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Mathematical Series
Vol. 16 (2003), 1–7

1

PACKING POINTS INTO A UNIT CUBE IN HIGHER SPACE.

Á. G.HORVÁTH

Abstract. In this paper using the concept of the extended Hamming code we give

a construction for dense packing of points with mutual distances at least one in such
unit cubes which dimension are a power of two.

Introduction

The following problem was stated in [13] and later repeated in [8], [14], [1].
Let f(n) denote the maximum number of points that can be arranged in the

n-dimensional unit cube (n-cube) so that all mutual distances are at least 1. Ob-
viously, f(n) = 2n for n ≤ 3. Many have shown that logf(n) ∼ 1

2n(logn). Deter-
mine the exact values of f(n) at least for small n.

Any construction of a suitable point-set gives a lower bound for f(n). Previously
constructed sets (see [3], [5] and [2], p.71) shows that f(4) = 17, f(5) ≥ 34,
f(6) ≥ 76, f(7) ≥ 184, f(8) ≥ 481, f(9) ≥ 994, f(10) ≥ 2452 f(11) ≥ 5464,
f(12) ≥ 14705. To show a good upper bound is usually much more difficult.
In the paper [6] the authors proved the following upper estimates: f(6) ≤ 192,
f(7) ≤ 576, f(8) ≤ 2592, f(9) ≤ 11664, f(10) ≤ 46656, f(11) ≤ 248832, f(12) ≤
944784. More results are known for the dimension 5, for example f(5) ≤ 44 (see
[4]). Better upper estimate f(5) ≤ 43 was shown a short time ago in [9] and this
was most recently strengthened to f(5) ≤ 42 in [10]. The most recent result (see
[7]) says that f(5) ≤ 40.

The best known asymptotic estimates can be found in [5] and they are f(n) ≤
nn/20, 63901neo(n) and f(n) ≥ nn/20, 2419707nΩ(

√
n). The lower bound is not a

constructive one.
In this paper using the extended Hamming codes we give a construction for

packing

3n + 2(n− 1)3n/2 + 1

2n

points at mutual distances at least one in the n = 2k-dimensional unit cube. In
the cases of k = 2, 3 the corresponding packing gives the known better ones. This
construction can be generalized by the Reed-Muller (briefly R-M) codes. Since
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the weight-distributions does not known in general, we give lower bound for the
number of points of this construction. For odd k it is equal to

3n + 2(n− 1)3n/2 + 1

2n
+ l · n 1

2 (log2 n+1) − 2

3
n[(n− 1)(n− 2)− 3],

where l = 4.768462..., and for even k is

3n + 2(n− 1)3n/2 + 1

2n
+ (l − 2) · n 1

2 (log2 n+1) − 2

3
n[(n− 1)(n− 2)− 3] +

1

2

√
n.

1. Constructions using the binary extended Hamming code

The codes that Hamming devised, the single-error-correcting binary Hamming
codes and their single-error-correcting, double-error-detecting extended versions
marked the beginning of coding theory. These codes remain important to this
day, for theoretical and practical reasons as well as historical. In our paper we
give a new application of the extended version of this code, we use it to define
large point system in the unit cube with mutual distances at least one. To the
calculation of the number of points we have to use the weight distribution of this
code, which is the distribution of the Hamming weights of the codewords belong
to this code. So we recall to its generator function.

A simple definition of the binary Hamming code is the following one. Let k be
a positive integer and construct a binary k × (2k − 1) matrix H such that each
nonzero binary k-tuple occurs exactly once as a column of H. The codewords (of
lengths 2k − 1) of the Hamming code are the binary (2k − 1)-tuples as column
vectors orthogonal to the rows of H. It is easy to see that binary Hamming code
is a linear code having minimum Hamming weight and distance 3, meaning that
every codewords contains at least three nonzero coordinates. If we add an overall
parity check bit to a binary Hamming code then we have an extended Hamming
code. This means that for a codeword we glue a 2k-th coordinate it is zero if the
weight of the codeword is even and one if it is odd, respectively. The extended
binary Hamming code is a mod2 linear vertex set of the n-dimensional unit cube
each of which contains at least four nonzero coordinates.

First we consider those points of the cube which are on the middle of the position
vectors occurs as a codeword of the extended Hamming code. If the Hamming
weight of a codeword is j then the corresponding point there is j coordinates with
value 1

2 and its other coordinates are zero. Corresponding to this codeword we
collect those points which other coordinates are either zero or one. Such a way

a codeword with weight j generates 22
k−j points in the unit cube. The distances

of these points to each other are at least one, since the minimum weight of the
code is 4 showing that the substraction of two position vectors contains at least 4
coordinates with absolute value 1

2 or at least one with absolute value 1. We now
determine the number of points of this system.

