HYPERBOLIC PLANE-GEOMETRY REVISITED

ÁKOS G.HORVÁTH

Abstract

Using the method of C. Vörös, we establish several results on hyperbolic plane geometry, related to triangles and circles. We present a model independent construction for Malfatti's problem and several (more then fifty) trigonometric formulas for triangles.

1. Introduction

As J. W. Young, the editor of the book [11], wrote in his introduction: There are fashions in mathematics as well as in clothes - and in both domains they have a tendency to repeat themselves. During the last decade, "hyperbolic plane geometry" aroused much interest and was investigated vigorously by a considerable number of mathematicians, as we can see from the large number of Google Scholar items given for the same expression as key words (192,000 results in $(0.05 \mathrm{sec})$). Despite the large number of items, the number of hyperbolic trigonometric formulas that can be collected from them is fairly small, they can be written on a page of size B5. (We also present such a collection in the second half of this introduction.) This observation is very surprising if we compare it to the fact that already in 1889, a very extensive and elegant treatise of spherical trigonometry was written by John Casey [5]. For this, the reason, probably, is that the discussion of a problem in hyperbolic geometry is less pleasant than in the spherical one.

On the other hand, in the 19th century, an excellent mathematician - Cyrill Vörös ${ }^{1}$ in Hungary made a big step to solve this problem. He introduced a method for the measurement of distances and angles in the case that the considered points or lines, respectively, are not real. Unfortunately, since he published his works mostly in Hungarian or in Esperanto, his method is not well-known to the mathematical community.

To fill this gap, we use the concept of distance extracted from his work and, translating the standard methods of Euclidean plane geometry into the hyperbolic plane, apply it for various configurations. We give a model independent construction for the famous problem of Malfatti (discussed in [8]) and prove more than fifty interesting formulas connected with the geometry of hyperbolic triangles. By the notion of distance introduced by Vörös, we obtain results on hyperbolic plane geometry which are not well-known.
1.1. Well-known formulas on hyperbolic trigonometry. In this paper, we use the following notations. The points A, B, C denote the vertices of a triangle. The lengths of the edges opposite to these vertices are a, b, c, respectively. The angles at A, B, C are denoted by α, β, γ, respectively. If the triangle has a right angle, it is always at C. The symbol δ denotes half of the area of the triangle; more precisely, we have $2 \delta=\pi-(\alpha+\beta+\gamma)$.

- Connections between the trigonometric and hyperbolic trigonometric functions:

$$
\sinh a=\frac{1}{i} \sin (i a), \quad \cosh a=\cos (i a), \quad \tanh a=\frac{1}{i} \tan (i a)
$$

- Law of sines:

$$
\begin{equation*}
\sinh a: \sinh b: \sinh c=\sin \alpha: \sin \beta: \sin \gamma \tag{1}
\end{equation*}
$$

- Law of cosines:

$$
\begin{equation*}
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos \gamma \tag{2}
\end{equation*}
$$

- Law of cosines on the angles:

$$
\begin{equation*}
\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cosh c \tag{3}
\end{equation*}
$$

Date: 25 April, 2014.
2010 Mathematics Subject Classification. 51M10, 51M15.
Key words and phrases. cycle, hyperbolic plane, inversion, Malfatti's construction problem, triangle centers.
${ }^{1}$ Cyrill Vörös (1868-1948), piarist, teacher

- The area of the triangle:

$$
\begin{equation*}
T:=2 \delta=\pi-(\alpha+\beta+\gamma) \text { or } \tan \frac{T}{2}=\left(\tanh \frac{a_{1}}{2}+\tanh \frac{a_{1}}{2}\right) \tanh \frac{m_{a}}{2} \tag{4}
\end{equation*}
$$

where m_{a} is the height of the triangle corresponding to A and a_{1}, a_{2} are the signed lengths of the segments into which the foot point of the height divide the side $B C$.

- Heron's formula:

$$
\begin{equation*}
\tan \frac{T}{4}=\sqrt{\tanh \frac{s}{2} \tanh \frac{s-a}{2} \tanh \frac{s-b}{2} \tanh \frac{s-c}{2}} \tag{5}
\end{equation*}
$$

- Formulas on Lambert's quadrangle: The vertices of the quadrangle are A, B, C, D and the lengths of the edges are $A B=a, B C=b, C D=c$ and $D A=d$, respectively. The only angle which is not right-angle is $B C D \measuredangle=\varphi$. Then, for the sides, we have:

$$
\tanh b=\tanh d \cosh a, \quad \tanh c=\tanh a \cosh d,
$$

and

$$
\sinh b=\sinh d \cosh c, \quad \sinh c=\sinh a \cosh b,
$$

moreover, for the angles, we have:

$$
\cos \varphi=\tanh b \tanh c=\sinh a \sinh d \quad \sin \varphi=\frac{\cosh d}{\cosh b}=\frac{\cosh a}{\cosh c},
$$

and

$$
\tan \varphi=\frac{1}{\tanh a \sinh b}=\frac{1}{\tanh d \sinh c} .
$$

2. The distance of the points and on the lengths of the segments

First we extract the concepts of the distance of real points following the method of the book of Cyrill Vörös ([17]). We extend the plane with two types of points, one type of the points at infinity and the other one the type of ideal points. In a projective model these are the boundary and external points of a model with respect to the embedding real projective plane. Two parallel lines determine a point at infinity and two ultraparallel lines an ideal point which is the pole of their common transversal. Now the concept of the line can be extended; a line is real if it has real points (in this case it also has two points at infinity and the other points on it are ideal points being the poles of the real lines orthogonal to the mentioned one). The extended real line is a closed compact set with finite length. We also distinguish the line at infinity which contains precisely one point at infinity and the so-called ideal line which contains only ideal points. By definition the common lengths of these lines are $\pi k i$, where k is a constant of the hyperbolic plane and i is the imaginary unit. In this paper we assume that $k=1$. Two points on a line determine two segments $A B$ and $B A$. The sum of the lengths of these segments is the lengths of the line $A B+B A=\pi i$. We define the length of a segment as an element of the linearly ordered set $\overline{\mathbb{C}}:=\overline{\mathbb{R}}+\mathbb{R} \cdot i$. Here $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$ is the linearly ordered set of real numbers extracted with two new numbers with the "real infinity" ∞ and its additive inverse $-\infty$. The infinities can be considered as new "numbers" having the properties that either "there is no real number greater or equal to ∞ " or "there is no real number less or equal to $-\infty$ ". We also introduce the following operational rules: $\infty+\infty=\infty$, $-\infty+(-\infty)=-\infty, \infty+(-\infty)=0$ and $\pm \infty+a= \pm \infty$ for real a. It is obvious that $\overline{\mathbb{R}}$ is not a group, the rule of associativity holds only such expressions which contain at most two new objects. In fact, $0=\infty+(-\infty)=(\infty+\infty)+(-\infty)=\infty+(\infty+(-\infty))=\infty$ is a contradiction. We also require that the equality $\pm \infty+b i= \pm \infty+0 i$ holds for every real number b and for brevity we introduce the respective notations $\infty:=\infty+0 i$ and $-\infty:=-\infty+0 i$. We extract the usual definition of hyperbolic function based on the complex exponential function by the following formulas

$$
\cosh (\pm \infty):=\infty, \sinh (\pm \infty):= \pm \infty, \text { and } \tanh (\pm \infty):= \pm 1
$$

We also assume that $\infty \cdot \infty=(-\infty) \cdot(-\infty)=\infty, \infty \cdot(-\infty)=-\infty$ and $\alpha \cdot(\pm \infty)= \pm \infty$.
Assuming that the trigonometric formulas of hyperbolic triangles are also valid with ideal vertices the definition of the mentioned lengths of the complementary segments of a line are given. For instance, consider a triangle with two real vertices $(B$ and C) and an ideal one (A), respectively. The lengths of the segments between C and A are b and b^{\prime}, the lengths of the segments between B and A are c and c^{\prime} and the lengths of that segment between C and B which contains only real points is a, respectively. Let the right angle be at the vertex C and denote by β the other real angle at B. (See in Fig. 1.)

Figure 1. Length of the segments between a real and an ideal point

With respect to this triangle we have $\tanh b=\sinh a \cdot \tan \beta$ and since A is an ideal point, the parallel angle corresponding to the distance $\overline{B C}=a$ less or equal to β. Hence $\tan \beta>1 / \sinh a$ implying that $\tanh b>1$. Hence b is a complex number. Let the polar of A is $E F$, then it is the common perpendicular of the lines $A C$ and $A B$. The quadrangle $C F E B$ has three right angle. Denote by b_{1} the length of that segment $\overline{C F}$ which contains real points only. Then we get

$$
\tan \beta=\frac{1}{\tanh b_{1} \sinh a},
$$

meaning that

$$
\sinh a \tan \beta=\frac{1}{\tanh b_{1}}=\tanh b
$$

Similarly we have that $\tanh b^{\prime}=\sinh a \cdot \tan (\pi-\beta)=-\sinh a \cdot \tan \beta$ implying that $\left|\tanh b^{\prime}\right|>1$ hence b^{\prime} is complex. Now we have that

$$
\tanh b^{\prime}=-\frac{1}{\tanh b_{1}}
$$

Using the formulas between the trigonometric and hyperbolic trigonometric functions we get that

$$
\frac{1}{i} \tan i b=\frac{i}{\tan i b_{1}}
$$

implying that
so

$$
\begin{gathered}
\tan i b=-\tan \left(\frac{\pi}{2}-i b_{1}\right) \\
b=-\frac{2 n-1}{2} \pi i+b_{1} .
\end{gathered}
$$

Analogously we get also that

$$
b^{\prime}=-\frac{2 m+1}{2} \pi i-b_{1} .
$$

Here n and m are arbitrary integers. On the other hand if $b_{1}=0$ then $A C=C A$ and so $b=b^{\prime}$ meaning that $2 n-1=2 m+1$. For the half length of the complete line we can choose an odd multiplier of the number $\pi i / 2$. The most simple choosing is when we assume that $n=0$ and $m=-1$. Thus the lengths of the segments $A C$ and $C A$ can be defined as

$$
b=b_{1}+\frac{\pi}{2} \text { and } b^{\prime}=-b_{1}+\frac{\pi}{2}
$$

hold, respectively.
We now define all of the possible lengths of a segment on the basis of the type of the line contains them.
2.1. The points A and B are on a real line. We can distinguish six subcases. The definitions of the respective cases can be found in Table 1. In this table d means a real (positive) distance of the corresponding usual real elements which are a real point or the real polar line of an ideal point, respectively. Every box in the table contains two numbers which are the lengths of the two segments determined by the two points. For example, the distance of a real and an ideal point is a complex number. Its real part is the distance of the real point to the polar of the ideal point with a sign, this sign is positive in the case when the polar line intersects the segment between the real and ideal points, and is negative

		B		
	$(A B)$ is real	real	infinite	
A	$A B=d$	$A B=\infty$	$A B=d+\frac{\pi}{2} i$	
	real	$B A=-d+\pi i$	$B A=-\infty$	
	infinite		$A B=\infty$	
		$B A=-\infty$	$A B=\infty$	
	ideal			
			$A B=d+\pi i$	
			$B A=-d$	

Table 1. Distances on the real line.

		B	
$(A B)$ is at infinity	infinite	ideal	
A	infinite	$A B=0$	$A B=\frac{\pi}{2} i$
		$B A=\pi i$	$B A=\frac{\pi}{2} i$
	ideal		$A B=0$
			$B A=\pi i$

Table 2. Distances on the line at infinity.
otherwise. The imaginary part of the length is $(\pi / 2) i$, implying that the sum of the lengths of two complementary segments of this projective line has total length πi. Consider now an infinite point. This point can also be considered as the limit of real points or limit of ideal points of this line. By definition the distance from a point at infinity of a real line to any other real or infinite point of this line is $\pm \infty$ according to that it contains or not ideal points. If, for instance, A is an infinite point and B is a real one, then the segment $A B$ contains only real points has length ∞. It is clear that with respect to the segments on a real line the length-function is continuous.
2.2. The points A and B are on a line at infinity. We can check that the length of a segment for which A or B is an infinite point is indeterminable. To see this, let the real point C be a vertex of a right-angled triangle which other vertices A and B are on a line at infinity with infinite point B. Then we get that $\cosh c=\cosh a \cdot \cosh b$ for the corresponding sides of this triangle. But from the result of the previous subsection

$$
\cosh a=\cosh \infty=\infty \text { and } \cosh b=\cosh \left(0+\frac{\pi}{2} i\right)=\cos \left(-\frac{\pi}{2}\right)=0
$$

showing that their product is undeterminable. On the other hand if we consider the polar of the ideal point A we get a real line through B. The length of a segment connecting the (ideal) point A and one of the points of its polar is $(\pi / 2) i$. This means that we can define the length of a segment between A and B also as this common value. Now if we want to preserve the additivity property of the lengths of segments on a line at infinity, too then we must give the pair of values $0, \pi i$ for the lengths of segment with ideal ends. The Table 2 collects these definitions.

Figure 2. The length of an ideal segment

Figure 3. Angles at an ideal point
2.3. The points A and B are on an ideal line. This situation contains only one case: A, B and $A B$ are ideal elements, respectively. Use the notation of Fig.1. Then $\cos \alpha=\cosh a \cdot \sin \beta$, and since β is greater than the parallel angle corresponding to the segment a we get that $\cosh a \cdot \sin \beta>1$ so $\cos \alpha>1$. Hence α is an imaginary number. From the Lambert's quadrangle $B C E F$ we get

$$
\cosh a \sin \beta=\cosh p,
$$

thus $\cosh p=\cos \alpha$ and so $\alpha=2 n \pi \pm p i$. Now an elementary analysis of the figure shows that the continuity property requires the choice $n=0$. If we also assume that we choose the negative sign then the measure is $\alpha=-p i=p / i$, where p is the length of that segment of the common perpendicular which points are real.

Consider now an ideal line and its two ideal points A and B, respectively. The polars of these points intersect each other in a real point B_{1}. Consider a further real point C of the line $B B_{1}$ and denote by A_{1} the intersection point of the polar of A and the real line $A C$ (see Fig. 2).

Observe that $A_{1} B_{1}$ is perpendicular to $A C$ thus we have $\tanh b_{1}=\tanh a_{1} \cdot \cos \gamma$. On the other hand $a= \pm a_{1}+(\pi i) / 2$ and $b= \pm b_{1}+(\pi i) / 2$ implying that $\tanh b=\tanh a \cdot \cos \gamma$. Hence the angle between the real line $C B$ and the ideal line $A B$ can be considered to $\pi / 2$, too. Now from the triangle $A B C$ we get that

$$
\cosh c=\frac{\cosh b}{\cosh a}=\frac{ \pm i \sinh b_{1}}{ \pm i \sinh a_{1}}=\frac{\sinh b_{1}}{\sinh a_{1}}=\sin \left(\frac{\pi}{2}-\varphi\right)=\cos \varphi
$$

where φ is the angle of the two polars. From this we get $c=2 n \pi \pm \varphi / i=2 n \pi \mp \varphi i$. We choose $n=0$ since at this time $\varphi=0$ implies $c=0$ and the positive sign because the length of the line is πi.

The length of an ideal segment on an ideal line is the angle of their polars multiplied by the imaginary unit i.

Table 3. Angles of lines.
2.4. Angles of lines. Similarly we can deduce the angle between arbitrary kind of lines. We can find it in Table 3, where a and b are the given lines, $M=a \cap b$ is their intersection point, m is the polar of M and A and B is the poles of a and b, respectively. The numbers p and a_{1} represent real distances, respectively, can be seen on Fig. 3. The general connection between the angles and distances is the following:

Every distance of a pair of points is the measure of the angle of their polars multiplied by i. The domain of the angle can be chosen on such a way, that we are going through the segment by a moving point and look at the domain which described by the moving polar of this point.
2.5. The extracted hyperbolic theorem of Sines. We note that with the above definition of the length of a segment the known formulas of hyperbolic trigonometry extracted to the formulas of general objects with infinite or ideal vertices. For example, we prove the hyperbolic theorem of Sines which has the following form for a right-angled triangle

$$
\sinh a=\sinh c \cdot \sin \alpha
$$

Figure 4. Hyperbolic theorem of sines with non-real vertices

First we prove that cases when the sides of the triangle lie on real lines, respectively. We assume that the right angle is at C and the side which opposite to a vertex noted to the same small letter as of the vertex. The angle at A or B is α or β, respectively. We remark that the angle at C is real because of our definition on the extracted angles (see Table 3).

- If A is an infinite point B and C are real ones then the product $\sinh c \cdot \sin \alpha=\infty \cdot 0$ is indeterminable and we can consider that the equality is true. The relation $\sinh b \cdot \sin \beta=\infty \cdot \sin \beta=\infty$ is also true by our agreement. If A, B are at infinity then $\alpha=\beta=0$ and we can consider that holds the equality, too.
- In the case, when B, C are real points and A is an ideal point, let the polar of A is p_{A}. Then by definition $\sinh c=\sinh \left(d_{B}+(i \pi / 2)\right)=\cosh \left(d_{B}\right) \sinh (i \pi / 2)=i \cosh \left(d_{B}\right)$ where d_{B} is the distance of B and p_{a} and $\sin \alpha=\sin (d / i)=i(1 / i) \sin (-i d)=-i \sinh (d)$ where d is the length of the segment between the lines of the sides $A C$ and $B C$. If p_{A} intersects $A C$ and $B C$ in the points D and E, respectively then $B C D E$ is a quadrangle with three right angles and with the sides a, x,
d and d_{B} (see the left figure in Fig. 4). This implies that $\sinh c \sin \alpha=\cosh \left(d_{B}\right) \sinh (d)=\sinh a$, as we stated.
- If C is a real point A is at infinity and B is an ideal point, then $\alpha=0$ and the right-hand side $\sinh c \cdot \sin \alpha$ is undeterminable. If we consider $\sinh c \cdot \sin \beta=\infty \sin \beta$ it is infinite by our agreement and the statement is true, again.
- Very interesting the last case when C is a real point, A and B are ideal points, respectively, and the line $A B$ is a real line (see the right-hand side picture in Fig. 4). Then $\sinh a=i \cosh g$, $\sinh c=\sinh (-e)$ and $\sin \alpha=-i \sinh d$ thus $\sinh c \sin \alpha=i \sinh e \sinh d$ and the theorem holds if and only if in the real pentagon $C D E F G$ with five right angles holds that $\sinh e \sinh d=\cosh g$. In Statement 1 we can find the proof of this nice connection among the sides of a pentagon with five right angles.

