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DISSECTIONS OF A CENTRALLY SYMMETRIC HEXAGON

A. G. HORVATH

In this paper we prove that there are six possibilities for the decomposition
of a centrally symmetric convex hexagon into centrally symmetric convex parts
if the dissection is irreducible and face-to-face. We give an infinite sequence

G ; ; : n(n+5
of irreducible dissections where the number of the components are _ﬂ_z_l,
respectively.

1. INTRODUCTION

The problem is the following: How can we dissect a centrally symmetric
convex hexagon into centrally symmetric convex parts? This question is
motivated by the following problem of geometry of numbers: Discribe all
combinatorial types of the Dirichlet-Voronoi cell (see [13], [5]) of the lat-
tices of dimension n. It is known that such a cell consists of a tetrahedral or
hexagonal zone (see e.g. [11], [8]) of (n — 1)-dimensional faces and two con-
gruant caps. Such a cap contains some centrally symmetric facets meeting
in certain faces of dimension (n — 2). The centers of the facets of the zone
determine a two dimensional plane. The orthogonal projection of the cells
whose centers are on this plane form a plane-tiling which contains a lattice
tiling (formed by the projection of the corresponding zones) of parallelo-
grams or centrally symmetric convex hexagons, respectively. One of these
polygons is decomposed by the projection of one of the corresponding caps
to centrally symmetric convex parts thus knowing the dissections above,
we have an important information about the combinatorial characteriza-
tion of the Dirichlet-Voronoi cells. This is a central problem in geometry of
numbers (see [2], [4], [6] or [7]).
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Similar dissectional problems on the plane were investigated by the
authors Monsky [10], Stein [12] and Kasimatis [9].

2. CENTRAL SYMMETRY AND IRREDUCIBILITY

Lemma 1 basically determines the structure of a centrally symmetric convex
decomposition of a convex polygon.

Lemma 1. If the convex polygon P can be decomposed into convex cen-
trally symmetric parts then it is centrally symmetric.

The proof of this lemma is the first step of Alexandrov’s theorem on
convex polyhedra with centrally symmetric faces. (The theorem says that
such a polyhedron has a centre of symmetry.) See e.g. [1] or [3]. An
important observation of this proof that all of the edges of the dissection
are parallel to an edge of the polygon P. Especially in the case when P is a
hexagon we have only three possible directions for the ”inner” edges of the
decomposition.

It is possible that the union of some components of the dissection of P
formes such a centrally symmetric convex polygon which is a proper part
of P. In this case the dissection P can be reduced into another dissection
of P. (The mentioned union as a new component reduce the number of the
components.) This observation motivates the following definition:

Definition 1. The dissection P = {P,... , P} of P is irreducible if and
only if from the convexity of the set U{P; | i € Z} it follows that |Z| = 1 or k.

Ay

Ag As
Fig. 1. Reducible dissection

We remark that from the convexity of Q by Lemma 1 follows that Q is
centrally symmetric, so an irreducible dissection can not be simplified. (It
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can be seen a reducible dissection in Fig.1.) The following theorem shows
that the assumption of irreducibility is not enough to guarantee the finitely
many possibilities for the decomposition.

Theorem 1. There is an infinite sequence of irreducible dissections of
a centrally symmetric hexagon into finite number of centrally symmetric
convex parts.

Fig. 2. Irreducible decomposition with ﬂ%ﬂa components

Proof. Consider a regular hexagon P and divide its edges into n seg-
ments of the same length. Those lines which parallel to the edges of the
hexagon and contain an endpoint of the above segments give a decomposi-
tion of P into congruant regular triangles. Let AD be a main diagonal of
the hexagon and AB be a side of P. We denote the points dividing AB
by A = Ay,...,B = A,, respectively. We define the first n components of
the dissection by those parallelograms which have an edge parallel to AD,
its other edge AgA1,...,A,—14, and consisting of 2,4,...,2n triangles, re-
spectively. (See Fig.2). The 33’—’ and %’—r-rotations of these parallelograms
about the centre of P give further 2n parallelograms which are also compo-
nents of the dissection. It is easy to check that the uncovered part of the
hexagon can be filled by L—;E regular hexagons consisting of 6 triangles,

respectively. So the number of the components:

n(n—1) n(n+5)
3 = -

n + 5 5

On the other hand this decomposition is irreducible. Indeed, the union of
the inner edges consist of three parallel pairs of edges of lengths 5,2 < s < n,
and some edges of length 1. (The unit is the length of the edges of a small
triangle.) If Q is a convex proper subset of P consisting of the elements of
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the dissection {Pi,..., P} then it is a centrally symmetric polygon with at
most three edge-directions. Thus there are only three possibilities:

1. Q is a parallelogram having edges shorter than n and thus £ = 1.
2. Q is a hexagon having edges shorter than n.
3. @ has an edge of length n.

