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Abstract. The tangent hyperplanes of the ”manifolds” of this paper equipped a so-called
Minkowski product. It is neither symmetric nor bilinear. We give a method to handing such
an object as a locally hypersurface of a generalized space-time model and define the main tools
of its differential geometry: its fundamental forms, its curvatures and so on. In the case, when
the fixed space-time component of the embedding structure is a continuously differentiable
semi-inner product space, we get a natural generalization of some important semi-Riemann
manifolds as the hyperbolic space, the de Sitter sphere and the light cone of a Minkowski-
Lorenz space, respectively.
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1 Introduction

There is no and we will not give a formal definition of an object calling in this
paper premanifold . We use this word for a set if it has a manifold-like struc-
ture with high freedom in the choosing of the distance function of its tangent
hyperplanes. For example we get premanifolds if we investigate the hypersur-
faces of a generalized space-time model. The most important types of manifolds
as Riemannian, Finslerian or semi-Riemannian can be investigated in this way.
The structure of our embedding space was introduced in [6] and in this paper
we shall continue our investigations by the build up of differential geometry of
hypersurfaces. We will give the pre-version of the usual semi-Riemannian or
Finslerian spaces, the hyperbolic space, the de Sitter sphere, the light cone and
the unit sphere of the rounding semi-inner product space, respectively. In the
case, when the space-like component of the generalized space-time model is a
continuously differentiable semi-inner product space then we will get back the
known and usable geometrical informations on the corresponding hypersurfaces
of a pseudo-Euclidean space, e.g. we will show that a pre-hyperbolic space has
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constant negative curvature.

1.1 Notation

C, R, Rn, Sn: The complex line, the real line, the n-dimensional Euclidean space and
the n-dimensional unit sphere, respectively.

⟨·, ·⟩: The notion of scalar product and all its suitable generalizations.

[·, ·]−: The notion of s.i.p. corresponding to a generalized Minkowski space.

[·, ·]+: The notion of Minkowski product of a generalized Minkowski space.

f ′: The derivative of a real-valued function f with domain in R.

Df : The Frechet derivative of a map between two normed spaces.

f ′
e: The directional derivative of a real-valued function of a normed space into the

direction of e.

[x, ·]′z(y): The derivative map of an s.i.p. in its second argument, into the direction of
z at the point (x, y). See Definition 3.

∥ · ∥′x(y), ∥ · ∥′′x,z(y): The derivative of the norm in the direction of x at the point y,
and the second derivative of the norm in the directions x and z at the point y.

ℜ{·},ℑ{·}: The real and imaginary part of a complex number, respectively.

Tv: The tangent space of a Minkowskian hypersurface at its point v.

S, T ,L: The set of space-like, time-like and light-like vectors respectively.

S,T : The space-like and time-like orthogonal direct components of a generalized Minkowski
space, respectively.

{e1, . . . , ek, ek+1, . . . , en}: An Auerbach basis of a generalized Minkowski space with
{e1, . . . , ek} ⊂ S and {ek+1, . . . , en} ⊂ T , respectively. All of the e′i orthogonal
to the another ones with respect to the Minkowski product.

G,G+: The unit sphere of a generalized space-time model and its upper sheet, respec-
tively.

H,H+: The sphere of radius i and its upper sheet, respectively.

K, K+: The unit sphere of the embedding semi-inner product space and its upper
sheet, respectively.

L,L+: The light cone of a generalized space-time model and its upper sheet, respec-
tively.
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g: The function g(s) = s + g(s)en with g(s) =
√
−1 + [s, s] defines the points of

G := {s+ g(s)|s ∈ S}.

h: The function h(s) = s+ h(s)en with h(s) =
√
1 + [s, s] defines the points of H+ :=

{s+ h(s)|s ∈ S}.

k: The function k(s) = s+ k(s)en with k(s) =
√
1− [s, s] defines the points of K+ :=

{s+ k(s)|s ∈ S}.

l: The function l(s) = s + l(s)en with l(s) =
√
[s, s] defines the points of L+ :=

{s+ l(s)|s ∈ S}.

1.2 History, basic definitions with completion of the prelimi-
naries

A generalization of the inner product and the inner product spaces (briefly
i.p spaces) was raised by G. Lumer in [10].

Definition 1 ([10]). The semi-inner product (s.i.p) on a complex vector
space V is a complex function [x, y] : V ×V −→ C with the following properties:

s1 : [x+ y, z] = [x, z] + [y, z],

s2 : [λx, y] = λ[x, y] for every λ ∈ C,

s3 : [x, x] > 0 when x ̸= 0,

s4 : |[x, y]|2 ≤ [x, x][y, y].

A vector space V with a s.i.p. is an s.i.p. space.

G. Lumer proved that an s.i.p space is a normed vector space with norm
∥x∥ =

√
[x, x] and, on the other hand, that every normed vector space can

be represented as an s.i.p. space. In [7] J. R. Giles showed that the following
homogeneity property holds:

s5 : [x, λy] = λ̄[x, y] for all complex λ.

This can be imposed, and all normed vector spaces can be represented as s.i.p.
spaces with this property. Giles also introduced the concept of continuous
s.i.p. space as an s.i.p. space having the additional property

s6 : For any unit vectors x, y ∈ S, ℜ{[y, x+λy]} → ℜ{[y, x]} for all real λ → 0.

The space is uniformly continuous if the above limit is reached uniformly for
all points x, y of the unit sphere S. A characterization of the continuous s.i.p.
space is based on the differentiability property of the space.

Giles proved in [7] that
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Theorem 1 ([7]). An s.i.p. space is a continuous (uniformly continuous)
s.i.p. space if and only if the norm is Gâteaux (uniformly Frèchet) differentiable.

In [6] Á.G.Horváth defined the differentiable s.i.p. as follows:

Definition 2. A differentiable s.i.p. space is an continuous s.i.p. space
where the s.i.p. has the additional property
s6’: For every three vectors x,y,z and real λ

[x, ·]′z(y) := lim
λ→0

ℜ{[x, y + λz]} − ℜ{[x, y]}
λ

does exist. We say that the s.i.p. space is continuously differentiable, if the
above limit, as a function of y, is continuous.

First we note that the equality ℑ{[x, y]} = ℜ{[−ix, y]} together with the
above property guarantees the existence and continuity of the complex limit:

lim
λ→0

[x, y + λz]− [x, y]

λ
.

The following theorem was mentioned without proof in [6]:

Theorem 2 ([6]). An s.i.p. space is a (continuously) differentiable s.i.p.
space if and only if the norm is two times (continuously) Gâteaux differentiable.
The connection between the derivatives is

∥y∥(∥ · ∥′′x,z(y)) = [x, ·]′z(y)−
ℜ[x, y]ℜ[z, y]

∥y∥2
.

Since the present paper often use this statement, we give a proof for it. We
need the following useful lemma going back, with different notation, to McShane
[15] or Lumer [11].

Lemma 1 ([11]). If E is any s.i.p. space with x, y ∈ E, then

∥y∥(∥ · ∥′x(y))− ≤ ℜ{[x, y]} ≤ ∥y∥(∥ · ∥′x(y))+

holds, where (∥ · ∥′x(y))− and (∥ · ∥′x(y))+ denotes the left hand and right hand
derivatives with respect to the real variable λ. In particular, if the norm is
differentiable, then

[x, y] = ∥y∥{(∥ · ∥′x(y)) + ∥ · ∥′−ix(y)}.

Now we prove Theorem 2.

Proof. To determine the derivative of the s.i.p., assume that the norm is twice
differentiable. Then, by Lemma 1 above, we have

ℜ{[x, y + λz]} − ℜ{[x, y]}
λ

=
∥y + λz∥(∥ · ∥′x(y + λz))− ∥y∥(∥ · ∥′x(y))

λ
=
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=
∥y∥∥y + λz∥(∥ · ∥′x(y + λz))− ∥y∥2(∥ · ∥′x(y))

λ∥y∥
≥

≥ |[y + λz, y]|(∥ · ∥′x(y + λz))− ∥y∥2(∥ · ∥′x(y))
λ∥y∥

,

where we have assumed that the sign of ∥·∥′x(y+λz)
λ is positive. Since the

derivative of the norm is continuous, this follows from the assumption that
∥·∥′x(y)

λ is positive. Considering the latter condition, we get

ℜ{[x, y + λz]} − ℜ{[x, y]}
λ

≥ ∥y∥2 ∥ · ∥
′
x(y + λz)− (∥ · ∥′x(y))

λ∥y∥
+
ℜ[z, y]
∥y∥

∥·∥′x(y+λz).

