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Abstract

In this paper we shall investigate the boundary of an extremal body K. Using the
characterization of the extremal bodies proved by Venkov and McMullen (Theorem 1) we
give two theorems (Theorems 4,5) determining the relative position of the lattice vectors on
the boundary of K. These statements are analogues of Theorem 2 and Theorem 3 proved for
Dirichlet-Voronoi cells in [5]. In the third pharagraph we investigate the connection between
the simplicity of a face and the property that it contains lattice points in its relative interior
(Theorems 6,7,8).

1 Introduction

This section contains a short survey of the results connecting to the theory of Dirichlet-Voronoi
cells and extremal bodies. Other interesting results related to this theme can be found in the
Gruber’s survay article on Geometry of Numbers in [6]. Theorems 1-3, were proved in papers
[13], [9], [5], respectively. Theorems 4–8 contain the new results of this paper.

A lattice L of the Euclidean n-space En is defined as the set of all integer linear combinations
of the elements of a basis of En. The vector m is a minimal one if it is one of the shortest
non-zero vectors of L. (The length of a vector is considered with respect to the usual Euclidean
norm of En.) The Dirichlet-Voronoi cell (briefly D-V cell) D(x) of a lattice point x is the
collection of those points of the space which are not farther to x than to any other point of the
lattice. It is clear from the definition above that L is invariant under the translations by the
lattice vectors, and the reflections in a lattice point or in the midpoint of any lattice segment,
respectively. From this immediately follows that any two D-V cells are translated copies of
each other and, moreover, any cell and its (n− 1)-dimensional faces (called facets) are centrally
symmetric convex sets, respectively. The definition of D(0) implies (using the fact that a lattice
is a discrete point system) that it is a polyhedron defined as a finite intersection of certain
half-spaces each of which contains the origin and is bounded by the midhyperplane of a lattice
segment connecting the origin with a lattice point. The collection of the cells D(x) for x ∈ L
forms a so-called lattice tiling of the space En. Tiling means that their union covers the space
and their interiors are mutually disjoint. This tiling is face-to-face, so in particular, any facet
of the tile D(x) is also a facet of another tile. It is obvious that the D-V cell D is bounded and
we assume in this paper that D also is closed, so this region is compact. The volume of D is
equal to the volume of a basic parallelepiped of L which is spanned by the vectors of a basis of
the lattice. (v(D) = |det L|.) Minkowski proved in [10] that a (bounded) centrally symmetric
convex body K in En with centre at the origin 0 and volume v(K) > 2nv(D) contains at least
one lattice point different from 0. From this theorem immediately follows that an 0-symmetric
convex body which does not contain non-zero lattice points in its interior has a volume at most
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2nv(D). He introduced the concept of an extremal body with respect to the lattice L. This is an
0-symmetric (closed) convex body which does not contain non-zero lattice points in its interior
and has volume 2nv(D) . An important example is 2D, where D is the D-V cell of L. He
investigated this class of bodies and proved some interesting theorems on it. First of all he
characterized the elements of this class as follows ([11]): The 0-symmetric (bounded) convex
body K is extremal if and only if the following two properties hold:

a, The space En is covered by the bodies 1
2K + u where u ∈ L.

b, Each point x ∈ En belongs to at most one body 1
2 intK + u,

where intK means the interior of the body K. (1
2K + L is a tiling of the n-space.)

Second he proved in [12] that if the body K is an extremal one (with respect to a lattice L)
then K satisfies the conditions:

1. K is a polytope.
2. K is centrally symmetric.
3. Each facet of K is centrally symmetric.
Finally in [12] he showed that for an extremal body some important properties hold. He

proved that at most 2(2n − 1) lattice points belong to the relative interiors of the facets of the
body K, it has at most 2(2n− 1) facets, on the boundary of K there lie at least 2(2n− 1) lattice
points and the relative interiors of the facets of K contain lattice points.

In his works [14] and [15] G.F.Voronoi also studies this class of polyhedra. He introduced
the concept of parallelohedron as a convex polyhedron P whose translates by a lattice L cover
En and they have disjoint interiors. So a polyhedron P is a parallelohedron if and only if 2P
is extremal with respect to a lattice L. It is clear that e.g. the D-V cell D of the lattice L is a
parallelohedron.