The weight for the Hamming code are found by use of the correspondence be-
tween linear dependence relations among r columns of the matrixH and codewords
of weight r. The number of codewords of weight j is denoted W (j). The number
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of codewords that are zero linear combinations of (j− 2) vectors is W (j− 2). The
number of linear combinations consisting of j − 2 terms that add to 0 plus one
nonzero term (n−(j−2))W (j−2) where n = 2k−1. The number of linear combi-
nations of (j − 1) vectors is

(
n

j−1

)
. The number of nonzero linear combinations of

(j− 1) vectors is
(

n
j−1

)
−W (j− 1). The number of nonzero linear combinations of

(j− 1) vectors to which one more term may be added to form a linear dependence
among j vectors is therefore

jW (j) =

(
n

j − 1

)
−W (j − 1)− (n− (j − 2))W (j − 2).

This recurrence relation gives a possibility to calculate the weights of this code.
Of course, W (0) = 1, W (1) = W (2) = 0. To get an explicit solution we introduce
the generator function

f(x) =
n∑

j=0

W (j)xj .

As it can be seen in [12], f(x) can be determined and we have

f(x) =
1

n+ 1

[
(1 + x)n + n(1 + x)(n−1)/2(1− x)(n+1)/2

]
,

where n = 2k − 1.
Now the weights for the extended binary codes can be found by nothing that

each codewords of odd weight has a 1 added to it, while each of even weight
has a 0 added. Thus the number of codewords of weight j is 0 if j is odd and
V (j) := W (j) + W (j − 1) if j is even. The odd terms and even terms can be
separated by using [f(x) + f(−x)]/2 for the even terms and [f(x)− f(−x)]/2 for
the odd terms. Then the generator function as we can see in [15] is

g(x) =
1

2
[f(x) + f(−x)] +

x

2
[f(x)− f(−x)] =

=
1

2k+1

[
(1 + x)2

k

+ (1− x)2
k

+ 2(2k − 1)(1− x2)2
k−1
]
.

The number of our points can be calculated on the base of the numbers V (j) since
two points are distinct they either are associated to distinct codewords or they
differ in at least one integer coordinate. Thus if we denote by H(j) the number of
points associated to codewords with weight j we have:

H(j) = 22
k−jV (j).

Equivalently, we have

g(x) =
2k∑
j=0

V (j)xj =
2k∑
j=0

1

22k−j
H(j)(x)j

22
k

g(x) =

2k∑
j=0

H(j)(2x)j .
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Thus
2k∑
j=0

H(j) = 22
k

g

(
1

2

)
=

3n + 2(n− 1)3n/2 + 1

2n
,

if n denotes the dimension 2k of our space.
This construction is usable if k ≥ 2 and gives point systems with cardinality 17,

481, 1351361 in the respective dimensions 4,8 and 16. The first two values give the
best known results, respectively, but in the third case we can give better point sys-
tem. Observe that in a 16-dimensional space certain points which all coordinates
are either 1

4 or 3
4 can be attached to the previous point system, such that, the

distances of it from the original points are at least one. To give a relatively large
system with at least one pairwise distances, consider the extended Hamming code
which is a linear code with minimal weight four, and adding the points of forms
1
4v+

3
4 (1− v) to the system where v is a codeword of this extended Haming code.

Since the subtraction of two codewords contains at least four nonzero coordinates,
the subtraction of such two point there are at least four coordinates with absolute
value greater or equal to 1

2 , showing that the distance between the points is at
least one. Thus it can be attached

g(1) =

24∑
j=0

V (j) = 22
4−4−1 = 2048

new points and we get a better point system with cardinality 1353409.

2. A generalization of the construction

As we observe in the previous paragraph, to the codewords of greater weights we
can correspond to points containing smaller coordinates. So respectively handing
the codewords with the same weights is a natural possibility. However the differ-
ence of two codewords with the same weights can be codeword with smaller weight,
it is more clearly to use linear sub-codes of the Hamming code as the set of code-
words with fixed weights. Fortunately in the extended Hamming code EH(2k)
we can find nested sequences of linear codes with increasing minimal distances,
4, 16, . . . these are the Reed-Muller codes denoted by RM [2k, 1 +

∑r
i=1

(
k
i

)
, 2k−r]

for r = (k − 2), (k − 4) · · · , k − 2[k2 ].
In our construction firstly we collect the vertices of the original cube as points.

