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MAXIMAL CONVEX HULL OF CONNECTING SIMPLICES.

A. G HORVATH

ABsTRACT. This paper deals with the following question concerning the volume of
the convex hull of two "connecting” simplices:

How do we have to place two simplices with common center in E? as to maximize
the volume of their convex hull? The answer to this simple question is depend on
the dimension of the simplices and to prove the expected final results is not easy.

This paper contains the following two cases: either both of the simplices are
regular triangles or are regular tetrahedra. respectively.

1. INTRODUCTION

The examined problem of this paper is strongly related with the following classical
one:

How do we have to place v points on the unit sphere in E? so as to maximize
the volume of their convex hull? For v = 4,6 and 12 the solution is given by an
inequality of L. Fejes T'6th (see in [4]) showing that the best configurations are
the vertices of a regular tetrahedron. octahedron and icosahedron, respectively.
The extremal configurations are known also for v = 5,7,8. In the case of v = 5
it is the triangular dipyramid as be seen. The other two cases was proved by
Berman and Hanes in [1]. We remark that the optimal polyhedron in the case of
v = 8 was discovered (earlier) by Grace (see in [3]). In the case of triangles we
exclude the regular octahedron from the possibility. Our solution is a nonregular
simplicial polyhedron combinatorially equivalent to an octahedron. In the c ase
of tetrahedra our solution is a cube contrary to the optimal arrangements of eight
points on the sphere. (See [2].)

The actuality of the present paper is argumented from an observation of L. Fejes
To6th (see p.127 in [5]) saying that "if P have maximal volume among all convex
polyhedra with v vertices inscribed in a given sphere, P must be bounded solely by
triangular faces”. This means that the optimal arrangements of the above (seems
to be more general than our) problem are different from that problem investigated
in this paper.
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2. TWO CONGRUENT REGULAR TRIANGLE WITH COMMON CENTER

In this section we consider two congruent regular triangle with common center
in the space. and search for that situation where the volume of the convex hull
of their vertices are maximal. The respective vertices denoted by A.B,C and
A’ B’,C" lie on the sphere of radius r around the common center O. It is easy
to see that one of edges of the triangle A(A. B, (') intersects the other closed
triangle A(A’, B', C") and vice versa. Denote these two edges by BC and B'C”,
respectively. If the convex hull of all vertices is a polyvhedron (with non-empty
interior) then the intersection of the two plane of two triangle is a line, say m.
Denote by « and 3 the angles of the lines (m. (AO)) and (m, (A'O)), respectively.
and by « the angles of triangle planes. First of all observe that the examined
convex body is the union of two disjoint non-convex double pyramids P and Q
determined by the vertices A, B.C, B",C" and A", B", (', B, C, respectiv ely. (See
on Fig. 1.) The volume of P is

v(P) = % [a(ABOCY(mp: +mer )],

where a(ABOC) is the area of the (concave) quadrilateral (ABOC) and mpg, and
mc: are the distances of the points B" and C' from the plane (ABC), respectively.

B’ C B’

C’.’

Figure 1. Two regular triangle with common center.

Let now 7" be the intersection of m and B’C” and denote by M’ and M” the
midpoint of the edge B'C" and the base point of the perpendicular line B’ to m
in the plane (A’'B’C”), respectively (Fig. 1.). Then we have

mp = sinvy|B'M' = sin~(sin(B'OA") + 3) - |OB’],

and

mer = siny(sin(C'OM") — 3) - |OC"].
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Thus the general formula for the convex hull is:
v=uv(P)+v(Q)= %Siﬂ",-
: {[(Sin{BfOiﬁf’) +3) - [OB'| + +(sin(C"'OM') = 3) - |OC"|]a(ABOC)+
+ [(sin(BOAL) + a) - [OB] + (sin(COAL) — a) - |OC]] a(A’B’OC”)}. (1)

Remark that this formula is valid in all of the cases when O is a common point of
the interior of the two triangles and both triangles have such edge, which intersects
the other triangle in a point. If O is the common center of the triangles and the
circumscribed circles have radii r and r/, respectively, then we have

2 1
v=g sin’y{ [s‘m E(B’OC’) cos 3 ?"} a(ABOC)+

1
+ [(s‘m;[BOC) cosa - M(A’B’oc‘)}. (2)