Later B.A.Venkov [13] and P.McMullen [9] independently examined the class of those poly-
hedra whose translates cover En and have disjoint interiors. They introduced the concept of a
belt of facets of such a polytope. This can be defined in the following way: If G is an (n−2)-face
of K, then G lies in two facets of K, say F and F ′. Since F is centrally symmetric, it has an
(n− 2)-face G′ opposite to G, which is the intersection of F ′ with another facet F ′′, say. Going
on in this way, we find a belt of facets F, F ′, F ′′, . . . , F (k) = F , say, such that each F (i−1) ∩F (i)

is a translate of G or of −G. The following theorem ([13],[9]) characterizes the parallelohedra:

Theorem 1 (Venkov, McMullen) The conditions

1. K is a polytope,

2. K is centrally symmetric,

3. Each facet of K is centrally symmetric,

4. Each belt of K contains 4 or 6 facets,

are necessary and sufficient for a convex body to tile En with translations.

To show that the conditions are sufficient the authors described a suitable candidate for tiling
of En by translates of K. Then they proved that the given candidate is a tiling, and from the
definition it was clear that it is also a face-to-face and lattice-like one. This can be given by the
following simple way: if F denotes a facet of K then there is a translation vector tF carrying −F
into F , and the tiling is the family K of certain translates of K defined by K = {K + t|t ∈ T},
where T = {∑F nF tF |nF ∈ Z}.

G.F.Voronoi raised one of the most important questions of this area:
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Whether each parallelohedron is an affine image of a D-V cell?
This problem is open. For dimensions n ≤ 4 this conjecture was proved by B.H.Delone [3]

while in the papers [14] and [15] G.F.Voronoi showed that in the space En each parallelohedron
which is the prototile of a primitive lattice tiling is an affine image of a D-V cell. (A tiling
is primitive if at each vertex exactly (n + 1) tiles meet.) This result was refined later on by
Zitomirski (see [16]), he has shown that every (n− 2)-primitive tile has also this property. (An
n-tile is (n− 2)-primitive iff each of its belts is a 6-belt.)

Now we turn to the problem of lattice points on the boundary of an extremal body.
G.F.Voronoi in [14] proved that the lattice vectors ±x are the unique pair of minima of their
coset with respect to the group 2L if and only if their endpoints are in the interiors of opposite
facets of the body 2D. The author has generalized this result as follows :

Theorem 2 ([5]) If a lattice vector x is in the relative interior of an (n− k)-dimensional face
of the body 2D (for certain k = 1, . . . , n − 1) then it is a minimum vector of its coset x + 2L.
Conversely if the rank of the set

Mx := {m ∈ L|m is a minimum vector of the coset x + 2L}

is equal to k then the elements of Mx are in the relative interiors of certain (pairwise distinct)
(n − k)-dimensional faces of 2D. Furthermore in the case of k = n the lattice vector x is a
vertex of the body 2D if and only if x is a minimum vector of the coset x + 2L and the rank of
Mx is equal to n.

Here the rank of a vector set means its dimension. The following theorem gives an algebraic
relation among the lattice points lying on the boundary of 2D. The relevant of a facet F of 2D
is 1

2tF , with the notation introduced after Theorem 1, for K = 2D.

Theorem 3 ([5]) Let x be a lattice point in the relative interior of an (n−k)-dimensional face
Π of 2D. (1 ≤ k ≤ n). Then there are q facets of 2D (denoted by Π1, · · · ,Πq) each containing
the face Π such that the sum of their relevants y1, · · · ,yq is equal to x:

x = y1 + . . . + yq.

The number of these facets is not greater than k. The relevants yi above are orthogonal to each
other and so

x2 = y2
1 + . . . + y2

q .

In the second paragraph we give some theorems on parallelohedra, analogous to Theorem 2
and Theorem 3 and investigate similar questions in the general case. In the third paragraph
we introduce the concept of weak simplicity of a face of a parallelohedron and investigate the
boundary complex of the parallelohedron on the base of this property. We can see in this chapter
some interesting examples illustrating the strange possibilities.

