
RELATIVITY THEORY IN TIME-SPACE.

Á.G.HORVÁTH

Abstract. We give the basic formulas of special relativity in a time-space defined by an
earlier paper of the author. We also give the concept of time-space manifold especially
the concept of homogeneous time-space manifold. A homogeneous time-space manifold
is a topological manifold allowed its tangent spaces with the same fixed time-space. In
a homogeneous time-space manifold we give the concepts of global relativity theory, the
concepts of affine connection, parallel transport, curvature tensor and Einstein equation,
respectively.

1. Introduction

In [4] the author constructed a model on the basis of two known concepts of Minkowski
spaces, the space with indefinite inner product (Lorentzian-Minkowski space see e.g. [3],
[14]) and the space with a semi-inner product (finite-dimensional separable Banach space
see in [2], [11], [12] and [13]), respectively. Among other concepts it was given a special
flat-manifold which generalizes the Minkowski-Lorentz manifold (generalized Minkowski
space). For differential-geometric point of view it was investigated in [5] giving the gen-
eralization of the known spaces of constant curvature the hyperbolic (anti-de Sitter), de
Sitter, and Euclidean spaces, respectively embedded in this space. In the own right in
the generalized Minkowski space there is a theory of special relativity which did not in-
vestigate in these theoretical papers. In [7] the concept of generalized Minkowski space
extracted with changing space-like sections into a model called by generalized Minkowski
space with changing shape (briefly time-space), and investigated by mathematical point
of view. It was given two types of this model, a non-deterministic (random) variation and
a deterministic one, respectively. Proved that in a finite range of time the random model
can be approximated by a deterministic model, well. Thus, in practical point of view the
deterministic model has the more important role. The measure of the examined random
model based on the observation that on the space of norms it can be defined a geometric
measure which push-forward onto the line of absolute-time has normally distribution (see
[6]).

More conveniently, it can be defined a time-space via the concept of a shape function.
In Section 2 we give the basic formulas of special relativity in a time-space (these are
depend on the shape function). In Section 3 we embed some known metrics (holding the
Einstein’s equation) into a suitable time-space. We see that time-space is a good place to
visualize of these ones. Of course, basically time-space has a direct product character thus
a lot of metrics there are no natural embedding into it. In the last subsection of Section 3
we define a generalization of the Lorentzian manifold, our tangent spaces are time-spaces
with linear shape-function. A homogeneous time-space manifold is a time-space manifold
allowed the tangent spaces with the same fixed time-space. In a homogeneous time-space
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manifold we give all of the concepts of global relativity theory, the concepts of affine
connection, parallel transport, curvature tensor and Einstein equation, respectively.

The first paragraph contains those basic definitions, notations and statements which
are necessary to the understanding of the present paper.

1.1. Deterministic and random time-space models. We assume that there is an
absolute coordinate system of dimension n in which we are modeling the universe by a
time-space model. The origin is a generalized space-time model (see in [4]) in which the
time axis plays the role of the absolute time. Its points are unattainable and immeasurable
for me and the corresponding line is also in the exterior of the modeled universe. We note
that in the Minkowskian space-time it was assumed only on the axes determining the
space-coordinates. This means that in our model, even though the axis of time belongs
to the double cone of time-like points, its points do not belong to the modeled universe.
In a fixed moment (with respect to this absolute time) the collection of the points of the
space can be regarded as an open ball of the embedding normed space centered at the
origin that does not contain the origin. The omitted point is the origin of a coordinate
system giving the space-like coordinates of the world-points with respect to our time-space
system. Since the points of the axis of the absolute-time are not in our universe there is
no reference system in our modeled world which determines the absolute time.