On the other hand,

∥y + λz∥(∥ · ∥′x(y + λz))− ∥y∥(∥ · ∥′x(y))
λ

≤

≤ ∥y + λz∥2(∥ · ∥′x(y + λz))− |[y, y + λz]|(∥ · ∥′x(y))
λ∥y + λz∥

=

=
∥y + λz∥2(∥ · ∥′x(y + λz))− (∥ · ∥′x(y))

λ∥y + λz∥
+ λℜ[z, y + λz]

(∥ · ∥′x(y))
λ∥y + λz∥

.

Analogously, if ∥·∥′x(y)
λ is negative, then both of the above inequalities are re-

versed, and we get that the limit lim
λ 7→0

ℜ{[x,y+λz]}−ℜ{[x,y]}
λ exists, and equals to

∥y∥(∥ · ∥′′x,z(y)) +
ℜ[x, y]ℜ[z, y]

∥y∥2
.

Here we note that also in the case ∥·∥′x(y)
λ = 0 there exists a neighborhood

in which the sign of the function ∥·∥′x(y+λz)
λ is constant. Thus we, need not

investigate this case by itself. Conversely, consider the fraction

∥y∥∥ · ∥
′
x(y + λz)− (∥ · ∥′x(y))

λ
.

We assume now that the s.i.p. is differentiable, implying that it is continuous,
too. The norm is differentiable by the theorem of Giles. Using again Lemma 1
and assuming that ℜ[x,y]

λ > 0, we have

∥y∥∥ · ∥
′
x(y + λz)− (∥ · ∥′x(y))

λ
=

ℜ[x, y + λz]∥y∥ − ℜ[x, y]∥y + λz∥
λ∥y + λz∥

=
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=
ℜ[x, y + λz]∥y∥2 −ℜ[x, y]∥y + λz∥∥y∥

λ∥y∥∥y + λz∥
≤

ℜ[x, y + λz]∥y∥2 −ℜ[x, y]|[y + λz, y]|
λ∥y∥∥y + λz∥

=

=
ℜ{[x, y + λz]} − ℜ{[x, y]}

λ

∥y∥
∥y + λz∥

− ℜ[x, y]ℜ[z, y]
∥y∥∥y + λz∥

.

On the other hand, using the continuity of the s.i.p. and our assumption
ℜ[x,y]

λ > 0 similarly as above, we also get an inequality:

∥y∥∥ · ∥
′
x(y + λz)− (∥ · ∥′x(y))

λ
≥

≥ ℜ{[x, y + λz]} − ℜ{[x, y]}
λ

− ℜ[x, y + λz]ℜ[z, y + λz]

∥y + λz∥2
.

If we reverse the assumption of signs, then the direction of the inequalities will
also change. Again a limit argument shows that the first differential function is
differentiable, and the connection between the two derivatives is

∥y∥(∥ · ∥′′x,z(y)) = [x, ·]′z(y)−
ℜ[x, y]ℜ[z, y]

∥y∥2
.

QED

From geometric point of view we know that if C is a 0-symmetric, bounded,
convex body in the Euclidean n-space Rn (with fixed origin O), then it defines
a norm whose unit ball is C itself (see [9]). Such a space is called (Minkowski
or) normed linear space. Basic results on such spaces are collected in the sur-
veys [13], [14], and [12]. In fact, the norm is a continuous function which is
considered (in geometric terminology, as in [9]) as a gauge function. Combining
this with the result of Lumer and Giles we get that a normed linear space can
be represented as an s.i.p space. The metric of such a space (called Minkowski
metric), i.e., the distance of two points induced by this norm, is invariant with
respect to translations.

Another concept of Minkowski space was also raised by H. Minkowski and
used in Theoretical Physics and Differential Geometry, based on the concept of
indefinite inner product. (See, e.g., [8].)

Definition 3 ([8]). The indefinite inner product (i.i.p.) on a complex vector
space V is a complex function [x, y] : V ×V −→ C with the following properties:

i1 : [x+ y, z] = [x, z] + [y, z],

i2 : [λx, y] = λ[x, y] for every λ ∈ C,
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i3 : [x, y] = [y, x] for every x, y ∈ V ,

i4 : [x, y] = 0 for every y ∈ V then x = 0.

A vector space V with an i.i.p. is called an indefinite inner product space.

The standard mathematical model of space-time is a four dimensional i.i.p.
space with signature (+,+,+,−), also called Minkowski space in the literature.
Thus we have a well known homonymism with the notion of Minkowski space!

In [6] the concepts of s.i.p. and i.i.p. was combined in the following one:

Definition 4 ([6]). The semi-indefinite inner product (s.i.i.p.) on a com-
plex vector space V is a complex function [x, y] : V ×V −→ C with the following
properties:

1 [x+ y, z] = [x, z] + [y, z] (additivity in the first argument),

2 [λx, y] = λ[x, y] for every λ ∈ C (homogeneity in the first argument),

3 [x, λy] = λ[x, y] for every λ ∈ C (homogeneity in the second argument),

4 [x, x] ∈ R for every x ∈ V (the corresponding quadratic form is real-valued),

5 if either [x, y] = 0 for every y ∈ V or [y, x] = 0 for all y ∈ V , then x = 0
(nondegeneracy),

6 |[x, y]|2 ≤ [x, x][y, y] holds on non-positive and non-negative subspaces of
V, respectively (the Cauchy-Schwartz inequality is valid on positive and
negative subspaces, respectively).

A vector space V with an s.i.i.p. is called an s.i.i.p. space.

It was conclude that an s.i.i.p. space is a homogeneous s.i.p. space if and
only if the property s3 holds, too. An s.i.i.p. space is an i.i.p. space if and only
if the s.i.i.p. is an antisymmetric product. It is clear that both of the classical
”Minkowski spaces” can be represented either by an s.i.p or by an i.i.p., so
automatically they can also be represented as an s.i.i.p. space.

The following fundamental lemma was proved in [6]:

Lemma 2 ([6]). Let (S, [·, ·]S) and (T,−[·, ·]T ) be two s.i.p. spaces. Then
the function [·, ·]− : (S + T )× (S + T ) −→ C defined by

[s1 + t1, s2 + t2]
− := [s1, s2]− [t1, t2]

is an s.i.p. on the vector space S + T .
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It is possible that the s.i.i.p. space V is a direct sum of its two subspaces
where one of them is positive and the other one is negative. Then there are two
more structures on V , an s.i.p. structure (by Lemma 2) and a natural third
one, which was called by Minkowskian structure.

Definition 5 ([6]). Let (V, [·, ·]) be an s.i.i.p. space. Let S, T ≤ V be
positive and negative subspaces, where T is a direct complement of S with
respect to V . Define a product on V by the equality

[u, v]+ = [s1 + t1, s2 + t2]
+ = [s1, s2] + [t1, t2]

, where si ∈ S and ti ∈ T , respectively. Then we say that the pair (V, [·, ·]+) is a
generalized Minkowski space with Minkowski product [·, ·]+. We also say that V
is a real generalized Minkowski space if it is a real vector space and the s.i.i.p.
is a real valued function.

The Minkowski product defined by the above equality satisfies properties
1-5 of the s.i.i.p.. But in general, property 6 does not hold. (See an example in
[6].)

If now we consider the theory of s.i.p in the sense of Lumer-Giles, we have
a natural concept of orthogonality. For the unified terminology we change the
original notation of Giles and use instead

Definition 6 ([7]). The vector x is orthogonal to the vector y if [x, y] = 0.

Since s.i.p. is neither antisymmetric in the complex case nor symmetric in
the real one, this definition of orthogonality is not symmetric in general.

Let (V, [·, ·]) be an s.i.i.p. space, where V is a complex (real) vector space.
The orthogonality of such a space can be defined an analogous way to the
definition of the orthogonality of an i.i.p. or s.i.p. space.

Definition 7 ([6]). The vector v is orthogonal to the vector u if [v, u] = 0.
If U is a subspace of V , define the orthogonal companion of U in V by

U⊥ = {v ∈ V |[v, u] = 0 for all u ∈ U}.