2 Lattice points on the boundary of the extremal body K.

From now on K will denote an extremal body with respect to some lattice, and L will denote
one of these lattices, namely the one described after Theorem 1, when we apply Theorem 1 to
the body 1

2K rather than K. Denote by Πk a k-dimensional face of K (k = 0, 1, . . . , n − 1).
The following simple lemma is possible folklore. As it important for our results, we give a short
proof.
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Lemma 1 If the face Πk contains a lattice point x in its relative interior, then Πk is centrally
symmetric with the lattice point as center.

Proof: Consider the parallelohedron 1
2K as a tile of the lattice tiling with lattice L. The

midpoint P of the segment [0,x] is a center of symmetry of this face-to-face tiling. This means
that the reflection in P interchanges the parallelohedra 1

2K and 1
2K +x and the k-faces 1

2Πk and
−1

2Πk + x of this polyhedra containing the fixed point P in their relative interiors, respectively.
Since the tiling is face-to-face we have that

1
2
Πk = −1

2
Πk + x

which proves the statement. 2

Corollary 1: If the common face of the parallelohedra 1
2K and 1

2K + x is the k-face 1
2Πk

(0 ≤ k ≤ (n− 1)), then 1
2Πk is centrally symmetric with the center 1

2x.
Proof: In fact, the reflection in 1

2x shows that 1
2x is a common boundary point of the bodies

1
2K and 1

2K + x (it is the center of the convex hull of the faces 1
2Πk and its reflected image in

1
2x) so by the above lemma the statement follows. 2

Corollary 2: There are no three distinct parallelohedra 1
2K + u,1

2K + v and 1
2K + w having a

common point for which the following property hold:

(
1
2
K + u) ∩ (

1
2
K + v) = (

1
2
K + u) ∩ (

1
2
K + w).

Proof: Using Corollary 1, the first equality means that 1
2(v − u) = 1

2(w − u) thus v = w. 2

Now we prove the generalization of the first statement of Theorem 3 for extremal bodies. Let
Πi be a facet of 1

2K. Denote by yi the lattice vector whose midpoint is the center of Πi and let
ai be an outer normal vector of the facet Πi.

Theorem 4 Let x be a lattice point in the relative interior of an (n−k)-dimensional face Π(n−k)

of K. (1 ≤ k ≤ n). Then there are q facets of K (denoted by Π1, · · · , Πq) each containing the
face Π(n−k) such that the sum of the corresponding relevant outer lattice vectors y1, · · · ,yq is
equal to x:

x = y1 + . . . + yq.

The number of these facets is not greater than k. Finally, the matrix

[ai · yj ]
q
i,j=1

given by the normal vectors ai corresponding to the facet Πi is a positive definite diagonal matrix.

Proof: We may suppose k > 1. From the convexity and extremality of K it is obvious that if u
and v two lattice points on the boundary of K and the vector u+v

2 6= 0 is a lattice vector then it
is also on the boundary of K. Let now y1 be a lattice vector pointing to the center of an (n−1)-
dimensional facet Π1 of K containing Π(n−k). Since Π(n−k) ⊂ Π1 and the translation through
−y1 takes the parallelohedron 1

2K + y1 into 1
2K, we see that the polyhedron 1

2Π(n−k) − y1 is
an (n− k)-face of 1

2K. By Lemma 1 the face 1
2Π(n−k) is centrally symmetric with center 1

2x, so
its above translated copy is also centrally symmetric, with center 1

2x−y1. This means that the
lattice point x− 2y1 is also on the boundary of K. Since evidently x 6= y1 the vector

(x− 2y1) + x
2

= x− y1
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is a lattice vector lying on the boundary of K, too. Then the intersection Π = 1
2K+(x−y1)∩ 1

2K,
that is a face of 1

2K, contains the faces 1
2Π(n−k), 1

2Π(n−k) − y1, so dimΠ > (n− k). So for a y1

as above, x is the sum of the vectors y1 and x − y1, where the second vector is the center of
a face of dimension greater than (n − k). Since a facet containing this new face also contains
1
2Π(n−k) the first two statements of the theorem related to the decomposition are easy to prove
by induction.