In our probabilistic model (based on a generalized space-time model) the absolute
coordinates of points are calculated by a fixed basis of the embedding vector space. The
vector s(τ) means the collection of the space-components with respect to the absolute
time τ , the quantity τ has to be measured on a line T which orthogonal to the linear
subspace S of the vectors s(τ). (The orthogonality was considered as the Pythagorean
orthogonality of the embedding normed space.) Consider a fixed Euclidean vector space
with unit ball BE on S and use its usual functions e.g. volume, diameter, width, thinness
and Hausdorff distance. With respect to the moment τ of the absolute time we have a
unit ball K(τ) in the corresponding normed space {S, ‖ · ‖τ}. The modeled universe at
τ is the ball τK(τ) ⊂ {S, ‖ · ‖τ}. The shape of the model at the moment τ depends on
the shape of the centrally symmetric convex body K(τ). The center of the model is on
the axis of the absolute time, it cannot be determined. For calculations on time-space we
need further smoothness properties on K(τ). These are

• K(τ) is a centrally symmetric, convex, compact, C2 body of volume vol(BE).
• For each pairs of points s′, s′′ the function

K : R+ ∪ {0} → K0 , τ 7→ K(τ)

holds the property that [s′, s′′]τ : τ 7→ [s′, s′′]τ is a C1-function.

Definition 1. We say that a generalized space-time model endowed with a function K(τ)
holding the above properties is a deterministic time-space model.

The main subset of a deterministic time-space model contains the points of negative
norm-square. This is the set of time-like points and the upper connected sheet of the
time-like points is the modeled universe. The points of the universe have positive time-
components. We denote this model by (M,K(τ)) .

Of course, we should choose the function K(τ) “randomly”. To this purpose we use
Kolmogorov’s extension theorem (or theorem on consistency, see in [10]). This says that a
suitably ”consistent” collection of finite-dimensional distributions will define a probability
measure on the product space. The sample space here is K0 with the Hausdorff distance.
It is a locally compact, separable (second-countable) metric space. By Blaschke’s selection
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theorem K is a boundedly compact space so it is also complete. It is easy to check that K0

is also a complete metric space if we assume that the non-proper bodies (centrally sym-
metric convex compact sets with empty interior) also belong to it. In the remaining part
we regard such a body as the unit ball of a normed space of smaller dimension. Finally,
let P be a probability measure. In every moment we consider the same probability space
(K0, P ) and also consider in each of the finite collections of moments the corresponding
product spaces ((K0)

r, P r) . The consistency assumption of Kolmogorov’s theorem now

automatically holds. By the extension theorem we have a probability measure P̂ on the
measure space of the functions on T to K0 with the σ-algebra generated by the cylinder
sets of the space. The distribution of the projection of P̂ to the probability space of a fix
moment is the distribution of P .

Definition 2. Let (Kτ , τ ≥ 0) be a random function defined as an element of the Kol-

mogorov’s extension
(
ΠK0, P̂

)
of the probability space (K0, P ). We say that the general-

ized space-time model with the random function

K̂τ :=
n

√
vol(BE)

vol(Kτ )
Kτ

is a random time-space model. Here α0(Kτ ) is a random variable with truncated normal
distribution and thus (α0(Kτ ) , τ ≥ 0) is a stationary Gaussian process. We call it the
shape process of the random time-space model.

It is clear that a deterministic time-space model is a special trajectory of the random
time-space model. The following theorem is essential.

Theorem 1 ([7]). For a trajectory L(τ) of the random time-space model, for a finite set
0 ≤ τ1 ≤ · · · ≤ τs of moments and for a ε > 0 there is a deterministic time-space model
defined by the function K(τ) for which

sup
i

{ρH (L(τi), K(τi))} ≤ ε.

An important consequence of Theorem 1 is then that without loss of generality we can
assume, that the time-space model is deterministic.

Definition 3. For two vectors s1 + τ1 and s2 + τ2 of the deterministic time-space model
define their product with the equality

[s1 + τ1, s2 + τ2]
+,T := [s1, s2]

τ2 + [τ1, τ2] =

= [s1, s2]
τ2 − τ1τ2.