We note that, as in the i.i.p. case, the orthogonal companion is always a
subspace of V . The following theorem is important one:

Theorem 3 ([6]). Let V be an n-dimensional s.i.i.p. space. Then the
orthogonal companion of a non-neutral vector u is a subspace having a direct
complement of the linear hull of u in V . The orthogonal companion of a neutral
vector v is a degenerate subspace of dimension n− 1 containing v.

Observe that the statements of Theorem 3 are true for any concepts of
product satisfying properties 1-5. As we saw, the Minkowski product is also
such a product.
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Let V be a generalized Minkowski space. Then we call a vector space-
like, light-like, or time-like if its scalar square is positive, zero, or negative,
respectively. Let S,L and T denote the sets of the space-like, light-like, and
time-like vectors, respectively.

In a finite dimensional, real generalized Minkowski space with dimT = 1
these sets of vectors can be characterized in a geometric way. Such a space is
called by a generalized space-time model. In this case T is a union of its
two parts, namely

T = T + ∪ T −,

where

T + = {s+ t ∈ T | where t = λen for λ ≥ 0} and

T − = {s+ t ∈ T | where t = λen for λ ≤ 0}.

It has special interest, the imaginary unit sphere of a finite dimensional,
real, generalized space-time model. (See Def.8 in [6].) It was given a metric on
it, and thus got a structure similar to the hyperboloid model of the hyperbolic
space embedded in a space-time model. In the case when the space S is an
Euclidean space this hypersurface is a model of the n-dimensional hyperbolic
space thus it is such-like generalization of it.

In [6] was proved the following theorem:

Theorem 4 ([6]). Let V be a generalized space-time model. Then T is an
open double cone with boundary L, and the positive part T + (resp. negative part
T −) of T is convex.

We note that if dimT > 1 or the space is complex, then the set of time-like
vectors cannot be divided into two convex components. So we have to consider
that our space is a generalized space-time model.

Definition 8 ([6]). The set H := {v ∈ V |[v, v]+ = −1} is called the imag-
inary unit sphere of the generalized space-time model.

With respect to the embedding real normed linear space (V, [·, ·]−) (see
Lemma 2) H is a generalized two sheets hyperboloid corresponding to the two
pieces of T , respectively. Usually we deal only with one sheet of the hyperboloid,
or identify the two sheets projectively. In this case the space-time component
s ∈ S of v determines uniquely the time-like one, namely t ∈ T . Let v ∈ H be
arbitrary. Let Tv denote the set v+v⊥, where v⊥ is the orthogonal complement
of v with respect to the s.i.i.p., thus a subspace.

The set Tv corresponding to the point v = s + t ∈ H is a positive, (n-1)-
dimensional affine subspace of the generalized Minkowski space (V, [·, ·]+). Each
of the affine spaces Tv of H can be considered as a semi-metric space, where
the semi-metric arises from the Minkowski product restricted to this positive
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subspace of V . We recall that the Minkowski product does not satisfy the
Cauchy-Schwartz inequality. Thus the corresponding distance function does
not satisfy the triangle inequality. Such a distance function is called in the
literature semi-metric (see [17]). Thus, if the set H is sufficiently smooth, then
a metric can be adopted for it, which arises from the restriction of the Minkowski
product to the tangent spaces of H. Let us discuss this more precisely.

The directional derivatives of a function f : S 7−→ R with respect to a unit
vector e of S can be defined in the usual way, by the existence of the limits for
real λ:

f′e(s) = lim
λ7→0

f(s+ λe)− f(s)

λ
.

Let now the generalized Minkowski space be a generalized space-time model,
and consider a mapping f on S to R. Denote by en a basis vector of T with
length i as in the definition of T + before Theorem 4. The set of points

F := {(s+ f(s)en) ∈ V for s ∈ S}

is a so-called hypersurface of this space. Tangent vectors of a hypersurface F
in a point p are the vectors associated to the directional derivatives of the coor-
dinate functions in the usual way. So u is a tangent vector of the hypersurface
F in its point v = (s+ f(s)en), if it is of the form

u = α(e+ f′e(s)en) for real α and unit vector e ∈ S.

The linear hull of the tangent vectors translated into the point s is the tangent
space of F in s. If the tangent space has dimension n − 1, we call it tangent
hyperplane.

We now reformulate Lemma 3 of [6]:

Lemma 3 (See also in [6] as Lemma 3). Let S be a continuous (complex)
s.i.p. space. (So the property s6 holds.) Then the directional derivatives of the
real valued function

h : s 7−→
√

1 + [s, s]

are

h′e(s) =
ℜ[e, s]√
1 + [s, s]

.

The following theorem is a consequence of this result.

Theorem 5. Let assume that the s.i.p. [·, ·] of S is differentiable. (So the
property s6’ holds.) Then for every two vectors x and z in S we have:

[x, ·]′z(x) = 2ℜ[z, x]− [z, x],
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and

∥ · ∥′′x,z(x) =
ℜ[z, x]− [z, x]

∥x∥
.

If we also assume that the s.i.p. is continuously differentiable (so the norm is
a C2 function), then we also have

[x, ·]′x(y) = [x, x],

and thus

∥ · ∥′′x,x(y) = ∥x∥2 − ℜ[x, y]2

∥y∥2
.

Proof. Since

1

λ
([x+ λz, x+ λz]− [x, x]) =

1

λ
([x, x+ λz]− [x, x]) +

1

λ
[λz, x+ λz],

if λ tends to zero then the right hand side tends to [x, ·]′z(x) + [z, x]. The left
hand side is equal to(√

1 + [x+ λz, x+ λz]−
√

1 + [x, x]
)(√

1 + [x+ λz, x+ λz] +
√

1 + [x, x]
)

λ

thus by Lemma 3 it tends to

ℜ[z, x]√
1 + [x, x]

2
√
1 + [x, x].

This implies the first equality

[x, ·]′z(x) = 2ℜ[z, x]− [z, x].

Using Theorem 2 in [6] we also get that

∥x∥(∥ · ∥′′x,z(x)) = [x, ·]′z(x)−
ℜ[x, x]ℜ[z, x]

∥x∥2
,

proving the second statement, too.

If we assume that the norm is a C2 function of its argument then the first
derivative of the second argument of the product is a continuous function of its
arguments. So the function A(y) : S −→ R defined by the formula

A(y) = [x, ·]′x(y) = lim
λ 7→0

1

λ
([x, y + λx]− [x, y])
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continuous in y = 0. On the other hand for non-zero t ∈ R we use the notation
tλ′ = λ and we get that

A(ty) = lim
λ 7→0

1

λ
([x, ty + λx]− [x, y]) = lim

λ′ 7→0

t

tλ′
(
[x, y + λ′x]− [x, y]

)
= A(y).

From this we can see immediately that

[x, ·]′x(y) = A(y) = A(0) = [x, x]

holds for every y. Applying again the formula connected the derivative of the
product and the norm we get the last statement of the theorem, too. QED

A connection between the differentiability properties and the orthogonality
one was given also in [6]. The tangent vectors of the hypersurfaceH+ in its point
v = s+

√
1 + [s, s]en form the orthogonal complement v⊥ of v with respect to

the Minkowski product. We now recall the definition of the Minkowski-Finsler
space.

Definition 9 ([6]). Let F be a hypersurface of a generalized space-time
model for which the following properties hold:

i, In every point v of F , there is a (unique) tangent hyperplane Tv for which
the restriction of the Minkowski product [·, ·]+v is positive, and

ii, the function ds2v := [·, ·]+v : F × Tv × Tv −→ R+

ds2v : (v, u1, u2) 7−→ [u1, u2]
+
v

varies differentiably with the vectors v ∈ F and u1, u2 ∈ Tv.

Then we say that the pair (F, ds2) is a Minkowski-Finsler space with semi-
metric ds2 embedding into the generalized space-time model V .

One of the important results on the imaginary unit sphere is the following:

Theorem 6 ([6]). Let V be a generalized space-time model. Let S be a
continuously differentiable s.i.p. space, then (H+, ds2) is a Minkowski-Finsler
space.

In present paper we will prefer the name ”pre-hyperbolic space” for this
structure.

2 Hypersurfaces as premanifolds

2.1 Convexity, fundamental forms

Let S be a continuously differentiable s.i.p. space, V be a generalized space-
time model and F a hypersurface. We shall say that F is a space-like hy-
persurface if the Minkowski product is positive on its all tangent hyperplanes.
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The objects of our examination are the convexity, the fundamental forms, the
concepts of curvature, the arc-length and the geodesics. In this section we define
these concepts with respect to a generalized space-time model. With respect to
a pseudo-Euclidean or a semi-Riemann space these definitions can be found e.g.
in the notes [4] and the book [5], respectively.

