On Existence of Polygons with Equal Angles

Attila Bölcskei and Ákos G. Horváth

February 27, 2007

Abstract

Consider a pencil of rays in the Euclidean or Hyperbolic plane. The question may arise whether a polygon with equal angles can be constructed in such a way that the vertices are located on the given set of rays. We will discuss the solutions for triangles and quadrilaterals where the conditions are exactly given.

1 Introduction

In this work we focus on the investigation of polygons in the Euclidean and hyperbolic plane with the property that all the vertices are located on a given set of rays (directed half-lines) and their angles are equal. The earlier results [4], [5] and [2] described the properties of these kind of polygons in $\mathbf{H}^{\mathbf{2}}$, however the question of existence has not been dealt with. The present publication aims to give the exact conditions which allow the construction of the above characterised polygons for the case of three and four rays.

2 The case of three rays

We start with the absolute observation that a triangle having equal angles is also a regular one as its sides are equal, too.
The problem is now whether the existence of a regular triangle can be guaranteed if a set of rays with common initial point is given.

In the hyperbolic plane the answer is the following

Theorem 1 If r_{1}, r_{2} and r_{3} are three rays originated from a common point O then one can always find a regular triangle $A_{1} A_{2} A_{3} \triangle$ with $A_{i} \in r_{i}, i=1,2,3$.

Proof

Let the angles formed by the rays be denoted by $\beta_{1}, \beta_{2}, \beta_{3}$ in a non-decreasing sequence $0 \leq \beta_{1} \leq \beta_{2} \leq \beta_{3} \leq 2 \pi$ and let r_{i} be the common leg of β_{j} and β_{k}; $i, j, k=1,2,3$ and $i \neq j \neq k \neq i$. We solve the problem using continuity principle by distinguishing two subcases.

1. $\beta_{3}<\pi$. It follows easily that $\frac{2 \pi}{3} \leq \beta_{3}$ and $\frac{\pi}{2}<\beta_{2}$ also hold. Now choosing an arbitrary point A_{1} on r_{1} we rotate the broken line r_{1}, O, r_{3} around A_{1} in such a direction that the rotated image r_{3}^{\prime} of r_{3} intersects the ray r_{2}. This point of intersection will be denoted by A_{2} and its rerotated image on r_{3} by A_{3}. Since $\left|A_{1} A_{2}\right|=\left|A_{1} A_{3}\right|$, the angles $A_{1} A_{2} A_{3} \angle$ and $A_{2} A_{3} A_{1} \angle$ are equal, too (Fig. 1).
Continuously rotating r_{3} the intersection point A_{2} slides from O to the infinity, while the angle $A_{2} A_{1} O \angle$ (and so $A_{2} A_{1} A_{3} \angle$) increases from zero to a well defined value α^{*}. Parallelly the angle $A_{1} A_{2} A_{3} \angle$ decreases from $\frac{\pi}{2}$ to 0 . The continuity of these functions guarantees a position where all the angles are equal. We note that for every point of r_{1} there does exist a solution.
2. $\beta_{3} \geq \pi$. Consequently $\beta_{1} \leq \frac{\pi}{2}$. In this case first we reflect the line r_{2} to r_{3}, this results t. We choose a point A_{3} on the ray r_{3} such that the angle $T A_{3} O \angle$ be less than $\frac{\beta_{1}}{2}$, where T is the orthogonal projection of A_{3} onto t. (Fig. 2) Denote by O^{*} the reflected image of O with respect to T. In the isosceles triangle $O O^{*} A_{3} \triangle$ the relations between the angles are $\beta_{1}=O^{*} O A_{3} L=A_{3} O^{*} O \angle>$ $\alpha^{*}=O^{*} A_{3} O \angle$. Rotating r_{2} around A_{3} with an angle $\alpha, \alpha^{\prime} \geq \alpha \geq \alpha^{*}$ we obtain an intersection point with the ray r_{1}, denoted by A_{1}. Its rerotated image on r_{2} is A_{2}. If α increases from α^{*} to $\alpha^{\prime}\left(\alpha^{\prime}\right.$ is the angle of rotation when the rotated ray r_{2}^{\prime} is parallel to the ray r_{1}) the angles $A_{3} A_{2} A_{1} \angle=A_{3} A_{1} A_{2} \angle$ decrease from β_{1} to zero. (With respect to the rotation by $\alpha^{*}, A_{1}=0$ and A_{2} is the rerotated image of $O=A_{1}$.) Since $\alpha^{*}<\beta_{1}$ and the values change continuously there exists a triangle with equal angles that is necessarily a regular one. We emphasise that now A_{3} can not be chosen arbitrarily.