Here [s1, s2]
τ2 means the s.i.p defined by the norm ‖ · ‖τ2. This product is not a

Minkowski product, as there is no homogeneity property in the second variable. On the
other hand the additivity and homogeneity properties of the first variable, the properties
on non-degeneracy of the product are again hold, and the continuity and differentiability
properties of this product also remain the same as of a Minkowski product. The calcula-
tions in a generalized space-time model basically depend on a rule on the differentiability
of the second variable of the Minkowski product. As a basic tools of investigations we
proved in [7] that

Theorem 2 ([7]). If f1, f2 : S −→ V = S + T are two C2 maps and c : R −→ S is an
arbitrary C2 curve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]
+,T )′ =
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= [D(f1 ◦ c)(t), f2(c(t))]
+,T +

(
[f1(c(t)), ·]

+,T
)′
D(f2◦c)(t)

(f2(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t)

The theory of generalized space-time model can be used in a generalization of special
relativity theory, if we change some previous formulas using also the constant c. (It is
practically can be considered as the speed of the light in vacuum.) The formula of the
product in such a deterministic (random) time-space was

[x′, x′′]+,T := [s′, s′′]τ
′′

+ c2 [τ ′, τ ′′] .

Parallel we used the assumption that the dimension n is equal to 4. A particle is a random
function x : Ix → S holding two conditions:

• the set Ix ⊂ T+ is an interval
• [x(τ), x(τ)]τ < 0 if τ ∈ Ix.

The particle lives on the interval Ix, is born at the moment inf Ix and dies at the moment
sup Ix. Since all time-sections of a time-space model is a normed space of dimension n
the Borel sets of the time-sections are independent from the time. This means that we
could consider the physical specifies of a particle as a trajectory of a stochastic process. A
particle “realistic” if it holds the “known laws of physic” and “idealistic” otherwise. This
is only a terminology for own use, the mathematical contain of the expression “known
laws of physics” is indeterminable. First we introduced an inner metric δK(τ) on the space
at the moment τ .

Definition 4. Let X(τ) : T → τK(τ) be a continuously differentiable (by the time)
trajectory of the random function (x(τ) , τ ∈ Ix). We say that the particle x(τ) is realistic
in its position if for every τ ∈ Ix the random variable δK(τ) (X(τ), x(τ)) has normal

distribution on τK(τ). In other words the stochastic process
(
δK(τ) (X(τ), x(τ)) , τ ∈ Ix

)

has stationary Gaussian process with respect to a given continuously differentiable function
X(τ). We call the function X(τ) the world-line of the particle x(τ).

We note that the concept of ”realistic in its position” is independent from the choice
of δK(τ). As a refinement of this concept we defined another one, which can be considered
as a generalization of the principle on the maximality of the speed of the light.

Definition 5. We say that a particle realistic in its speed if it is realistic in its position
and the derivatives of its world-line X(τ) are time-like vectors.

For such two particles x′, x′′ which are realistic in their position we can define a mo-
mentary distance by the equality:

δ(x′(τ), x′′(τ)) = ‖X ′(τ)−X ′′(τ)‖τ =
√

[X ′(τ)−X ′′(τ), X ′(τ)−X ′′(τ)]+,T .

We could say that two particles x′ and x′′ are agree if the expected value of their distances
is equal to zero. Let I = Ix′ ∩ Ix′′ be the common part of their domains. The required
equality is:

E(δK(τ)(x
′(τ), x′′(τ))) =

∫

I

δK(τ)(x
′(τ), x′′(τ))dτ =

=

∫

I

‖X ′(τ)−X ′′(τ)‖τdτ = 0.

