the second case, when I is a vertex of 1′, the extremal polygon
corresponding to the hexagon H is a parallelogram, because the respective
image of the point I is left fixed by the first, second or third reflection. By
virtue of Lemma 2 this extremal polygon is not an optimal one.

Thus we have proved the theorem. 2
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