Definition 10 ([4]). We say that a hypersurface is convex if it lies on
one side of its each tangent hyperplanes. It is strictly convex if it is convex
and its tangent hyperplanes contain precisely one points of the hypersurface,
respectively.

In an Euclidean space the first fundamental form is a positive definite
quadratic form induced by the inner product of the tangent space.

In our generalized space-time model the first fundamental form is giving by
the scalar square of the tangent vectors with respect to the Minkowski product
restricted to the tangent hyperplane. If we have a map f : S −→ V then it can
be decomposed to a sum of its space-like and time-like components. We have

f = fS + fT

where fS : S −→ S and fT : S −→ T , respectively. With respect to the
embedding normed space we can compute its Frechet derivative by the low

Df =

[
DfS
DfT

]
implying that

Df(s) = DfS(s) +DfT (s).

Introduce the following notation

[f1(c(t)), ·]+
′
D(f2◦c)(t)(f2(c(t))) :=

:=
(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)

)
.

Now we state:

Lemma 4. If f1, f2 : S −→ V are two C2 maps and c : R −→ S is an
arbitrary C2 curve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ =

= [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+
′
D(f2◦c)(t)((f2 ◦ c)(t)).

13



Proof. By definition

([f1 ◦ c, f2 ◦ c)]+)′|t := lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+ − [f1(c(t)), f2(c(t))]

+
)

= lim
λ→0

1

λ
([(f1)S(c(t+ λ)), (f2)S(c(t+ λ))]− [(f1)S(c(t)), (f2)S(c(t))])+

+ lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) .

We prove that the first part is

lim
λ→0

1

λ
([(f1)S(c(t+ λ))− (f1)S(c(t)), (f2)S(c(t+ λ))]+

+[(f1)S(c(t)), (f2)S(c(t+ λ))]− [(f1)S(c(t)), (f2)S(c(t))]) =

= [D((f1)S ◦ c)|t, (f2)S(c(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))).

To this take a coordinate system {e1, · · · , en−1} in S and consider the coordinate-
wise representation

(f2)S ◦ c =
n−1∑
i=1

((f2)S ◦ c)iei

of (f2)S ◦ c. Using Taylor’s theorem for the coordinate functions we have that
there are real parameters ti ∈ (t, t+ λ), for which

((f2)S ◦ c)(t+ λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) + 1

2
λ2

n−1∑
i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we can get

[(f1)S(c(t)), (f2)S(c(t+ λ))]− [(f1)S(c(t)), (f2)S(c(t))] =

= [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

+
1

2
λ2

n−1∑
i=1

((f2)S ◦ c)′′i (ti)ei]− [(f1)S(c(t)), (f2)S(c(t))] =

= ([(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ]− [(f1)S(c(t)), (f2)S(c(t))])+

+[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+
1

2
λ2

n−1∑
i=1

((f2)S ◦ c)′′i (ti)ei]−

−[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ].

14



In the second argument of this product, the Lipschwitz condition holds with a
real constant K for enough small λ’s, so we have that the absolute value of the
substraction of the last two terms is less or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑
i=1

((f2)S ◦ c)′′i (ti)ei

]
.

Applying now the limit procedure at λ → 0 we get the required equality.
In the second part (f1)T and (f2)T are real-real functions, respectively so

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =

= −((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t).

Hence we have
([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ =

= [D((f1)S ◦ c)(t), ((f2)S ◦ c)(t))] + [(f1)S(c(t)), ·]′D((f2)S◦c)(t)(((f2)S ◦ c)(t)))−

−((f1)T ◦ c)′(t)(f2)T (c(t))− (f1)T (c(t))((f2)T ◦ c)′(t) =

= [D(f1 ◦ c)(t), f2(c(t))]++

+
(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t)))− (f1)T (c(t))((f2)T ◦ c)′(t)

)
,

and the statement is proved. QED

Let F be a hypersurface defined by the function f : S −→ V . Here f(s) =
s + f(s)en denotes the point of F . The curve c : R −→ S define a curve on F .
We assume that c is a C2-curve. The following definition is very important one.

Definition 11. The first fundamental form in a point (f(c(t)) of the hy-
persurface F is the product

If(c(t) := [D(f ◦ c)(t), D(f ◦ c)(t)]+.

The variable of it is a tangent vector, a tangent vector of a variable curve
c lying on F through the point (f(c(t)). We can see that the first fundamental
form is homogeneous of the second order but (in general) it has no a bilinear
representation. In fact, by the definition of f , (if {ei : i = 1 · · ·n− 1} is a basis
in S) the computation

If(c(t)) = [ċ(t) + (f ◦ c)′(t)en, ċ(t) + (f ◦ c)′(t)en]+ =

= [ċ(t), ċ(t)]− [(f ◦ c)′(t)]2 = [ċ(t), ċ(t)]−
n−1∑
i,j=1

ċi(t)ċj(t)f
′
ei(c(t))f

′
ej (c(t)) =

15



= [ċ(t), ċ(t)]− ċ(t)T
[
f′ei(c(t))f

′
ej (c(t))

]n−1

i,j=1
ċ(t)

shows that it is not a quadratic form. It would be a quadratic form if and only
if the quantity

[ċ(t), ċ(t)]− ċ(t)T ċ(t) = [ċ(t), ċ(t)]−
n−1∑
i=1

ċ2i (t)

vanishes. Thus if the Minkowski product is an i.p. than we can assume that the
basis {e1, . . . , en−1} in S is orthonormal and we have that the mentioned differ-

ence is vanishing, furtermore ci(t) = ⟨ei, c(t)⟩ = ⟨c(t), ei⟩ and ċ(t) =
n−1∑
i=1

ċi(t)ei.

So

If(c(t)) = ċ(t)T
(
Id−

[
f′ei(c(t))f

′
ej (c(t))

]n−1

i,j=1

)
ċ(t),

and we get back the classical local quadratic representation of the first funda-
mental form. Now if ci(t) = 0 for i ≥ 3 then

det I = 1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2.

We now extend the definition of the second fundamental form take into
consideration that the product has neither symmetry nor bilinearity properties.
If v is a tangent vector and n is a normal vector of the hypersurface at its point
f(c(t)) then we have

0 = [v, n]+ = [D(f ◦ c)(t), (f ◦ c)(t)]+.

Using Lemma 4 and the notation follows it, we get

0 = ([D(f ◦ c)(t), (n ◦ c)(t)]+)′ =

= [D2(f ◦ c), n(c(t))]+ + [D(f ◦ c)(t), ·]+′
D(n◦c)(t)(n(c(t))).

We introduce the unit normal vector fields n0 by the definition

n0(c(t)) :=

{
n(c(t)) if n light-like vector
n(c(t))√

|[n(c(t)),n(c(t))]+|
otherwise.

Definition 12. The second fundamental form at the point f(c(t)) defined
by one of the equivalent formulas:

II := [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) = −[D(f ◦ c)(t), ·]+′
D(n0◦c)(t)((n

0 ◦ c)(t)).
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By the structure of the generalized space-time model assuming that n(s) =
s+ n(s)en we get that

II = [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) =

=

[
D(ċ(t) +D(f ◦ c)(t)en),

c(t) + (n ◦ c)(t)en√
|[c(t), c(t)]− (n(c(t)))2|

]+
=

=

[
c̈(t) +

(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t) +

[
f′ei |c(t)

]
c̈(t)
)
en, c(t) + n(c(t))en

]+
√

|[c(t), c(t)]− (n(c(t)))2|
=

=

[
c̈(t) + [f′ei |c(t)]c̈(t)en, (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))√

|[c(t), c(t)]− (n(c(t)))2|
=

=

[
D(f)|c(t)c̈(t), (n ◦ c)(t)

]+ −
(
ċ(t)T

[
f′′ei,ej |c(t)

]
ċ(t)
)
(n(c(t))√

|[c(t), c(t)]− (n(c(t)))2|
=

= −

ċ(t)T

[
f′′ei,ej |c(t)n(c(t))√

|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1

ċ(t)

 .

We now can adopt a determinant of this fundamental form. It is the determinant
of its quadratic form:

det II := det

[ f′′ei,ej |c(t)n(c(t))√
|[c(t), c(t)]− (n(c(t)))2|

]n−1

i,j=1

 .