In a deterministic time-space we have a function K(τ), and we have more possibilities to
define orthogonality in a concrete moment τ . We shall fixe a concept of orthogonality
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and we will consider it in every normed space. In the case when the norm induced by
the Euclidean inner product this method should give the same result as the usual concept
of orthogonality. The most natural choice is the concept of Birkhoff orthogonality (see
in [4]). Using it, in every normed space we could consider an Auerbach basis (see in [4])
which can play the role of a basic coordinate frame. We could determine the coordinates
of the point with respect to this basis. We said that a frame is at rest with respect to the
absolute time if its origin (as a particle) is at rest with respect to the absolute time τ and
the unit vectors of its axes are at rest with respect to a fixed Euclidean orthogonal basis
of S. In S we fix an Euclidean orthonormal basis and give the coordinates of a point
(vector) of S with respect to this basis. We get curves in S parameterized by the time τ .
We defined the concept of a frame as follows.

Definition 6. The system {f1(τ), f2(τ), f3(τ), o(τ)} ∈ (S, ‖ · ‖+τ )× τK(τ) is a frame, if

• o(τ) is a particle realistic in its speed, with such a world-line

O(τ) : T → τK(τ)

which does not intersect the absolute time axis T ,
• the functions

fi(τ) : T → ∪{(S, ‖ · ‖τ ) , τ ∈ T}

are continuously differentiable, for all fixed τ ,
• the system {f1(τ), f2(τ), f3(τ)} is an Auerbach basis with origin O(τ) in the space
(S, ‖ · ‖τ ).

Note, that for a good model we have to guarantee that Einstein’s convention on the
equivalence of the inertial frames can be remained for us. However at this time we have no
possibility to give the concepts of ”frame at rest” and the concept of ”frame which moves
constant velocity with respect to another one”. The reason is that when we changed the
norm of the space by the function K(τ) we concentrated only the change of the shape
of the unit ball and did not use any correspondence between the points of the two unit
balls. Obviously, in a concrete computation we should proceed vice versa, first we should
give a correspondence between the points of the old unit ball and the new one and this
implies the change of the norm. To this purpose we may define a homotopic mapping K

which describes the deformation of the norm.

Definition 7. Consider a homotopic mapping K (x, τ) : (S, ‖ · ‖E) × T → (S, ‖ · ‖E)
holding the assumptions:

• K (x, τ) is homogeneous in its first variable and continuously differentiable in its
second one,

• K ({e1, e2, e3}, τ) is an Auerbach basis of (S, ‖ · ‖τ) for every τ ,
• K (BE, τ) = K(τ).

Then we say that the function K (x, τ) is the shape-function of the time-space.

The mappingK (x, τ) determines the changes at all levels. For example we can consider
a frame is “at rest” if its change arises only from this globally determined change, and
“moves with constant velocity” if its origin has this property and the directions of its axes
are “at rest”. Precisely, we said, that

Definition 8. The frame {f1(τ), f2(τ), f3(τ), o(τ)} moves with constant velocity with
respect to the time-space if for every pairs τ , τ ′ in T+ we have

fi(τ) = K (fi(τ
′), τ) for all i with 1 ≤ i ≤ 3
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and there are two vectors O = o1e1 + o2e2 + o3e3 ∈ S and v = v1e1 + v2e2 + v3e3 ∈ S that
for all values of τ we have

O(τ) = K(O, τ) + τK(v, τ).

A frame is at rest with respect to the time-space if the vector v is the zero vector of S.

Consider the derivative of the above equality by τ . We get that

Ȯ(τ) =
∂K(O, τ)

∂τ
+K(v, τ) + τ

∂K(v, τ)

∂τ
,

showing that for such a homotopic mapping, which is constant in the time O(τ), is a line
with direction vector v through the origin of the time space. Similarly in the case when
v is the zero vector it is a vertical (parallel to T ) line-segment through O.

We can re-define the concept of time-axes,too.

Definition 9. The time-axis of the time-space model is the world-line O(τ) of such a
particle which moves with constant velocity with respect to the time-space and starts from
the origin. More precisely, for the world-line (O(τ), τ) we have K(O, τ) = 0 and hence
with a given vector v ∈ S,

O(τ) = τK(v, τ).

Remark. Note that the shape-function is linear in its first variable then all sections
define by τ = const. are Euclidean spaces. This is the case when the shape-function is of
the form:

K(v, τ) = f(τ)A(s),

where f is a continuously differentiable function and A : S −→ S is a linear mapping.