]
If we assume that the triangles are congruent our formula becomes simpler:
2 TR - .
v=gsiny-r a(ABOC) - sin §(BIOC’) (cos 3 + cos ), (3)
and finally, if the triangles are regular then we have:
2 5 \/:_3- 1 \/lg N rd . :
v=gsiny-r g —:,-gn(cos B+ cosa) = - sin y(cosa +cosf3).  (4)

The maximal value of the volume function is attained in the case when the pa-
rameters are o = 3 = 0 and v = 5, respectively. The above calculation leads to
the following theorem:

Theorem 2.1. The volume of the convexr hull of two regular triangle with a
common center is maximal if and only if their planes are orthogonal to each other
and one of their vertices is opposite position with respect to the common center O.

Remark. Our formula (3) applied to two congruent rectangular triangle with
equal sides and common center, reproduces the mazimal volume arrangement of
six points on the sphere. In this case we have the volume formula:

2r3
V= sinvy(cosa + cos J).
showing. that the optimal placing is the “opposite” one as in the previous theorem.
(Of course the convexr hull is the reqular octahedron.)

3. TWO CONGRUENT REGULAR TETRAHEDRA WITH A COMMON CENTER

3.1. The combinatorial description of the problem and the case of dual
position.

The spherical triangles corresponding to the faces of the first tetrahedron divide
~the unit sphere into four congruent close domains. These contain the vertices of
the second tetrahedron. We now have two possibilities:
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1. All of the spherical triangles contain exactly one from the vertices of the
other tetrahedron and changing the role of the tetrahedra we also get it.
In this case we say that the two tetrahedra are in dual position. We
remark that in a dual position the corresponding spherical edges cross to
each other, respectively.

2. The tetrahedra are not in dual position.

In this section we will give a formula which determines the volume of the convex

hull of two regular tetrahedra in dual position and having common center . From
this formula we can establish the conjectured maximal volume and so we get a
candidate the optimal placing of the tetrahedra. We note that quadrilateral faces

of

the convex hull are considered as degenerate tetrahedra in this paper.

3.1.1. Notations. We introduce the parameters which will be necessary to the
calculation.

T ={1,2,3,4}; 7" = {17,2".3".4'}: The vertex sets of the tetrahedra.
r: The radius of the common circumscribed ball.

(O: The center of the common circumscribed ball, i.e. of both tetrahedra.
S(1,2,3): The spherical triangle spanned by the points {1,2,3}.}
C'(1.2.3): The convex hull of {1.2,3} in E*.

n;: The normal vector of the plane (Z \ {i}) defined by n, := ~0i.
a,: The angle of the vectors Oi’ and n,.

a;: The angle of the vectors Oi and n,.

@, ; = oo The angle of the vectors i7" and ij.

;. ;- The angle of the vectors Oi and O,

;o The angle of the vectors 01" and OJ.

3.1.2. Connections among the parameters. In this section we give some
connections among the parameters above.

Statement 3.1. The following equations hold for the parameters defined above:

L. a; = ayp,
2. cosqy = ) COSQy .

J#Y
2 , - _ 2
3. Cos™ (v 40 E COS (g i COS QY jr = 7.
<)
J# k<lik.l#1
2 4 2
4. COS™ (i 0 = — — COS™ ;.
’ 3
J7
3 |
D. COSQy pr = —g(cos Qg1 + COS (g + COS (v + COS (v 7 ).

Proof. By definition we have

2 = S =~ D]

cosay - r° = (0 |n;) = (-0¥| — n,) = (Oiln,) = cosay - r°

i

I¥or the notation of the vertices also holds a duality, the vertex i’ is in the spherical triangle

S(9. k,1) for every point ¢'.
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showing 1. The second statement similarly follows from the equality n, = > Oﬁj.
i

The third one is analogous to the well-known statement ™ the sum of the square of
the direction cosines is equal to one”. In fact, we can write for example the vector
O1’ as the linear combination of the vectors {02, 03,04} in the form:

O1’ = 202 + yO3 + 204, (2, y.2 > 0).

An easy computation shows that the coeflicients are:

3.
x = 1{2 COS(vo 1/ + COS (¥3.1/ + COS vy 1/ )

Yy = Zl(cos (va1r + 2 COS (v3,1/ + COS (v 1)

3
z = 1(005 (.1 + oStz + 2008y ).