For the Euclidean case we can see at once that the above arguments fails to hold: travelling along r_{3} the angle $T A_{3} O \angle$ remains the same!

Therefore we follow another approach which allows us not merely prove the existence but let the triangle be constructed directly.

First we change our point of view. We take a regular triangle and try to adjust a pencil to it that is identical to the required one. It is straightforward that if a single
construction exists then there are infinitely many solutions in homotetic positions. The number of solutions therefore refers to the number of basicly different solutions.

Theorem 2 Given a pencil of three rays $\left(r_{1}, r_{2}, r_{3}\right)$ in \mathbf{E}^{2}. A regular triangle $A_{1} A_{2} A_{3} \triangle$ with $A_{i} \in r_{i}, i=1,2,3$ can be constructed, if and only if one of the following requirements holds:

- $\beta_{2}<\frac{\pi}{3}$ and $\beta_{1}<\frac{\pi}{3}-\beta_{2}$
- $\beta_{2}<\frac{\pi}{3}$ and $\beta_{1} \geq \frac{\pi}{3}-\beta_{2}$
- $\beta_{1}=\frac{\pi}{3}$
- $\beta_{2}=\frac{\pi}{3}$
- $\frac{\pi}{3}<\beta_{1}, \beta_{2} \leq \frac{2 \pi}{3}$.

Moreover, the number of corresponding different solutions are $2,1,1,1,1$, respectively.

Proof We recall the well-known fact that for any segment $A B$ the locus of all points P such that the angle $A P B \angle$ is constant consists of two circular arcs symmetric to $A B$. Let us suppose that the medium size angle β_{2} corresponds to the side $A B$, whilest β_{1} to $A C$. (Since in Euclidean cases the role of vertices differs from the hyperbolic cases (see e. g. Lemma 2 and 3, later on) we use another notations, however now we have set $A:=A_{3}, B:=A_{1}, C:=A_{2}$.) We denote the arc-pairs by $K_{\beta_{1}}$ and $K_{\beta_{2}}$, respectively. Obviously the existence of the pencil is equivalent to the fact that the arc-pairs intersect each other. It is easy to see that O can not be located outside the two smaller plane quarters bounded by the lines of $A C$ and $A B$ (otherwise β_{1} would be a subset of β_{2}, excluded). Obviously the problem has solution if $\beta_{2}<\frac{\pi}{3}$: travelling by X along the arc $V B$ the angle $C X A \angle$ increases from V to B and changes between 0 and $\frac{\pi}{3}$ (Fig. 3a). On the other hand there can be a solution in the other region (bottom left), too. Moving the point Y from U to A on the arc, the leg $Y A$ of $C Y A \angle$ tends to the tangent line t of the circle, therefore $0<C Y A \ll \frac{\pi}{3}-\beta_{2}$ as it can be seen in Fig. 3a.

If β_{1} or $\beta_{2}=\frac{\pi}{3}$ then we have the trivial solution.
If $\frac{\pi}{3}<\beta_{2}$ then $K_{\beta_{2}}$ has no points in the bottom left region, so the number of solutions is at most 1 . We have to distinguish two subcases. If $\frac{\pi}{3}<\beta_{2}<\frac{2 \pi}{3}$ then $K_{\beta_{2}}$ intersects the sides $A C$ and $C B$ (see Fig. 3b). While X slides from D to B the angle $A X C \angle$ decreases from π to $\frac{\pi}{3}$. Taking into consideration that $\beta_{1} \leq \beta_{2}$ we get the condition $\frac{\pi}{3}<\beta_{1}, \beta_{2}<\frac{2 \pi}{3}$. If, on the contrary $\beta_{2} \geq \frac{2 \pi}{3}$ then the moving point X gives angles between $\beta_{2}-\frac{2 \pi}{3}$ and $\frac{\pi}{3}$ (Fig. 3c). But $\beta_{2} \leq \pi$ ought to hold, too, that would lead to $\frac{\pi}{3} \leq \beta_{1} \leq \frac{\pi}{3}$ a contradiction.

