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Abstract

Consider a pencil of rays in the Euclidean or Hyperbolic plane. The ques-
tion may arise whether a polygon with equal angles can be constructed in such
a way that the vertices are located on the given set of rays. We will discuss
the solutions for triangles and quadrilaterals where the conditions are exactly
given.

1 Introduction

In this work we focus on the investigation of polygons in the Euclidean and hyper-
bolic plane with the property that all the vertices are located on a given set of rays
(directed half-lines) and their angles are equal. The earlier results [4], [5] and [2]
described the properties of these kind of polygons in H2, however the question of
existence has not been dealt with. The present publication aims to give the exact
conditions which allow the construction of the above characterised polygons for the
case of three and four rays.

2 The case of three rays

We start with the absolute observation that a triangle having equal angles is also a
regular one as its sides are equal, too.

The problem is now whether the existence of a regular triangle can be guaranteed
if a set of rays with common initial point is given.

In the hyperbolic plane the answer is the following
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Theorem 1 If r1, r2 and r3 are three rays originated from a common point O then
one can always find a regular triangle A1A2A34 with Ai ∈ ri, i = 1, 2, 3.

Proof

Let the angles formed by the rays be denoted by β1, β2, β3 in a non-decreasing
sequence 0 ≤ β1 ≤ β2 ≤ β3 ≤ 2π and let ri be the common leg of βj and βk;
i, j, k = 1, 2, 3 and i 6= j 6= k 6= i. We solve the problem using continuity principle
by distinguishing two subcases.

1. β3 < π. It follows easily that 2π
3
≤ β3 and π

2
< β2 also hold. Now choosing an

arbitrary point A1 on r1 we rotate the broken line r1, O, r3 around A1 in such
a direction that the rotated image r′3 of r3 intersects the ray r2. This point of
intersection will be denoted by A2 and its rerotated image on r3 by A3. Since
|A1A2| = |A1A3|, the angles A1A2A3 6 and A2A3A1 6 are equal, too (Fig. 1).

Continuously rotating r3 the intersection point A2 slides from O to the infinity,
while the angle A2A1O 6 (and so A2A1A3 6 ) increases from zero to a well defined
value α∗. Parallelly the angle A1A2A3 6 decreases from π

2
to 0. The continuity

of these functions guarantees a position where all the angles are equal. We
note that for every point of r1 there does exist a solution.

2. β3 ≥ π. Consequently β1 ≤ π
2
. In this case first we reflect the line r2 to r3, this

results t. We choose a point A3 on the ray r3 such that the angle TA3O 6 be less
than β1

2
, where T is the orthogonal projection of A3 onto t. (Fig. 2) Denote

by O∗ the reflected image of O with respect to T. In the isosceles triangle
OO∗A34 the relations between the angles are β1 = O∗OA3 6 = A3O

∗O 6 >
α∗ = O∗A3O 6 . Rotating r2 around A3 with an angle α, α′ ≥ α ≥ α∗ we obtain
an intersection point with the ray r1, denoted by A1. Its rerotated image on r2

is A2. If α increases from α∗ to α′ (α′ is the angle of rotation when the rotated
ray r′2 is parallel to the ray r1) the angles A3A2A1 6 = A3A1A2 6 decrease
from β1 to zero. (With respect to the rotation by α∗, A1 = 0 and A2 is the
rerotated image of O = A1.) Since α∗ < β1 and the values change continuously
there exists a triangle with equal angles that is necessarily a regular one. We
emphasise that now A3 can not be chosen arbitrarily.

For the Euclidean case we can see at once that the above arguments fails to
hold: travelling along r3 the angle TA3O 6 remains the same!

Therefore we follow another approach which allows us not merely prove the
existence but let the triangle be constructed directly.

First we change our point of view. We take a regular triangle and try to adjust
a pencil to it that is identical to the required one. It is straightforward that if a single
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construction exists then there are infinitely many solutions in homotetic positions.
The number of solutions therefore refers to the number of basicly different solutions.

Theorem 2 Given a pencil of three rays (r1, r2, r3) in E2. A regular triangle
A1A2A34 with Ai ∈ ri, i = 1, 2, 3 can be constructed, if and only if one of the
following requirements holds:

• β2 < π
3

and β1 < π
3
− β2

• β2 < π
3

and β1 ≥ π
3
− β2

• β1 = π
3

• β2 = π
3

• π
3

< β1, β2 ≤ 2π
3
.

Moreover, the number of corresponding different solutions are 2, 1, 1, 1, 1, re-
spectively.