For the proof of the last statement we note that the scalar products ai · yj are not negative
for each pair of indices since the corresponding facets Πi, Πj of K contain the face Π(n−k). In
fact, for i = j this is evident. On the other hand, if i 6= j, Πj is contained in the parallel
strip bounded the hyperplanes spanned by Πi, −Πi. Let Hi be the mid-hyperplane of this strip.
Then the halfspace, bounded by this hyperplane Hi and containing the face Π(n−k), contains
the centers of all those facets which have Π(n−k) as a face. If now

x = y1 + . . . + yq,

then for every index, i = 1, . . . , q we have the equality

0 = ai · (x− yi) =
∑
j=1
j 6=i

ai · yj

which means that for each pair of indices i, j = 1, . . . , q, i 6= j we have

ai · yj = 0.

Since the hyperplanes of the facets do not contain the origin we also have the inequalities:

ai · x = ai · yi > 0.

2

Remark 1: We note that for each index i = 1, . . . , q we have

ai · x = ai · yi.

Thus we have the equality
(∑

I
ai

)
· x =

∑

I
ai · x =

∑

I
ai · yi,

which holds for all sets I of indices of the facets containing the face Π(n−k).

Definition 1 We say that the lattice vector x is a K-short vector if the lattice point x is either
in the relative interior of an (n−k)-dimensional face of the body K (for certain k = 1, . . . , n−1)
or it is a vertex of K (equivalently: x belongs to the boundary of K).

H.Minkowski proved (see [7]) that every non-zero congruence class in L/2L contains at least
one pair of K-short vectors. We are now interested in the connection among the K-short vectors
of a congruence class and the corresponding faces of K.

Theorem 5 Let x be a K-short vector and Mx be the set

Mx := {m ∈ L|m is a K-short vector of the coset x + 2L}.
Then the faces corresponding to the elements of Mx (i.e., that contain them in their relative
interiors) are translates of each other. They have the same dimension, say (n − k). The rank
of Mx is at least k.
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Proof: Let x and y be two K-short vectors in the same congruence class. So x = y + 2z where
the lattice vector z is not zero. Let Πx and Πy denote those faces of K whose relative interiors
contain x and y, respectively, and therefore whose centers are x and y, respectively. Then the
translation through the lattice vector z takes the center of the face 1

2Πy to the center of the face
1
2Πx. But a translation through a lattice vector leaves the tiling invariant, so if a face of the
tiling and the translate of another face have a common relative interior point then they coincide.
This means that

1
2
Πy + z =

1
2
Πx

and the first statement is proved.
For the proof of the second statement we note that for x ∈ relintΠ(n−k) the relevant vectors

yi, i ∈ I, of the facets Πi containing the face Π(n−k) are in the set 1
2(x −Mx). In fact, this is

equivalent to 2yi−x ∈Mx, which in turn follows from the fact that yi is the center of symmetry
of Πi. By 0-symmetry of Mx 6= 0 the rank of 1

2(x−Mx) is equal to the rank of Mx, so

rank{yi|i ∈ I} ≤ rankMx.

Since it is obvious that for the (n − k)-face Π(n−k) the rank{yi|i ∈ I} is not less than k, the
statement is true. 2

Remark 2: We have seen that the rank of the vector set Mx is at least k. We assert that for
double D − V cells it is equal to k. To show this, first we observe that if D is the D − V cell
of 0 with respect to a lattice L′, then the lattice L constructed after Theorem 1 for the body
D coincides with L′. In fact, if Πi is a facet of D, P i the reflection of 0 in affΠi, then P i ∈ L′.
(affΠi denotes the affine hull of Πi). Since the reflection in 1

2P i is a symmetry of the lattice L′,
Πi is symmetric with respect to 1

2P i as well. So each above P i is the mirror image of 0 in the
center of symmetry of Πi, showing L′ ⊂ L. Then |detL′| = v(D) = |detL| shows L′ = L. By the
above shown inclusion

{yi|i ∈ I} = {yi|yi is the relevant vector of a facet Πi of D, containing Π(n−k)} ⊂
1
2
(x−Mx),

and orthogonality of yi to Πi (that follows from the above considerations) we have rankMx =
rank(1

2(x −Mx)) ≥ rank{yi|i ∈ I} ≥ k. On the other hand, by Theorem 3 x is orthogonal to
affΠ(n−k), and then by Theorem 5 each y ∈ Mx is orthogonal to a translate of affΠ(n−k), i.e.,
to affΠ(n−k). Therefore each 1

2(x − y), where y ∈ Mx, lies in a k-subspace, so rankMx ≤ k,
and therefore rankMx = k. Since an affinity is a linear mapping, for a Voronoi parallelohedron
(which is an affine image of a D − V -cell) this number is also k. This motivates the conjecture
that in all cases the rank of Mx is equal to k. In fact, a counterexample for this conjecture
is also a counterexample for the Voronoi conjecture.