In the second case the common lengths of the edges is 1 because two
parallel edges with the same length s > 2 as the opposite sides of Q can
determine only a parallelogram of the dissection. This means that in this
case Q is a hexagon of the dissection and also k¥ = 1. In the last case

it is easy to see that two opposite side of P belong to @, so @ = P and
= _(_2 i

We remark that in this decomposition there are edges of certain compo-
nents which are proper subsets of another edges of (another) components. If
we assume that the decomposition is "edge-to-edge” then we have a chance
for the finite classification of the irreducible decompositions.

3. EDGE-TO-EDGE IRREDUCIBLE DECOMPOSITIONS

In this section we describe all types of the edge-to-edge irreducible decom-
positions of a centrally symmetric convex hexagon.

Definition 2. The dissection P of a convex polygon is edge-to-edge if each
inner edge is an edge of precisely two distinct components of P.

We remark that the property ”edge-to-edge” does not imply the prop-
erty irreducibility as it can be seen in Fig.1.

Theorem 2. There are only six combinatorial types of the edge-to-edge
irreducible dissections of a centrally symmetric convex hexagon into finite
number of centrally symmetric convex parts. One representant of each class
can be seen in Fig.3 and Fig.4.

Proof. Without loss of generality, we may assume that P is regular
hexagon. First we notice that if an edge of the hexagon is divided by n
segments by the components of the dissection P = {Py,..., P} then n is
not greater than three. Indeed, let AgA; be an edge of P and let e be an
inner edge of the dissection ending in a relative inner point E of AgA;. Then
the component P; is spanned by e and the segment s of AgA;, and having
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Fig. 3. Edge-to-edge irreducible dissections into k = 3 and k = 4 parts.

Fig. 4. Edge-to-edge irreducible dissections into k = 6,8 and 13 parts.

an acute angle at E (see Fig.5) is a parallelogram. From the irreducibility
we get that the other endpoint of s is an endpoint of the edge of P. (In the
first picture of Fig.5 it is Ag.) Hence on the edge AgA; there are at most
two distinct vertices of the dissection. (Apart from Ag and A1)

R

A, Ao

Fig. 5.

Another important observation is the fact that the configuration in the
second picture of Fig.5 can not occur. Indeed because of irreducibility at
the point P we can’t continue the decomposition, all of the possible edges
give such a convex part of the decomposition which contains at least two

distinct components.

Hence we distinguish the following cases:
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1. There is an edge AgA; of P which is an edge of a component P; of the
dissection, too.

2. The edge AgA; is the union of two edges of two components, say, P
and P, and the other edges of P are decomposed into at least two parts
by the components of the dissection.

3. Each of the edges of P are decomposed into exactly three parts by the
dissection P of P.

In the first case we have three subcases corresponding to the figures of
the Fig.3. In every subcase the edge AgA; is also an edge of a component
while for the dissection of the edges As Ay and A; A, we have three distinct
possibilities. In the first one, the edges 454y and A;A; are also edges
of certain components of the dissection (see the first hexagon in Fig.3),
the second picture shows the possibility when AsAg is decomposed into
two edges and A;Aj is not decomposed by the dissection, and the third
one shows the case when AsA4, and A; A, are decomposed into two edges.
We note that because of the irreducibility, AsAy and A;As can not be
decomposed into three parts in this cases. The number of the components
is k = 3 and k = 4, respectively.

The second case contains those possibilities when AsAg and A; Ay de-
compose into two or three edges by the dissection. The first hexagon in
Fig.4 gives that case when the edges A5 Ay and A; A, are also unions of two
edges of the dissection. Since the components P, i = 1,2,3,4,5 are deter-
mined uniquely and the complementary domain P\U{P;|i = 1...5} is convex
this dissection is unique. (k = 6) When the edge AsAg is a union of three
edges and Aj Ay is decomposed into two edges the dissection is also deter-
mined, starting the parallelogram P; the contigous domains P, and Py are
hexagons thus P3 and P; are parallelograms, too. Continuing the process
first we give the components P; and P; than the complementary domain,
which is convex. So in this case we have k = 8 components as we can see in
the second hexagon in Fig.4. The last subcase of this case when both of the
edges AsAg and A; A, can decompose into three segments.( See Fig.6) First
we draw the parallelogram P; and the hexagon P;. P, can not be a paral-
lelogram because P; U P; is not convex domain. This mean that the edge
e of P, is parallel to the edge AgAs so from the condition of irreducibility
the point E is Aj. This is a contradiction thus in this case we don’t have
realizable dissection.

The last case gives the last dissection of Fig.4. Really, the first thirteen
components Pi,..., Py are determined unique by the dissections of the
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As
Fug. 6.

edges AsAg, AgA; and A;, A;. The domain P\ U{P; i=1,...,12} is a
convex hexagon so we have again only one possibility for the dissection.

Thus the list of Fig.3 and Fig.4 is complete. We note that the chains
of parallel opposite edges contain segments with the same length thus the
dissections in Fig.3 and Fig.4 contains centrally symmetric parts, which
shows that it has six edge-to-edge irreducible dissections of a centrally
symmetric convex hexagon into centrally symmetric convex parts. =
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