Statement 1. Denote by a, b, c, d, e the edge lengths of the successive sides of a pentagon with five right angles on the hyperbolic plane. Then we have the following formulas:

$$
\cosh d=\sinh a \sinh b \quad \sinh c=\frac{\cosh a}{\sqrt{\sinh ^{2} a \sinh ^{2} b-1}} \quad \sinh e=\frac{\cosh b}{\sqrt{\sinh ^{2} a \sinh ^{2} b-1}}
$$

We prove the statement using Weierstrass homogeneous coordinates of the hyperbolic plane. Before the proof we recall the formula of (usual) distance of points with respect to such homogeneous coordinates. Consider the hyperboloid model of the hyperbolic plane H embedded into a 3-dimensional pseudo-Euclidean space with indefinite inner product with signature $(-,-,+)$. The points of the plane can be considered as the unit sphere of this space containing those elements which scalar square is equal to 1 and last coordinates are positives, respectively. It can be seen that the distance between two points $X=(x, y, z)^{T}$ and $X^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$ holds the following formula:

$$
\cosh \left|X X^{\prime}\right|=-x x^{\prime}-y y^{\prime}+z z^{\prime}
$$

Consider now the projection of H into the plane $z=1$ from the origin. Then we get a projective (Cayley-Klein) model of H with the usual metric.

Proof. Assume that a pentagon 12345 with five right angles lies in this model as in Fig. 4 (bottom) the vertex 1 is the origin and the edges 12 and 51 lies on the first two axes of the coordinate system. Now we have to determine the length of the edge 34 using as parameter the respective lengths a and b of the edges 12 and 51 . To this we can determine the coordinates of the points $I I I, I V$ of H which mapped into the points 3,4 , respectively. Consider the point X and its image 3 . We have to determine first the Euclidean distance $\rho:=|03|$ and the angle $\varphi:=(2 O 3)_{\measuredangle}$ and then the coordinates of X are $\sinh \rho \cos \phi, \sinh \rho \sin \varphi, \cosh \rho$, respectively. If the hyperbolic length of 12 and 51 are a and b, respectively, then their Euclidean distances are $\tanh a$ and $\tanh b$, respectively. Obvious that the line 34 intersects the axes in such points 6 and 7 , whose distances from the origin are $1 / \tanh a$ and $1 / \tanh b$, respectively. From this we get that

$$
\cosh \rho=\frac{\cosh ^{2} a \tanh b}{\sqrt{\cosh ^{2} a \tanh ^{2} b-1}} \quad \sinh \rho=\frac{\sqrt{\sinh ^{2} a \cosh ^{2} a \tanh ^{2} b+1}}{\sqrt{\cosh ^{2} a \tanh ^{2} b-1}}
$$

and

$$
\cos \varphi=\frac{\sqrt{\sinh ^{2} a \cosh ^{2} a \tanh ^{2} b}}{\sqrt{\sinh ^{2} a \cosh ^{2} a \tanh ^{2} b+1}} \quad \sin \varphi=\frac{1}{\sqrt{\sinh ^{2} a \cosh ^{2} a \tanh ^{2} b+1}}
$$

From these quantities we get

$$
x=\frac{\sinh a \cosh a \tanh b}{\sqrt{\cosh ^{2} a \tanh ^{2} b-1}}, \quad y=\frac{1}{\sqrt{\cosh ^{2} a \tanh ^{2} b-1}}, \quad z=\frac{\cosh ^{2} a \tanh b}{\sqrt{\cosh ^{2} a \tanh ^{2} b-1}}
$$

and similarly for the pre-image X^{\prime} of the point 4 we get

$$
x^{\prime}=\frac{1}{\sqrt{\cosh ^{2} b \tanh ^{2} a-1}} \quad y^{\prime}=\frac{\sinh b \cosh b \tanh a}{\sqrt{\cosh ^{2} b \tanh ^{2} a-1}} \quad z^{\prime}=\frac{\cosh ^{2} b \tanh a}{\sqrt{\cosh ^{2} b \tanh ^{2} a-1}} .
$$

Finally the inner product of these vectors gives the first required formula

$$
\cosh d=\cosh \left|X X^{\prime}\right|=\sinh a \sinh b .
$$

The other two formulas of the statement are simple consequences of this first one.

In the second case we assume that either there is an ideal line or there is a line at infinity among the lines of the sides. Since C is a real point, the line which could be non-real one is the line of the hypotenuse $A B$. Now if it is at infinity and at least one vertex of it is an infinite point the statement evidently true. Assume that A, B and its line are ideal elements, respectively. Then the length c is equal to $(\pi / 2) i$ the angle α is equal to $(\pi / 2)+d / i$ where d is the distance between C and the polar of B and the length of a is equal to $d+(\pi / 2) i$, respectively. The equality $\sinh (\pi / 2) i \cdot \sin ((\pi / 2)+d / i)=$ $(1 / i) \sin (-(\pi / 2)) \cos (d / i)=-(1 / i) \cosh d=i \cosh d=\sinh (d+(\pi / 2) i)$ proves the statement in this case, too.

3. Power, inversion and centres of similitude

It is not clear who investigated first the concept of inversion with respect to hyperbolic geometry. A synthetic approach can be found in [13] using reflections in Bachmann's metric plane. To our purpose it is more convenient to use an analytic approach in which the concepts of centres of similitude and axis of similitude can be defined. We consider - as an analogy - the spherical approach of these concepts can be found in Chapter VI and Chapter VII in [5].
3.1. Spherical concept. It can be proved (§97. in [5]) that if an arc of a great circle (line) passing through a fixed point O cuts a fixed small circle in the variable points A, B, then

$$
\tan \frac{1}{2} O A \cdot \tan \frac{1}{2} O B
$$

is constant. This product is called the spherical power of O with respect to circle. It is positive or negative, according to whether O is exterior or interior to the circle. If from any point O outside a small circle two great circle arcs are drawn to it, of which one, $O D$, is a tangent, and the other a secant, meeting the small circle in the points A, B; then

$$
\tan ^{2} \frac{1}{2} O D=\tan \frac{1}{2} A O \cdot \tan \frac{1}{2} O B .
$$

If we have two small circles on the sphere then the locus of points P for which the tangent segments to these circles are equal is a great circle called the radical circle (axis of power) of them. The radical circles of any two of three small circles are concurrent. The common point is the power point of the three small circles. This is the centre of the circle orthogonal to each of them.

For two small circles there are two centres of similitude. These are the points on the line connecting their centres, which divide the segment joining the centers of the two circles externally or internally in the spherical ratio of the sines of the radii. The common tangent lines to the circles pass through the centres of similitude, namely, the direct common tangent lines through the external centre and the inverse common tangent lines through the internal center. If the two small circles have intersecting interiors, the internal center of similitude exists, but inverse common tangent lines do not exist. If through a centre of similitude we draw a secant cutting the circles, then the pairs of points $M, M^{\prime} ; N, N^{\prime}$ of Fig. 5 are said to be homothetic and $M, N^{\prime} ; M^{\prime}, N$ are inverse.

Figure 5. Centres of similitude

Then for the homothetic points M, M^{\prime} the ratio

$$
\tan \frac{S M}{2}: \tan \frac{S M^{\prime}}{2}
$$

is independent of M (see $\S 97$. in [5]). Moreover, also

$$
\tan \frac{S M}{2} \tan \frac{S N^{\prime}}{2}=\tan \frac{S M^{\prime}}{2} \cdot \tan \frac{S N}{2}
$$

is independent of M (see Cor. in $\S 97$. in [5]). Let us have three small circles c_{1}, c_{2}, c_{3}. For $k, l \in\{1,2,3\}$, we denote by $O_{k l}^{i}$, or $O_{k l}^{o}$ the inner, or outer centers of similitude of c_{k} and c_{l}. Then the following four triples of points are collinear:

$$
\left\{O_{12}^{o}, O_{23}^{o}, O_{31}^{o}\right\},\left\{O_{12}^{o}, O_{23}^{i}, O_{31}^{i}\right\},\left\{O_{12}^{i}, O_{23}^{o}, O_{31}^{i}\right\},\left\{O_{12}^{i}, O_{23}^{i}, O_{31}^{o}\right\}
$$

All the four lines containing these triples of points are called axes of similitude of the circles c_{1}, c_{2}, c_{3}. Cf. $\S 98$ in [5]. Consequently if a variable circle touches two fixed circles, the line passing through the points of contact passes through a fixed point, namely, a centre of similitude of the two fixed circles; for the points of contact are centres of similitude. Moreover if a variable circle touches the two fixed circles, then the length of the tangent segment drawn to it from the respective center of similitude, for which the chord joining the two points of contact, passes, is constant. Thus if being given a fixed point S and any curve γ, on the sphere, if on the line segment joining S to any point M of γ a point N^{\prime} is taken, such that $\tan (|S M| / 2) \tan \left(\left|S M^{\prime}\right| / 2\right)$ is constant, the locus of N^{\prime} is called the inverse of γ.
3.2. Hyperbolic concept. Returning to the hyperbolic case we have a new situation, namely two lines do not intersect in every case. For example, if we consider three points A, B, C on a line (with this order) then the ratio defined by

$$
\frac{\sinh A C}{\sinh B C}
$$

is equal to

$$
\frac{\sinh A C}{\sinh B C}=\frac{\sinh (A B+B C)}{\sinh B C}=\cosh A B+\operatorname{coth} B C \sinh A B
$$

and by the assumption coth $B C>1$ it is greater then $e^{A B}$. Therefore a ratio can be attained by a real point C only if this ratio is greater than $e^{A B}$. (Obviously, this quantity depends on the distance of the points $A, B)$. On the other hand every number greater or equal to 1 could be the ratio of hyperbolic sines of the radii of circles with centers A and B, respectively. Using the extracted concepts of lengths of segments this problem solved.

First we prove a lemma on which based our theory.
Lemma 1. The product $\tanh (P A) / 2 \cdot \tanh (P B) / 2$ is constant if P is a fixed (but arbitrary) point (real, at infinity or ideal), P, A, B are collinear and A, B are on a cycle of the hyperbolic plane (meaning that in the fixed projective model of the real projective plane it has a proper part).

Proof. To prove this we have to consider three cases with respect to the type of the cycle with the necessary subcases with respect to the possible types of the points P, A, B.
(A): In the case of a circle we have more cases.

- P is a real point A, B are real points. In this case the center O of the circle is real and we can consider the real line through O and perpendicular to the line $A B$. The intersection of these lines is the real point C. Consider the triangles $A C O$ and $P C O$, respectively. These have a common side $O C$ and a respective right angle at C. For the pair of points choose such segments from the pair of possible segments, that the relation $A B=A C \cup C B$ be valid (see Fig. 6). From the Pythagorean Theorem we have $\cosh A C / \cosh C P=\cosh O A / \cosh P O$. Hence

$$
\begin{aligned}
\tanh \frac{A P}{2} \tanh \frac{B P}{2}= & \tanh \frac{A C+C P}{2} \tanh \frac{B C-P C}{2}=\tanh \frac{A C+C P}{2} \tanh \frac{(A C-C P)}{2}= \\
= & \frac{\sinh \frac{A C+C P}{2}}{\cosh \frac{A C+C P}{2}} \frac{\sinh \frac{A C-C P}{2}}{\cosh \frac{A C-C P}{2}}=\frac{\cosh A C-\cosh C P}{\cosh A C+\cosh C P}=\frac{\cosh O A-\cosh P O}{\cosh O A+\cosh P O}= \\
& =\tanh \frac{O A+P O}{2} \tanh \frac{O A-P O}{2}=\text { constant }=c .
\end{aligned}
$$

Figure 6. Power of a point into a cycle

We note that the absolute value of c is less or equal to 1 and the sign of c depends only on the fact that P is a point in the interior or a point of the exterior of the given circle. Additionally it is equal to zero if and only if either $P=A$ or $P=B$, holds.

- P is an infinite point A, B are real points. According to our agreements on the length of a segment and using of the symbols $\pm \infty$ the required product is either 1 or -1 .
- Finally if P is an ideal point and A, B are real points, then using the enumeration above originating from the extracted Pythagorean Theorem we get that

$$
\begin{gathered}
c=\tanh \frac{O A+P O}{2} \\
\tanh \frac{O A-P O}{2}=\tanh \frac{O A+d+(\pi / 2) i}{2} \tanh \frac{O A-d-(\pi / 2) i}{2}= \\
=\frac{\cosh O A-\cosh (d+(\pi / 2) i)}{\cosh O A+\cosh (d+(\pi / 2) i)}=\frac{\cosh O A+\sinh d}{\cosh O A-\sinh d}
\end{gathered}
$$

showing that the absolute value of c is greater than 1 , and the sign of c depends on the ratio of the radius of the circle and the distance d (between the polar of P and the center of the circle).
(B): In the case of paracycle the point O is at infinite. In Fig. 6 we can see that if P is real then there is an unique paracycle through P with the same pencil of parallel lines. Now if $C \neq P$ we have the following calculation:

$$
\begin{gathered}
\tanh \frac{A P}{2} \tanh \frac{B P}{2}=\tanh \frac{A C+C P}{2} \tanh \frac{B C-P C}{2}=\tanh \frac{A C+C P}{2} \tanh \frac{(A C-C P)}{2}= \\
=\frac{\sinh \frac{A C+C P}{2}}{\cosh \frac{A C+C P}{2}} \frac{\sinh \frac{A C-C P}{2}}{\cosh \frac{A C-C P}{2}}=\frac{\cosh A C-\cosh C P}{\cosh A C+\cosh C P}=\frac{\frac{\cosh A C}{\cosh C P}-1}{\frac{\cosh A C}{\cosh C P}+1} .
\end{gathered}
$$

But using the equality on the diameter and height of a segment of a paracycle (see also eg. [9]) we get

$$
\frac{\cosh A C}{\cosh C P}=\frac{e^{C F}}{e^{C D}}=e^{C F-C D}=e^{P G}=\cosh E P
$$

showing that it is independent from the position of the secant $A B$. For $C=P$ this value is ± 1 and it is the result in that case, too, if P is at infinity. The absolute value of c is less then 1 for real P and greater than 1 for ideal P.
(C): In the case of hypercycle we have again more cases. First we assume that A, B and P are real points, respectively. O is an ideal point and C is the halving point of the segment $A B$ $(A B=A C \cup C B=A P \cup P B$ as on Fig. 7). Let $F G$ be the basic line of the hypercycle with distance b. Then all of the radiuses are orthogonal to $F G$. The minimal distance of a point of the segment $A B$ from the line $F G$ attained at the radius through E (and C). As in the case of paracycles we get that

$$
\tanh \frac{A P}{2} \tanh \frac{B P}{2}=\frac{\frac{\cosh A C}{\cosh C P}-1}{\frac{\cosh A C}{\cosh C P}+1},
$$

and from the quadrangle $A F G C$ with three right-angle we get that

$$
\frac{\cosh A C}{\cosh C P}=\frac{\sinh A F}{\sinh G C}: \frac{\sinh P R}{\sinh G C}=\frac{\sinh b}{\sinh d},
$$

Figure 7. Power of a point into a hypercycle
where d is the distance of the point P from the basic line of the hypercycle. Thus the latter term is independent from the choice of the points A, B on the hypercycle implying that the examined value has the same property. Denote by c this constant. Of course $b \gtrless d$ implies that $c \gtrless 0$ and the absolute value of c is less than 1 . If A, B are real points and P at infinity then $c= \pm 1$. The result in the case when A, B, P are distinct, non-ideal points and at least one among is at infinity can be gotten analogousy.

Finally, we have to consider all cases when at least one point is ideal (and by our assumption at least one from A and B is real). Of course, from the definitions of the length of a general segment we can use complex numbers as in (A) to prove our statement. For instance, assume that P and O are ideal points such that the line $P O$ is also ideal and A, B are a real points (see Fig. 8). The examined expression is

$$
\begin{aligned}
c=\tanh \frac{A P}{2} \tanh \frac{B P}{2}=\frac{\cosh A C-}{\cosh C P} & =\frac{\sinh A F-\sinh P R}{\cosh A C+}+\cosh C P
\end{aligned} \frac{\sinh b-\sinh i \varphi}{\sinh b+\sinh i \varphi}=
$$

where φ is the angle of the respective polars of P and R. This proves the statement, again. The remaining cases can be proved analogously and we omit their proofs.

On the basis of Lemma 1 we can define the power of a point with respect to a given cycle.
Definition 1. The power of a point P with respect to a given cycle is the value

$$
c:=\tanh \frac{1}{2} P A \cdot \tanh \frac{1}{2} P B,
$$

where the points A, B are on the cycle, such that the line $A B$ passes through the point P. With respect to Lemma 1 this point could be real, infinite or ideal one. The axis of power of two cycles is the locus of points having the same powers with respect to the cycles.

The usual statements are valid on the Euclidean or spherical power is valid also in the hyperbolic plane. The power of a point can be positive, negative or complex. (For example, in the case when A, B are real points we have the following possibilities: it is positive if P is a real point and it is in the exterior of the cycle; it is negative if P is real and it is in the interior of the cycle, it is infinite if P is a point at infinity, or complex if P is an ideal point.)

We can also introduce the concept of similarity center of cycles.

Figure 8. Power with ideal point P.
Definition 2. The centres of similitude of two cycles with non-overlapping interiors are the common points of their pairs of tangents touching directly or inversely (i.e., they do not separate, or separate the circles), respectively. The first point is the external center of similitude the second one is the internal center of similitude.

For intersecting cycles separating tangent lines do not exist, but the internal center of similitude is defined as on the sphere, but replacing sin by sinh. More precisely we have

Lemma 2. Two points S, S^{\prime} which divide the segments $O O^{\prime}$ and $O^{\prime} O$, joining the centers of the two cycles in the hyperbolic ratio of the hyperbolic sines of the radii r, r^{\prime} are the centers of similitude of the cycles. By formula, if

$$
\sinh O S: \sinh S O^{\prime}=\sinh O^{\prime} S^{\prime}: \sinh S^{\prime} O=\sinh r: \sinh r^{\prime}
$$

then the points S, S^{\prime} are the centers of similitude of the given cycles.
Proof. Consider a line through the point S which intersects the cycles in M and M^{\prime}. Consider also the triangles $O M S$ and $O^{\prime} M^{\prime} S$, respectively. Since $O S M \measuredangle=O^{\prime} S M^{\prime} \measuredangle$ from our assumption (using the general hyperbolic theorem of sines) follows the other equality $O M S \measuredangle=O^{\prime} M^{\prime} S \measuredangle$. This implies that a tangent from S to one of the cycles is also a tangent to the other one. This means that S (and analogously S^{\prime}) is a center of similitude of the cycles.

We also have the following
Lemma 3. If the secant through a centre of similitude S meets the cycles in the corresponding points M, M^{\prime} then $\tanh \frac{1}{2} S M$ and $\tanh \frac{1}{2} S M^{\prime}$ are in a given ratio.