The scalar product of this equality with the vector O1’ gives the following equation:

2 3 5 . 2 ‘ !
re = 1:“(2 COS™ r2,1/ + COS (¥3 1’ COS (¥2 1+ + COS (vq,1/ COS (¥2 1+

2
+ COSva 1 COS 3.1 + 2C0S” (3 17 + COS (¥4 1/ COS (¥3.1/+
. 2
+ COS (¥2,17 COS (Vg 17 + COS (43,17 COS (¥q. 10 + 2 COS™ (g 1/).

Simplifying this equality and change the number 1 to the general value 7, we get
the third identity.
The fourth formula follows from the previous two ones. Obviously

2
2 .
E Cos™ yj 0 = ( E c:osm:j,i») -2 E COS (tj 5 COS (7,

g JF#il k<lik 1=

and from the second and third equality we have:

] 2 2 2
3T v g = ‘o — 2 = — COS™ vy
COS™ vy = COS™ 3 sT i |,
AV
vielding the required equality.
Using the regularity of the tetrahedra we get the last formula from the equality:

' 77 2 :
(ng — my|k'17) r=(cos ag o + CoS v + oS oy + COS v g )

COs Qvgr 10 = ﬁ":“— - - 5 .
g —ng”k*’i’| -

r

wice

3.1.3. The main lemma. The following lemma gives the base of the computa-
tion of volume of the convex hull examined in this paragraph.

Lemma 3.2. Assume that the tetrahedra have dual position. If the edge C'(1,2)
does not intersect the tetrahedron C(1,2,3.4), then the edge C(3,4) intersects the
tetrahedron C(1,2,3,4).
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Proof. In this case the Euclidean triangles C'(O, 1. 2) and C'(0, 3’,4') intersect-
ing in a segment belongs to each of this triangle, respectively.

Denote by Fio and F3 4 the midpoints of the edges C'(1,2) and C'(3'.4"),
respectively. By our assumption the edge C'(3".4") meats the triangle C'(0.1.2) in
the point S. meaning that the angle SOF] o greater then the angle SOF35 4. but
less or equal to % (See in Fig.2.)

Figure 2. Connection between the opposite pair of edges.

Since the lines (OF) 2) and (OF% 4 ) are the normal transversalis of the exam-
ined tetrahedra, respectively, they also contain the midpoints F3 4 and F7. 9 of
the edges C'(3,4) and C'(1’,27), respectively. On the other hand the planes of the
triangles C'(0,3.4) and C(0,1".2") are orthogonal to the planes of the triangle
C(0,1,2) and C(0,3".4"), resp. Let finally S’ # O be a point on the intersection
line of the planes of the triangles C(0,3.4) and C'(0.1,2"). W e prove that the
angle S'OFy o is greater than the angle S’OF3 4. To this denote by s, s', f; o and
£y 4 the unit vectors of the directions OS, 0%, OF, 5 and OFy 4, respectively.
The orthogonality of the above planes gives the following equations:

0= (sxfiols x fio) = (s x fy 4|8 x 3 47,

providing
(f12]s) (f1.2]s) = (f12/f1 2)(s[s") = (f3.4:|f3 4:)(s[s") = (f3.4/8)(f3.4]s).
Using now the facts, that Of:gA = —f; » and OF_{f:g' = —fa 4 we have

C(}S(FLQOSJ COS(F;;,}OS!) = COS(Fga;yOS) COS(Flﬂ‘QfOSI)._

i.e. the angle (F3408’) less than the angle (1 »OS"). With respect to the duality
condition this means that the segment C(3,4) intersects the triangle C(1’,0,2').
This also means that C'(3. 4) intersects the tetrahedron C'(17, 2. 3. 4"), as we stated.

In a consequence of this lemma from a pair of opposite edges of the first tetra-
hedron exactly one intersects the other tetrahedron. Thus the examined convex
hull is disjoint union of four double pyramids (with the common vertex O) and
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three tetrahedra spanned by a pair of complementary (with respect to the index
sets) edges of the two tetrahedra. Among these six edges there are no two opposite
ones belonging to one of the original tetrahedra.