2. On the formulas of special relativity theory

In this section we assume that the shape-function is a two-times continuously differ-
entiable function, so it is a C2 function. We need two further axioms to interpret in
time-space of the usual axioms of special relativity theory. First we assume that:

Axiom 1. The laws of physics are invariant under transformations between frames. The
laws of physics will be the same whether you are testing them in frame ”at rest”, or a
frame moving with a constant velocity relative to the ”rest” frame.

Axiom 2. The speed of light in a vacuum is measured to be the same by all observers in
frames.

These two axioms can be transformed into the language of the time-space by the method
of Minkowski [14]. To this we use the imaginary sphere Hc of parameter c introduced
in the previous subsection and the group Gc as the set of those isometries of the space
which leave invariant this sphere of parameter c. Such an isometry can be interpreted as
a coordinate transformation of the time-space which sends the axis of the absolute time
into another time-axis t′, and also maps the intersection point of the absolute time-axis
with the imaginary sphere Hc into the intersection point of the new time-axis and Hc.
An isometry of the time-space is also a homeomorphism thus it maps the subspace S
into a topological hyperplane S ′ of the embedding normed space. S ′ is orthogonal to the
new time-axis in the sense that its tangent hyperplane at the origin is orthogonal to t′

with respect to the product of the space. Of course the new space-axes are continuously
differentiable curves in S ′ which tangents at the origin are orthogonal to each other. Since
the absolute time-axis is orthogonal to the imaginary sphere Hc the new time-axis t′ must
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holds this property, too. Thus the investigations in the previous section are essential from
this point of view. Assuming that the definition of the time-space implies this property we
can get some formulas similar to of special relativity. We note that the function K(v, τ)
holds the orthogonality property of vectors of S and by the equality

[K(v, τ),K(v, τ)]τ = ‖v‖2E

we can see also that the formulas on time-dilatation and length-contraction are valid, too.
This implies that using the well-known notations

β =
‖v‖E
c

γ =
1√

1− β2

we get that the connection between the time τ0 and τ of an event measuring by two
observers one of at rest and the other moves with an constant velocity ‖v‖E with respect
to the time-space is

τ = γτ0.

Similarly if we consider a moving rod which points move constant velocity with respect
to the time space such that it is always parallel to the velocity vector K(v, τ). Then we
have

‖v‖E =
L0

T
where T is the time calculated from the length L0 and the velocity vector v by such an
observer which moves with the rod. Another observer can calculate the length L from the
measured time T0 and the velocity v by the formula

‖v‖E =
L

T0
.

Using the above formula of dilatation we get the known Fitzgerald contraction of the rod:

L = L0

√
1− β2 =

L0

γ
.

2.1. Lorentz transformation. Lorentz transformation in time space also based on the
usual experiment in which we send a ray of light to a mirror in direction of the unit vector
e with distance d from me.

2.1.1. Deduction of Lorentz transformation in time-space. If we at rest we can determine
in time space the points A, C and B of departure, turn and arrival of the ray of light,
respectively. A and B are on the absolute time-axis at heights τA, and τB, respectively.
The position of C is

(τC − τA)K(ce, τC − τA) + τCe4 =
τB − τA

2
K

(
ce,

τB − τA
2

)
+
τB + τA

2
e4,

since we know that the light take the road back and forth over the same time. We observe
that the norm of the space-like component sC is

‖sC‖
τC = c

τB − τA
2

as in the usual case of space-time.

The moving observer synchronized its clock with the observer at rest in the origin, and
moves in the direction v with velocity ‖v‖E. We assume that the moving observer also
sees the experiment thus its time-axis corresponding to the vector v meats the world-line
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of the light in two points A′ and B′ positioning on the respective curves AC and CB.
This implies that the respective space-like components of the world-line of the light and
the world-line of the axis are parallels to each other in every minutes. By formula we
have:

‖v‖EK(e, τ) = K(v, τ).