Now we introduce the concept of dual polyhedron strongly connected to this problem.

Definition 2 Let an (n − k)-face be 1
2Π(n−k) with the center 1

2x, where x ∈ L \ {0}. Define
for each elements y ∈ Mx the translated copy 1

2K + z = 1
2K + x−y

2 of 1
2K. The convex hull

of the centers of these parallelohedra (i.e., of the points x−y
2 ) is a centrally symmetric convex

polyhedron P (1
2Π(n−k)) , that we call the dual of 1

2Π(n−k) with respect to the tiling.

On the structure of the dual polyhedron of a face containing a lattice point 1
2x we have a

nice observation. By a diagonal of a convex polyhedron we mean any segment joining two of
its vertices.

Theorem 6 The vertices of P (1
2Π(n−k)) are the centers of those parallelohedra from the body

lattice L + 1
2K, that contain 1

2Π(n−k). The center of each diagonal of P (1
2Π(n−k)) is the center

of some (proper or trivial) face of P (1
2Π(n−k)), containing the diagonal in question.
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Proof: Let x be a K-short vector, and y ∈ Mx. Then 1
2x is in the relative interior of a face

1
2Π(n−k), hence is the centre of it. Thus z = 1

2(x−y) ∈ P (1
2Π(n−k)) = conv{1

2(x−yi)|yi ∈Mx}.
We assert that z is a vertex of P (1

2Π(n−k)). In fact, y ∈ conv{yi|yi ∈ Mx}, and it suffices to
show that y is a vertex of conv{yi|yi ∈Mx}. Since the faces containing the points yi ∈Mx in
their relative interiors are translates of each other, the projection of the points yi ∈Mx to the
linear k-subspace orthogonal to Π(n−k) are vertices of the projection of conv{yi|yi ∈ Mx}. If
y were not a vertex of conv{yi|yi ∈ Mx}, then y would be a convex combination of the other
yi’s. Hence the projection of y would be a convex combination of the projections of the other
yi’s which is impossible, since they are vertices of the projection.

It remains to show that, for a lattice vector v ∈ L, the properties 1
2K + v ⊃ 1

2Π(n−k), and
v = 1

2(x− y), for some y ∈ Mx, are equivalent. The cell decomposition property of the lattice
tiling 1

2K +L implies that 1
2K +v ⊃ 1

2Π(n−k) is equivalent to 1
2x ∈ 1

2K +v. If now v = 1
2(x−y),

for some y ∈Mx, then 1
2K + v = 1

2K + 1
2(x− y) 3 1

2x follows from K ⊃Mx 3 y. Conversely,
let 1

2K + v 3 1
2x. Then v = 1

2(x − y) with y ∈ En, and v ∈ L implies y ∈ x + 2L. To show
y ∈Mx still we have to show that y is a K-short vector. We have

1
2
K + v =

1
2
K +

1
2
(x− y) 3 1

2
x,

hence K 3 y. We have y 6= 0, since else x ∈ 2L and thus x cannot be a K-short vector.
Therefore y ∈ bdK, thus y is a K-short vector, hence y ∈Mx. This ends the proof of the first
statement.
For the second statement about P (1

2Π(n−k)) it is sufficient to prove its analogue for conv{Mx}.
Let yz be a diagonal of conv{Mx}. If y + z = 0, we have the trivial face conv{Mx}, that is
symmetric with respect to 0, and contains the diagonal yz. For y+z 6= 0 we have L 3 1

2(y+z) 6=
0, hence 1

2(y + z) ∈ bdK, and then by Lemma 1 the face containing 1
2(y + z) in its relative

interior is symmetric with respect to 1
2(y + z), and evidently contains both y and z. 2

Remark 3: In the two dimensional case we have two types of polygons having the second
property of Theorem 6. These are the triangles and the parallelograms. The class of such
polyhedra will be called weakly-neighbourly polyhedra because it is clear that for example the
simplices, parallelotopes, cross-polytopes and 1-neighbourly polytopes are polyhedra having this
property. It is easy to see that all the faces of a weakly-neighbourly polyhedron are also weakly-
neighbourly, and the pyramids and the central symmetric bipyramids over an (n−1)-dimensional
weakly-neighbourly polyhedron are weakly-neighbourly, too. The combinatorial classification
problem of these polyhedra may be interesting (also in the 3-space).