Proof We recall the well-known fact that for any segment AB the locus of all points
P such that the angle APB 6 is constant consists of two circular arcs symmetric to
AB. Let us suppose that the medium size angle β2 corresponds to the side AB,
whilest β1 to AC. (Since in Euclidean cases the role of vertices differs from the
hyperbolic cases (see e. g. Lemma 2 and 3, later on) we use another notations,
however now we have set A := A3, B := A1, C := A2.) We denote the arc-pairs
by Kβ1 and Kβ2 , respectively. Obviously the existence of the pencil is equivalent
to the fact that the arc-pairs intersect each other. It is easy to see that O can not
be located outside the two smaller plane quarters bounded by the lines of AC and
AB (otherwise β1 would be a subset of β2, excluded). Obviously the problem has
solution if β2 < π

3
: travelling by X along the arc V B the angle CXA 6 increases

from V to B and changes between 0 and π
3

(Fig. 3a). On the other hand there can
be a solution in the other region (bottom left), too. Moving the point Y from U to
A on the arc, the leg Y A of CY A 6 tends to the tangent line t of the circle, therefore
0 < CY A 6 < π

3
− β2 as it can be seen in Fig. 3a.

If β1 or β2 = π
3

then we have the trivial solution.

If π
3

< β2 then Kβ2 has no points in the bottom left region, so the number of
solutions is at most 1. We have to distinguish two subcases. If π

3
< β2 < 2π

3
then

Kβ2 intersects the sides AC and CB (see Fig. 3b). While X slides from D to B the
angle AXC 6 decreases from π to π

3
. Taking into consideration that β1 ≤ β2 we get

the condition π
3

< β1, β2 < 2π
3

. If, on the contrary β2 ≥ 2π
3

then the moving point X
gives angles between β2 − 2π

3
and π

3
(Fig. 3c). But β2 ≤ π ought to hold, too, that

would lead to π
3
≤ β1 ≤ π

3
a contradiction.
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To illustrate the theorem we represent the solutions in a cartesian coordinate
system. The conditions β3 ≥ 2π

3
⇐⇒ β2 ≤ 4π

3
− β1, β3 ≥ β2 ⇐⇒ π − β1

2
≥ β2 and

β2 ≥ β1 describe the set PQR of possible solutions (Fig. 4). The darker triangle at
the corner shows two solutions, the lighter area refers to one solution. White areas
serve no solutions. Dotted borders illustrate one solution, other number of solutions
are indicated just below the lines in question.

3 The case of four rays

In this section we deal with the existence of rectangles in H2 and E2, respectively,
if a pencil of four rays is given. We recall some important properties of rectangles:
they are quadrilaterals with equal angles having two axes of symmetry perpendic-
ular to each other, the opposite sides and the diagonals have the same length. A
parallelogram is a quadrilateral with center of symmetry. The rays are labelled by
r1, r2, r3, r4 in a cyclic order, the angle of ri and ri+1 is βi, (i = 1, 2, 3, 4, r5 ≡ r1).

We start with the hyperbolic solution.

Theorem 3 For any pencil of four rays in H2 there exists a rectangle whose vertices
are located on the rays.

Proof The main idea of the proof is the following: we fix the vertex A2 on r2 in a
suitable position and vary the positions of the other vertices on the rays in time such
that the vertices form parallelograms and moreover by continuous deformation they
are transformed onto each other. Then we show that in one position |A1A3| < |A2A4|
whilst in other position the opposite relation holds.

We examine three subcases:

• case A: βi + βi+1 > π
2

for (i = 1, 2),

• case B: β1 + β2 ≤ π
2

and β2 + β3 > π
2
,

• case C: βi + βi+1 ≤ π
2

for (i = 1, 2),

Case A: The position of A2 on r2 is arbitrary but fixed. (Fig. 5) We form the
image of the ray r4 by a contraction with center A2 and ratio 1

2
. Choose the cyclic

ordering of the rays in such a way that this image (denoted by k) intersects the
ray r3. The curve k (a hyperbole of the hyperbolic plane) will be the orbit of the
centers of parallelograms. For t = 0 the center K(0) is r2 ∩ k, for t = 1 the center
K(1) is r3 ∩ k. This implies that the vertex A4(0) is the common initial point O of
the rays, while A4(1) is a well defined point on r4 (A2 = A2(0) = A2(1)). For any
t ∈ [0, 1] A1(t) and A3(t) can be constructed by the rays r′1 and r′3 which are the
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reflected images of the rays r1 and r3 to the point K(t) setting A1(t) = r1 ∩ r′3 and
A3(t) = r′1 ∩ r3. On one hand since β1 + β2 > π

2
, |A1(0)A3(0)| > |A2(0)A4(0)| holds,

on the other hand β2 + β3 > π
2

implies |A1(1)A3(1)| < |A2(1)A4(1)|. By continuity
principle there exists a value t ∈]0, 1[ where the equality is gained. We note that it
may happen that the intersection points in question are not real ones. In this case
we will say that the length of the diagonals is infinite and the statement still holds.