From this we get the equality

τA′K(v, τA′) + τA′e4 = (τA′ − τA)K(ce, τA′ − τA) + τA′e4.

This implies that

τA′

2‖v‖E
2 − c2τA′

2 = (τA′ − τA)
2c2 − c2τA′

2

and thus

τA′ =
c

c− ‖v‖E
τA.

The proper time (τA′)0 is

(τA′)0 =
√

1− β2
c

c− ‖v‖E
τA = τA

√
1 + β

1− β
.

Similarly we also get that

(τB′)0 = τB

√
1− β

1 + β
,

and we determine the new time coordinate of the point C with respect to the new coor-
dinate system:

(τC)0 =
(τA′)0 + (τB′)0

2
=

1

2

(
τA

√
1 + β

1− β
+ τB

√
1− β

1 + β

)
.

Since we have that the norm of the space-like component is

‖sC‖E = c
τB − τA

2
,

we get that

τA = τC −
‖sC‖E
c

and τB = τC +
‖sC‖E
c

and thus

(τC)0 =
1

2

((
τC −

‖sC‖E
c

)√
1 + β

1− β
+

(
τC +

‖sC‖E
c

)√
1− β

1 + β

)
=

=
τC − β‖sC‖E

c√
1− β2

=
τC − ‖v‖E‖sC‖E

c2√
1−

‖v‖2
E

c2

=
τC − [K(sC ,τC),K(v,τC )]τC

c2√
1−

‖v‖2
E

c2

.

On the other hand we also have that the space-like component ((sC)0)S of the transformed
space-like vector (sC)0 arise also from a vector parallel to e thus it is of the form

K(((sC)0)S, τ) = ‖((sC)0)S‖EK(e, τ).

For the norm of (sC)0 we know that

‖(sC)0‖
+,T = c

(τB′)0 − (τA′)0
2

,
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hence

‖(sC)0‖
+,T =

‖sC‖E − ‖v‖EτC√
1−

‖v‖2
E

c2

.

If we consider the vector

(̂sC)0 = γ (K(sC, τC)−K(v, τC)τC) ∈ S,

we get a norm-preserving, bijective mapping L̂ from the world-line of the light into S with
the definition

L̂ : K((sC)0, (τC)0) 7→ γ (K(sC , τC)−K(v, τC)τC) .

The connection between the space-like coordinates of the point with respect to the two
frames now has a more familiar form. Henceforth the Lorentz transformation means for
us the correspondence:

s 7→ K̂(s′, τ ′) = γ (K(s, τ)−K(v, τ)τ)

τ 7→ τ ′ = γ

(
τ −

[K(s, τ),K(v, τ)]τ

c2

)
,

and the inverse Lorentz transformation the another one

K̂(s′, τ ′) 7→ K(s, τ) = γ (K(s′, τ ′) +K(v, τ ′)τ ′)

τ ′ 7→ τ = γ

(
τ ′ +

[K(s′, τ ′),K(v, τ ′)]τ
′

c2

)
.

2.1.2. Consequences of Lorentz transformation. First note that we can determine the
components of (sC)0 with respect to the absolute coordinate system, too. Since (sC)0 and
τK(v, τ) + τe4 are orthogonal to each other we get that

[K(((sC)0)S, τC),K(v, τC)]
τC = c2((sC)0)T ,

implying that

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
.

Thus we get the equality

‖((sC)0)S‖
2
E

(
1− c2

(
‖v‖E
c2

)2
)

=


‖sC‖E − ‖v‖EτC√

1−
‖v‖2

E

c2




2

,

implying that

‖((sC)0)S‖E =
‖sC‖E − ‖v‖EτC(

1−
‖v‖2

E

c2

) = γ2 (‖sC‖E − ‖v‖EτC)

and

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
=

‖v‖E‖sC‖E − ‖v‖2EτC
c2 − ‖v‖2E

.