If we consider a two-plane in the tangent hyperplane then it has a two
dimensional pre-image in S by the regular linear mapping Df . The getting
plane is a normed one and we can consider an Auerbach basis {e1, e2} in it.

Definition 13. The sectional principal curvature of a 2-section of the tan-
gent hyperplane in the direction of the 2-plane spanned by {u = Df(e1) and
v = Df(e2)} are the extremal values of the function

ρ(D(f ◦ c)) :=
IIf◦c(t)

If◦c(t)
,

of the variable D(f ◦ c). We denote them by ρ(u, v)max and ρ(u, v)min, respec-
tively. The sectional (Gauss) curvature κ(u, v) (at the examined point c(t)) is
the product

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min.
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In the case of a symmetric and bilinear product, both of the fundamental
forms are quadratic and the sectional principal curvatures attained in orthogo-
nal directions. They are the eigenvalues of the pair of quadratic forms IIf◦c(t)
and If◦c(t). This implies that ρ(u, v)max and ρ(u, v)min are the solutions of the
equality:

0 = det
(
IIf◦c(t) − λIf◦c(t)

)
= det

(
If◦c(t)

)
det
(
(If◦c(t))

−1IIf◦c(t) − λId
)
,

showing that

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =

= [n0(c(t)), n0(c(t))]+ det
(
I−1
f◦c(t)IIf◦c(t)

)
= [n(c(t)), n(c(t))]+

det IIf◦c(t)

det If◦c(t)
=

= [n0(c(t)), n0(c(t))]+

(
f′′e1,e1 |c(t)f

′′
e2,e2 |c(t) −

(
f′′e1,e2 |c(t)

)2)
(n(c(t)))2(

1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2
)
|[c(t), c(t)]− (n(c(t)))2|

.

But we can choose for the function n

n(c(t)) := f′e1(c(t))e1 + f′e2(c(t))e2 + en

with n(c(t)) = 1 and for a 2-plane of the tangent hyperplane which contains
only space-like vectors and has time-like normal vector with absolute value

[n(c(t)), n(c(t))]+ =
√

1− (f′e1(c(t)))
2 − (f′e2(c(t)))

2

getting the well-known formula

κ(u, v) =
−f′′e1,e1 |c(t)f

′′
e2,e2 |c(t) +

(
f′′e1,e2 |c(t)

)2(
1− (f′e1(c(t)))

2 − (f′e2(c(t)))
2
)2

(see in [5] p.95.).
The Ricci curvature of a Riemannian hypersurface at a point p = (f ◦ c)(t)

in the direction of the tangent vector v = D(f ◦ c) is the sum of the sectional
curvatures in the directions of the planes spanned by the tangent vectors v
and ui, where ui are the vectors of an orthonormal basis of the orthogonal
complement of v. This value is independent from the choosing of the basis.
Choose random (by uniform distribution) the orthonormal basis! ([3]) The
corresponding sectional curvatures κ(ui, v) will be random variables with the
same expected values. The sum of them is again a random variable which
expected value corresponding to the Ricci curvature at p with respect to v.
Hence it is equal to n − 2-times the expected value of the random sectional
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curvature determined by all of the two planes through v. Similarly the scalar
curvature of the hypersurface at a point is the sum of the sectional curvatures
defined by any two vectors of an orthonormal basis of the tangent space, it
is also can be considered as an expected value. This motivates the following
definition:

Definition 14. The Ricci curvature Ric(v) in the direction of the tangent
vector v at the point f(c(t)) is

Ric(v)f(c(t)) := (n− 2) · E(κf(c(t))(u, v))

where κf(c(t))(u, v) is the random variable of the sectional curvatures of the two
planes spanned by v and a random u of the tangent hyperplane holding the
equality [u, v]+ = 0. We also say that the scalar curvature of the hypersurface
f at its point f(c(t)) is

Γf(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)).

2.2 Arc-length

In this section we also assume that the s.i.p. of S is continuously differ-
entiable. If the first fundamental form is positive we can adopt for the curves
well-defined arc-lengthes and we can define a metric on the hypersurface.

The following definition was used in [6] for the metric of the imaginary unit
sphere. We now adopt it for an arbitrary hypersurface.

Definition 15. Denote by p, q a pair of points in F where F is a hyper-
surface of the generalized space-time model. Consider the set Γp,q of equally
oriented piecewise differentiable curves (f ◦ c)(t), a ≤ t ≤ b, of F emanating
from p and terminating at q. Then the pre-distance of these points is

ρ(p, q) = inf


b∫

a

√
|I(f◦c)(x)|dx for f ◦ c ∈ Γp,q

 .

It is easy to see that pre-distance satisfies the triangle inequality; thus it
gives a metric on F (see [17]). On a hypersurface which contains only space-
like tangent vectors it is the usual definition of the Minkowski-Finsler distance.
Such hypersurfaces were called by space-like ones, we mention for an example
the imaginary unit sphere. Introduce the arc-length function la(τ) of a curve
f ◦ c for which the light-like points gives a closed, zero measured set by the
function

la(τ) =

τ∫
a

√
|[D(f ◦ c)(x), D(f ◦ c)(x)]+f(c(x))|dx =

τ∫
a

√
|If(c(x))|dx.
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Give parameters only those points of the curve in which the tangent vector of
the curve is a non-light-like one. Thus a corresponding reparametrization could
be well-defined and we get a pair of inverse formulas which are almost all valid;
we have that

(la(τ))
′ =

√
|If(c(τ))|,

and for the inverse function τ(la) : [0, ε) −→ [a, l−1
a (ε)) holds

(τ(la))
′ =

(
l−1
a (τ)

)′
=

1√
|If(c(τ(la)))|

.

Theorem 7. Consider a curve lying on the hypersurface determining a vec-
tor field in V . Using the arc-length as parameter, the absolute values of the first
derivative (tangent) vectors are equal to 1, moreover the second derivative vector
fields are orthogonal to the first one. (With respect to the Minkowski product of
V .)

Proof. By definition the tangent vectors are non-light-like. Thus the required
differential is

D ((f ◦ c) ◦ (τ(la))) = D(f ◦c)◦(τ(la)) ·(τ(la))′ = D(f ◦c)◦(τ(la))
1√

|If(c(τ(la)))|
,

implying that

[D ((f ◦ c) ◦ (τ(la))) , D ((f ◦ c) ◦ (τ(la)))]+ =
If(c(τ(la)))

|If(c(τ(la)))|
= sign(If(c(τ(la)))).

If we would like to consider the derivative of the tangent vector field, we have
to compute

D (D ((f ◦ c) ◦ (τ(la)))) .

By Lemma 4 we get

D
(√

|If(c(τ(la)))|
)
=

sign(If(c(τ(la))))

2
√

|If(c(τ(la)))|

 [D2(f ◦ c) ◦ (τ(la)), D(f ◦ c) ◦ (τ(la))]√
|If(c(τ(la)))|

+

+[D(f ◦ c) ◦ (τ(la)), ·]′D((Df◦c)◦τ(la))(D(f ◦ c) ◦ (τ(la)))
}
,

and since the s.i.p is continuously differentiable we have by Theorem 5 that

[D(f ◦ c) ◦ (τ(la)), ·]′D((Df◦c)◦τ(la))(D(f ◦ c) ◦ (τ(la))) =
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=
[D2(f ◦ c) ◦ (τ(la)), D(f ◦ c) ◦ (τ(la))]√

|If(c(τ(la)))|
.

Thus the complete differential is

D

D(f ◦ c) ◦ (τ(la))
1√

|If(c(τ(la)))|

 =
D2(f ◦ c) ◦ (τ(la))

|If(c(τ(la)))|
−

−sign(If(c(τ(la))))
[D2(f ◦ c) ◦ (τ(la)), D(f ◦ c) ◦ (τ(la))]

(If(c(τ(la))))
2

D(f ◦ c) ◦ (τ(la)).