3.1.4. Computation of the volume of the convex hull. In this section we
use the functions d(-,-), I(+), a(-) and v(-), which are the distance, length, area
and volume functions of their arguments, respectively. Denote by Ays o the in-
tersection of the segment C'(1’,2’) by the plane of the triangle C'(0O, 3,4). We will
compute the volume of the tetrahedron C(1’,2/,3,4) as the volume of a double
pyramid based on the triangle C(Mys 2/, 3,4). The area of the triangle is:

_ aKﬁﬂﬁggﬁi4D::%dpuyguCW&4DMCX34n:

where, from the equality

T 3 L r AT e _'\gvf:— 17 o _;\i\/fg
d(ﬂ-[p,g!. 0(5,4)} - \/—3 = |(IOJ.[1;_2; O3 + O"—lf?ljz—; = <Oﬂf1!__gf! - 01 — Eji -5
using the representation

. (0212)01" — (O1]12) 02
OM;y 5 = WOZI2IOT = (O1]12)
(127]12)
of the vector ();151:2.‘1 we have:
_ 3V3 [coSaq pCoSay o — COS COSCy 8
d(My 5, (34)) = r = = .
(v (34)) = 2% . =
Now the area is:
. 12v6 3v3 [cosapacosag oy —COSap CoSn 8
a@@hyjﬂnz—tfrwl S L2 ! 2_2) =
2 3 8 COS (v1’ 9/ 9
B 3\/§r3 COS (x]/,2 COS (¥] 2 — COS (] COSQ2 §
B 8 COS Ceyr or 9

Since the sum of the two heights are:

— (l(C(lfﬂflf‘gf)) COS Cryr o + I(C‘(?’MIJ‘Q,)) Ccos C‘Llf‘grj —

, 5
— =l(C(1'2")) cosayr o = —\/Er COS (v 9
we get for the volume:

W(C(1,2,3.4)) =

1 3\/§ o COS (¥1r 9 COS(¥] 90 + COS (¥ COSvn 8 fg
=i rel - ' — — |-\ =r-cosay o =
3 8 COS Cxqr 2 O \y 3
= Tr' w;({:os (e1r,2 COS (v 20 — COS (v] COS v ) + ) COS ¥ o
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Analogously we get the respective volumes v(C(My: 5:,2,4)) and
v(C'(Myr 4, 2.3)). On the basis of the results of the section (3.2) we can built the
convex hull from four double pyramids with common vertex O up the faces and
from three tetrahedra as above. We have to compute the following formula:
1
V= = {Q(C(l, 3,4))(cosay + cos g + cos ag + cos oy )r +
+'L-'(C(ﬂ-flﬁ 2, . —1}) + U(C(ﬂflr:gr , 2, 4)) —+ ?;(C(ﬂ-[p‘rf 2, 3))] .

V3 32
= Tr g(cos (¥1 +COS (ko + COS vy + COS 0:4) —

| (COS (17,2 COS (v1 2 — COS (¥1 COS (¥2 ) + (COS (117 3 COS (vp 37 — COS (v COS (vg) +

o =
=N

-

+(cos g 4 cOS Qg —COSQy COSvn)| — —(COS @y 2 +COSvps 37 +COS a:lr_4=)} =

V3 572

0 {g[cosal -+ COS (¥ +COS (x5 -+ COS a._lj -

1
—S(COS ¥y 2 COS Qg 2 -Lcos vis 3 COS vy 37 - COSCvpr 4 COS (Yl__zy) -+

4

o]

+§ cos a1 (COS (o +COS (g +C0S vy ) + a(cos O,"]_r“gf-1'—COSCE1F__3f+CDSO;1r:4f)}. (5)

Using now the equalities o; = ayr, cosqy, = Zj#i, cos o, and

COS Qg = —%(cos (e 1o+ COS (v + cos oy + cos oy g ) proved in the section (3.2). we
can substitute the last term of (5) by another one, contains only the other angles
in its argument. In fact

4
5(008 Q1o +cosayr 3+ cosas gy ) =

1 3¢
=3 —é Z(cosam» +COsay +cosay +cosag )| | =
k=2
K 4
=% Z) (coscvj ) + ; (cosa i) + 3cosay + cosas + cosas + cosay | =
j=2 =2

 AF S
=-3 (5 cosaq + (cosas + cosag + cosay)] .