Case B: In this case the position of A2 is also fixed, but is not arbitrarily
chosen (Fig. 6). First we construct the common parallel line p1,3 to r1 and r3.
Let K ′ := p1,3 ∩ r2 and A∗

2 will denote the reflected image of O to K ′. If K ′

is the center of a parallelogram then the rays r′1 and r3, r1 and r′3 are parallel,
respectively. If we choose A2 on the segment OA∗

2 then the intersection points
A1 and A3 can be constructed, otherwise not. If A2 lies close enough to A∗

2 then
|A1A3| > |A2A4|, this will be the starting position t = 0. Let t = 1 be the same as
above: K(1) := r3∩k and the parallelogram is constructed as usual. In this position
obviously |A1(1)A3(1)| < |A2(1)A4(1)| showing the veracity of the statement.

Case C: We choose the suitable point A2 on the segment OA∗
2, again. We have

to distinguish three subcases here.

• β1 < β2 ≤ β3 (Fig. 7) Define the point A2(0) = A2(t) on the segment OA∗
2

as above. If we reflect any point of r2 to r3 then the image belongs to the
region β3. Therefore the midpoint of the segment from A2(0) orthogonal to
r3 is in β3, too. Let the intersection point be K ′′. Obviously r3 ∩ k = K(t)
belongs to the segment OK ′′. Since K ′′A2O 6 < β1 < β2, we have |OK(t)| <
|OK ′′| < |K ′′A2(t)| < |K(t)A2(t)| that implies |A1(t)A3(t)| = 2|OK(t)| <
2|K(t)A2(t)| = |A2(t)A4(t)|. On the other hand if A2 lies close enough to A∗

2

then for t = 0 the opposite relation holds.

• β2 > β1, β2 > β3 Let A∗∗
2 be the point on r2 with parallel angle β1 with respect

to r4. Obviously this point lies on the segment OA∗. Denote by K(1) the in-
tersection point r3 ∩ k and choose A2(0) = A2(1) from the segment A∗

2A
∗∗
2 .

Now K(1)A2A1(1)6 < β1, and moreover |A1(1)A3(1)| = 2|K(1)A1(1)| <
2|K(1)A2(1)| = |A2(1)A4(1)|. But if A2 is close to A∗

2 then for t = 0 the
other diagonal would be longer.

• β2 < β1, β2 < β3 (Fig. 8) Here we follow a more sophisticated way giving
first the positions belonging to t = 0 and t = 1, then we give the continuous
deformation by the orbit of the centre K(t) and the method how to construct
the vertices. Denote now by A∗

2 the point of r2 for which the ray parallel
to r3 (r′) makes an angle β1 with r2 and similarly, let A∗

3 be the point of r3

for which the ray parallel to r2 (r′′) makes an angle β3 with r3. Obviously if
A∗

2 = A2(0) then in the corresponding parallelogram the diagonal A1(0)A3(0)
should be longer, whereas for A∗

3 = A3(1) the diagonal A2(1)A4(1) has the same
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property. Denote now the intersection point of r′ and r′′ by M . It is easy to
see that the quadrilateral OA∗

2MA∗
3 is convex implying that its diagonal A∗

2A
∗
3

lies in its interior. The orbit of the centers K(t) consists of the midpoints of
the segments OO(t), where O(t) ∈ A∗

2A
∗
3. The ”intermediate” parallelograms

are obtained by the intersections A3(t) := r′1(t) ∩ r3 and A2(t) := r′4(t) ∩ r2

and by their reflected images to K(t). The following lemma guaranties the
existence of the intersections above.

Lemma 1 Take an inner point P in an asymptotic triangle with angles β2 <
β3 < π

2
. Let the midpoint of the segment OP be denoted by F and reflect OO′

to F : PP ′. If for the point Q; P ′PQ 6 = β3 holds, then the ray PQ does not
intersect the side r′′, opposite to O (Fig. 9).

Proof Denote the common perpendicular of OO′ and PP ′ across F by n.
Because of the angle conditions the point P belongs to the region bounded by
n and r′. The ray QP intersects the line OO′ in R. If R is not on the segment
OO′ then the segment PR intersects r′′ and thus PQ will not intersect. Assume
now that R is on the segment OO′. In the shaded quadrilateral the condition
for the sum of angles is (π − β3) + π

2
+ π

2
+ PRO 6 < 2π, implies PRO 6 < β3.