Now we can see that[
D

(
D(f ◦ c) ◦ (τ(la))

1√
If(c(τ(la)))

)
, D(f ◦ c) ◦ (τ(la))

]
= 0

as we stated. QED

Inner metric determines the geodesics of the hypersurface in a standard
way. Since we use the concept of arc-length parametrization for a general (not
necessary space-like) curve, we can introduce its velocity and acceleration
vectors fields as the first and second derivative vector fields of the natural
parametrization, respectively. We can introduce the concept of geodesics as
the solutions of the Euler-Lagrange equation with respect to the hypersurface.
More precisely:

Definition 16. We say that the C2-curve f◦c (with almost all non-light-like
tangent vectors) is a geodesic of the hypersurface F , if its acceleration vector
field is orthogonal to the tangent hyperplane of F at each point of the curve.
So there exists a function α(τ(la)) : R −→ R such that

D (D ((f ◦ c) ◦ (τ(la)))) = α(τ(la))(n
0 ◦ c)(τ(la)).

The curvature of a curve can be defined as the square root of the absolute
value of the derivative of its tangent vectors with respect to this parametrization.

Definition 17. The curvature of the curve f ◦c is the non-negative function

γf◦c(τ(la)) :=
√

|[D (D ((f ◦ c) ◦ (τ(la)))) , D (D ((f ◦ c) ◦ (τ(la))))]+| =

= |α(τ(la))|.

If the curvature is non-zero then we can define the vector (m ◦ c)(τ(la)) by
the equality:

(m ◦ c)(τ(la)) =
D (D ((f ◦ c) ◦ (τ(la))))

γf◦c(τ(la))
.
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From this equality immediately follows that

[(m ◦ c)(τ(la)), (m ◦ c)(τ(la))]+ =

=
[D (D ((f ◦ c) ◦ (τ(la)))) , D (D ((f ◦ c) ◦ (τ(la))))]+

γ2f◦c(τ(la))
.

Using the equality

D (D ((f ◦ c) ◦ (τ(la)))) = D

D(f ◦ c) ◦ (τ(la))
1√

|If(c(τ(la)))|

 =

=
D2(f ◦ c) ◦ (τ(la))

|If(c(τ(la)))|
−

−sign(If(c(τ(la))))
[D2(f ◦ c) ◦ (τ(la)), D(f ◦ c) ◦ (τ(la))]

(If(c(τ(la))))
2

D(f ◦ c) ◦ (τ(la)),

computed in Theorem 7, and the orthogonality property of the vectors D(f ◦ c)
and n0 ◦ c, we get a connection analogous to the Meusnier’s theorem:

γf◦c(τ(la))[(m◦c)(τ(la)), (n0◦c)(τ(la)]+ =

[
D2(f ◦ c) ◦ (τ(la))

|If(c(τ(la)))|
, (n0 ◦ c)(τ(la)

]+
meaning that

γf◦c(τ(la))[(m ◦ c)(τ(la)), (n0 ◦ c)(τ(la)]+ =
IIf(c(τ(la)))

|If(c(τ(la)))|
.

The product form of this equality is

γf◦c(τ(la))[(m ◦ c)(τ(la)), (n0 ◦ c)(τ(la)]+|If(c(τ(la)))| = IIf(c(τ(la))).

This form for light-like vectors is also valid, if we define their acceleration vectors
as vectors of zero length. By definition, for a geodesic curve

[(m◦c)(τ(la)), (m◦c)(τ(la))]+ =
(α(τ(la)))

2

(γf◦c(τ(la))2
[
(n0 ◦ c)(τ(la)), (n0 ◦ c)(τ(la))

]+
,

showing that m ◦ c and n0 ◦ c have the same casual characters and thus

m ◦ c = sign(α(τ(la)))(n
0 ◦ c).

Thus the product form of the Meusnier’s theorem simplified into the equality

α(τ(la))[(n
0 ◦ c)(τ(la)), (n0 ◦ c)(τ(la)]+|If(c(τ(la)))| = IIf(c(τ(la))).
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Equivalently we get

α(τ(la)) = [(n0 ◦ c)(τ(la)), (n0 ◦ c)(τ(la)]+
IIf(c(τ(la)))

|If(c(τ(la)))|
=

= [(n0 ◦ c)(τ(la)), (n0 ◦ c)(τ(la)]+sign(If(c(τ(la))))ρ(D(f ◦ c)).

If all tangent vectors are space-like vectors and the normal ones are time-like
vectors, respectively, then the extremal values of the function

α(τ(la)) = −ρ(D(f ◦ c))

on a two plane are the negatives of the principal curvatures. By the homogeneity
properties of the fundamental forms, the investigated functions can be restricted
to such a special subset, on which all of the possible values attain, to the unit
circle of this plane. This set is compact and thus there are two extremal values
and at least two corresponding unit vectors, respectively. The convexity of
such a hypersurface implies that the signs of the extremal values of α(τ(la)) are
equals, so the two principal curvatures has the same signs and thus the sectional
curvature is negative.

On the other hand, the characters of such a tangent plane would be only two
types; either it is a space-like plane containing only space-like vectors or it has
two non-paralel light-like vectors partitioning the plane two double cones one
of them contains the space-like vectors and the other one the time-like vectors,
respectively.

In the second case, we can restrict our function onto the union of the imag-
inary unit circle, the de Sitter circle, and the two lines containing the light-like
vectors, respectively. We omit the two direction of the light-like vectors and we
can determine the extremal values of the second fundamental form on the de
Sitter sphere and on the imaginary unit sphere, respectively. For example if the
signs of the functions α(τ(la)) and If(c(τ(la))) are equals, and the normal vec-
tors are space-time vectors, then the principal curvatures have the same signs,
implying that their product is positive. In this case, the sectional curvature is
positive.

3 Four interesting premanifolds

In this section we give the most important hypersurfaces of a generalized
space-time model and determine their geometries, respectively.
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3.1 Imaginary unit sphere

Then by Theorem 6 (H+, ds2) is a Minkowski-Finsler space, where for the
vectors u1 and u2 of Tv we have

ds2v(u1, u2) = [u1, u2]
+
v

with the Minkowski product [·, ·]+v of the tangent space Tv. This gives a pos-
sibility to examine the geometric property of H+ on the base of the standard
differential geometry of a space-time hypersurface. First we prove the following
theorem:

Theorem 8. H+ is always convex. It is strictly convex if and only if the
s.i.p. space S is a strictly convex space.

Proof. Let w = s′ + t′ be a point of H+ and consider the product

[w − v, v]+ = [s′ − s, s] + [t′ − t, t] = [s′, s]− [s, s]− (λ′ − λ)λ = [s′, s]− λ′λ+ 1,

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respectively. Since√
1 + [s′, s′] = λ′ and

√
1 + [s, s] = λ

thus

[w − v, v]+ = [s′, s]−
√

1 + [s′, s′]
√

1 + [s, s] + 1 ≤

≤
√

[s′, s′][s, s]−
√

1 + [s′, s′]
√

1 + [s, s] + 1 ≤ 0,

because of the relation

[s′, s′][s, s] + 2
√

[s′, s′][s, s] + 1 ≤ [s′, s′][s, s] + ([s′, s′] + [s, s]) + 1.

(We used here the inequality between the arithmetic and geometric means of
two positive numbers.) Remark that equality holds if and only if the norms of
s′ and s are equal to each other and thus λ′ = λ, too. So we have

[s′, s]− [s, s] = 0,

or equivalently

[s′, s] =
√

[s′, s′][s, s].

From the characterization of the strict convexity of an s.i.p. space we get H+

contains only the point v of the tangent space Tv if and only if the s.i.p. space
S is strictly convex. QED
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To determine the first fundamental form consider the map h = s + h(s)en
giving the points of H+. (Here h(s) =

√
1 + [s, s] is a real valued function.)

Then we get that

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+ =

= [ċ(t), ċ(t)]− [(h ◦ c)′(t)]2,

where ċ(t) means the tangent vector of the curve c of S at its point c(t). Using
Lemma 3 and Theorem 5 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2
4(1 + [c(t), c(t)])

= [ċ, ċ]− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

From this formula, by the Cauchy-Schwartz inequality, we can get a new
proof for the fact that this form is positive.

The second fundamental form of H+ is

II := [c̈(t)+(h◦c)′′(t)en, c(t)+(h◦c)(t)en]+(h◦c)(t) = [c̈(t), c(t)]−(h◦c)′′(t)h(c(t)),

since
n ◦ c = h ◦ c = c(t) + (h ◦ c)(t)en.