Now we can write the formula (5) in the form:

p— Y23
4]

1
[(cosag +cosag + cosay) — 3 CoS vy —
— (COS (117 2 COS (¥1 9 + COS (¥17 3 COS(¥1 3 + COS QY 4 COS v 4 )+
+ cos vy (cosap + cosag + cosay)|. (6)

This formula corresponds to the index 1 because it is symmetric with respect to the
other indices. Since the volume is invariant under the permutation of the indices
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in 7 we have (analogously) further three formula for the volume corresponding to
the other indices. The arithmetic mean of their is also the volume v, so we have
a symmetric (with respect to its indices) form:

2

4 4 2
v = ;j q[i;cosai+ (;cosm) .
—Zcos oy — ZZ(OS(‘W:g(OSK gf} (7)

k=1 k=]

3.1.5. The extremal configuration. The equality (7) gives a possibility to
determine those placing of the tetrahedra which convex hull has maximal volume.
First we substitute the equality (4) into the third summand of our formula and
write the formula (7) into the following new form:

4
1
+ _E Z Z Z((’OS G»k ,[f — COS A COS e g ) (8)

i=1 k=1 1#£k

7

Secondly substitute the equality (3) into the fourth summand of this formula and
write it the following form:

—

4 2 1 _
/3 . A 16
v = 7\211?"3 '2_1 cos a.;;) +3 E cos 0y — =+

i=1
4
1 2
-+ E E (-3— coS a1 + (Cos a1 )* — cos augr g COs ak:g») =
k=1 1l#k
o
_ 4 2 . 4 .
V3 5 7 16
= —7T cosoy; |+ — E COS vy — —
24 _ 1 3 - o3
=1 i=1
4 }-
-+ Z E COS Cig. p(d + cos .y — COS Qi g) . (9)
k=1 £k

Now we can apply the inequality between the arithmetic and geometric means
to the last part of this formula. Thus we get the inequality:

p—

4 2 4
V'3 T 16
‘ 3 : b T T
v < —24 r E COS (x; - 3 E COS «v; 3
=1 i=1
)

4 ‘ ;
+ 2cosayg 1 — cos g _
-+ E ZCOSQ’[,;_;' : 5 . (10)

k=1 I[#k B

L=
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The equality holds if and only if all pairs of indices k. [ fulfill:

1
cosag.p = g + COS Qv ;r — COS Qg g

that is cosay | = % for all k.. In this case for all & we get that cosap = 1
implying that the eight vertices are the vertices of a cube. In this case we also get
that the optimal value is

—
3 16 28 4 /3
v = —\/—~r3(16— -t +4-3—) = -l—-—r’3
24 3 -3 9 3V3
Hence we get the following theorem:
Theorem 3.3. The value v = —2-r® is an upper bound for the volume of the

3V3
convex hull of two regular tetrohedra in dual position. It is attained if and only if
the eight vertices of the two tetrahedra are the vertices of a cube inscribed in the
common circumscribed sphere.

3.1.6. The "placing matrix” of the placing. The last formula of the volume
of the convex hull can be written in more simple form if we define a placing
matrix G corresponding to the vertex sets of the tetrahedra. Let A and A’
be the matrices corresponding to the first and second tetrahedra, respectiv elw,
The columns of these matrices are the coordinates of the vectors Oi and O?

respectively. (We are using fixed orthonormed basis of the space.)

Definition 3.1. We define the placing matrix G as the product
1
G=—5AT A,
r
where AT means the transpose of A.

By this notation our formula (8) can be written in the following short form:

/_ 2
v = ;j ? i-T'r'(G)*(Tr[G))z —Tr(G")} =
*if 3{ Tr(G)+§[(rr(G))?—T-r(G?)} . (11)

where Tr(() denotes the trace of the matrix G. We remark that there is an
analogous formula for the area of convex hull of two regular triangle of the plane
with a common center. Namely we have:

a= "23 21-Tr(G)]. (12)

3.2. Some words about the other cases.

If the tetrahedra are not in dual position we can distinguish two subcases.
1. From the spherical domains corresponding to the first tetrahedron one con-
tains two vertices of the second tetrahedron. (Or changing the notation of
the tetrahedra get this combinatorial situation.)
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2. Two domains contain two vertices, respectively.