To illustrate the theorem we represent the solutions in a cartesian coordinate system. The conditions $\beta_{3} \geq \frac{2 \pi}{3} \Longleftrightarrow \beta_{2} \leq \frac{4 \pi}{3}-\beta_{1}, \beta_{3} \geq \beta_{2} \Longleftrightarrow \pi-\frac{\beta_{1}}{2} \geq \beta_{2}$ and $\beta_{2} \geq \beta_{1}$ describe the set $P Q R$ of possible solutions (Fig. 4). The darker triangle at the corner shows two solutions, the lighter area refers to one solution. White areas serve no solutions. Dotted borders illustrate one solution, other number of solutions are indicated just below the lines in question.

3 The case of four rays

In this section we deal with the existence of rectangles in \mathbf{H}^{2} and \mathbf{E}^{2}, respectively, if a pencil of four rays is given. We recall some important properties of rectangles: they are quadrilaterals with equal angles having two axes of symmetry perpendicular to each other, the opposite sides and the diagonals have the same length. A parallelogram is a quadrilateral with center of symmetry. The rays are labelled by $r_{1}, r_{2}, r_{3}, r_{4}$ in a cyclic order, the angle of r_{i} and r_{i+1} is $\beta_{i},\left(i=1,2,3,4, r_{5} \equiv r_{1}\right)$.

We start with the hyperbolic solution.
Theorem 3 For any pencil of four rays in \mathbf{H}^{2} there exists a rectangle whose vertices are located on the rays.

Proof The main idea of the proof is the following: we fix the vertex A_{2} on r_{2} in a suitable position and vary the positions of the other vertices on the rays in time such that the vertices form parallelograms and moreover by continuous deformation they are transformed onto each other. Then we show that in one position $\left|A_{1} A_{3}\right|<\left|A_{2} A_{4}\right|$ whilst in other position the opposite relation holds.

We examine three subcases:

- case A: $\beta_{i}+\beta_{i+1}>\frac{\pi}{2}$ for $(i=1,2)$,
- case B: $\beta_{1}+\beta_{2} \leq \frac{\pi}{2}$ and $\beta_{2}+\beta_{3}>\frac{\pi}{2}$,
- case $\mathrm{C}: \beta_{i}+\beta_{i+1} \leq \frac{\pi}{2}$ for $(i=1,2)$,

Case A: The position of A_{2} on r_{2} is arbitrary but fixed. (Fig. 5) We form the image of the ray r_{4} by a contraction with center A_{2} and ratio $\frac{1}{2}$. Choose the cyclic ordering of the rays in such a way that this image (denoted by k) intersects the ray r_{3}. The curve k (a hyperbole of the hyperbolic plane) will be the orbit of the centers of parallelograms. For $t=0$ the center $K(0)$ is $r_{2} \cap k$, for $t=1$ the center $K(1)$ is $r_{3} \cap k$. This implies that the vertex $A_{4}(0)$ is the common initial point O of the rays, while $A_{4}(1)$ is a well defined point on $r_{4}\left(A_{2}=A_{2}(0)=A_{2}(1)\right)$. For any $t \in[0,1] A_{1}(t)$ and $A_{3}(t)$ can be constructed by the rays r_{1}^{\prime} and r_{3}^{\prime} which are the
reflected images of the rays r_{1} and r_{3} to the point $K(t)$ setting $A_{1}(t)=r_{1} \cap r_{3}^{\prime}$ and $A_{3}(t)=r_{1}^{\prime} \cap r_{3}$. On one hand since $\beta_{1}+\beta_{2}>\frac{\pi}{2},\left|A_{1}(0) A_{3}(0)\right|>\left|A_{2}(0) A_{4}(0)\right|$ holds, on the other hand $\beta_{2}+\beta_{3}>\frac{\pi}{2}$ implies $\left|A_{1}(1) A_{3}(1)\right|<\left|A_{2}(1) A_{4}(1)\right|$. By continuity principle there exists a value $t \in] 0,1[$ where the equality is gained. We note that it may happen that the intersection points in question are not real ones. In this case we will say that the length of the diagonals is infinite and the statement still holds.