3 On the simplicity

The following definition was introduced by G.F.Voronoi.

Definition 3 ([14]) The k-face F of the parallelohedron 1
2K is simple if it is a face of precisely

n − k + 1 translated copies of 1
2K in the lattice tiling described after Theorem 1, where 1

2K is
always counted as a translated copy of itself.

It is well-known ([7]) that if the face F is simple, then each pair of parallelohedra containing
F has a common facet. The author does not know whether or not this latter condition implies
the simplicity. If we omit the requirement that 1

2K is a parallelohedron we can formulate the
following question: what is the maximal number of centrally symmetric convex polyhedra such
that

1. they are translated copies of each other,
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2. their interiors are mutually disjoint,

3. each two have a common facet and

4. all of them have a common (lower dimensional) k-face (in particular have a common point).

The set of homologous points of such a family is a so-called strictly antipodal set (see [8] 3,iii.), i.e.
for any two points si, sj of this set, S, say there exist different parallel supporting hyperplanes
Hij ,Hji of the convex hull of this set, such that S ∩Hij = {si}, S ∩Hji = {sj} (actually 1,2,3,
suffice for this property). From a strictly antipodal set one can construct a family of centrally
symmetric convex polyhedra fulfill the first and second conditions if it still satisfies the condition
that the intersection of the hyperplanes parallel to the support hyperplanes Hij and containing
the corresponding midpoint 1

2(si + sj) of the connecting segment is not empty. In fact, the
polyhedral cones K+

C with vertex this common point O bounded by the midhyperplanes of the
segments having a common point C of the strictly antipodal set can be translated into a fix
point C∗ through the vectors CC∗, respectively. The intersection of these translated copies is a
centrally symmetric convex body fulfills the conditions above. In [4] we can find such a strictly
antipodal point set whose cardinality is an exponential function of the dimension n. This set
contains certain vertices of an n-dimensional cube, the corresponding support hyperplanes are
orthogonal to the connecting segments so the corresponding family of bodies fulfils all of our
conditions (with k = 0). (However we cannot check whether it is a parallelohedron or not.) The
above facts motivate the following definition.

Definition 4 The k-face 1
2F of 1

2K is weakly simple if each pair of parallelohedra in the
above lattice tiling of 1

2K containing 1
2F , has a common facet.

Next we define the concept of dual polyhedron for all faces of 1
2K. Observe that, by Theorem

6, when Π is symmetric with respect to a nonzero lattice vector x, then this definition reduces
to Definition 2. The definition is the following:

Definition 5 Let 1
2K be a parallelohedron and let 1

2Π a face of it of dimension r. Let P (1
2Π)

denote the convex hull of the centers of those parallelohedra in the lattice tiling 1
2K + L of 1

2K,
that contain the face 1

2Π.

We note that if the dual polyhedron P (1
2Π) of a simple k-face 1

2Π is n− k-dimensional then
it is an (n− k)-simplex.

The following theorem contains the basic properties of weak simplicity.

Theorem 7 If the k-face (0 ≤ k ≤ (n− 1)) 1
2F of 1

2K is weakly simple then

1. all faces containing 1
2F are also weakly simple,

2. the vertex set of the dual polyhedron P (1
2F ) is the collection of the centers of those paral-

lelohedra in the lattice tiling of 1
2K that contain 1

2F ,

3. the relative interior of 1
2F does not contain any lattice midpoint if k ≤ n− 2.

4. If the k-face 1
2G is maximal (with respect to inclusion) non-weakly-simple, then it contains

a lattice midpoint in its relative interior.

Proof: The first statement is an easy consequence of the definition using the fact that if
1
2G ⊃ 1

2F , then the set of parallelohedra containing 1
2G is a subset of the set of parallelohedra

containing F .
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The second statement is a consequence of the fact that vertP (1
2F ) is a strictly antipodal

set (see [8] 3,iii). In fact, for a strictly antipodal set S = {s1, . . . , sm}, for any si there is a
supporting hyperplane H of convS, such that H ∩ convS = si showing that si is an extremal
point, i.e. a vertex of convS.