In this paragraph first we prove that the second case implies the identity of the
tetrahedra. Then we prove that in the first combinatorial but geometrically most
symmetric case the convex hull is less than the volume of the cube. In general we
can not prove that the optimal case without combinatorial restrictions is the case
of the cube, but we think that it is the truth.

Statement 3.4. Assume that the closed regular spherical tetrahedra S(1,2,3)
and S(4,2.3) contain the vertices 2/, 4" and 1,3, respectively. Then the two tetra-
hedra are the same.

Proof. Consider the following spherical polygon: S(4/,2) U S(2.3") U S(3".1").
We remark that if a closed spherical triangle of the first tetrahedron contains
three point from the vertices of the other tetrahedron then they agree. This
means that the closed spherical segment S(2.3) does not contain vertices of the
second tetrahedron. Let denote by F' the midpoint of the segment S(2’,3/). If
now [I" € 5(1.2.3)US(4,2,3) then the pair of points F and 1’ or F and 4’ belong
to a spherical tetrahedron meaning that for example F and 1’ are a vertices and
the midpoint of the opposite side of the triangle S(4,2, 3), respectively. So the
point F' one of the vertices 2.3 or the midpoint of this side. In this last case the
two tetrahedra agree, so we can assume that e.g. F' = 2. This is also impossible,
because in this case the points 1 and 4 are the midpoints of the sides S(1.3) and
5(3,4), respectively, showing then its distance is not the same that the common
cdge lengthes of the regular spherical triangles. Similar argument shows that
the midpoints of the sides S(2",1’). S(4’,1’) and S(4’.3") are not in the union
S(1,2.3) U S(4,2,3). Consider the common plane of this center points. This
plane contains the origin and intersects the triangles S(1.2,3). 5(4,2,3), S(1,2,4)
and S(4,2,3), respectively. The union of these intersection spherical segments
give a great circle in which the above halving points distributed uniformly. A
straightforwar d (but not short) argument shows that the above assumption on
midpoints gives a contradiction.

Now examine the first combinatorial situation of the placing, precisely one
spherical triangle of a tetrahedron contains preciselv two vertices of the second
one. So we can find an edge of the second tetrahedron separated from the first
tetrahedron by a face-plane of it. This means that the convex hull has a piece
which is the convex hull of a face of the first tetrahedron and an edge of the sec-
ond one. The vertices of this double pyramid let be the set of points 1.2, 3,471
meaning that the plane of the face C'(123) separates the vertex 4 and the edge
C'(4'1"), respectively.

The most symmetric case in this placing when the tetrahedra have
common plane of symmetry. That is, we assume that the edge C(4't)
lying in the bisector of the vertices 2. 3.

In this case the edges C'(23) and C'(2'3') are parallel to each other and there
are two planes of svmmetry of the convex hull: the common plane of the edges
- C(4'V) and C'(14) and the common bisector plane of the pair of points 4'. 1 and
1", 4. respectively. The volume of the convex hull can be counted using the fact.
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that the faces of this body are the triangles C'(1'4'2). C(143'), the trapezoids

C(1/423"), C'(14'23') and their mirror images with respect to the first plane of
symmetry, respectively. (This situation can be seen on Fig.3.)

1 4’

SV}

3!

1 Iy

Figure 3. The symmetric case.

Let the common distance of the points 2.3.2".3" and the plane of the other

vertices denoted by m(= %), and denoted by « and 3 the half of the angles
1’04 and 104', respectively. Then the area of the trapezoid C'(1'414") is a =
sin(a + 3) + 5 (sin(2a) +sin(23)). On the other hand. if we denote the area of the
orthogonal projection of the faces C'(1'43'2), C'(14'23"), C'(143") and C'(1'4'2) into

the plane of the points 1’,4, 1,4’ by a1, az. as and ay. respectively. Then we have:

a0 -

Lo =

1
v =2m 5(a1 +agp) +

= %(S{al +as+az+ay) —(az+aq)) = ? (3a — (az +ay)) .

It is easy to check that the value of a is maximal if @ = 3. This also implies that
the value of (a3 +a4) is minimal (it is equal to zero). So the optimal arrangement
is also the case of the cube. On the other hand, our combinatorial assumption
excludes this possibility, thus we get that in the examined cases the volume of the
convex hull is strictly less than the volume of the cube, as we stated.
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