If the ray RQ intersects r′′ then in that triangle the inner angle at O′ would
be greater than the outer angle at R, a contradiction.

In this way we have completed the proof of the theorem.

Now we turn to the Euclidean case. First we prove a similar statement for
rectangular isosceles triangles as for regular ones above.

Lemma 2 The triangle diagram of Fig. 10 represents the conditions for which a
rectangular isosceles triangle can be constructed for three given rays with angles
β1, β2, 2π − β1 − β2. The numbers in the diagram refer to the number of different
solutions.

(Remark: Any point in the triangular domain uniquely describes a pencil of
three rays and vice versa. For a given point the βi values can be read off by drawing
parallel lines to the sides. The dotted lines in Fig. 10 represent the trivial solution.)

Proof For simplification let us denote the hypotenuse by AB and the corresponding
angle by β2. Similarly let β1 be the angle of AC. We emphasize that β1 can be greater
than β2, there is no ordering for the angles.

Similar arguments as in the case of regular triangles implies the following:

There is a solution if one of the following conditions holds:
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• β2 < π
4

and β1 < π
4
− β2

• β2 < π
2

and β1 < π
4

• β1 = π
4

• β2 = π
2

• π
2

< β2 < 3π
4

and π
4

< β1 < π

• 3π
4

< β2 < π and π
4

< β1 < 7π
4
− β2.

If we release the correspondence between sides and angles we obtain the di-
agram. The number of solutions for given triplet (β1, β2, β3 := 2π − β1 − β2) im-
mediately follows from the enumeration how many times they fulfill the conditions
above. In some cases we have to halve because we construct isosceles triangles.

We can generalize this observation.

Lemma 3 One can construct an obtuse-angled isosceles triangle with greatest angle
σ if the angles β1, β2, 2π − β1 − β2 describe a suitable point in Fig. 11. The number
of solutions can be read off, as well.

Proof Let β2 be the angle to the longest side and β1 the other one. Similarly as
before we have solutions if either

• β2 < σ and β1 < π
2
− σ or

• β2 < π−σ
2

and β1 < π−σ
2
− β2 or

• β1 = π−σ
2

or

• β2 = σ or

• σ < β2 < π+σ
2

and π−β2

2
< β1 < π or

• π+σ
2

< β2 < π and π−σ
2

< β1 < 3π+σ
2
− β2.

The arguments is the same as before.

Now we are ready to formulate our results first for square and later for other
regular n−gons in E2.

Theorem 4 If a right-angled isosceles triangle is constructable for β1, β2, 2π−β1−β2

in E2 then for each solution there exists a unique partition of one of the angles into
two parts such that there exists a square with vertices on the rays and there is no
construction for other angles.
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Proof Let us take an isosceles rectangular triangle and construct the corresponding
pencil. Complete now the triangle to square. This uniquely cuts an angle into two
parts. If we blow up or shrinken the square the fourth vertex remains on the same
ray.

For the general answer we need a new concept: the vertex-triangle of a regular
n−gon in E2 (n > 4) is nothing but the isosceles triangle of three consequtive
vertices.

Theorem 5 Let β1, β2 be given. If one can construct a vertex-triangle of a regular
n−gon for the angles β1, β2, 2π − β1 − β2 in E2 then there is a unique partition of
the angle(s) into altogether n parts such that the rays of the corresponding pencil
contain the vertices of the regular n−gon and there is no solution for other angles.

Proof It is an easy consequence of the fact that a vertex-triangle uniquely defines
the other n− 3 vertices of a regular n−gon. If the common initial point of the rays
falls into the opposite halfplane comparing to the polygon with respect to both of the
side lines of the vertex-triangle then two angles should be cut into parts otherwise
it is enough to partitionate just one of them.

Theorem 6 Let β1, β2, . . . , βk be given in a cyclic ordering (
∑

βi = 2π, βi > 0).
Form three groups from these angles in the following way: take βj alone and group
the remaining angles into two parts: β+

j := ∪t
l=1βj+l; β−j := ∪k−1

l=t+1βj+l. If there
is no solution for none of these partitions β−j , βj, β

+
j then the construction is not

possible for the initial angles (Fig. 12).

This statement is just an easy consequence of the above observations.
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[5] I. Vermes: Über the Regelmässigkeit eines rechteckigen Sechsecks in der hyper-
bolischen Ebene (manuscript), 2001
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