Proof. First we have to prove the hyperbolic analogy of the formula known as "Napier's analogy" (see in [5]) in spherical trigonometry. Consider the identity

$$
\tanh \frac{a+b}{2} \operatorname{coth} \frac{c}{2}=\frac{\tanh \frac{a}{2} \operatorname{coth} \frac{c}{2}+\tanh \frac{b}{2} \operatorname{coth} \frac{c}{2}}{1+\tanh \frac{a}{2} \tanh \frac{b}{2}}
$$

and substitute to this equality the equalities

$$
\tanh \frac{a}{2} \operatorname{coth} \frac{c}{2}=\frac{\sin (\alpha+\delta)}{\sin (\gamma+\delta)} \quad \tanh \frac{b}{2} \operatorname{coth} \frac{c}{2}=\frac{\sin (\beta+\delta)}{\sin (\gamma+\delta)}
$$

where 2δ is the defect of the triangle defined by $2 \delta=\pi-(\alpha+\beta+\gamma)$. (This equality can be shown in the following way. Add to the hyperbolic theorem of cosine for angle $\cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cosh a$ the identity $\cos (\beta+\gamma)=\cos \beta \cos \gamma-\sin \beta \sin \gamma$ and use the formulas on the half of a distance then we get $\sinh \frac{a}{2}=\sqrt{(\sin \delta \sin (\alpha+\delta)) /(\sin \beta \sin C)}$. Similarly, we get that

$$
\cosh \frac{a}{2}=\sqrt{(\sin (\beta+\delta) \sin (\gamma+\delta)) /(\sin \beta \sin \gamma)}
$$

and the required equality follows.) Then we get

$$
\tanh \frac{a+b}{2} \operatorname{coth} \frac{c}{2}=\frac{\sin (\alpha+\delta)+\sin (\beta+\delta)}{\sin (\gamma+\delta)+\sin \delta}=\frac{\cos \frac{\alpha-\beta}{2}}{\cos \frac{\alpha+\beta}{2}},
$$

or equivalently

$$
\tanh \frac{a+b}{2}=\frac{\cos \frac{\alpha-\beta}{2}}{\cos \frac{\alpha+\beta}{2}} \tanh \frac{c}{2}
$$

Using this formula we have that

$$
\tanh \frac{1}{2} S M: \tanh \frac{1}{2} S M^{\prime}=\tanh \frac{1}{2}(S O+r): \tanh \frac{1}{2}\left(S O^{\prime}+r^{\prime}\right)=\mathrm{const} .
$$

We now give the discussion of the cases for the possible centers of similitude. We have six possibilities.
(i): The two cycles are circles. To get the centers of similitude we have to solve an equation in x. Here d means the distance of the centers of the circles, $r \leq R$ denotes the respective radii, and x is the distance of the center of similitude to the center of the circle with radius r.

$$
\sinh (d \pm x): \sinh x=\sinh R: \sinh r
$$

from which we get that

$$
\operatorname{coth} x=\frac{\sinh R \mp \cosh d \sinh r}{\sinh r \sinh d}
$$

or equivalently

$$
e^{x}=\sqrt{\frac{\operatorname{coth} x+1}{\operatorname{coth} x-1}}=\sqrt{\frac{\sinh R \mp \cosh d \sinh r+\sinh r \sinh d}{\sinh R \mp \cosh d \sinh r-\sinh r \sinh d}}=\sqrt{\frac{(\sinh R) /(\sinh r) \mp e^{\mp d}}{(\sinh R) /(\sinh r) \mp e^{ \pm d}}}
$$

The two centers corresponding to the two cases of possible signs. If we assume that

$$
e^{x}=\sqrt{\frac{(\sinh R) /(\sinh r)-e^{-d}}{(\sinh R) /(\sinh r)-e^{d}}}
$$

then the center is an ideal point, point at infinity or a real point according to the cases

$$
\sinh R / \sinh r<e^{d}, \quad \sinh R / \sinh r=e^{d}, \text { or } \sinh R / \sinh r>e^{d},
$$

respectively. The corresponding center is the external center of similitude. In the other case we have

$$
e^{x}=\sqrt{\frac{(\sinh R) /(\sinh r)+e^{d}}{(\sinh R) /(\sinh r)+e^{-d}}}
$$

and the corresponding center is always a real point. This is the internal center of similitude.
(ii): One of the cycles is a circle and the other one is a paracycle. The line joining their centers (which we call axis of symmetry) is a real line, but the respective ratio is zero or infinite. To determine the centres we have to decide the common tangents and their points of intersections, respectively. The external centre is a real, infinite ar ideal point and the internal centre is a real point.
(iii): One of the cycles is a circle and the other one is a hypercycle. The axis of symmetry is a real line such that the ratio of the hyperbolic sines of the radii is complex. The external center is a real, infinite or ideal point, the internal one is always real point. Each of them can be determined as in the case of two circles.
(iv): Each of them is a paracycle. The axis of symmetry is a real line and the internal centre is a real point. The external centre is an ideal point.
(v): One of them is a paracycle and the other one is a hypercycle. The axis of symmetry (in the Poincare model, with the hypercycle replaced by the circular line containing it, and the axis containing the two apparent centers) is a real line. The internal centre is a real point. The external centre is a real, infinite or ideal point.
(vi): Both of them are hypercycles. The axis of symmetry (in the Poincaré model, with the hypercycle replaced by the circular line containing it, and the axis containing the two apparent centers) can be a real line, ideal line or a line at infinity. For the internal centre we have three possibilities as above as well as for the external centre.

Since using the extended concepts two points always determine a line and two lines always determine a point, all concepts defined on the sphere also can be used on the hyperbolic plane. Thus we use the concepts of "axis of similitude", "inverse and homothetic pair of points", "homothetic to and inverse of a curve γ with respect to a fixed point S (which "can be real point, a point at infinity, or an ideal point, respectively") as in the case of the sphere. More precisely we have:

Lemma 4. The six centers of similitude of three cycles taken in pairs lie three by three on four lines, called axes of similitude of the cycles.

Proof. If A, B, C their centers and a, b, c the corresponding radii of the cycles, $A^{\prime}, B^{\prime}, C^{\prime}$ the internal centers of similitude, and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ the externals; then we have by definitions (see [17] p. 70 or [16])

$$
\left(A B C^{\prime \prime}\right):=\sinh A C^{\prime \prime}: \sinh C^{\prime \prime} B=\sinh a: \sinh b,
$$

and similarly

$$
\left(B C A^{\prime \prime}\right)=\sinh b: \sinh c, \quad\left(C A B^{\prime \prime}\right)=\sinh c: \sinh a .
$$

Hence

$$
\left(A B C^{\prime \prime}\right)\left(B C A^{\prime \prime}\right)\left(C A B^{\prime \prime}\right)=1
$$

Now the convers of the Menelaos-theorem is also valid (see [16] p.169) implying that the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are collinear. Similarly, it may be shown that any two internal centers and an external center lie on a line.

From Lemma 3 immediately follows that if the other corresponding intersection points of a line through S with the cycles is N, N^{\prime} then $\tanh \frac{1}{2} S M \cdot \tanh \frac{1}{2} S N^{\prime}$ is independent from the choosing of the line (see Fig.5). Thus being given a fixed point S (which is the center of the cycle for which we would like to invert) and any curve γ, on the hyperbolic plane, if on the halfline joining S (the endpoint of the halfline) to any point M of γ a point N^{\prime} is taken, such that

$$
\tanh \frac{S M}{2} \cdot \tanh \frac{S N^{\prime}}{2}
$$

is constant, the locus of N^{\prime} is called the inverse of γ. We also use the name cycle of inversion for the locus of the points whose squared distance from S is

$$
\tanh \frac{S M}{2} \cdot \tanh \frac{S N^{\prime}}{2}
$$

Among the projective elements of the pole and its polar either one of them is always real or both of them are at infinity. Thus in a construction the common point of two lines is well-defined, and in every situation it can be joined with another point; for example, if both of them are ideal points they can be given by their polars (which are constructible real lines) and the required line is the polar of the intersection point of these two real lines. Thus the lengths in the definition of the inverse can be constructed. This implies that the inverse of a point can be constructed on the hyperbolic plane, too.
Remark. Finally we remark that all of the concepts and results of inversion with respect to a sphere of the Euclidean space can be defined also in the hyperbolic space, the "basic sphere" could be a hypersphere, parasphere or sphere, respectively. We can use also the concept of ideal elements and the concept of elements at infinity, if it is necessary. It can be proved (using Poincaré's ball-model) that every hyperbolic plane of the hyperbolic space can be inverted to a sphere by such a general inversion. This map sends the cycles of the plane to circles of the sphere.
3.3. Applications of the theory for constructions. In the books [17] and [16] there are many applications to the concept of general points, general lines and general distances. For example in [17] we can find the complete characterization of generalized conic sections and in [16] we can write the extracted theorems of Ceva and Menelaos, respectively. In this section we give some further applications some of them have analogous on the sphere but the knowledge of the author there is not known as a hyperbolic theorem and others are completely new observations.
3.3.1. Construction of Gergonne. Gergonne's construction (see e.g. [7] and see in Fig. 4) solve the following problem in the Euclidean plane:

Construct a circle touching three given circles of the Euclidean plane.
A nice construction is the following:

- Draw the point P of power of the given circles c_{1}, c_{2}, c_{3} and an axis of similitude of certain three centres of similitude.
- Join the poles P_{1}, P_{2}, P_{3} of this axis of similitude with respect to the circles c_{1}, c_{2}, c_{3} with the point P by straight lines. Then the lines $P P_{i}$ cut the circles c_{i} in two points $Q_{i 1}$ and $Q_{i 2}$.
- A suitable choice $Q_{1 j(1)}, Q_{2 j(2)}, Q_{3 j(3)}$ will give the touching points of some sought circle and c_{1}, c_{2}, c_{3}. More exactly, there are two such choices $Q_{1 j(1)}, Q_{2 j(2)}, Q_{3 j(3)}$ and $Q_{1 k(1)}, Q_{2 k(2)}, Q_{3 k(3)}$, satisfying $j(i) \neq k(i)$ for $1 \leq i \leq 3$, where $\left|P P_{i j(i)}\right| \leq\left|P P_{i k(i)}\right|$.

By the results of the preceding section we can say this construction on the hyperbolic plane too. We note that in the paper [8] this construction was proved by the conformal model. In this section we can give a proof without using any models.

Figure 9. The construction of Gergonne

In Fig. 9 the axis of similitude contains the three outer centers of similitude, in which case, choosing for $Q_{i j(i)}$ the intersection points closer to P, we obtain the common outward touching cycle, and for choosing the farther intersection points to P we obtain the common touching cycle that contains c_{1}, c_{2}, c_{3}. We denoted these circles in Fig. 9 by c^{\prime} and $c^{\prime \prime}$, respectively.

Choosing, e.g., for c_{1}, c_{3} and c_{2}, c_{3} the inner centers of similitude, and then for c_{1}, c_{2} the outer center of similitude, we obtain another axis of similitude (by permuting the indices we obtain still two more similar cases). Then defining the points P_{i} and $P_{i j(i)}$ analogously like above, if $P Q_{1 j(1)} \leq P Q_{1 k(1)}$, $P Q_{2 j(2)} \leq P Q_{2 k(2)}$, and $P Q_{3 j(3)} \geq P Q_{3 k(3)}$, then the circle $Q_{1 j(1)} Q_{2 j(2)} Q_{3 j(3)}$ touches c_{1}, c_{2}, c_{3}, contains c_{3} and touches c_{1}, c_{2} externally, while the circle $Q_{1 k(1)} Q_{2 k(2)} Q_{3 k(3)}$ touches c_{1}, c_{2}, c_{3}, contains c_{1}, c_{2}, and touches c_{3} externally.

Summing up: there are eight cycles touching each of c_{1}, c_{2}, c_{3}.
An Euclidean proof of the pertinence of this construction on circles can be rewritten also by hyperbolic terminology.

Gergonne's construction. Consider the cycles c^{\prime} and $c^{\prime \prime}$ touching c_{1}, c_{2} and c_{3}, in any of the four above described cases; in Fig. c^{\prime} touches each of c_{1}, c_{2}, c_{3} externally, and $c^{\prime \prime}$ touches each of c_{1}, c_{2}, c_{3} internally. Then the line joining the touching points $Q_{i j(i)}$ and $Q_{i k(i)}$ passes through one of the centers of similitude P of c^{\prime} and $c^{\prime \prime}$. Thus P is the point of power of c_{1}, c_{2} and c_{3}. On the other hand, two of the three given cycles (say c_{1} and c_{2}) give a touching pair with respect to c^{\prime} and $c^{\prime \prime}$, hence its outer center of similitude S_{12} has the same power with respect to c^{\prime} and $c^{\prime \prime}$. So the three outer centers of similitude S_{12}, S_{13} and S_{23} are on the axis of power of c^{\prime} and $c^{\prime \prime}$. (It is also (by definition) an axis of similitude with respect
to c_{1}, c_{2} and c_{3}, say s. For $c^{\prime}, c^{\prime \prime}$ being another pair of touching circles, in the other three cases, the respective changes have to be made in the choice.) Since the pole Q_{i} (with respect to the cycle c_{i}) of the line joining $Q_{i j(i)}$ and $Q_{i k(i)}$ is the intersection point of the common tangents of c^{\prime} and c_{i} at $Q_{i j(i)}$, and $c^{\prime \prime}$ and c_{i} at $Q_{i k(i)}$, respectively, it is also on s. By the theorem of pole-polar we get that the pole P_{i} of s with respect to c_{i} lies on the line $Q_{i j(i)} Q_{i k(i)}$. This proves the construction.
3.3.2. Steiner's construction on Malfatti's construction problem. Malfatti (see [12]) raised and solved the following problem: construct three circles into a triangle so that each of them touches the two others from outside moreover touches two sides of the triangle too.

The first nice moment was Steiner's construction. He gave an elegant method (without proof) to construct the given circles. He also extended the problem and his construction to the case of three given circles instead of the sides of a triangle (see in [14], [15]). Cayley referred to this problem in [3] as Steiner's extension of Malfatti's problem. We note that Cayley investigated and solved its generalization in [3], he called it also Steiner's extension of Malfatti's problem. His problem is to determine three conic sections so that each of them touches the two others, and also touches two of three more given conic sections. Since the case of circles on the sphere is a generalization of the case of circles of the plane (as it can be seen easily by stereographic projection) Cayley indirectly proved Steiner's second construction. We also have to mention Hart's nice geometric proof for Steiner's construction which was published in [10]. (It can be found in various textbooks e.g. [4] and also on the web.)

In the paper [8] we presented a possible form of Steiner's construction which best meet the original problem. We note (see the discussion in the proof) that our theorem has a more general form giving all possible solutions of the problem, however for simplicity we restrict ourself to the most plausible case, when the cycles touch each other from outside. In [8] we used the fact that cycles represented by circles in the conformal model of Poincaré. The Euclidean constructions on circles of this model gives hyperbolic constructions on cycles in the hyperbolic plane. To do these constructions manually we have to use special rulers and calipers to draw the distinct types of cycles. For brevity, we think for a fixed conformal model of the embedding Euclidean plane and preserve the name of the known Euclidean concepts with respect to the corresponding concept of the hyperbolic plane, too. We now interpret this proof without using models, too.

Figure 10. Steiner's construction.
Theorem 1 ([8]). Steiner's construction can be done also in the hyperbolic plane. More precisely, for three given non-overlapping cycles there can be constructed three other cycles, each of them touches the two other ones from outside and also touches two of the three given cycles from outside.

Proof. Denote by c_{i} the given cycles. Now the steps of Steiner's construction are the following.
(1) Construct the cycle of inversion $c_{i, j}$, for the given cycles c_{i} and c_{j}, where the center of inversion is the external centre of similitude of them. (I.e., the center of $c_{i, j}$ is the center of the above inversion, and c_{i}, c_{j} are images of each other with respect to inversion with respect to $c_{i j}$. Observe that $c_{i j}$ separates c_{i} and c_{j}.)
(2) Construct cycle k_{j} touching two cycles $c_{i, j}, c_{j, k}$ and the given cycle c_{j}, in such a way that k_{j}, c_{j} touch from outside, and $k_{i j}, c_{i j}$ (or $c_{j k}$) touch in such a way that k_{j} lies on that side of $c_{i j}$ (or $c_{i k}$) on which side of them c_{j} lies.
(3) Construct the cycle $l_{i, j}$ touching k_{i} and k_{j} through the point $P_{k}=k_{k} \cap c_{k}$.
(4) Construct Malfatti's cycle m_{j} as the common touching cycle of the four cycles $l_{i, j}, l_{j, k}, c_{i}, c_{k}$.

The first step is the hyperbolic interpretation of the analogous well-known Euclidean construction on circles.

To the second step we follow Gergonne's construction which we did in the previous section. The third step is a special case of the second one. (A given cycle is a point now.) Obviously the general construction can be done in this case, too.

The fourth step is again the second one choosing three arbitrary cycles from the four ones since the quadrangles determined by the cycles have incircles.

Finally we have to prove that this construction gives the Malfatti's cycles. As we saw the Malfatti's cycles are exist (see in [8] Theorem 1). We also know that in an embedding hyperbolic space the examined plane can be inverted to a sphere. The trigonometry of the sphere is absolute implying that the possibility of a construction which can be checked by trigonometric calculations, is independent of the fact that the embedding space is a hyperbolic space or a Euclidean one. Of course, the Steiner construction is just such a construction, the touching position of circles on the sphere can be checked by spherical trigonometry. So we may assume that the examined sphere is a sphere of the Euclidean space and we can apply Cayley's analytical research (see in [3]) in which he proved that Steiner's construction works on a surface of second order. Hence the above construction produces the required touches.