First we compute the derivative of

(h ◦ c)′(t) : R −→ R

at its point t. We use again the formulas of Lemma 3 and Lemma 4 getting

(h ◦ c)′′(t) =
(
(h ◦ c)′

)′
(t) =

(
[ċ(t), c(t)]√
1 + [c(t), c(t)]

)′

=

=
[ċ(t), c(t)]′√
1 + [c(t), c(t)]

−

[ċ(t),c(t)]√
1+[c(t),c(t)]

[ċ(t), c(t)]

(1 + [c(t), c(t)])

and so

(h ◦ c)′′(t)h(c(t)) = [ċ(t), c(t)]′ − [ċ(t), c(t)]2

1 + [c(t), c(t)]
=

(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

1 + [c(t), c(t)]
.

Thus the second fundamental form is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
,
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or using the formula

∥y∥∥ · ∥′′x,z(y) = [x, ·]′z(y)−
ℜ[x, y]ℜ[z, y]

∥y∥2
,

we get the following equivalent form:

II = −∥c(t)∥∥ · ∥′′ċ(t),ċ(t)c(t)−
[ċ(t), c(t)]2

∥c(t)∥2(1 + ∥c(t)∥2)
.

If we also assume that the norm is a C2 function of its argument then we can
use Theorem 5 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

1 + [c(t), c(t)]
= −I.

By the positivity of the first fundamental form on H+, we get that the
second fundamental form is negative definite and

ρ(u, v)max = ρ(u, v)min = −1.

This implies that the sectional curvatures are equal to −1, the Ricci and scalar
curvatures in any direction at any point is −(n − 2) and −

(
n−1
2

)
, respectively.

Thus we proved:

Theorem 9. If S is a continuously differentiable s.i.p. space then the imag-
inary unit sphere H+ has constant negative curvature.

Observe that our definitions in the case when the Minkowski product is an
i.i.p. go to the usual concepts of hypersurfaces of a semi-Riemann manifolds
(see [4], [16] or [18]) so we can regard H+ a natural generalization of the usual
hyperbolic space. Thus we can say that H is premanifold with constant negative
curvature and H+ is a prehyperbolic space.

3.2 de Sitter sphere

In this subsection we shall investigate the set G of those points of a general-
ized space-time model which scalar square is equal to one. In a pseudo-euclidean
space this set was called by the de Sitter sphere. The tangent hyperplanes of
the de Sitter space are pseudo-euclidean spaces. G is not a hypersurface of V
but we can restrict our investigation to the positive part of G defined by

G+ = {s+ t ∈ G : t = λen where λ > 0}.

We remark that the local geometry of G+ and G is agree by the symmetry of
G in the subspace S. G+ is already a hypersurface defined by the function

g(s) = s+ g(s)en,
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where
g(s) =

√
−1 + [s, s] for [s, s] > 1.

First we calculate the directional derivatives of the function

g : s 7−→
√

−1 + [s, s]

giving the corresponding tangent vectors of form

u = α(e+ g′e(s)en).

Since between g and f : s 7−→
√

1 + [s, s], there is a connection in form

f2(s) + g2(s) = 2[s, s],

the derivative of g in the direction of the unit vector e ∈ S (by Lemma 1 and
Lemma 3) can be calculated from the equality

2f(s)f′e(s) + 2g(s)g′e(s) = 4∥s∥∥ · ∥′e(s) = 4[e, s].

Thus

g′e(s) =
[e, s]

g(s)
=

[e, s]√
−1 + [s, s]

meaning that

[u, u]+ = α2

(
1− [e, s]2

(−1 + [s, s])

)
= α2−1 + [s, s]− [e, s]2

−1 + [s, s]
.

From this we can see immediately that

[u, u]+ > 0 if − 1 + [s, s] > [e, s]2

[u, u]+ = 0 if − 1 + [s, s] = [e, s]2

[u, u]+ < 0 if − 1 + [s, s] < [e, s]2.

So a vector s′ of the n−2-subspace of S orthogonal to s determines a space-time
tangent vector in the tangent space and a tangent vector corresponding to αs
is a time-like one. To determine the light-like tangent vectors consider a unit
vector e ∈ S of the form

e =
±
√
−1 + [s, s]

[s, s]
s+ s′, where s′ ∈ s⊥.

Such a unit vector lying in the intersection of the unit sphere of S by the union
of (n− 2)-dimensional affine subspaces

s⊥ +
±
√

−1 + [s, s]

[s, s]
s.
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Since s⊥ is the orthogonal complement of s in S and(
±
√
−1 + [s, s]

[s, s]

)2

[s, s] =
−1 + [s, s]

[s, s]
< 1,

this intersection is the union of two spheres of dimension n− 3.

Thus the directions of the light-like vectors form a cone of the tangent hy-
perplane; the cone of the points:

u = α
((

±
√

−1 + [s, s]s+ [s, s]s′
)
± [s, s]en

)
.

Recall that we considered the tangent hyperplane as a subspace of the orig-
inal vector space and observe that thus we can admit it an inner Minkowskian
structure, with respect to the positive and negative subspaces

S′ := s⊥ ∩ S = s⊥ and T ′ = α
(√

−1 + [s, s]s+ [s, s]en

)
.

First we note the following:

Theorem 10. G+ and its tangent hyperplanes are intersecting, consequently
there is no point at which G would be convex.

Proof. At an arbitrary point of G+ there are two sets lying on G+ and having in
distinct halfspaces with respect to the corresponding tangent hyperplane. The
first set is the intersection of the 2-plane spanned by en and s + t ∈ M ; and
the other one is an arbitrary curve of the (n − 2)-hypersurface defined by the
intersection of G and the hyperplane S+(s+ t). In fact, a normal vector of the
tangent hyperplane at s+ t is itself s+ t, because we have[

e+
[e, s]√

−1 + [s, s]
en, s+

√
−1 + [s, s]en

]+
= 0.

Thus with α > 1√
[s,s]

we have

[(
αs+

√
−1 + [αs, αs]en

)
−
(
s+

√
−1 + [s, s]en

)
, s+

√
−1 + [s, s]en

]+
=

= (α− 1)[s, s] + (
√

−1 + [s, s]−
√

−1 + [αs, αs])
√

−1 + [s, s] =

= −1 + α[s, s]−
√

(−1 + [αs, αs])(−1 + [s, s]) =

= α[s, s]− 1−
√

1− (1 + α2)[s, s] + α2[s, s]2 ≥ 2(α[s, s]− 1) > 2(∥s∥ − 1) ≥ 0.

28



On the other hand if s′ + t ∈ M arbitrary, then ∥s′∥ = ∥s∥ thus

[s′ − s+ (t− t), s+ t]+ = [s′, s]− [s, s] ≤
√

[s′, s′]
√

[s, s]− [s, s] = 0,

with equality if and only if s′ = ±s. QED

Continue our investigation with the computation of the fundamental forms.
Using the function g, the first fundamental form has the form

I = [ċ(t) + (g ◦ c)′(t)en, ċ(t) + (g ◦ c)′(t)en]+ = [ċ(t), ċ(t)]− [(g ◦ c)′(t)]2.

Using Lemma 3 and Theorem 5 we get

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2
4(−1 + [c(t), c(t)])

= [ċ, ċ]− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Furthermore we also have that n ◦ c = g ◦ c = c(t) + (g ◦ c)(t)en thus we get:

II := [c̈(t)+(g◦c)′′(t)en, c(t)+(g◦c)(t)en]+(g◦c)(t) = [c̈(t), c(t)]− (g◦c)′′(t)g(c(t)).

The derivative of the real function

(g ◦ c)′(t) = D(g ◦ c)(t) : R −→ R

at its point t is:

(g ◦ c)′′(t) = [ċ(t), c(t)]′√
−1 + [c(t), c(t)]

−

[ċ(t),c(t)]√
−1+[c(t),c(t)]

[ċ(t), c(t)]

(−1 + [c(t), c(t)])

so by Lemma 4

(g ◦ c)′′(t)g(c(t)) = [ċ(t), c(t)]′ − [ċ(t), c(t)]2

−1 + [c(t), c(t)]
=

=
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
− [ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

Thus we have

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
.

If we assume again that the norm is a C2 function of its argument then we can
use again Theorem 5 and we get

II = −[ċ(t), ċ(t)] +
[ċ(t), c(t)]2

−1 + [c(t), c(t)]
= −I,
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as in the case of H+. The principal curvatures are equal to −1. But the scalar
squares of the normal vectors is positive at all points of G+ implying that the
sectional curvatures are equal to 1. The Ricci curvatures in any directions and
at any points are equal to (n− 2), moreover the scalar curvatures at any points
are equal to

(
n−1
2

)
showing that:

Theorem 11. The de Sitter sphere G has constant positive curvature if S
is a continuously differentiable s.i.p space.