Case B: In this case the position of A_{2} is also fixed, but is not arbitrarily chosen (Fig. 6). First we construct the common parallel line $p_{1,3}$ to r_{1} and r_{3}. Let $K^{\prime}:=p_{1,3} \cap r_{2}$ and A_{2}^{*} will denote the reflected image of O to K^{\prime}. If K^{\prime} is the center of a parallelogram then the rays r_{1}^{\prime} and r_{3}, r_{1} and r_{3}^{\prime} are parallel, respectively. If we choose A_{2} on the segment $O A_{2}^{*}$ then the intersection points A_{1} and A_{3} can be constructed, otherwise not. If A_{2} lies close enough to A_{2}^{*} then $\left|A_{1} A_{3}\right|>\left|A_{2} A_{4}\right|$, this will be the starting position $t=0$. Let $t=1$ be the same as above: $K(1):=r_{3} \cap k$ and the parallelogram is constructed as usual. In this position obviously $\left|A_{1}(1) A_{3}(1)\right|<\left|A_{2}(1) A_{4}(1)\right|$ showing the veracity of the statement.

Case C: We choose the suitable point A_{2} on the segment $O A_{2}^{*}$, again. We have to distinguish three subcases here.

- $\beta_{1}<\beta_{2} \leq \beta_{3}$ (Fig. 7) Define the point $A_{2}(0)=A_{2}(t)$ on the segment $O A_{2}^{*}$ as above. If we reflect any point of r_{2} to r_{3} then the image belongs to the region β_{3}. Therefore the midpoint of the segment from $A_{2}(0)$ orthogonal to r_{3} is in β_{3}, too. Let the intersection point be $K^{\prime \prime}$. Obviously $r_{3} \cap k=K(t)$ belongs to the segment $O K^{\prime \prime}$. Since $K^{\prime \prime} A_{2} O \angle<\beta_{1}<\beta_{2}$, we have $|O K(t)|<$ $\left|O K^{\prime \prime}\right|<\left|K^{\prime \prime} A_{2}(t)\right|<\left|K(t) A_{2}(t)\right|$ that implies $\left|A_{1}(t) A_{3}(t)\right|=2|O K(t)|<$ $2\left|K(t) A_{2}(t)\right|=\left|A_{2}(t) A_{4}(t)\right|$. On the other hand if A_{2} lies close enough to A_{2}^{*} then for $t=0$ the opposite relation holds.
- $\beta_{2}>\beta_{1}, \beta_{2}>\beta_{3}$ Let $A_{2}^{* *}$ be the point on r_{2} with parallel angle β_{1} with respect to r_{4}. Obviously this point lies on the segment $O A^{*}$. Denote by $K(1)$ the intersection point $r_{3} \cap k$ and choose $A_{2}(0)=A_{2}(1)$ from the segment $A_{2}^{*} A_{2}^{* *}$. Now $K(1) A_{2} A_{1}(1) \angle<\beta_{1}$, and moreover $\left|A_{1}(1) A_{3}(1)\right|=2\left|K(1) A_{1}(1)\right|<$ $2\left|K(1) A_{2}(1)\right|=\left|A_{2}(1) A_{4}(1)\right|$. But if A_{2} is close to A_{2}^{*} then for $t=0$ the other diagonal would be longer.
- $\beta_{2}<\beta_{1}, \beta_{2}<\beta_{3}$ (Fig. 8) Here we follow a more sophisticated way giving first the positions belonging to $t=0$ and $t=1$, then we give the continuous deformation by the orbit of the centre $K(t)$ and the method how to construct the vertices. Denote now by A_{2}^{*} the point of r_{2} for which the ray parallel to $r_{3}\left(r^{\prime}\right)$ makes an angle β_{1} with r_{2} and similarly, let A_{3}^{*} be the point of r_{3} for which the ray parallel to $r_{2}\left(r^{\prime \prime}\right)$ makes an angle β_{3} with r_{3}. Obviously if $A_{2}^{*}=A_{2}(0)$ then in the corresponding parallelogram the diagonal $A_{1}(0) A_{3}(0)$ should be longer, whereas for $A_{3}^{*}=A_{3}(1)$ the diagonal $A_{2}(1) A_{4}(1)$ has the same
property. Denote now the intersection point of r^{\prime} and $r^{\prime \prime}$ by M. It is easy to see that the quadrilateral $O A_{2}^{*} M A_{3}^{*}$ is convex implying that its diagonal $A_{2}^{*} A_{3}^{*}$ lies in its interior. The orbit of the centers $K(t)$ consists of the midpoints of the segments $O O(t)$, where $O(t) \in A_{2}^{*} A_{3}^{*}$. The "intermediate" parallelograms are obtained by the intersections $A_{3}(t):=r_{1}^{\prime}(t) \cap r_{3}$ and $A_{2}(t):=r_{4}^{\prime}(t) \cap r_{2}$ and by their reflected images to $K(t)$. The following lemma guaranties the existence of the intersections above.