4. Applications for triangle centers

In this section we give formulas on triangle centers using the analogies between the spherical and hyperbolic geometry. The extracted concept of distances give the possibility to avoid the lengthy discussions of the existence, respectively. We substitute the concept of circle with to concept of cycle, and also use the concepts of similarity and inversion introduced in the previous section. The notation of this subsection follows the previous part of this paper: the vertices of the triangle are A, B, C, the corresponding angles are α, β, γ and the lengths of the sides opposite to the vertices are a, b, c, respectively. We also use the notion $2 s=a+b+c$ for the perimeter of the triangle. Let denote $R, r, r_{A}, r_{B}, r_{C}$ the radius of the circumscribed cycle, the radius of the inscribed cycle (shortly incycle), and the radiuses of the escribed cycles opposite to the vertices A, B, C, respectively. We do not assume that the points A, B, C are real and the distances are positive numbers. In most cases the formulas are valid for ideal elements and elements at infinity and when the distances are complex numbers, respectively. The only exception when the operation which needs to the examined formula is understandable. Before the examination of hyperbolic triangle centers we collect some further important formulas on hyperbolic triangles. We can consider them in our extracted manner.
4.1. Staudtian of a hyperbolic triangle: The Staudtian of a hyperbolic triangle something-like similar (but definitely distinct) to the concept of the Euclidean area. In spherical trigonometry the twice of this very important quantity called by Staudt the sine of the trihedral angle $O-A B C$ and later Neuberg suggested the names (first) "Staudtian" and the "Norm of the sides", respectively. We prefer in this paper the name "Staudtian" as a token of our respect for the great geometer Staudt. Let

$$
n=n(A B C):=\sqrt{\sinh s \sinh (s-a) \sinh (s-b) \sinh (s-c)},
$$

then we have

$$
\begin{equation*}
\sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}=\frac{n^{2}}{\sinh s \sinh a \sinh b \sinh c} . \tag{6}
\end{equation*}
$$

The proof of this equality is the following. From (2) we get

$$
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos \gamma=\cosh (a-b)+\sinh a \sinh b(1-\cos \gamma),
$$

implying first that

$$
\begin{aligned}
& \sin ^{2} \frac{\gamma}{2}=\frac{1-\cos \gamma}{2}=\frac{-\cosh (a-b)+\cosh c}{2 \sinh a \sinh b}=\frac{\sinh \frac{a-b+c}{2} \sinh \frac{-a+b+c}{2}}{\sinh a \sinh b}= \\
&=\frac{\sinh (s-a) \sinh (s-b)}{\sinh a \sinh b}
\end{aligned}
$$

and the statement follows immediately. Similarly we also have that

$$
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos \gamma=\cosh (a-b)-\sinh a \sinh b(1+\cos \gamma),
$$

implying that

$$
\cos ^{2} \frac{\gamma}{2}=\frac{1+\cos \gamma}{2}=\frac{1}{2} \frac{\cosh (a+b)-\cosh c}{\sinh a \sinh b}=\frac{\sinh s \sinh (s-c)}{\sinh a \sinh b} .
$$

This observation leads to the following formulas on the Staudtian:

$$
\begin{equation*}
\sin \alpha=\frac{2 n}{\sinh b \sinh c}, \quad \sin \beta=\frac{2 n}{\sinh a \sinh c}, \quad \sin \gamma=\frac{2 n}{\sinh a \sinh b} \tag{7}
\end{equation*}
$$

From the first equality of (7) we get that

$$
\begin{equation*}
n=\frac{1}{2} \sin \alpha \sinh b \sinh c=\frac{1}{2} \sinh h_{C} \sinh c \tag{8}
\end{equation*}
$$

where h_{C} is the height of the triangle corresponding to the vertex C. As a consequence of this concept we can give homogeneous coordinates for the points of the plane with respect to a basic triangle as follows:

Definition 3. Let $A B C$ be a non-degenerated reference triangle of the hyperbolic plane. If X is an arbitrary point we define its coordinates by the ratio of the Staudtian

$$
X:=\left(n_{A}(X): n_{B}(X): n_{C}(X)\right)
$$

where $n_{A}(X), n_{B}(X)$ and $n_{C}(X)$ means the Staudtian of the triangle $X B C, X C A$ and $X A B$, respectively. This triple of coordinates is the triangular coordinates of the point X with respect to the triangle $A B C$.

Consider finally the ratio of section $\left(B X_{A} C\right)$ where X_{A} is the foot of the transversal $A X$ on the line $B C$. If $n\left(B X_{A} A\right), n\left(C X_{A} A\right)$ mean the Staudtian of the triangles $B X_{A} A, C X_{A} A$, respectively then using (8) we have

$$
\begin{gathered}
\left(B X_{A} C\right)=\frac{\sinh B X_{A}}{\sinh X_{A} C}=\frac{\frac{1}{2} \sinh h_{C} \sinh B X_{A}}{\frac{1}{2} \sinh h_{C} \sinh X_{A} C}=\frac{n\left(B X_{A} A\right)}{n\left(C X_{A} A\right)}= \\
=\frac{\frac{1}{2} \sinh c \sinh A X_{A} \sin \left(B A X_{A}\right) \measuredangle}{\frac{1}{2} \sinh b \sinh A X_{A} \sin \left(C A X_{A}\right) \measuredangle}=\frac{\sinh c \sinh A X \sin \left(B A X_{A}\right) \measuredangle}{\sinh b \sinh A X \sin \left(C A X_{A}\right) \measuredangle}=\frac{n_{C}(X)}{n_{B}(X)},
\end{gathered}
$$

proving that

$$
\begin{equation*}
\left(B X_{A} C\right)=n_{C}(X): n_{B}(X),\left(C X_{B} A\right)=n_{A}(X): n_{C}(X),\left(A X_{C} B\right)=n_{B}(X): n_{A}(X) \tag{9}
\end{equation*}
$$

4.2. Angular Staudtian of a hyperbolic triangle. In hyperbolic trigonometric formulas we also have a duality between side-lengths and angles. Thus naturally giving the idea to define the "dual concept" of the Staudtian. We call the getting quantity the angular Staudtian of the triangle defined by the equality:

$$
N=N(A B C):=\sqrt{\sin \delta \sin (\delta+\alpha) \sin (\delta+\beta) \sin (\delta+\gamma)}
$$

On the angular Staudtian we have analogous formulas as on the Staudtian. Use now the law of cosines on the angles. Then we have

$$
\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cosh c
$$

and adding to this equation the addition formula of the cosine function we get that

$$
\sin \alpha \sin \beta(\cosh c-1)=\cos \gamma+\cos (\alpha+\beta)=2 \cos \frac{\alpha+\beta+\gamma}{2} \cos \frac{\alpha+\beta-\gamma}{2}
$$

From this we get that

$$
\begin{equation*}
\sinh \frac{c}{2}=\sqrt{\frac{\sin \delta \sin (\delta+\gamma)}{\sin \alpha \sin \beta}} \tag{10}
\end{equation*}
$$

Analogously we get that

$$
\sin \alpha \sin \beta(\cosh c+1)=\cos \gamma+\cos (\alpha-\beta)=2 \cos \frac{\alpha-\beta+\gamma}{2} \cos \frac{-\alpha+\beta+\gamma}{2}
$$

implying that

$$
\begin{equation*}
\cosh \frac{c}{2}=\sqrt{\frac{\sin (\delta+\beta) \sin (\delta+\alpha)}{\sin \alpha \sin \beta}} . \tag{11}
\end{equation*}
$$

From these we get

$$
\begin{equation*}
\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}=\frac{N^{2}}{\sin \alpha \sin \beta \sin \gamma \sin \delta} . \tag{12}
\end{equation*}
$$

Finally we also have that

$$
\begin{equation*}
\sinh a=\frac{2 N}{\sin \beta \sin \gamma}, \quad \sinh b=\frac{2 N}{\sin \alpha \sin \gamma}, \quad \sinh c=\frac{2 N}{\sin \alpha \sin \beta} \tag{13}
\end{equation*}
$$

and from the first equality of (13) we get that

$$
\begin{equation*}
N=\frac{1}{2} \sinh a \sin \beta \sin \gamma=\frac{1}{2} \sinh h_{C} \sin \gamma, \tag{14}
\end{equation*}
$$

where h_{C} is the height of the triangle corresponding to the vertex C. The connection between the two Staudtians gives by the formula

$$
\begin{equation*}
2 n^{2}=N \sinh a \sinh b \sinh c \tag{15}
\end{equation*}
$$

In fact, from (7) and (13) we get that

$$
\sin \alpha \sinh a=\frac{4 n N}{\sin \beta \sin \gamma \sinh b \sinh c}
$$

implying that

$$
\sin \alpha \sin \beta \sin \gamma \sinh a \sinh b \sinh c=4 n N .
$$

On the other hand from (7) we get immediately that

$$
\sin \alpha \sin \beta \sin \gamma=\frac{8 n^{3}}{\sinh ^{2} a \sinh ^{2} b \sinh ^{2} c}
$$

and thus

$$
2 n^{2}=\sinh a \sinh b \sinh c N
$$

as we stated. The connection between the two types of the Staudtian can be understood if we dived to the first equality of (7) by the analogous one in (19). Then we have

$$
\frac{\sin \alpha}{\sinh a}=\frac{n}{N} \frac{\sin \beta}{\sinh b} \frac{\sin \gamma}{\sinh c}
$$

which using the hyperbolic theorem of sines leads to the equality

$$
\begin{equation*}
\frac{N}{n}=\frac{\sin \alpha}{\sinh a} \tag{16}
\end{equation*}
$$

4.3. On the centroid (or median point) of a triangle. We denote the medians of the triangle by $A M_{A}, B M_{B}$ and $C M_{C}$, respectively. The feet of the medians M_{A}, M_{B} and M_{C}. The existence of their common point M follows from the Menelaos-theorem. For instance if $A B, B C$ and $A C$ are real lines and the points A, B and C are ideal points then we have that $A M_{C}=M_{C} B=d=a / 2$ implies that M_{C} is the middle point of the real segment lying on the line $A B$ between the intersection points of the polars of A and B with $A B$, respectively (see Fig. 11).

The fact that the centroid is exist implies new real statements, e.g. Consider a real hexagon with six right angles. Then the lines containing the middle points of a side and perpendicular to the opposite sides of the hexagon are concurrent.

Theorem 2. We have the following formulas connected with the centroid:

- Property of equal Staudtians.

$$
\begin{equation*}
n_{A}(M)=n_{B}(M)=n_{C}(M) \tag{17}
\end{equation*}
$$

- The ratio of section $\left(A M_{A} M\right)$ depends on the vertex.

$$
\begin{equation*}
\frac{\sinh A M}{\sinh M M_{A}}=2 \cosh \frac{a}{2}, \quad \frac{\sinh B M}{\sinh M M_{B}}=2 \cosh \frac{b}{2}, \quad \frac{\sinh C M}{\sinh M M_{C}}=2 \cosh \frac{c}{2} \tag{18}
\end{equation*}
$$

Figure 11. Centroid of a triangle with ideal vertices.

- The ratio of section $\left(A M M_{A}\right)$ is independent from the vertex.

$$
\begin{equation*}
\frac{\sinh A M_{A}}{\sinh M M_{A}}=\frac{\sinh B M_{B}}{\sinh M M_{B}}=\frac{\sinh C M_{C}}{\sinh M M_{C}}=\frac{n}{n_{A}(M)} \tag{19}
\end{equation*}
$$

- The "center of gravity" property of M. If y is any line of the plane then we have

$$
\begin{equation*}
\sinh d_{M}^{\prime}=\frac{\sinh d_{A}^{\prime}+\sinh d_{B}^{\prime}+\sinh d_{C}^{\prime}}{\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}} \tag{20}
\end{equation*}
$$

where $d_{A}^{\prime}, d_{B}^{\prime}, d_{C}^{\prime}, d_{M}^{\prime}$ mean the signed distances of the points A, B, C, M to the line y, respectively.

- The "minimality" property of M. If Y is any point of the plane then we have

$$
\begin{equation*}
\cosh Y M=\frac{\cosh Y A+\cosh Y B+\cosh Y C}{\frac{n}{n_{A}(M)}}=\frac{\cosh Y A+\cosh Y B+\cosh Y C}{\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}} \tag{21}
\end{equation*}
$$

Remark. Using the first order approximation of the hyperbolic functions by their Taylor polynomial of order 1, we get from this formula the following one:

$$
d_{M}^{\prime}=\frac{d_{A}^{\prime}+d_{B}^{\prime}+d_{C}^{\prime}}{3}
$$

which associates the centroid with the physical concept of center of gravity and shows that the center of gravity of three equal weights at the vertices of a triangle is at M.
Remark. The minimality property of M for $Y=M$ says that

$$
\cosh M A+\cosh M B+\cosh M C=\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}
$$

This implies that

$$
\cosh Y A+\cosh Y B+\cosh Y C=(\cosh M A+\cosh M B+\cosh M C) \cosh Y M
$$

From the second-order approximation of $\cosh x$ we get that

$$
3+\frac{1}{2}\left(Y A^{2}+Y B^{2}+Y C^{2}\right)=\left(3+\frac{1}{2}\left(M A^{2}+M B^{2}+M C^{2}\right)\right)\left(1+\frac{1}{2} Y M^{2}\right) .
$$

From this (take into consideration only such terms which order are less or equal to 2) we get an Euclidean identity characterizing the centroid:

$$
Y A^{2}+Y B^{2}+Y C^{2}=M A^{2}+M B^{2}+M C^{2}+3 Y M^{2}
$$

As a further consequence we can see immediately that the value $\cosh Y A+\cosh Y B+\cosh Y C$ is minimal if and only if Y is the centroid.

Proof. The property (17) is a simple consequence of (9). Thus the centroid is the unit point with respect to the triangular coordinate system. Let the feet of the perpendiculars from M and the altitudes are X_{A}, X_{B}, X_{C}, and H_{A}, H_{B}, H_{C}, respectively. (19) follows from (17) since

$$
\frac{\sinh A M_{A}}{\sinh M M_{A}}=\frac{\sinh A H_{A}}{\sinh M X_{A}}=\frac{n}{n_{A}(M)}=\frac{n}{n_{B}(M)}=\frac{\sinh B M_{B}}{\sinh M M_{B}}
$$

From (1) we get

$$
\frac{\sinh M M_{A}}{\sinh M C}=\frac{\sin M_{A} C M \measuredangle}{\sin C M_{A} A \measuredangle} \text { and } \frac{\sinh A M}{\sinh M C}=\frac{\sin A C M \measuredangle}{\sin C A M_{A} \measuredangle}
$$

implying

$$
\frac{\sinh A M}{\sinh M M_{A}}=\frac{\sin A C M \measuredangle \sin C M_{A} A \measuredangle}{\sin M_{A} C M \measuredangle \sin C A M_{A} \measuredangle}=\frac{\sin A C M \measuredangle}{\sin M_{A} C M \measuredangle} \frac{\sinh b}{\sinh \frac{a}{2}} .
$$

On the other hand the equalities

$$
\frac{\sin A C M \measuredangle}{\sin C M_{C} A \measuredangle}=\frac{\sinh \frac{c}{2}}{\sinh b} \text { and } \frac{\sin B C M \measuredangle}{\sin B M_{C} A \measuredangle}=\frac{\sinh \frac{c}{2}}{\sinh a}
$$

imply the equalities

$$
\frac{\sin A C M \measuredangle}{\sin M_{A} C M \measuredangle}=\frac{\sin A C M \measuredangle}{\sin B C M \measuredangle}=\frac{\sinh a}{\sinh b} .
$$

Hence we get

$$
\frac{\sinh A M}{\sinh M M_{A}}=\frac{\sinh a}{\sinh b} \frac{\sinh b}{\sinh \frac{a}{2}}=2 \cosh \frac{a}{2}
$$

proving (18). To prove (21), observe that in the triangle $A B C$ holds the equality

$$
\begin{equation*}
\cosh a+\cosh b=2 \cosh \frac{c}{2} \cosh C M_{C} . \tag{22}
\end{equation*}
$$

In fact, the law of cosines (2) with respect to the triangles $A C M_{C}$ and $B C M_{C}$ gives the equalities

$$
\cosh a=\cosh \frac{c}{2} \cosh M M_{C}-\sinh \frac{c}{2} \sinh M M_{C} \cos C M_{C} B \measuredangle
$$

and

$$
\begin{gathered}
\cosh b=\cosh \frac{c}{2} \cosh M M_{C}-\sinh \frac{c}{2} \sinh M M_{C} \cos C M_{C} A \measuredangle= \\
=\cosh \frac{c}{2} \cosh M M_{C}+\sinh \frac{c}{2} \sinh M M_{C} \cos C M_{C} B \measuredangle .
\end{gathered}
$$

Adding these equalities we give the required one. Hence we have

$$
\cosh Y A+\cosh Y B=2 \cosh \frac{c}{2} \cosh Y M_{C} .
$$

Consider now the triangles $Y C M$ and $Y M_{C} M$, respectively. Using the law of cosines as in the previous formula we have that

$$
\cosh Y C=\cosh M Y \cosh M C-\sinh M Y \sinh M C \cos Y M C \measuredangle
$$

and

$$
\cosh Y M_{C}=\cosh M Y \cosh M_{C} M+\sinh M Y \sinh M_{C} M \cos Y M C \measuredangle
$$

From these equations we get

$$
\begin{gathered}
\sinh M_{C} M \cosh Y C+\sinh M C \cosh Y M_{C}= \\
=\cosh Y M\left(\cosh M C \sinh M_{C} M+\cosh M_{C} M \sinh M C\right)=\cosh Y M \sinh M_{C} C
\end{gathered}
$$

Now

$$
\begin{gathered}
\cosh Y A+\cosh Y B=2 \cosh \frac{c}{2}\left(\frac{\cosh Y M \sinh M_{C} C}{\sinh M C}-\frac{\sinh M_{C} M \cosh Y C}{\sinh M C}\right)= \\
=\frac{\sinh M C}{\sinh M_{C} M}\left(\frac{\cosh Y M \sinh M_{C} C}{\sinh M C}-\frac{\sinh M_{C} M \cosh Y C}{\sinh M C}\right)=\cosh Y M \frac{\sinh M_{C} C}{\sinh M_{C} M}-\cosh Y C,
\end{gathered}
$$

proves the first equality of (21). The second equality in (21) can be gotten from the equations

$$
\frac{\sinh C M_{C}}{\sinh M M_{C}}=\frac{n}{n_{A}(M)}, \quad \frac{\sinh \left(C M_{C}-M M_{C}\right)}{\sinh M M_{C}}=2 \cosh \frac{c}{2}, \quad \cosh a+\cosh b=2 \cosh \frac{c}{2} \cosh C M_{C},
$$

eliminating $C M_{C}$ and $M M_{C}$ between these equations. We leave the calculation to the reader.
Finally, consider the minimality property (21) in the case when Y is an ideal point and A, B, C are real ones, respectively. Now M is also a real point and we have to consider the polar of Y which is a real line
y. Denote by the real (and positive) geometric distances of the points A, B, C, M to y is $d_{A}, d_{B}, d_{C}, d_{M}$, respectively. (21) says that

$$
\cosh \left(d_{M}+\varepsilon_{M} i \frac{\pi}{2}\right)=\frac{\cosh \left(d_{A}+\varepsilon_{A} i \frac{\pi}{2}\right)+\cosh \left(d_{B}+\varepsilon_{B} i \frac{\pi}{2}\right)+\cosh \left(d_{C}+\varepsilon_{C} i \frac{\pi}{2}\right)}{\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}}
$$

where ε_{M} is a sign depending on the positions of Y, M and $Y_{M}:=y \cap Y M$ on its line $Y M$. It is + if the segment $M Y_{M} \subset M Y$ and - if this relation does not hold. (Similar definition are valid for $\varepsilon_{A}, \varepsilon_{B}$ and ε_{C}, respectively.) It is clear that these signs give the same value if the corresponding points lie on the same half-plane of the line y. Thus if we fixed the sign of one of the points (which distinct to zero) then the other signs have to be determined uniquely, too. Hence we have the equality

$$
\varepsilon_{M} \sinh d_{M}=\frac{\varepsilon_{A} \sinh d_{A}+\varepsilon_{B} \sinh d_{B}+\varepsilon_{C} \sinh d_{C}}{\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}}
$$

or equivalently

$$
\sinh d_{M}^{\prime}=\frac{\sinh d_{A}^{\prime}+\sinh d_{B}^{\prime}+\sinh d_{C}^{\prime}}{\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)}}
$$

as we stated in (20).