Then we determine the further points of the arrangement corresponding to the
element of the R-M codes mentioned above. Let v ∈ RM [2k, 1 +

∑r
i=1

(
k
i

)
, 2k−r]

for an r ∈ {(k − 2), (k − 4), . . . , k − [k2 ]}, the weight of v is w(v) ̸= 0. To this
codeword we correspond to all points of form

l

2
k−r
2

v + (1− v) · ε,

where 1 is the codeword (1, . . . , 1) of length 2k, (1− v) · ε means an element of the
universe code of length 2k − w(v) positioning to the nonzero coordinates of the
codeword (1 − v), l is odd and 1 ≤ l ≤ 2k−r−2. Remark that a binary vector v
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will be take into consideration with respect to all of the codes containing it. The

number of such points is 2
k−r
2 −1 ·22k−w(v), and in every steps we are corresponding

to v such points in the unit cube which were not taking before. We also remark that
the present construction is a simplified variation of that one which was investigated
in the preceding paragraph. The reason is that the definition of the point system
in such a way is more clearly. Now the total number of points in this construction
is

3n + 2(n− 1)3n/2 + 1

2n
+

 k−4∑
r=k−2[ k2 ]

∗ ∑
w(v)>0

v∈RM[2k,1+
∑r

i=1 (
k
i),2k−r ]

2
k−r
2 −1 · 22

k−w(v),

where (
∑

)∗ means that we take the sum only for even or only odd integers, respec-
tively. Unfortunately, there is no general formula for the weight distribution of
the Reed-Muller codes except in the cases r = 0, 1, 2 and k−2. These are the rep-
etition, even weight, second order Reed-Muller and Hamming codes, respectively.
Thus there is no chance to determine the exact value of this sum. An asymptotic
lower bound we can get using the minimal weight elements only since their number
are known. Let A2k−r be the number of codewords of minimal weight. Then we
have:

A2k−r = 2r
k−r−1∏
i=0

2k−i − 1

2k−r−i − 1
,

and thus a lower bound of the second part of our sum is k−4∑
r=k−2[ k2 ]

∗

2
k−r
2 −1 · 22

k−2k−r

· 2r
k−r−1∏
i=0

2k−i − 1

2k−r−i − 1
=

 k−4∑
r=k−2[ k2 ]

∗

22
k−2k−r+ k−r

2 −1 2k

2k−r

k−r−1∏
i=0

2k − 2i

2k−r − 2i
.

Introducing the notation r′ = k − r we get that this sum is:2[ k2 ]∑
r′=4

∗

22
k−2r

′
+ r′

2 −1 2
k

2r′

r′−1∏
i=0

2k − 2i

2r′ − 2i
.

For odd k the maximal value of r′ is 2[k2 ] = k− 1 meaning that if k ≥ r′ ≥ 2 then

2k − 2r
′
+

r′

2
− 1 ≥ r′2

2
+

r′

2
+ 1,

and thus the number of points is greater than

3n + 2(n− 1)3n/2 + 1

2n
+

(
k−1∑
r′=4

)∗

2
r′2
2 + r′

2 +1 2
k

2r′

r′−1∏
i=0

2k − 2i

2r′ − 2i
=
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= 3n+2(n−1)3n/2+1
2n +

(
k−1∑
r′=0

)∗

2
r′2
2 + r′

2 +1 2k

2r′
∏r′−1

i=0
2k−2i

2r′−2i
−

−2
3n [(n− 1)(n− 2)− 3] =

=
3n + 2(n− 1)3n/2 + 1

2n
+ l · n 1

2 (log2 n+1) − 2

3
n [(n− 1)(n− 2)− 3] ,

where l = 4.768462..., as John Leech enumerated in [11].
Analogously it can be seen, that the lower bound in the case when the number

k is even a little bit worth, it is

3n + 2(n− 1)3n/2 + 1

2n
+l·n 1

2 (log2 n+1)−2

3
n[(n−1)(n−2)−3]−2(n

1
2 (log2 n+1)−1

4

√
n),

showing that the number of points for large n is greater than

3n + 2(n− 1)3n/2 + 1

2n
+ (l − 2) · n 1

2 (log2 n+1) − 2

3
n[(n− 1)(n− 2)− 3] +

1

2

√
n,

as we stated.

Acknowledgement. Thank you Vojtech Bálint for helpful comment to this
article.
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