Lemma 1 Take an inner point P in an asymptotic triangle with angles $\beta_{2}<$ $\beta_{3}<\frac{\pi}{2}$. Let the midpoint of the segment $O P$ be denoted by F and reflect $O O^{\prime}$ to $F: P P^{\prime}$. If for the point $Q ; P^{\prime} P Q \angle=\beta_{3}$ holds, then the ray $P Q$ does not intersect the side $r^{\prime \prime}$, opposite to O (Fig. 9).

Proof Denote the common perpendicular of $O O^{\prime}$ and $P P^{\prime}$ across F by n. Because of the angle conditions the point P belongs to the region bounded by n and r^{\prime}. The ray $Q P$ intersects the line $O O^{\prime}$ in R. If R is not on the segment $O O^{\prime}$ then the segment $P R$ intersects $r^{\prime \prime}$ and thus $P Q$ will not intersect. Assume now that R is on the segment $O O^{\prime}$. In the shaded quadrilateral the condition for the sum of angles is $\left(\pi-\beta_{3}\right)+\frac{\pi}{2}+\frac{\pi}{2}+P R O \angle<2 \pi$, implies $P R O \angle<\beta_{3}$. If the ray $R Q$ intersects $r^{\prime \prime}$ then in that triangle the inner angle at O^{\prime} would be greater than the outer angle at R, a contradiction.
In this way we have completed the proof of the theorem.
Now we turn to the Euclidean case. First we prove a similar statement for rectangular isosceles triangles as for regular ones above.

Lemma 2 The triangle diagram of Fig. 10 represents the conditions for which a rectangular isosceles triangle can be constructed for three given rays with angles $\beta_{1}, \beta_{2}, 2 \pi-\beta_{1}-\beta_{2}$. The numbers in the diagram refer to the number of different solutions.
(Remark: Any point in the triangular domain uniquely describes a pencil of three rays and vice versa. For a given point the β_{i} values can be read off by drawing parallel lines to the sides. The dotted lines in Fig. 10 represent the trivial solution.)

Proof For simplification let us denote the hypotenuse by $A B$ and the corresponding angle by β_{2}. Similarly let β_{1} be the angle of $A C$. We emphasize that β_{1} can be greater than β_{2}, there is no ordering for the angles.

Similar arguments as in the case of regular triangles implies the following:
There is a solution if one of the following conditions holds:

- $\beta_{2}<\frac{\pi}{4}$ and $\beta_{1}<\frac{\pi}{4}-\beta_{2}$
- $\beta_{2}<\frac{\pi}{2}$ and $\beta_{1}<\frac{\pi}{4}$
- $\beta_{1}=\frac{\pi}{4}$
- $\beta_{2}=\frac{\pi}{2}$
- $\frac{\pi}{2}<\beta_{2}<\frac{3 \pi}{4}$ and $\frac{\pi}{4}<\beta_{1}<\pi$
- $\frac{3 \pi}{4}<\beta_{2}<\pi$ and $\frac{\pi}{4}<\beta_{1}<\frac{7 \pi}{4}-\beta_{2}$.

If we release the correspondence between sides and angles we obtain the diagram. The number of solutions for given triplet ($\left.\beta_{1}, \beta_{2}, \beta_{3}:=2 \pi-\beta_{1}-\beta_{2}\right)$ immediately follows from the enumeration how many times they fulfill the conditions above. In some cases we have to halve because we construct isosceles triangles.