On the basis of this theorem we can say about G as a premanifold of constant
positive curvature and we may say that it is a pre-sphere.

3.3 The light cone

The inner geometry of the light cone L can be determined, too. Let L+ be
the positive part of this double cone determined by the function:

l(s) = s+
√

[s, s]en.

If S is a uniformly continuous s.i.p. space, then the tangent vectors at s are of
the form:

u = α
(
e+ ∥ · ∥′e(s)en

)
= α

(
e+

[e, s]√
[s, s]

en

)
.

Thus all tangents orthogonal to l(s) which is also a tangent vector. (Choose
e = s0 and α = ∥s∥!) But the orthogonal companion of a neutral (isotropic or
light-like) vector in a s.i.i.p space is an (n−1)-dimensional degenerated subspace
containing it ([6] (Theorem 7)) Tangent hyperplanes are exist at every points
of L+ and it is an (n− 1)-dimensional degenerated subspace of V . This also a
support hyperplane of L. In fact, by v = s+ t and w = s′ + t′ we get

[w − v, v]+ = [s′, s] + [t′, t] = [s′, s]− λ′λ

where t′ = λ′en, t = λen and s′, s ∈ S with positive λ′ and λ, respectively. Since√
[s′, s′] = λ′ and

√
[s, s] = λ

thus
[w − v, v]+ = [s′, s]−

√
[s′, s′]

√
[s, s] ≤ 0

holds by the Cauchy-Schwartz inequality. We remark that equality holds if and
only if s′ = αs meaning that there is only one line of L+ in the tangent space
Tv. Thus the light cone is convex and thus the second fundamental form is semi-
definite quadratic form. It also follows that any other vectors of the tangent
hyperplane are space-like ones and there are two types of tangent 2-planes; one
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of them space-like plane and the other one contains space-like vectors and a
doubled line of light-like vectors. In the first case, the corresponding principal
and sectional curvatures is well defined and have negative values, respectively.
To determine it we compute the fundamental forms.

In the case when S is continuously differentiable, the first fundamental form
is

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2
4[c(t), c(t)]

= [ċ, ċ]− [ċ(t), c(t)]2

[c(t), c(t)]
,

and the second one is

II = −[ċ(t), ·]′ċ(t)(c(t)) +
[ċ(t), c(t)]2

[c(t), c(t)]
= −[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

[c(t), c(t)]
= −I.

Thus the principal curvatures are −1 as in the cases of the unit spheres. However
our definition gives at such a point zero sectional curvature for it, because of
the zero lengthes of the normal vectors. The above computation can be used in
the second case, too. Agreed that we calculate the fundamental forms only non-
light-like directions, so on the plane of the second type the principal curvatures
are also −1 and the sectional curvatures are zero, too. This implies that the
Ricci and scalar curvatures are also zero, respectively. We have got

Theorem 12. The light cone L+ has zero curvatures if S is a continuously
differentiable s.i.p space.

Hence L is a premanifold with zero sectional, Ricci and scalar curvatures,
respectively. We may also say that it is a pre-Euclidean space.

3.4 The unit sphere of the s.i.p. space (V, [·, ·]−)

In this subsection we shall investigate the set K of those points of the gen-
eralized space-time model which collects the unit sphere of the embedding s.i.p.
space. In a pseudo-euclidean space it is the unit sphere of the embedding eu-
clidean space. Its tangent hyperplanes are pseudo-euclidean one. K is not a
hypersurface but we can also restrict our investigation to the positive part of K
defined by

K+ = {s+ t ∈ K : t = λen where λ > 0}.

K+ is a hypersurface defined by the function

k(s) = s+ k(s)en,

where

k(s) =
√

1− [s, s] for [s, s] < 1.
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The directional derivatives of the function

k : s 7−→
√

1− [s, s] for [s, s] < 1

gives the corresponding tangent vectors of form

u = α(e+ k′e(s)en).

Since by the function

f : s 7−→
√

1 + [s, s],

we have the equality

f2(s) + k2(s) = 2

the derivative in the direction of the unit vector e ∈ S is

k′e(s) = − [e, s]√
1− [s, s]

meaning that

[u, u]+ = α2

(
1− [e, s]2

(1− [s, s])

)
= α2 1− [s, s]− [e, s]2

1− [s, s]
.

From this we can see immediately that

[u, u]+ > 0 if 1− [s, s] > [e, s]2

[u, u]+ = 0 if 1− [s, s] = [e, s]2

[u, u]+ < 0 if 1− [s, s] < [e, s]2.

It follows that the vector s′ of the n − 2-subspace of S orthogonal to s gives a
space-like tangent vector and the vector corresponding to αs is a time-like one.

As in the case of the imaginary unit sphere we note the following:

Theorem 13. K+ is convex. If S is a strictly convex space, then K+ is
also strictly convex.

Proof. Let w = s′ + t′ be a point of K+ and consider the product

[w − v, nv]
+ = [s′ − s, s′′] + [t′ − t, t′′] = [s′, s′′]− [s, s′′]− (λ′ − λ)λ′′,

where t′′ = λ′′en, t
′ = λ′en, t = λen and s′′, s′, s ∈ S with positive λ′′, λ′ and λ,

respectively. Since √
1− [s′, s′] = λ′ and

√
1− [s, s] = λ

32



and
nv = s−

√
1− [s, s]en

thus
[w − v, nv]

+ = [s′, s] +
√
1− [s′, s′]

√
1− [s, s]− 1 ≤

≤
√
[s′, s′][s, s] +

√
1− [s′, s′]

√
1− [s, s]− 1 ≤ 0,

because
2
√

[s′, s′][s, s] ≤ [s′, s′] + [s, s]).

We remark that equality holds in the inequalities if and only if the norms of s′

and s are equal to each other. So we have the equality

[s′, s]− [s, s] = 0,

or equivalently
[s′, s] =

√
[s′, s′][s, s].

We also get that v is the only point of K+ lying on the tangent space Tv if and
only if the s.i.p. space S is strictly convex. QED

Using the function k the first fundamental form has the form

I = [ċ(t), ċ(t)]− [(k ◦ c)′(t)]2.

Using Lemma 3 and Theorem 5 we have

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′ċ(t)(c(t))

)2
4(1− [c(t), c(t)])

= [ċ, ċ]− [ċ(t), c(t)]2

1− [c(t), c(t)]
,

and assuming that 2[c(t), c(t)] ̸= 1 we get

II =

[
c̈(t) + (k ◦ c)′′(t)en,

c(t)− (k ◦ c)(t)en√
| − 1 + 2[c(t), c(t)]|

]+
(k◦c)(t)

=

=
1√

| − 1 + 2[c(t), c(t)]|
(
[c̈(t), c(t)] + (k ◦ c)′′(t)k(c(t))

)
.

Lemma 4 implies that

(k ◦ c)′′(t)k(c(t)) = −[ċ(t), c(t)]′ +
[ċ(t), c(t)]2

1− [c(t), c(t)]
=

= −
(
[c̈(t), c(t)] + [ċ(t), ·]′ċ(t)(c(t))

)
+

[ċ(t), c(t)]2

1− [c(t), c(t)]
.
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thus we have

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ·]′ċ(t)(c(t)) +

[ċ(t), c(t)]2

1− [c(t), c(t)]

)
.

Assuming that S is continuously differentiable and using Theorem 5 we get

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

−1 + [c(t), c(t)]

)
=

= − 1√
| − 1 + 2[c(t), c(t)]|

I.

The principal curvatures at a point k(c(t)) are

ρmax(u, v) = ρmin(u, v) = − 1√
| − 1 + 2[c(t), c(t)]|

giving the sectional curvatures

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1 + 2[c(t), c(t)]
.

The Ricci curvatures in any directions at the point k(c(t)) are equal to

Ric(v)k(c(t)) := (n− 2) · E(κk(c(t))(u, v)) =
n− 2

−1 + 2[c(t), c(t)]

and the scalar curvature of the hypersurface K+ at its point k(c(t)) is

Γk(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)) =

(
n−1
2

)
−1 + 2[c(t), c(t)]

.

Finally we remark that at the points of K+ having the equality 2[c(t), c(t)] = 1
all of the curvatures can be defined as in the case of the light cone and can be
regard to zero.
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