Corollary 1. Assume that every two pairs of points which contain points at infinite have equal distances. We note that by our definition it is hold and the common value is ∞. We also assumed that $\infty / \infty=1$. Then it follows the congruency of asymptotic triangles with three vertices at infinity. Really, assume that the vertices A, B or C tend to a points at infinity I_{A}, I_{B} or I_{C}, respectively, and at the same time M tends to the point M_{∞}. Assume also that the limit process sends X_{A}, X_{B}, X_{C} to $X_{I_{A}}, X_{I_{B}}$ and $X_{I_{C}}$, respectively. Then (by the notation of the previous subsection) (8) yields that

$$
1=\lim \frac{n_{A}(M)}{n_{B}(M)}=\frac{1}{2} \lim \frac{\sinh M X_{A}}{\sinh M X_{B}} \lim \frac{\sinh a}{\sinh b}=\frac{\lim \sinh M X_{A}}{\lim \sinh M X_{B}}=\frac{\sinh M_{\infty} X_{I_{A}}}{\sinh M_{\infty} X_{I_{B}}}
$$

implying that M_{∞} is not only the centroid of the triangle $I_{A} I_{B} I_{C}$ but it is also the center of the incircle of this triangle. Hence that medians are also bisectors and altitudes implying that $M_{A}=X_{A}, M_{B}=X_{B}$ and $M_{C}=X_{C}$, respectively. Thus the triangle has a rotational symmetry of angle $2 \pi / 3$ at the center M. From this immediately follows the fact: Every two triangle with three vertices at infinity are congruent.
4.4. On the center of the circumscribed cycle. Denote by O and R the center and the radius of the circumscribed cycle of the triangle $A B C$, respectively. The midpoint of the sides $A B, B C$ and $A C$ are M_{C}, M_{A} and M_{B}, respectively. In the extracted plane O always exists and could be a real point, point at infinity or ideal point, respectively. Since we have two possibilities to choose the segments $A B, B C$ and $A C$ on their respective lines, we also have four possibilities to get a circumscribed cycle. One of them corresponds to the segments with real lengths and the others can be gotten if we choose one segment with real length and two segments with complex lengths, respectively. If A, B, C are real points the first cycle could be circle, paracycle or hypercycle, but the other three are always hypercycles, respectively. For example, let $a^{\prime}=a=B C$ is a real length and $b^{\prime}=-b+\pi i, c^{\prime}=-c+\pi i$ are complex lengths, respectively. Then we denote by O_{A} the corresponding (ideal) center and by R_{A} the corresponding (complex) radius. We also note that the latter three hypercycle have geometric meaning. These are those hypercycles which fundamental lines contain a pair from the midpoints of the edge-segments and contain that vertex of the triangle which is the meeting point of the corresponding edges.

Theorem 3. The following formulas are valid on the circumradiuses R, R_{A}, R_{B} and R_{C}, respectively.

- Formulas by the angular Staudtian of the triangle are:

$$
\begin{equation*}
\tanh R=\frac{\sin \delta}{N}, \quad \tanh R_{A}=\frac{\sin (\delta+\alpha)}{N}, \quad \tanh R_{B}=\frac{\sin (\delta+\beta)}{N}, \quad \tanh R_{C}=\frac{\sin (\delta+\gamma)}{N} \tag{23}
\end{equation*}
$$

- Formulas by the lengths of the edges are:

$$
\begin{align*}
\tanh R & =\tanh \frac{a}{2} \tanh \frac{b}{2} \tanh \frac{c}{2} \cos \frac{\alpha+\beta+\gamma}{2}=\frac{2 \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}}{n} \tag{24}\\
\tanh R_{A} & =\tanh \frac{a}{2} \operatorname{coth} \frac{b}{2} \operatorname{coth} \frac{c}{2} \cos \frac{-\alpha+\beta+\gamma}{2}=\frac{2 \sinh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}}{n} \\
\tanh R_{B} & =\operatorname{coth} \frac{a}{2} \tanh \frac{b}{2} \operatorname{coth} \frac{c}{2} \cos \frac{\alpha-\beta+\gamma}{2}=\frac{2 \cosh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}}{n} \\
\tanh R_{C} & =\operatorname{coth} \frac{a}{2} \operatorname{coth} \frac{b}{2} \tanh \frac{c}{2} \cos \frac{\alpha+\beta-\gamma}{2}=\frac{2 \cosh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2}}{n}
\end{align*}
$$

- The ratio of the triangular coordinates of the circumcenter O is:

$$
\begin{equation*}
n_{A}(0): n_{B}(O): n_{C}(O)=\cos (\delta+\alpha) \sinh a: \cos (\delta+\beta) \sinh b: \cos (\delta+\gamma) \sinh c \tag{25}
\end{equation*}
$$

Proof. Assume that the radius $C O$ divides the angle γ at C into the angles γ_{1} and γ_{2}, respectively (see Fig. 11). Then we have $O C A \measuredangle=O A C \measuredangle=\gamma_{1}, O C B \measuredangle=O B C \measuredangle=\gamma_{2}$, hence $O A B \measuredangle=\alpha-\gamma_{1}$ and $O B A \measuredangle=\beta-\gamma_{2}$. Since $O A B \measuredangle=O B A \measuredangle$ we get that $O A B \measuredangle=\frac{1}{2}(\alpha+\beta-\gamma)=\pi / 2-(\delta+\gamma)$.

Figure 12. The circumcenter.
From this we get

$$
\tanh \frac{c}{2}=\tanh R \cos (\pi / 2-(\delta+\gamma))=\tanh R \sin (\delta+\gamma)
$$

From (10) and (11) we get

$$
\tanh \frac{c}{2}=\sqrt{\frac{\sin \delta \sin (\delta+\gamma)}{\sin (\delta+\beta) \sin (\delta+\alpha)}}
$$

implying

$$
\tanh R=\sqrt{\frac{\sin \delta}{\sin (\delta+\alpha) \sin (\delta+\beta) \sin (\delta+\gamma)}}
$$

From this the first equality in (23) immediately follows. Substituting $\alpha^{\prime}=\alpha, \beta^{\prime}=-\beta+\pi, \gamma^{\prime}=-\gamma+\pi$ into the first equation of (23) and using that $\delta^{\prime}=(\pi-(\alpha-\beta-\gamma+2 \pi)) / 2=(-\alpha+\beta+\gamma-\pi) / 2=-(\delta+\alpha)$ we get the formula of (23) on R_{A} :
$\tanh R_{A}=\sqrt{\frac{-\sin (\delta+\alpha)}{\sin (-\delta) \sin (\pi-\delta-\beta-\alpha) \sin (\pi-\delta-\gamma-\alpha)}}=\sqrt{\frac{\sin (\delta+\alpha)}{\sin \delta \sin (\delta+\gamma) \sin (\delta+\beta)}}=\frac{\sin (\delta+\alpha)}{N}$.
Analogously as of (16) or (17) we have the formulas

$$
\sinh \frac{a}{2}=\sqrt{\frac{\sin \delta \sin (\delta+\alpha)}{\sin \gamma \sin \beta}} \text { and } \sinh \frac{b}{2}=\sqrt{\frac{\sin \delta \sin (\delta+\beta)}{\sin \alpha \sin \gamma}}
$$

and

$$
\cosh \frac{a}{2}=\sqrt{\frac{\sin (\delta+\beta) \sin (\delta+\gamma)}{\sin \gamma \sin \beta}} \text { and } \cosh \frac{b}{2}=\sqrt{\frac{\sin (\delta+\gamma) \sin (\delta+\alpha)}{\sin \alpha \sin \gamma}}
$$

Thus we have

$$
\frac{\sinh \frac{a}{2}}{\cosh \frac{b}{2} \cosh \frac{c}{2}}=\sqrt{\frac{\sin ^{2} \alpha \sin \delta}{\sin (\delta+\gamma) \sin (\delta+\alpha) \sin (\delta+\beta)}}=\sin \alpha \tanh R
$$

giving the formula

$$
\begin{equation*}
\tanh R=\frac{\sinh \frac{a}{2}}{\sin \alpha \cosh \frac{b}{2} \cosh \frac{c}{2}} . \tag{26}
\end{equation*}
$$

Similarly we get

$$
\sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}=\sqrt{\frac{\sin ^{3} \delta \sin (\delta+\alpha) \sin (\delta+\beta) \sin (\delta+\gamma)}{\sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma}}=\frac{\sin ^{2} \delta \operatorname{coth} R}{\sin \alpha \sin \beta \sin \gamma},
$$

and with the same manner we have

$$
\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}=\sqrt{\frac{\sin ^{2}(\delta+\alpha) \sin ^{2}(\delta+\beta) \sin ^{2}(\delta+\gamma)}{\sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma}}=\frac{\sin \delta \operatorname{coth}^{2} R}{\sin \alpha \sin \beta \sin \gamma}
$$

Dividing by the two equalities we get the first equality of the first row in (24):

$$
\tanh R=\tanh \frac{a}{2} \tanh \frac{b}{2} \tanh \frac{c}{2} \sin \delta
$$

Using (7) and (14) we also have that

$$
\begin{equation*}
\sin \alpha \sin \beta \sin \gamma=\frac{8 n^{3}}{\sinh ^{2} a \sinh ^{2} b \sinh ^{2} c}=\frac{8 n^{3} N^{2}}{4 n^{4}}=\frac{2 N^{2}}{n} \tag{27}
\end{equation*}
$$

giving immediately the second equality of the first row in (24)

$$
\sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}=\frac{\sin ^{2} \delta \operatorname{coth} R}{\sin \alpha \sin \beta \sin \gamma}=\frac{n \sin ^{2} \delta \operatorname{coth} R}{2 N^{2}}=\frac{n \tanh R}{2} .
$$

Substituting the complementary lengths and (the same) angles (if it is necessary) to these equations we get the results of the remaining rows in (24).

By (8) we have that
and

$$
n(A O B)=\frac{1}{2} \sin \frac{\alpha+\beta-\gamma}{2} \sinh R \sinh c
$$

$$
n(B O C)=\frac{1}{2} \sin \frac{-\alpha+\beta+\gamma}{2} \sinh R \sinh a .
$$

Hence

$$
n_{A}(0): n_{B}(O): n_{C}(O)=\sin \frac{-\alpha+\beta+\gamma}{2} \sinh a: \sin \frac{\alpha-\beta+\gamma}{2} \sinh b: \sin \frac{\alpha+\beta-\gamma}{2} \sinh c,
$$

as we stated in (25).
Remark. The first order Taylor polynomial of the hyperbolic functions of distances leads to a correspondence between the hyperbolic Staudtians and the Euclidean area T leading to further Euclidean formulas. More precisely we have

$$
\begin{equation*}
n=T \quad \text { and } \quad N=\frac{T \sin \alpha}{a}=\frac{T a}{2 R a}=\frac{T}{2 R} . \tag{28}
\end{equation*}
$$

Hence we give from (27) the following formula:

$$
\sin \alpha \sin \beta \sin \gamma=\frac{2 N^{2}}{n}=\frac{2 T^{2}}{4 R^{2} T}=\frac{T}{2 R^{2}}
$$

or equivalently the known Euclidean dependence of these quantities:

$$
T=2 R^{2} \sin \alpha \sin \beta \sin \gamma
$$

Remark. Use (21) for the point O. Then we have

$$
\sqrt{1+2(1+\cosh a+\cosh b+\cosh c)} \cosh O M=\cosh O A+\cosh O B+\cosh O C=3 \cosh R,
$$

Implying the approximation of second order (as in the remark before the proof) we get the equation

$$
3\left(1+\frac{R^{2}}{2}\right)=\sqrt{9+a^{2}+b^{2}+c^{2}}\left(1+\frac{O M^{2}}{2}\right)=3 \sqrt{1+\frac{a^{2}+b^{2}+c^{2}}{9}}\left(1+\frac{O M^{2}}{2}\right)
$$

The functions on the right hand side can also be approximated of second order. If we multiply these polynomials and hold only those terms which order at most 2 we can deduce the following equation

$$
1+\frac{R^{2}}{2}=1+\frac{a^{2}+b^{2}+c^{2}}{2 \cdot 9}+\frac{O M^{2}}{2}
$$

and hence the Euclidean formula

$$
O M^{2}=R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}
$$

Corollary 2. Applying (24) to a triangle with four ideal circumcenter, we get a formula which determines the common distance of three points of a hypercycle from the basic line of it. In fact, if d means the searched distance that

$$
\frac{2 \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}}{n}=\tanh R=\tanh \left(d+\varepsilon \frac{\pi}{2} i\right)=\frac{\sinh \left(d+\varepsilon \frac{\pi}{2} i\right)}{\cosh \left(d+\varepsilon \frac{\pi}{2} i\right)}=\frac{\varepsilon i \cosh d}{\varepsilon i \sinh d}=\operatorname{coth} d,
$$

and we get:

$$
\begin{equation*}
\tanh d=\frac{n}{2 \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}} . \tag{29}
\end{equation*}
$$

For Euclidean analogy of this equation we can use the first order Taylor polynomial of the hyperbolic function. Our formula leads to the following:

$$
\frac{1}{R}=d=\frac{4 T}{a b c}
$$

implying a well-known connection among the sides, the circumradius and the area of the triangle.
4.5. On the center of the inscribed and escribed cycles. We are aware that the bisectors of the interior angles of a hyperbolic triangle are concurrent at a point I, called the incenter, which is equidistant from the sides of the triangle. The radius of the incircle or inscribed circle, whose center is at the incenter and touches the sides, shall be designated by r. Similarly the bisector of any interior angle and those of the exterior angles at the other vertices, are concurrent at point outside the triangle; these three points are called excenters, and the corresponding tangent cycles excycles or escribed cycles. The excenter lying on $A I$ is denoted ba I_{A}, and the radius of the escribed cycle with center at I_{A} is r_{A}. We denote by X_{A}, X_{B}, X_{C} the points where the interior bisectors meets $B C, A C, A B$, respectively. Similarly Y_{A}, Y_{B} and Y_{C} denote the intersection of the exterior bisector at A, B and C with $B C, A C$ and $A B$, respectively. We

Figure 13. Incircles and excycles.
note that the excenters and the points of intersection of the sides with the bisectors of the corresponding exterior angle could be points at infinity or also could be ideal points. Let denote the touching points
of the incircle Z_{A}, Z_{B} and Z_{C} on the lines $B C, A C$ and $A B$, respectively and the touching points of the excycles with center I_{A}, I_{B} and I_{C} are the triples $\left\{V_{A, A}, V_{B, A}, V_{C, A}\right\},\left\{V_{A, B}, V_{B, B}, V_{C, B}\right\}$ and $\left\{V_{A, C}, V_{B, C}, V_{C, C}\right\}$, respectively (see in Fig. 13).
Theorem 4. On the radiuses r, r_{A}, r_{B} or r_{C} we have the following formulas .

- Formulas by Staudtian are:

$$
\begin{equation*}
\tanh r=\frac{n}{\sinh s}, \quad \tanh r_{A}=\frac{n}{\sinh (s-a)}, \quad \tanh r_{B}=\frac{n}{\sinh (s-b)}, \quad \tanh r_{C}=\frac{n}{\sinh (s-c)} \tag{30}
\end{equation*}
$$

- Formulas by angular Staudtian are

$$
\begin{gather*}
\tanh r=\frac{N}{2 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}}, \tag{31}\\
\operatorname{coth} r=\frac{\sin (\delta+\alpha)+\sin (\delta+\beta)+\sin (\delta+\gamma)+\sin \delta}{2 N} \tag{32}\\
\operatorname{coth} r_{A}=\frac{-\sin (\delta+\alpha)+\sin (\delta+\beta)+\sin (\delta+\gamma)-\sin \delta}{2 N} \tag{33}\\
\operatorname{coth} r_{B}=\frac{\sin (\delta+\alpha)-\sin (\delta+\beta)+\sin (\delta+\gamma)-\sin \delta}{2 N} \\
\operatorname{coth} r_{C}=\frac{\sin (\delta+\alpha)+\sin (\delta+\beta)-\sin (\delta+\gamma)-\sin \delta}{2 N}
\end{gather*}
$$

- Connections among the circumradiuses and inradiuses are:

$$
\begin{align*}
\tanh R+\tanh R_{A} & =\operatorname{coth} r_{B}+\operatorname{coth} r_{C} \tag{34}\\
\tanh R_{B}+\tanh R_{C} & =\operatorname{coth} r+\operatorname{coth} r_{A} \\
\tanh R+\operatorname{coth} r & =\frac{1}{2}\left(\tanh R+\tanh R_{A}+\tanh R_{B}+\tanh R_{C}\right)
\end{align*}
$$

- Triangular coordinates of the incenter and excenters are:

$$
\begin{align*}
n_{A}(I): n_{B}(I): n_{C}(I) & =\sinh a: \sinh b: \sinh c \tag{35}\\
n_{A}\left(I_{A}\right): n_{B}\left(I_{A}\right): n_{C}\left(I_{A}\right) & =-\sinh a: \sinh b: \sinh c \tag{36}\\
n_{A}\left(I_{B}\right): n_{B}\left(I_{B}\right): n_{C}\left(I_{B}\right) & =\sinh a:-\sinh b: \sinh c \\
n_{A}\left(I_{C}\right): n_{B}\left(I_{C}\right): n_{C}\left(I_{C}\right) & =\sinh a: \sinh b:-\sinh c
\end{align*}
$$

Proof. The triangular coordinates of I by (8) holds

$$
n_{A}(I): n_{B}(I): n_{C}(I)=\sinh a: \sinh b: \sinh c
$$

proving (35). To (36) we observe that the excircle with center I_{B} can be considered as the incircle of those triangle of the vertex set $\{A, B, C\}$ which edge-segment $A C$ is equal to that of the corresponding edge-segment of the triangle $A B C$ while the other two edge-segments are complementary to those of $A B C$. (In spherical geometry the above two triangle is called colunar because of their union is a lune.) We also have that the sign of the measure of the radius in one of the cases is the negative as the sign of the corresponding case of the incircle because of the side separates the two centers. Thus

$$
n_{A}\left(I_{B}\right): n_{B}\left(I_{B}\right): n_{C}\left(I_{C}\right)=\sinh (-a+\pi i):-\sinh b: \sinh (-c+\pi i)=\sinh a:-\sinh b: \sinh c,
$$ implying (36).