The proof of the third statement is the following. Let 1
2F be a weakly-simple k-face and 1

2v
be a lattice vector in its relative interior. Let k < n− 1 by Lemma 1 1

2F is centrally symmetric
with center 1

2v. This means that the intersection of the parallelohedra 1
2K and 1

2K + v is 1
2F

that is a contradiction to the weak simplicity.
The fourth statement follows from the fact that if 1

2F is not weakly simple then there are two
parallelohedra containing it and having as intersection a common l-face 1

2G with k ≤ l < n− 1.
Using Corollary 1 we get that 1

2G is a face containing in its interior a half lattice vector, which
means by the previous property that it is non-weakly-simple. But 1

2F is maximal (with respect
to inclusion) so 1

2G = 1
2F which ends the proof. 2

Remark 4: In 3-space we can give a simple example of a non-trivial maximal non-weakly-simple
face. Those vertices of the rhombic dodecahedron (that is the D − V cell of the 3-dimensional
regular simplex lattice A3) which are halves of certain lattice vectors are non-weakly-simple faces
while all of the edges are simple (and so weakly-simple) faces. So these vertices are 0-dimensional
maximal non-weakly-simple faces.
Remark 5: By the above theorem we have the following situation.

1. If a face F of K is weakly-simple and dimF ≤ n − 2 then it does not contain a lattice
point in its relative interior.

2. If F is a maximal non-weakly-simple (all the faces containing it are weakly-simple)
then there is a lattice point belonging to its relative interior.

3. If F is non-weakly-simple but not a maximal non-weakly-simple one then each of
the two above possibilities can occur. In the case of the cube each face contains a lattice
point in its relative interior and the faces of dimension k < n − 2 are non-weakly-simple
and not maximal ones, on the other hand the case of the 3-dimensional hexagonal prisms
the edges of the hexagons are maximal non-weakly-simple faces and the vertices are also
non-weakly-simple (but not maximal) ones and they are not lattice points with respect to
the corresponding lattice-like face-to-face tiling of K.

Theorem 8 The vertices of P (1
2Π) are the collection of the centers of those parallelohedra which

contain 1
2Π.

Proof: Let S(1
2Π) denote the set of centers of those parallelohedra in the lattice tiling 1

2K + L,
that contain the face 1

2Π. We have to show that each s ∈ S(1
2Π) is an extremal point of P (1

2Π).
Since for 1

2Π1 ⊂ 1
2Π2 we have S(1

2Π1) ⊃ S(1
2Π2), it suffices to show this for 1

2Π = 1
2v a vertex.

Evidently it suffices to show that each −s ∈ −S is an extremal point of −P (1
2v), i.e. −s + 1

2v
is an extremal point of −P (1

2v) + 1
2v. However −s+ 1

2v ∈ 1
2K + 1

2v, and is a vertex of it, hence
is a vertex of conv{−si + 1

2v|si ∈ S} = −P (1
2v) + 1

2v. 2

Remark 6: It is obvious that, if F ⊂ G, then P (F ) ⊃ P (G), so the dual polyhedra of the
vertices of the tiling contain (as certain subset) the dual of any other face of the tiling. In the
case of D − V cells the dual polyhedra of the vertices, that are n-dimensional polyhedra, are
the elements of the so-called L-tiling they are the L-tiles. By applying an affinity we have that,
when K is a Voronoi parallelohedron (i.e., an affine image of a D-V cell), then the system of
dual polyhedra of the vertices gives another (face-to-face) tiling of the n-space, that is called
the dual tiling of the space with respect to the tiling determined by the parallelohedron
1
2K. P.McMullen in [9] proved that any two parallelohedra, in the lattice packing 1

2K + L of

9



any parallelohedron 1
2K, can be connected with a chain of contiguous parallelohedra of this

collection (two of these parallelohedra are contiguous, if they have a common facet). Thus we
also would have a counter-example for the Voronoi conjecture if we had a parallelohedron with
an edge E, for which dimP (E) 6= n− 1.
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