We can generalize this observation.
Lemma 3 One can construct an obtuse-angled isosceles triangle with greatest angle σ if the angles $\beta_{1}, \beta_{2}, 2 \pi-\beta_{1}-\beta_{2}$ describe a suitable point in Fig. 11. The number of solutions can be read off, as well.

Proof Let β_{2} be the angle to the longest side and β_{1} the other one. Similarly as before we have solutions if either

- $\beta_{2}<\sigma$ and $\beta_{1}<\frac{\pi}{2}-\sigma$ or
- $\beta_{2}<\frac{\pi-\sigma}{2}$ and $\beta_{1}<\frac{\pi-\sigma}{2}-\beta_{2}$ or
- $\beta_{1}=\frac{\pi-\sigma}{2}$ or
- $\beta_{2}=\sigma$ or
- $\sigma<\beta_{2}<\frac{\pi+\sigma}{2}$ and $\frac{\pi-\beta_{2}}{2}<\beta_{1}<\pi$ or
- $\frac{\pi+\sigma}{2}<\beta_{2}<\pi$ and $\frac{\pi-\sigma}{2}<\beta_{1}<\frac{3 \pi+\sigma}{2}-\beta_{2}$.

The arguments is the same as before.
Now we are ready to formulate our results first for square and later for other regular n-gons in E^{2}.

Theorem 4 If a right-angled isosceles triangle is constructable for $\beta_{1}, \beta_{2}, 2 \pi-\beta_{1}-\beta_{2}$ in E^{2} then for each solution there exists a unique partition of one of the angles into two parts such that there exists a square with vertices on the rays and there is no construction for other angles.

Proof Let us take an isosceles rectangular triangle and construct the corresponding pencil. Complete now the triangle to square. This uniquely cuts an angle into two parts. If we blow up or shrinken the square the fourth vertex remains on the same ray.

For the general answer we need a new concept: the vertex-triangle of a regular n-gon in $E^{2}(n>4)$ is nothing but the isosceles triangle of three consequative vertices.

Theorem 5 Let β_{1}, β_{2} be given. If one can construct a vertex-triangle of a regular $n-$ gon for the angles $\beta_{1}, \beta_{2}, 2 \pi-\beta_{1}-\beta_{2}$ in E^{2} then there is a unique partition of the angle(s) into altogether n parts such that the rays of the corresponding pencil contain the vertices of the regular $n-g o n$ and there is no solution for other angles.

Proof It is an easy consequence of the fact that a vertex-triangle uniquely defines the other $n-3$ vertices of a regular $n-$ gon. If the common initial point of the rays falls into the opposite halfplane comparing to the polygon with respect to both of the side lines of the vertex-triangle then two angles should be cut into parts otherwise it is enough to partitionate just one of them.

Theorem 6 Let $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ be given in a cyclic ordering ($\sum \beta_{i}=2 \pi, \beta_{i}>0$). Form three groups from these angles in the following way: take β_{j} alone and group the remaining angles into two parts: $\beta_{j}^{+}:=\cup_{l=1}^{t} \beta_{j+l} ; \beta_{j}^{-}:=\cup_{l=t+1}^{k-1} \beta_{j+l}$. If there is no solution for none of these partitions $\beta_{j}^{-}, \beta_{j}, \beta_{j}^{+}$then the construction is not possible for the initial angles (Fig. 12).

This statement is just an easy consequence of the above observations.

References

[1] M. Berger: Geometry I-II, Springer, 1996
[2] Á. G. Horváth-I. Vermes: Polygons with equal angles, Studies of the University of Zilina 16/1 (2003) 47-51.
[3] H. S. M. Coxeter: Non-Euclidean Geometry, Toronto 1947.
[4] I. Vermes: Über the Regelmässigkeit eines rechteckigen Fünfecks in der hyperbolischen Ebene (manuscript), 2000
[5] I. Vermes: Über the Regelmässigkeit eines rechteckigen Sechsecks in der hyperbolischen Ebene (manuscript), 2001

Á. G. Horváth
Dept. of Geometry, TU Budapest
e-mail: ghorvath@math.bme.hu
A. Bölcskei

Dept. of Descriptive Geometry and Informatics, Ybl Miklos Faculty of Engineering, Szent Istvan University, Budapest
e-mail: bolcskei.attila@ymmfk.szie.hu