The equalities in (30) follows from the observation that we have $C Z_{A}=C Z_{B}=s-c, B Z_{A}=B Z_{C}=$ $s-b$ and $A Z_{B}=A Z_{C}=s-a$, respectively, and thus

$$
\tan \frac{\gamma}{2}=\frac{\tanh r}{\sinh (s-c)}
$$

In fact, $\sin \frac{\gamma}{2}$ and $\cos \frac{\gamma}{2}$ was calculated before (7) and from these quantities we get that

$$
\begin{equation*}
\tan \frac{\gamma}{2}=\sqrt{\frac{\sinh (s-a) \sinh (s-b)}{\sinh s \sinh (s-c)}} \tag{37}
\end{equation*}
$$

Implying the first equality in (30). The other equalities follow from that the circumscribed triangles of the excycles have two sides with the property that its measure is the measure of the corresponding side of $A B C$ subtracting from πi. More precisely the lengths of the sides of the circumscribed triangle of the
excycle corresponding to the excenter I_{B} are $a^{\prime}=-a+\pi i, b^{\prime}=b$, and $c^{\prime}=-c+\pi i$, respectively. The corresponding half-perimeter is $s^{\prime}=\left(a^{\prime}+b^{\prime}+c^{\prime}\right) / 2=(-a+b-c) / 2+\pi i$. This implies that

$$
\begin{aligned}
& \tanh r_{B}=\sqrt{\frac{\sinh \left(s^{\prime}-a^{\prime}\right) \sinh \left(s^{\prime}-b^{\prime}\right) \sinh \left(s^{\prime}-c^{\prime}\right)}{\sinh s^{\prime}}}= \\
= & \sqrt{\frac{\sinh (s-c) \sinh (-s+\pi i) \sinh (s-a)}{\sinh (-s+b+\pi i)}}=\frac{n}{\sinh (s-b)}
\end{aligned}
$$

as we stated in (30).
Since we proved before (7) that

$$
\begin{equation*}
\cos \frac{\alpha}{2}=\sqrt{\frac{\sinh s \sinh (s-a)}{\sinh c \sinh b}}, \quad \cos \frac{\beta}{2}=\sqrt{\frac{\sinh s \sinh (s-b)}{\sinh a \sinh c}}, \quad \cos \frac{\gamma}{2}=\sqrt{\frac{\sinh s \sinh (s-c)}{\sinh a \sinh b}}, \tag{38}
\end{equation*}
$$

then we have by (15) and (30) that

$$
\begin{gathered}
\cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}=\sqrt{\frac{\sinh ^{3} s \sinh (s-a) \sinh (s-b) \sinh (s-c)}{\sinh ^{2} a \sinh ^{2} b \sinh ^{2} c}}= \\
=\frac{n \sinh s}{\sinh a \sinh b \sinh c}=\frac{N \sinh a}{2 n}=\frac{N}{2 \tanh r}
\end{gathered}
$$

and (31) follows, too.
To prove (32) consider the equalities

$$
\begin{aligned}
\sin (\delta+\alpha)+\sin (\delta+\beta) & =\cos \frac{-(\alpha-\beta)+\gamma}{2}+\cos \frac{(\alpha-\beta)+\gamma}{2}=2 \cos \frac{\alpha-\beta}{2} \cos \frac{\gamma}{2}= \\
= & 2 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}+2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sin (\delta+\gamma)-\sin \delta & =\cos \frac{(\alpha+\beta)-\gamma}{2}-\cos \frac{(\alpha+\beta)+\gamma}{2}=2 \cos \frac{\gamma}{2} \cos \frac{\alpha+\beta}{2}= \\
& =2 \cos \frac{\gamma}{2} \cos \frac{\alpha}{2} \cos \frac{\beta}{2}-2 \cos \frac{\gamma}{2} \sin \frac{\alpha}{2} \sin \frac{\beta}{2}
\end{aligned}
$$

Thus we get the equality

$$
4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}=\sin (\delta+\alpha)+\sin (\delta+\beta)+\sin (\delta+\gamma)+\sin (\delta)
$$

implying (32). The equations in (33) follow from (32) substituting two times $(\pi-\phi)$ into ϕ ($\phi=\alpha, \beta$ or $\phi=\gamma$).

Finally, (23), (32) and (33)implies the equalities in (34).
The following formulas connect the radiuses of the circles and the lengths of the edges of the triangle.
Theorem 5. Let $a, b, c, s, r_{A}, r_{B}, r_{C}, r, R$ be the values defined for a hyperbolic triangle above. Then we have the following formulas:

$$
\begin{equation*}
\operatorname{coth} r_{A} \operatorname{coth} r_{B}+\operatorname{coth} r_{A} \operatorname{coth} r_{C}+\operatorname{coth} r_{B} \operatorname{coth} r_{C}= \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{\sinh s \sinh (s-a)}+\frac{1}{\sinh s \sinh (s-b)}+\frac{1}{\sinh s \sinh (s-c)} \tag{40}
\end{equation*}
$$

$$
\begin{align*}
& \tanh r_{A} \tanh r_{B}+\tanh r_{A} \tanh r_{C}+\tanh r_{B} \tanh r_{C}= \tag{41}\\
& \quad=\frac{1}{2}(\cosh (a+b)+\cosh (a+c)+\cosh (b+c)-\cosh a-\cosh b-\cosh c)
\end{align*}
$$

$$
\begin{align*}
& \operatorname{coth} r_{A}+\operatorname{coth} r_{B}+\operatorname{coth} r_{C}= \tag{42}\\
& \quad=\frac{1}{\tanh r}(\cosh a+\cosh b+\cosh c-\operatorname{coth} s(\sinh a+\sinh b+\sinh c)) \\
& \tanh r_{A}+\tanh r_{B}+\tanh r_{C}= \tag{43}\\
& =\frac{1}{2 \tanh r}(\cosh a+\cosh b+\cosh c-\cosh (b-a)-\cosh (c-a)-\cosh (c-b))
\end{align*}
$$

$$
\begin{align*}
& 2(\sinh a \sinh b+\sinh a \sinh c+\sinh b \sinh c)= \tag{44}\\
+ & \tanh r\left(\tanh r_{A}+\tanh r_{B}+\tanh r_{C}\right)+\tanh r_{A} \tanh r_{B}+\tanh r_{A} \tanh r_{C}+\tanh r_{B} \tanh r_{C}
\end{align*}
$$

Proof. From (32),(33) and (23) we get that

$$
-\operatorname{coth} r_{A}-\operatorname{coth} r_{B}-\operatorname{coth} r_{C}+\operatorname{coth} r=2 \frac{\sin \delta}{N}=2 \tanh R,
$$

as we stated in (39).
To prove (40) consider the equalities in (30) from which

$$
\begin{gathered}
\operatorname{coth} r_{A} \operatorname{coth} r_{B}+\operatorname{coth} r_{A} \operatorname{coth} r_{C}+\operatorname{coth} r_{B} \operatorname{coth} r_{C}= \\
=\frac{\sinh (s-a) \sinh (s-b)+\sinh (s-a) \sinh (s-c)+\sinh (s-c) \sinh (s-b)}{n^{2}}= \\
\frac{1}{\sinh s \sinh (s-a)}+\frac{1}{\sinh s \sinh (s-b)}+\frac{1}{\sinh s \sinh (s-c)}
\end{gathered}
$$

Similarly we also get (41):

$$
\begin{aligned}
& \tanh r_{A} \tanh r_{B}+\tanh r_{A} \tanh r_{C}+\tanh r_{B} \tanh r_{C}=\sinh s \sinh (s-a)+\sinh s \sinh (s-b)+ \\
& +\sinh s \sinh (s-c)=\frac{1}{2}(\cosh (a+b)+\cosh (a+c)+\cosh (b+c)-\cosh a-\cosh b-\cosh c) .
\end{aligned}
$$

Since we have

$$
\begin{aligned}
& -2 \tanh R+\operatorname{coth} r=\operatorname{coth} r_{A}+\operatorname{coth} r_{B}+\operatorname{coth} r_{C}=\frac{\sinh (s-a)+\sinh (s-b)+\sinh (s-c)}{n}= \\
= & \frac{(\sinh (s-a)+\sinh (s-b)+\sinh (s-c))}{\sinh s \tanh r}=\frac{\cosh a+\cosh b+\cosh c-\operatorname{coth} s(\sinh a+\sinh b+\sinh c)}{\tanh r}
\end{aligned}
$$

(42) is given. Furthermore we also have

$$
\begin{gathered}
\tanh r_{A}+\tanh r_{B}+\tanh r_{C}= \\
=\frac{n(\sinh (s-a) \sinh (s-b)+\sinh (s-a) \sinh (s-c)+\sinh (s-b) \sinh (s-c))}{\sinh (s-a) \sinh (s-b) \sinh (s-c)}= \\
=\frac{\sinh s}{n}(\sinh (s-a) \sinh (s-b)+\sinh (s-a) \sinh (s-c)+\sinh (s-b) \sinh (s-c))= \\
=\frac{(\sinh (s-a) \sinh (s-b)+\sinh (s-a) \sinh (s-c)+\sinh (s-b) \sinh (s-c))}{\tanh r}= \\
=\frac{1}{2 \tanh r}(\cosh a+\cosh b+\cosh c-\cosh (b-a)-\cosh (c-a)-\cosh (c-b))
\end{gathered}
$$

implying (43). From (41) and (43) we get

$$
\begin{gathered}
\tanh r\left(\tanh r_{A}+\tanh r_{B}+\tanh r_{C}\right)+\tanh r_{A} \tanh r_{B}+\tanh r_{A} \tanh r_{C}+\tanh r_{B} \tanh r_{C}= \\
=\cosh (a+b)+\cosh (a+c)+\cosh (b+c)-\cosh (b-a)-\cosh (c-a)-\cosh (c-b)= \\
=2(\sinh a \sinh b+\sinh a \sinh c+\sinh b \sinh c)
\end{gathered}
$$

which implies (44).
The following theorem gives a connection among the distance of the incenter and circumcenter, the radiuses r, R and the side-lengths a, b, c.

Theorem 6. Let O and I the center of the circumsrcibed and inscribed circles, respectively. Then we have

$$
\begin{equation*}
\cosh O I=2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2} \cosh r \cosh R+\cosh \frac{a+b+c}{2} \cosh (R-r) . \tag{45}
\end{equation*}
$$

Proof. Since

$$
\cosh (s-a) \cosh r=\cosh A I \text { and } I A O \measuredangle=\frac{\alpha}{2}-\frac{\alpha+\beta-\gamma}{2}=\frac{-\beta+\gamma}{2}
$$

thus from (2) we get that

$$
\cosh O I=\cosh A I \cosh R-\sinh A I \sinh R \cos \frac{-\beta+\gamma}{2}
$$

Hence holds the equality

$$
\cosh O I=\cosh (s-a) \cosh r \cosh R-\sinh r \sinh R \frac{\cos \frac{-\beta+\gamma}{2}}{\sin \frac{\alpha}{2}}
$$

Analogously to the proof of (6) we get that

$$
\frac{\cos \frac{\beta}{2} \cos \frac{\gamma}{2}}{\sin \frac{\alpha}{2}}=\sqrt{\frac{\frac{\sinh s \sinh (s-b)}{\sinh a \sinh c} \frac{\sinh s \sinh (s-c)}{\sinh a \sinh b}}{\frac{\sinh (s-b) \sinh (s-c)}{\sinh b \sinh c}}}=\frac{\sinh s}{\sinh a}
$$

and also we have

$$
\frac{\sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\sin \frac{\alpha}{2}}=\sqrt{\frac{\frac{\sinh (s-a) \sinh (s-c)}{\sinh a \sinh c} \frac{\sinh (s-a) \sinh (s-b)}{\sinh a \sinh b}}{\frac{\sinh (s-b) \sinh (s-c)}{\sinh b \sinh c}}=\frac{\sinh (s-a)}{\sinh a}}
$$

Summing up we get that

$$
\begin{aligned}
\cosh O I & =\cosh (s-a) \cosh r \cosh R-\sinh r \sinh R \frac{\sinh s+\sinh (s-a)}{\sinh a}= \\
= & \cosh (s-a) \cosh r \cosh R-2 \sinh r \sinh R \frac{\sinh \frac{b+c}{2} \cosh \frac{a}{2}}{\sinh a}= \\
& =\cosh \frac{-a+b+c}{2} \cosh r \cosh R-\sinh r \sinh R \frac{\sinh \frac{b+c}{2}}{\sinh \frac{a}{2}}
\end{aligned}
$$

and also the similar formula

$$
\cosh O I=\cosh \frac{a-b+c}{2} \cosh r \cosh R-\sinh r \sinh R \frac{\sinh \frac{a+c}{2}}{\sinh \frac{b}{2}}
$$

and

$$
\cosh O I=\cosh \frac{a+b-c}{2} \cosh r \cosh R-\sinh r \sinh R \frac{\sinh \frac{a+b}{2}}{\sinh \frac{c}{2}} .
$$

Adding now the latter three formulas we get that

$$
\begin{aligned}
3 \cosh O I=(& \left.\cosh \frac{-a+b+c}{2}+\cosh \frac{a-b+c}{2}+\cosh \frac{a+b-c}{2}\right) \cosh r \cosh R- \\
& -\sinh r \sinh R\left(\frac{\sinh \frac{b+c}{2}}{\sinh \frac{a}{2}}+\frac{\sinh \frac{a+c}{2}}{\sinh \frac{b}{2}}+\frac{\sinh \frac{a+b}{2}}{\sinh \frac{c}{2}}\right) .
\end{aligned}
$$

Since

$$
\begin{gathered}
\cosh \frac{-a+b+c}{2}=\left(\cosh \frac{b+c}{2} \cosh \frac{a}{2}-\sinh \frac{b+c}{2} \sinh \frac{a}{2}\right)= \\
=\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}-\sinh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}-\sinh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2},
\end{gathered}
$$

thus

$$
\cosh \frac{-a+b+c}{2}+\cosh \frac{a-b+c}{2}+\cosh \frac{a+b-c}{2}=
$$

$$
=3 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}-\cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}-\sinh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}-\sinh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2} .
$$

We also have that
$\frac{\sinh \frac{b+c}{2}}{\sinh \frac{a}{2}}+\frac{\sinh \frac{a+c}{2}}{\sinh \frac{b}{2}}+\frac{\sinh \frac{a+b}{2}}{\sinh \frac{c}{2}}=\frac{\sinh \frac{b+c}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}+\sinh \frac{a+c}{2} \sinh \frac{a}{2} \sinh \frac{c}{2}+\sinh \frac{a+b}{2} \sinh \frac{a}{2} \sinh \frac{b}{2}}{\sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}}$
and since

$$
\begin{aligned}
& \sinh \frac{b+c}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}=\sinh \left(s-\frac{a}{2}\right) \sinh \frac{b}{2} \sinh \frac{c}{2}= \\
& =\sinh s \cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}-\cosh s \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}
\end{aligned}
$$

we get that

$$
\begin{gathered}
\frac{\sinh \frac{b+c}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}+\sinh \frac{a+c}{2} \sinh \frac{a}{2} \sinh \frac{c}{2}+\sinh \frac{a+b}{2} \sinh \frac{a}{2} \sinh \frac{b}{2}}{\sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}}= \\
=\left(\sinh s \cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}+\sinh s \sinh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2}+\sinh s \sinh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}-\right. \\
\left.-3 \cosh s \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}\right) \frac{1}{\sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}} .
\end{gathered}
$$

Using (46) we get that

$$
\begin{gathered}
\frac{\sinh \frac{b+c}{2}}{\sinh \frac{a}{2}}+\frac{\sinh \frac{a+c}{2}}{\sinh \frac{b}{2}}+\frac{\sinh \frac{a+b}{2}}{\sinh \frac{c}{2}}= \\
=\frac{2\left(\cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}+\sinh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2}+\sinh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}\right)}{\tanh r \tanh R}-3 \cosh s .
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
& 3 \cosh O I=3\left(\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}-\cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}-\right. \\
&\left.-\sinh \frac{a}{2} \sinh \frac{b}{2} \cosh \frac{c}{2}-\sinh \frac{a}{2} \cosh \frac{b}{2} \sinh \frac{c}{2}\right) \cosh r \cosh R+3 \cosh s \sinh r \sinh R
\end{aligned}
$$

implying that

$$
\begin{aligned}
\cosh O I= & \left(2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}-\cosh s\right) \cosh r \cosh R+\cosh s \sinh r \sinh R= \\
& =2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2} \cosh r \cosh R+\cosh s \cosh (R-r)= \\
= & 2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2} \cosh r \cosh R+\cosh \frac{a+b+c}{2} \cosh (R-r),
\end{aligned}
$$

as we stated in (45).
Remark. The second order approximation of (45) leads to the equality
$1+\frac{O I^{2}}{2}=2\left(1+\frac{r^{2}}{2}\right)\left(1+\frac{R^{2}}{2}\right)\left(1+\frac{a^{2}}{8}\right)\left(1+\frac{b^{2}}{8}\right)\left(1+\frac{c^{2}}{8}\right)-\left(1+\frac{(a+b+c)^{2}}{8}\right)\left(1+\frac{(R-r)^{2}}{2}\right)$.
From this we get that

$$
O I^{2}=R^{2}+r^{2}+\frac{a^{2}+b^{2}+c^{2}}{4}-\frac{a b+b c+c a}{2}+2 R r .
$$

But for Euclidean triangles we have (see [2])

$$
a^{2}+b^{2}+c^{2}=2 s^{2}-2(4 R+r) r \text { and } a b+b c+c a=s^{2}+(4 R+r) r,
$$

the equality above leads to the Euler's formula:

$$
O I^{2}=R^{2}-2 r R .
$$

4.6. On the orthocenter of a triangle. The most important formulas on the orthocenter are also valid in the hyperbolic plane. We give a collection in which the orthocenter is denoted by H, the feet of the altitudes are denoted by H_{A}, H_{B} and H_{C}, respectively. We also denote by h_{a}, h_{b} or h_{c} the heights of the triangle corresponding to the sides a, b or c, respectively.

Theorem 7. With the notation above we have the formulas:

$$
\begin{equation*}
\tanh H A \cdot \tanh H H_{A}=\tanh H B \cdot \tanh H H_{B}=\tanh H C \cdot \tanh H H_{C}=\text { const. }=: h \tag{46}
\end{equation*}
$$

$$
\begin{align*}
\sinh H A \cdot \sinh H H_{A}: \quad \sinh H B \cdot \sinh H H_{B} & : \sinh H C \cdot \sinh H H_{C}= \tag{47}\\
& =\cosh h_{A}: \cosh h_{B}: \cosh h_{C}
\end{align*}
$$

$$
\begin{equation*}
n_{A}(H): n_{B}(H): n_{C}(H)=\tan \alpha: \tan \beta: \tan \gamma . \tag{48}
\end{equation*}
$$

Furthermore let P be any point of the plane then we have

$$
\begin{equation*}
n_{A}(H) \cosh P A+n_{B}(H) \cosh P B+n_{C}(H) \cosh P C=n \cosh P H \tag{49}
\end{equation*}
$$

and also

$$
\begin{equation*}
\cosh c \sinh H_{A} C+\cosh b \sinh B H_{A}=\cosh h_{A} \sinh a \tag{50}
\end{equation*}
$$

Finally we have also that

$$
\begin{equation*}
(h+1) \cosh O H=\left(\frac{\operatorname{coth} h_{A}}{\sinh H A}+\frac{\operatorname{coth} h_{B}}{\sinh H B}+\frac{\operatorname{coth} h_{C}}{\sinh H C}\right) \cosh R . \tag{51}
\end{equation*}
$$

Figure 14. Stewart's theorem and the orthocenter.
Before the proof we prove Stewart's Theorem on the hyperbolic plane.
Theorem 8 (Stewart's theorem). Let $A B C$ be a triangle and A^{\prime} is a point on the side $B C$. Then we have

$$
\begin{equation*}
\cosh A B \sinh A^{\prime} C+\cosh A C \sinh B A^{\prime}=\cosh A A^{\prime} \sinh B C . \tag{52}
\end{equation*}
$$

Proof. Using (2) to the triangles $A B A^{\prime}$ and $A C A^{\prime}$, respectively, we get

$$
\begin{gathered}
\cosh A A^{\prime} \sinh B C=\cosh A A^{\prime} \sinh \left(B A^{\prime}+A^{\prime} C\right)=\sinh B A^{\prime} \cosh A^{\prime} C \cosh A A^{\prime}+ \\
+\sinh A^{\prime} C \cosh B A^{\prime} \cosh A A^{\prime}=\sinh B A^{\prime}\left(\sinh A^{\prime} C \sinh A A^{\prime} \cos \left(A A^{\prime} C_{\measuredangle}\right)+\cosh A C\right)+ \\
+\sinh A^{\prime} C\left(\sinh B A^{\prime} \sinh A A^{\prime} \cos \left(\pi-A A^{\prime} C_{\measuredangle}\right)+\cosh A B\right)= \\
=\sinh B A^{\prime} \cosh A C+\sinh A^{\prime} C \cosh A B
\end{gathered}
$$

as we stated.
Remark. Considering third-order approximation of the hyperbolic functions we get the equality:

$$
\left(1+\frac{A A^{\prime 2}}{2}\right)\left(B C+\frac{B C^{3}}{6}\right)=\left(1+\frac{b^{2}}{2}\right)\left(B A^{\prime}+\frac{B A^{\prime 3}}{6}\right)+\left(1+\frac{c^{2}}{2}\right)\left(A^{\prime} C+\frac{A^{\prime} C^{3}}{6}\right)
$$

or equivalently the equation

$$
a+\frac{\left|A A^{\prime}\right|^{2}}{2} a+\frac{a^{3}}{6}=B A^{\prime}+\frac{b^{2}}{2} B A^{\prime}+\frac{B A^{\prime 3}}{6}+A^{\prime} C+\frac{c^{2}}{2} A^{\prime} C+\frac{A^{\prime} C^{3}}{6}
$$

Since $a=B A^{\prime}+A^{\prime} C$

$$
\frac{A A^{\prime 2}}{2} a+\left(\frac{B A^{\prime 3}}{6}+\frac{B A^{\prime 2} A^{\prime} C}{2}+\frac{B A^{\prime} A^{\prime} C^{2}}{2}+\frac{A^{\prime} C^{3}}{6}\right)=\frac{b^{2}}{2} B A^{\prime}+\frac{B A^{\prime 3}}{6}+\frac{c^{2}}{2} A^{\prime} C+\frac{A^{\prime} C^{3}}{6}
$$

implying the well-known Euclidean Stewart's theorem:

$$
\left(A A^{\prime 2}+B A^{\prime} \cdot A^{\prime} C\right) a=b^{2} B A^{\prime}+c^{2} A^{\prime} C .
$$

Proof. (Proof of Theorem 7) (51) is the Stewart's theorem for the point H_{A}.
From the rectangular triangles $H C H_{A}$ and $H H_{C} A$ we get that $\tanh H H_{A}: \tanh H C=\cos H_{A} H C \measuredangle=$ $\tanh H H_{C}: \tanh H A$. Similarly we get also that $\tanh H H_{B}: \tanh H C=\cos H_{B} H C \measuredangle=\tanh H H_{C}$: $\tanh H B$ thus we have (47):

$$
\tanh H A \cdot \tanh H H_{A}=\tanh H B \cdot \tanh H H_{B}=\tanh H C \cdot \tanh H H_{C}
$$

From this we get

$$
\frac{\sinh H A \cdot \sinh H H_{A}}{\cosh H A \cdot \cosh H H_{A}}=\frac{\sinh H B \cdot \sinh H H_{B}}{\cosh H B \cdot \cosh H H_{B}} .
$$

Thus

$$
\frac{\sinh H A \cdot \sinh H H_{A}}{\sinh H B \cdot \sinh H H_{B}}=\frac{\cosh H A \cdot \cosh H H_{A}}{\cosh H B \cdot \cosh H H_{B}}=\frac{\cosh A H_{B}}{\cosh B H_{A}}
$$

implying (48). From (9) we get that

$$
n_{A}(H): n_{B}(H)=\left(A H_{C} B\right)=\sinh A H_{C}: \sinh H_{C} B=\tan \alpha: \tan \beta
$$

implying (49). Use now the Stewart's Theorem for the triangle $P A B$ and its secant $P H_{C}$ (see in Fig.14), where P is arbitrary point of the plane. Then we get

$$
\cosh P A \sinh H_{C} B+\cosh P B \sinh A H_{C}=\cosh P H_{C} \sinh c .
$$

Applying Stewart's theorem again to the triangle $P C H_{C}$ and its secant $P H$, we get

$$
\cosh P C \sinh H H_{C}+\cosh P H_{C} \sinh C H=\cosh P H \sinh C H_{C} .
$$

Eliminating $P H_{C}$ from these equations we get

$$
\cosh P A \sinh H_{C} B+\cosh P B \sinh A H_{C}+\frac{\cosh P C \sinh H H_{C} \sinh c}{\sinh C H}=\frac{\cosh P H \sinh C H_{C} \sinh c}{\sinh C H} .
$$

On the other hand we have

$$
2 n_{C}(H)=\sinh H H_{C} \sinh c
$$

We also have

$$
2 n_{B}(H)=2 \sinh H H_{B} \sinh b=2 \sinh C H_{A} \sinh A H=2 \sinh A H_{C} \sinh C H,
$$

and similarly

$$
2 n_{A}(H)=2 \sinh H_{C} B \sinh C H
$$

implying the equality

$$
n_{A}(H) \cosh P A+n_{B}(H) \cosh P B+n_{C}(H) \cosh P C=\frac{\cosh P H \sinh C H_{C} \sinh c}{2}=n \cosh P H
$$

as we stated in (50).
Use (50) in the case when $P=O$ is the circumcenter of the triangle. Then we have

$$
\begin{equation*}
n_{A}(H) \cosh R+n_{B}(H) \cosh R+n_{C}(H) \cosh R=n \cosh O H \tag{53}
\end{equation*}
$$

Thus we have

$$
\cosh O H=\frac{n_{A}(H)+n_{B}(H)+n_{C}(H)}{n} \cosh R=\left(\frac{\sinh H H_{A}}{\sinh h_{A}}+\frac{\sinh H H_{B}}{\sinh h_{B}}+\frac{\sinh H H_{C}}{\sinh h_{C}}\right) \cosh R .
$$

From (48) we get

$$
\sinh H H_{B}=\sinh H H_{A} \frac{\sinh H A}{\sinh H B} \frac{\cosh h_{B}}{\cosh h_{A}}
$$

and also

$$
\sinh H H_{C}=\sinh H H_{A} \frac{\sinh H A}{\sinh H C} \frac{\cosh h_{C}}{\cosh h_{A}}
$$

implying that

$$
\begin{gathered}
\cosh O H=\frac{\sinh H H_{A} \sinh H A}{\cosh h_{A}}\left(\frac{\cosh h_{A}}{\sinh H A \sinh h_{A}}+\frac{\cosh h_{B}}{\sinh H B \sinh h_{B}}+\frac{\cosh h_{C}}{\sinh H C \sinh h_{C}}\right) \cosh R= \\
=\left(\frac{\cosh h_{A}}{\sinh H A \sinh h_{A}}+\frac{\cosh h_{B}}{\sinh H B \sinh h_{B}}+\frac{\cosh h_{C}}{\sinh H C \sinh h_{C}}\right) \frac{\cosh R}{\tanh H H_{A} \tanh H A+1} .
\end{gathered}
$$

Now we have

$$
(h+1) \cosh O H=\left(\frac{1}{\tanh h_{A} \sinh H A}+\frac{1}{\tanh h_{B} \sinh H B}+\frac{1}{\tanh h_{C} \sinh H C}\right) \cosh R,
$$

showing (52).
4.7. Isogonal conjugate of a point. Let define the isogonal conjugate of a point X of the plane in the following way: Reflect the lines through the point X and any of the vertices of the triangle with respect to the bisector of that vertex. Then the getting lines are concurrent at a point X^{\prime} which we call the isogonal conjugate of X. To prove the concurrence of these lines we have to observe that if the lines $A X$ and $A X^{\prime}$ intersect the line of the side $B C$ in the points Y and Y^{\prime} then the ratio of these points with respect to B and C has an inverse connection. In fact, by (1) we have that

$$
\frac{\sinh c}{\sinh B Y}=\frac{\sin A Y B \measuredangle}{\sin B A Y \measuredangle} \quad \text { and } \quad \frac{\sinh b}{\sinh Y C}=\frac{\sin (\pi-A Y B \measuredangle)}{\sin C A Y \measuredangle}
$$

This implies that

$$
(B Y C)=\frac{\sinh B Y}{\sinh Y C}=\frac{\sinh c}{\sinh b} \frac{\sin B A Y \measuredangle}{\sin C A Y \measuredangle}
$$

For the point Y^{\prime} we get similarly that

$$
\left(B Y^{\prime} C\right)=\frac{\sinh c}{\sinh b} \frac{\sin B A Y^{\prime} \measuredangle}{\sin C A Y^{\prime} \measuredangle}=\frac{\sinh c}{\sinh b} \frac{\sin C A Y \measuredangle}{\sin B A Y \measuredangle}
$$

implying the equation

$$
\begin{equation*}
(B Y C)\left(B Y^{\prime} C\right)=\frac{\sinh ^{2} c}{\sinh ^{2} b} \tag{54}
\end{equation*}
$$

If Z, Z^{\prime} or V, V^{\prime} are the intersection points of the examined lines with the corresponding sides $C A$ or $A B$, respectively, then we get the equation

$$
(B Y C)\left(B Y^{\prime} C\right)(C Z A)\left(C Z^{\prime} A\right)(A V B)\left(A V^{\prime} B\right)=1
$$

showing that the first three lines are concurrent if and only if the second three lines are. Hence we can prove the following:

Lemma 5. If X and X^{\prime} are isogonal conjugate points with respect to the triangle $A B C$ then their triangular coordinates have the following connection:

$$
\begin{equation*}
n_{A}\left(X^{\prime}\right): n_{B}\left(X^{\prime}\right): n_{C}\left(X^{\prime}\right)=\frac{\sinh ^{2} a}{n_{A}(X)}: \frac{\sinh ^{2} b}{n_{B}(X)}: \frac{\sinh ^{2} c}{n_{C}(X)} \tag{55}
\end{equation*}
$$

Proof. Using (55) we have

$$
\left(n_{C}(X): n_{B}(X)\right)\left(n_{C}\left(X^{\prime}\right): n_{B}\left(X^{\prime}\right)\right)=\left(B N_{A} C\right)\left(B N_{A}^{\prime} C\right)=\frac{\sinh ^{2} c}{\sinh ^{2} b}
$$

implying that

$$
n_{B}\left(X^{\prime}\right): n_{C}\left(X^{\prime}\right)=\frac{\sinh ^{2} b}{n_{B}(X)}: \frac{\sinh ^{2} c}{n_{C}(X)}
$$

as we stated in (56).
Corollary 3. As a first consequence we can see immediately (35) again on the triangular coordinates of the incenter. By (56) the triangular coordinates of the isogonal conjugate H^{\prime} of the orthocenter is

$$
n_{A}\left(H^{\prime}\right): n_{B}\left(H^{\prime}\right): n_{C}\left(H^{\prime}\right)=\frac{\sinh ^{2} a}{\tan \alpha}: \frac{\sinh ^{2} b}{\tan \beta}: \frac{\sinh ^{2} c}{\tan \gamma}
$$

Thus

$$
n_{A}\left(H^{\prime}\right): n_{B}\left(H^{\prime}\right)=\frac{\sinh ^{2} a}{\tan \alpha} \frac{\tan \beta}{\sinh ^{2} b}=\frac{\sin \alpha \cos \alpha}{\sin \beta \cos \beta}=\frac{\sin 2 \alpha}{\sin 2 \beta}
$$

implying that

$$
\begin{equation*}
n_{A}\left(H^{\prime}\right): n_{B}\left(H^{\prime}\right): n_{C}\left(H^{\prime}\right)=\sin 2 \alpha: \sin 2 \beta: \sin 2 \gamma \tag{56}
\end{equation*}
$$

Compare the coordinates of H^{\prime} with the triangular coordinates of the circumcenter (see (25)) we can see that the isogonal conjugate of the orthocenter is the circumcenter if and only if the defect of the triangle is zero implying that the geometry of the plane is Euclidean.

A minimality property of the incenter follows from a generalization of the equality (50). Similarly as in the proof of (50) (see Theorem 8 and the equality (53)) we can prove that for any triangle $A B C$ with any fixed point Q and any various point P of the plane the following equality holds:

$$
\begin{equation*}
n_{A}(Q) \cosh P A+n_{B}(Q) \cosh P B+n_{C}(Q) \cosh P C=n(A B C) \cosh P Q \tag{57}
\end{equation*}
$$

Theorem 9. The sum of the triangular coordinates of a point P of the plane is minimal if and only if P is the center of the inscribed circle of the triangle $A B C$.

Proof. Assume that the vertices of the triangle $A B C$ are real points and the edges of it are those real segments which are connecting these real vertices, respectively. Let A^{\prime}, B^{\prime} and C^{\prime} be the respective poles of the lines $B C, A C$ and $A B$. These poles are ideal points and the corresponding lines $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$ and $B^{\prime} C^{\prime}$ are also ideal lines, respectively. If P is any point of the plane let $d(P, B C), \varepsilon_{A}$ and α^{\prime} be the distance of P and the line $B C$ the sign of this distance and the angle of the polar triangle at the vertex A^{\prime}, respectively. We choose the sign to positive if P and A are the same (real) half-plane determined by the line $B C$. Then the investigated quantity is

$$
\begin{gathered}
n_{A}(P)+n_{B}(P)+n_{C}(P)= \\
=\frac{1}{2}\left(\varepsilon_{A} \sinh d(P, B C) \sinh a+\varepsilon_{B} \sinh d(P, A C) \sinh b+\varepsilon_{C} \sinh d(P, A B) \sinh c\right)= \\
=\frac{1}{2 i}\left(\cosh \left(d(P, B C)+\varepsilon_{A} \frac{\pi}{2} i\right) \sinh a+\cosh \left(d(P, A C)+\varepsilon_{B} \frac{\pi}{2} i\right) \sinh b+\right. \\
\left.+\cosh \left(d(P, A B)+\varepsilon_{C} \frac{\pi}{2} i\right) \sinh c\right)=\frac{1}{2 i}\left(\cosh P A^{\prime} \sinh a+\cosh P B^{\prime} \sinh b+\cosh P C^{\prime} \sinh c\right) .
\end{gathered}
$$

Hence using (58) we have that

$$
\frac{1}{2 i}\left(\cosh P A^{\prime} \sinh a+\cosh P B^{\prime} \sinh b+\cosh P C^{\prime} \sinh c\right)=\frac{1}{2 i} n\left(A^{\prime} B^{\prime} C^{\prime}\right) \cosh P Q
$$

where the triangular coordinates of the point Q with respect to the polar triangle are

$$
n_{A^{\prime}}(Q)=\sinh a, \quad n_{B^{\prime}}(Q)=\sinh b, \quad \text { and } \quad n_{C^{\prime}}(Q)=\sinh c .
$$

It follows from (8) that the Staudtian of the triangle $A^{\prime} B^{\prime} C^{\prime}$ is

$$
n\left(A^{\prime} B^{\prime} C^{\prime}\right)=\frac{1}{2} \sin \alpha^{\prime} \sinh b^{\prime} \sinh c^{\prime}=\frac{1}{2} \sin \frac{a}{i} \sinh i \beta \sinh i \gamma=\frac{i}{2} \sinh a \sin \beta \sin \gamma
$$

implying that.

$$
n_{A}(P)+n_{B}(P)+n_{C}(P)=\frac{1}{4} \sinh a \sin \beta \sin \gamma \cosh P Q=\frac{N}{2} \cosh P Q
$$

where the triangular coordinates of Q are $\sinh a, \sinh b$ and $\sinh c$, respectively. Thus from (35) we get that $Q=I$ and the sum in the question is minimal if and only if P is equal to $Q=I$. This proves the statement.
4.7.1. Symmedian point. We recall that the isogonal conjugate of the centroid is the so-called symmedian point of the triangle. The triangular coordinates of the symmedian point are

$$
\begin{equation*}
n_{A}\left(M^{\prime}\right): n_{B}\left(M^{\prime}\right): n_{C}\left(M^{\prime}\right)=\sinh ^{2} a: \sinh ^{2} b: \sinh ^{2} c . \tag{58}
\end{equation*}
$$

From (8) immediately follows that the hyperbolic sine of the distances of the symmedian point to the sides are proportional to the hyperbolic sines of the corresponding sides:

$$
\begin{equation*}
\sinh d\left(M^{\prime}, B C\right): \sinh d\left(M^{\prime}, A C\right): \sinh d\left(M^{\prime}, A B\right)=\sinh a: \sinh b: \sinh c \tag{59}
\end{equation*}
$$

showing the validity of the analogous Euclidean theorem in the hyperbolic geometry, too.
We note that the symmedian point of a hyperbolic triangle does not coincides with the Lemoine point L of the triangle. This center can be defined on the following way: If tangents be drawn at A, B, C to the circumcircle of the triangle $A B C$, forming a triangle $A^{\prime} B^{\prime} C^{\prime}$, the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$, are concurrent. The point of concurrence, is the Lemoine point of the triangle. The concurrency follows from Menelaos-theorem applying it to the triangle $A^{\prime} B^{\prime} C^{\prime}$. We note that L is also (by definition) the so-called Gergonne point of the triangle $A^{\prime} B^{\prime} C^{\prime}$. To prove that the symmedian point does not coincides with the Lemoine point we determine the triangular coordinates of the latter, too. Let L_{A}, L_{B} or L_{C} be the intersection point of $A A^{\prime} \cap B C, B B^{\prime} \cap A C$ or $C C^{\prime} \cap A B$ (see in Fig. 15), respectively. Then we have

$$
n_{B}(L): n_{A}(L)=\left(A L_{C} B\right)=\frac{\sinh A L_{C}}{\sinh L_{C} B}=\frac{\sinh C^{\prime} B}{\sinh C^{\prime} A} \frac{\sin A C^{\prime} L_{C} \measuredangle}{\sin B C^{\prime} L_{C} \measuredangle}=\frac{\sin A C^{\prime} L_{C} \measuredangle}{\sin B C^{\prime} L_{C} \measuredangle} .
$$

On the other hand we have by (1)

$$
\frac{\sin A C^{\prime} L_{C} \measuredangle}{\sin C A C^{\prime} \measuredangle}=\frac{\sinh C A}{\sinh C C^{\prime}} \quad \text { and } \quad \frac{\sin B C^{\prime} L_{C} \measuredangle}{\sin C B C^{\prime} \measuredangle}=\frac{\sinh C B}{\sinh C C^{\prime}}
$$

Figure 15. The Lemoine point of the triangle.
implying that

$$
\begin{aligned}
\frac{\sin A C^{\prime} L_{C} \measuredangle}{\sin B C^{\prime} L_{C} \measuredangle} & =\frac{\sinh C A \sin C A C^{\prime} \measuredangle}{\sinh C B \sin C B C^{\prime} \measuredangle}=\frac{\sinh C A \cos C A O \measuredangle}{\sinh C B \sin C B O \measuredangle}=\frac{2 \sinh \frac{C A}{2} \cosh \frac{C A}{2} \cos C A O \measuredangle}{2 \sinh \frac{C B}{2} \cosh \frac{C B}{2} \sin C B O \measuredangle}= \\
& =\frac{\sinh \frac{C A}{2} \cosh \frac{C A}{2} \frac{\tanh \frac{C A}{2}}{\tanh \frac{C B}{2} \cosh \frac{C B}{2} \frac{\tanh \frac{C B}{2}}{\tanh R}}=\frac{\sinh ^{2} \frac{b}{2}}{\sinh ^{2} \frac{a}{2}}=(\cosh b-1):(\cosh a-1) .}{} .
\end{aligned}
$$

Thus the triangular coordinates of the Lemoine point are:

$$
\begin{equation*}
n_{A}(L): n_{B}(L): n_{C}(L)=(\cosh a-1):(\cosh b-1):(\cosh a-1) \tag{60}
\end{equation*}
$$

Now the symmedian point and the Lemoine point coincides for a triangle if and only if the equation array

$$
\begin{align*}
(\cosh a-1) \sinh ^{2} b & =(\cosh b-1) \sinh ^{2} a \tag{61}\\
(\cosh a-1) \sinh ^{2} c & =(\cosh c-1) \sinh ^{2} a
\end{align*}
$$

gives an identity. Since

$$
\begin{gathered}
(\cosh a-1)\left(\cosh ^{2} b-1\right)=(\cosh a-1)(\cosh b-1)(\cosh b+1)=(\cosh b-1)(\cosh a-1)(\cosh a+1)= \\
=(\cosh b-1) \sinh ^{2} a
\end{gathered}
$$

implies $a=b$, the only solution is when $a=b=c$ and the triangle is an equilateral (regular) one.
4.8. On the "Euler line". An interesting question in elementary hyperbolic geometry is the existence of the Euler line. Known fact (see e.g. in [16]) that the circumcenter, the centroid and the orthocenter of a triangle having in a common line if and only if the triangle is isoscale. In this sense Euler line does not exist for each triangle. A nice result from the recent investigations on the triangle centers is the paper of A.V. Akopyan [1] in which the author defined the concepts of "pseudomedians" and "pseudoaltitudes" giving two new centers of the hyperbolic triangle holding a deterministic Euclidean property of Euclidean centroid and orthocenter, respectively. He proved that the circumcenter, the intersection points of the pseudomedians (pseudo-centroid), the intersection points of the pseudoaltitudes (pseudo-orthocenter) and the circumcenter of the circle through the footpoints of the bisectors (the center of the Feuerbach circle) are on a hyperbolic line. A line through a vertex is called by pseudomedian if divides the area of the triangle in half. (We note that in spherical geometry Steiner proved the statement that the great circles through angular points of a spherical triangle, and which bisect its area, are concurrent (see [5]). Of course the pseudomedians are not medians and their point of concurrency is not the centroid of the triangle. We call it pseudo-centroid. He called pseudoaltitude a cevian $\left(A Z_{A}\right)$ with the property that with its foot Z_{A} on $B C$ holds the equality

$$
A Z_{A} B \measuredangle-Z_{A} B A \measuredangle-B A Z_{A} \measuredangle=C Z_{A} A \measuredangle-Z_{A} A C \measuredangle-A C Z_{a} \measuredangle
$$

where the angles above are directed, respectively. Throughout on his paper Akopyan assume that "any two lines intersects and that three points determine a circle". He note in the introduction also that "Consideration of all possible cases would not only complicate the proof, but would contain no fundamentally new ideas. To complete our arguments, we could always say that other cases follow from a theorem by analytic continuation, since the cases considered by us are sufficiently general (they include an interior point in the configuration space). Nevertheless, in the course of our argument we shall try to avoid major errors and show that the statements can be demonstrated without resorting to more powerful tools". We note that in our paper the reader can find this required extraction of the real elements by the ideal elements and the elements at infinity. We also defined all concepts using by Akopyan with respect to general points and lines, furthermore his lemmas and theorem can be extracted from circles onto cycles with our method. This prove the truth of Akopyan's note, post factum. To see the equivalence of the

Figure 16. The connection between the projective and conformal models
two theory on real elements we recall that between the projective (Cayley-Klein-Beltrami) and Poincare models of the unit disk there is a natural correspondence, when we map to a line of the projective model to the line of the Poincare model with the same ends (points at infinity). On Fig. 16 we can see the corresponding mapping. A point P can be realized in the first model as the point P^{\prime} and in the second one as the point $P^{\prime \prime}$. It is easy to see that if the hyperbolic distance of the points P and O is a then the Euclidean distances $P^{\prime} O$ or $P^{\prime \prime} O$ are equals to $\tanh a$ or $\tanh (a / 2)$, respectively. Thus our analytic definitions on similarity or inversion are model independent (end extracted) variations of the definitions of Akopyan, respectively. Thus we have

Theorem 10 ([1]). The center O of the cycle around the triangle, the center of the cycle F around the feet of the pseudomedians, the pseudo-centroid S and the pseudo-orthocenter Z are on the same line.

By Akopyan's opinion this is the Euler line of the triangle and thus he avoided the problem is to determination of the connection among the three important classical centers of the triangle. Our aim to give some analytic determination for the pseudo-centers introduced by Akopyan.

Theorem 11. Let S_{A}, S_{B}, S_{C} be the feet of the pseudo-medians. Then we have the following formulas:

$$
\begin{align*}
& \sinh \frac{A N_{C}}{2}: \sinh \frac{N_{C} B}{2}=\cosh \frac{b}{2}: \cosh \frac{a}{2} \tag{62}\\
& \sinh \frac{B N_{A}}{2}: \sinh \frac{N_{A} C}{2}=\cosh \frac{c}{2}: \cosh \frac{b}{2} \\
& \sinh \frac{C N_{B}}{2}: \sinh \frac{N_{B} A}{2}=\cosh \frac{a}{2}: \cosh \frac{c}{2}
\end{align*}
$$

implying that they are concurrent in a point S. We call S the pseudo-centroid of the triangle. The triangular coordinates of the pseudo-centroid hold:

$$
\begin{align*}
n_{A}(R): n_{B}(R): n_{C}(R) & =\frac{1}{\left(\cosh ^{2} \frac{b}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)}: \tag{63}\\
& : \frac{1}{\left(\cosh ^{2} \frac{a}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)}: \\
& : \frac{1}{\left(\cosh ^{2} \frac{b}{2} \cosh ^{2} \frac{a}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)} .
\end{align*}
$$

Proof. From (12) we know that

$$
\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}=\frac{N^{2}}{\sin \alpha \sin \beta \sin \gamma \sin \delta} .
$$

(15) says that

$$
2 n^{2}=N \sinh a \sinh b \sinh c
$$

and we also have

$$
\sin \alpha \sin \beta \sin \gamma \sinh a \sinh b \sinh c=4 n N .
$$

From these equalities we get the analogous of the spherical Cagnoli's theorem:
(64) $\sin \delta=\frac{N^{2}}{\sin \alpha \sin \beta \sin \gamma \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}}=\frac{N^{2} \sinh a \sinh b \sinh c}{4 n N \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}}=\frac{n}{2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}}$.

Using the formulas before (26) we get that

$$
\begin{gathered}
\cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}=\sqrt{\frac{\sin (\delta+\beta) \sin (\delta+\gamma)}{\sin \gamma \sin \beta}} \sqrt{\frac{\sin \delta \sin (\delta+\beta)}{\sin \gamma \sin \alpha}} \sqrt{\frac{\sin \delta \sin (\delta+\gamma)}{\sin \alpha \sin \beta}}= \\
=\frac{N^{2}}{\sin (\delta+\alpha) \sin \alpha \sin \beta \sin \gamma}
\end{gathered}
$$

implying (with the above manner) the equality

$$
\begin{equation*}
\sin (\delta+\alpha)=\frac{n}{2 \cosh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}} . \tag{65}
\end{equation*}
$$

From these equalities we get that

$$
\begin{equation*}
\frac{\sin (\delta+\alpha)}{\sin \delta}=\cos \alpha+\cot \delta \sin \alpha=\operatorname{coth} \frac{b}{2} \operatorname{coth} \frac{c}{2} . \tag{66}
\end{equation*}
$$

Thus if the area of a triangle and one of its angles be given, the product of the semi hyperbolic tangents of the containing sides is given. Since the area of the examined triangles are equals to each other we get that

$$
\frac{n}{2 \cosh \frac{a}{2} \cosh \frac{B N_{C}}{2} \cosh \frac{C N_{C}}{2}}=\frac{\sinh a \sinh B N_{C} \sin \beta}{4 \cosh \frac{a}{2} \cosh \frac{B N_{C}}{2} \cosh \frac{C N_{C}}{2}}=\frac{\sinh \frac{a}{2} \sinh \frac{B N_{C}}{2} \sin \beta}{\cosh \frac{C N_{C}}{2}}
$$

and similarly

$$
\frac{n}{2 \cosh \frac{b}{2} \cosh \frac{N_{C} A}{2} \cosh \frac{C N_{C}}{2}}=\frac{\sinh \frac{b}{2} \sinh \frac{N_{C} A}{2} \sin \alpha}{\cosh \frac{C N_{C}}{2}}
$$

implying that

$$
\sinh \frac{a}{2} \sinh \frac{B N_{C}}{2} \sin \beta=\sinh \frac{b}{2} \sinh \frac{N_{C} A}{2} \sin \alpha .
$$

From this we get that

$$
\frac{\sinh \frac{A N_{C}}{2}}{\sinh \frac{N_{C} B}{2}}=\frac{\sinh \frac{a}{2} \sin \beta}{\sinh \frac{b}{2} \sin \alpha}=\frac{\cosh \frac{b}{2}}{\cosh \frac{a}{2}}
$$

as we stated in (63). The production of the equalities in (63) gives the equality

$$
\begin{equation*}
\sinh \frac{A N_{C}}{2} \sinh \frac{B N_{A}}{2} \sinh \frac{C N_{B}}{2}=\sinh \frac{N_{C} B}{2} \sinh \frac{N_{A} C}{2} \sinh \frac{N_{B} A}{2} \tag{67}
\end{equation*}
$$

On the other hand the triangles $C A N_{C}, N_{B} A B$ having equal areas and also have a common angle, in virtue of (67) we get that

$$
\tanh \frac{b}{2} \tanh \frac{A N_{C}}{2}=\tanh \frac{c}{2} \tanh \frac{N_{B} C}{2}
$$

implying that

$$
\tanh \frac{A N_{C}}{2} \tanh \frac{B N_{A}}{2} \tanh \frac{C N_{B}}{2}=\tanh \frac{N_{B} C}{2} \tanh \frac{N_{C} B}{2} \tanh \frac{N_{A} C}{2} .
$$

So we also have

$$
\cosh \frac{A N_{C}}{2} \cosh \frac{B N_{A}}{2} \cosh \frac{C N_{B}}{2}=\cosh \frac{N_{B} C}{2} \cosh \frac{N_{C} B}{2} \cosh \frac{N_{A} C}{2},
$$

and as a consequence the equality

$$
\sinh A N_{C} \sinh B N_{A} \sinh C N_{B}=\sinh N_{C} B \sinh N_{A} C \sinh N_{B} A
$$

Menelaos theorem now gives the existence of the pseudo-centroid.
From (63) we get that

$$
\frac{\cosh \frac{a}{2}}{\cosh \frac{b}{2}}=\frac{\sinh \left(\frac{c}{2}-\frac{A N_{C}}{2}\right)}{\sinh \frac{A N_{C}}{2}}=\sinh \frac{c}{2} \operatorname{coth} \frac{A N_{C}}{2}-\cosh \frac{c}{2},
$$

hence

$$
\operatorname{coth} \frac{A N_{C}}{2}=\frac{\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}}{\sinh \frac{c}{2} \cosh \frac{b}{2}}
$$

or equivalently

$$
\cosh \frac{A N_{C}}{2}=\frac{\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}}{\sinh \frac{c}{2} \cosh \frac{b}{2}} \sinh \frac{A N_{C}}{2} .
$$

From this we get

$$
\begin{gathered}
1=\sinh ^{2} \frac{A N_{C}}{2}\left(-1+\left(\frac{\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}}{\sinh \frac{c}{2} \cosh \frac{b}{2}}\right)^{2}\right)= \\
=\frac{-\sinh ^{2} \frac{c}{2} \cosh ^{2} \frac{b}{2}+\left(\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}\right)^{2}}{\sinh ^{2} \frac{c}{2} \cosh ^{2} \frac{b}{2}} \sinh ^{2} \frac{A N_{C}}{2}= \\
\frac{\cosh ^{2} \frac{b}{2}+2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh ^{2} \frac{a}{2}}{\sinh ^{2} \frac{c}{2} \cosh ^{2} \frac{b}{2}} \sinh ^{2} \frac{A N_{C}}{2}
\end{gathered}
$$

Thus

$$
\begin{gathered}
\sinh A N_{C}=2 \sinh \frac{A N_{C}}{2} \cosh \frac{A N_{C}}{2}=2 \sinh ^{2} \frac{A N_{C}}{2} \frac{\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}}{\sinh \frac{c}{2} \cosh \frac{b}{2}}= \\
=2 \frac{\sinh \frac{c}{2} \cosh \frac{b}{2}\left(\cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2}\right)}{\cosh ^{2} \frac{b}{2}+2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh ^{2} \frac{a}{2}} .
\end{gathered}
$$

Hence we also have

$$
\sinh N_{C} B=2 \frac{\sinh \frac{c}{2} \cosh \frac{a}{2}\left(\cosh \frac{a}{2} \cosh \frac{c}{2}+\cosh \frac{b}{2}\right)}{\cosh ^{2} \frac{a}{2}+2 \cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}+\cosh ^{2} \frac{b}{2}}
$$

implying that

$$
\begin{aligned}
n_{B}(N) & : n_{A}(N)=\left(A N_{C} B\right)=\left(\cosh ^{2} \frac{b}{2} \cosh \frac{c}{2}+\cosh \frac{b}{2} \cosh \frac{a}{2}\right):\left(\cosh ^{2} \frac{a}{2} \cosh \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2}\right)= \\
& =\left(\cosh ^{2} \frac{b}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right):\left(\cosh ^{2} \frac{a}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right) .
\end{aligned}
$$

From this we get that

$$
n_{A}(N): n_{B}(N)=\frac{1}{\left(\cosh ^{2} \frac{b}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)}: \frac{1}{\left(\cosh ^{2} \frac{a}{2} \cosh ^{2} \frac{c}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)} .
$$

Similarly we get

$$
n_{B}(N): n_{C}(N)=\frac{1}{\left(\cosh ^{2} \frac{c}{2} \cosh ^{2} \frac{a}{2}+\cosh \frac{c}{2} \cosh \frac{b}{2} \cosh \frac{a}{2}\right)}: \frac{1}{\left(\cosh ^{2} \frac{b}{2} \cosh ^{2} \frac{a}{2}+\cosh \frac{a}{2} \cosh \frac{b}{2} \cosh \frac{c}{2}\right)}
$$

as we stated in (64).

Remark. We note that there are many Euclidean theorems can be investigated on the hyperbolic plane by our more-less trigonometric way. We note that on the hyperbolic plane the usual isoptic property of the circle lost (see [6]) and thus all the Euclidean statements using this property can be investigated only the way of [1]. To that we can use trigonometry in this method we can concentrate on the introduced concept of angle sums which in a trigonometric calculation can be handed well. Thus the isoptic property of a cycle (or which is the same the cyclical property of a set of points) can lead for new hyperbolic theorems suggested by known Euclidean analogy.

References

[1] Akopyan, A.V., On some classical constructions extended to hyperbolic geometry http://arxiv.org/abs/1105.2153 2011.
[2] Bell, A.: Hansens Right Triangle Theorem, Its Converse and a Generalization Forum Geometricorum 6 (2006) 335342.
[3] Cayley, A.,Analytical Researches Connected with Steiner's Extension of Malfatti's Problem Phil. Trans. of the Roy. Soc. of London, 142 (1852), 253-278.
[4] Casey, J., A sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th. ed., Hodges, Figgis and Co., Dublin 1888.
[5] Casey, J., A treatise on spherical trigonometry, and its application to Geodesy and Astronomy, with numerous examples, Hodges, Figgis and CO., Grafton-ST. London: Longmans, Green, and CO., 1889.
[6] Csima, G., Szirmai, J., Isoptic curves of conic sections in constant curvature geometries http://arxiv.org/pdf/1301. 6991v2.pdf
[7] Dörrie, H., Triumph der Mathematik, Physica-Verlag, Würzburg, 1958.
[8] G.Horváth, Á., Malfatti's problem on the hyperbolic plane http://arxiv.org/abs/1204.5014 2014.
[9] G.Horváth, Á., Formulas on hyperbolic volume. Aequationes Mathematicae 83/1 (2012), 97-116.
[10] Hart, A. S., Geometric investigations of Steiner's construction for Malfatti's problem. Quart. J. Pure Appl. Math. 1 (1857) 219-221.
[11] Johnson, R. A., Advanced Euclidean Geometry, An elementary treatise on the geometry of the triangle and the circle. Dover Publications, Inc. New York, (The first edition published by Houghton Mifflin Company in 1929) 1960.
[12] Malfatti, G., Memoria sopra un problema sterotomico Memorie di Matematica e di Fisica della Società Italiana delle Scienze, 10 (1803), 235-244.
[13] Molnár, E., Inversion auf der Idealebene der Bachmannschen metrischen Ebene Acta Math. Acad. Sci. Hungar. 37/4 (1981), 451-470.
[14] Steiners gesammelte Werke, (herausgegeben von K. Weierstrass) Berlin, 1881.
[15] Steiner, J., Einige geometrische Betrachtungen. Journal für die reine und angewandte Mathematik 1/2 (1826) 161-184, 1/3 (1826) 252-288.
[16] Szász, P., Introduction to Bolyai-Lobacsevski's geometry, 1973 (in Hungarian).
[17] Dr. Vörös, C., Analytic Bolyai’s geometry, Budapest, 1909 (in Hungarian).
Á. G.Horváth, Dept. of Geometry, Budapest University of Technology, Egry József u. 1., Budapest, Hungary, 1111

E-mail address: ghorvath@math.bme.hu