We get that

(sC)0 = γ2 (‖sC‖E − ‖v‖EτC)

(
K(e, τC) +

‖v‖E
c2

e4

)
=

= γ2 (K(sC , τC)−K(v, τC)τC) +

(
γ

1− γ

)2

(‖sC‖E − ‖v‖EτC) e4.
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We can determine also the length of this vector in the new coordinate system, too. Since

[(sC)0, (sC)0]
+,T =

(
‖(sC)0‖

+,T
)2

=
(‖sC‖

τC − ‖v‖EτC)
2

1−
‖v‖2

E

c2

=

=
[sC , sC]

τC − 2‖sC‖
τC‖v‖EτC + (‖v‖EτC)

2

1−
‖v‖2

E

c2

and

((τC)0)
2 =

(τC)
2 − 2τC

‖v‖E‖sC‖τC

c2
+ (‖v‖E‖sC‖τC )2

c4

1−
‖v‖2

E

c2

,

hence the equality

[(sC)0, (sC)0]
+,T − c2 ((τC)0)

2 = [sC , sC]
τC − c2 (τC)

2

shows that under the action of the Lorentz transformation the ”norm-squares” of the
vectors of the time-space are invariant as in the case of the usual space-time.

Finally we determine those points of the space which new time-coordinates are zero
and thus we get a mapping from the subspace S into the time-space. Let s ∈ S arbitrary
and consider the corresponding point K(s, τ) + τe4 and assume that

0 = τ0 = γτ − γ
‖v‖E
c2

‖K(s, τ)‖τ ,

hence

τ =
‖v‖E‖s‖E

c2
.

Then we get the mapping of the coordinate subspace S under the action of the isometry
corresponding to that Lorentz transformation which sends the absolute time-axis into the
time-axis τK(v, τ) + τe4 in question. This is the set

S0 =

{
K

(
s,
‖v‖E‖s‖E

c2

)
+

‖v‖E‖s‖E
c2

e4 | s ∈ S

}
.

For a boost in an arbitrary direction with velocity v, it is convenient to decompose the
spatial vector s into components perpendicular and parallel to v:

s = s1 + s2

so that

[K(s, τ),K(v, τ)]τ = [K(s1, τ),K(v, τ)]τ + [K(s2, τ),K(v, τ)]τ = [K(s2, τ),K(v, τ)]τ .

Then, only time and the component K(s2, τ) in the direction of K(v, τ);

τ ′ = γ

(
τ −

[K(s, τ),K(v, τ)]τ

c2

)

K̂(s′, τ ′) = K(s1, τ) + γ(K(s2, τ)−K(v, τ)τ)

are ”distorted” by the Lorentz factor γ. The second equality can be written also in the
form:

ŝ′ = K(s, τ) +

(
γ − 1

‖v‖2E
[K(s, τ),K(v, τ)]τ − γτ

)
K(v, τ).

Remark. If we have two time-axes τK(v′, τ) + τe4 and τK(v′′, τ) + τe4 then there
are two subgroups of the corresponding Lorentz transformations mapping the absolute
time-axis onto another time-axes, respectively. These two subgroups are also subgroups
of Gc. Their elements can be paired on the base of their action on S. The pairs of these
isometries define a new isometry of the space (and its inverse) on a natural way, with the
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composition one of them and the inverse of the other. Omitting the absolute time-axis
from the space (as we suggest earlier) the invariance of the product on the remaining
space and also the physical axioms of special relativity can remain in effect.

2.1.3. Addition of velocities. If K(u, τ) and K(v, τ ′) are two velocity vectors then using
the formula for inverse Lorentz transformation of the corresponding differentials we get
that

dτ = γ

(
dτ ′ +

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

c2

)

and

K(ds, dτ) = K(dŝ′, dτ ′) +

(
1− γ

‖v‖2E
[K(dŝ′, dτ ′),K(v, τ ′)]τ

′

+ γdτ ′
)
K(v, τ ′).

Thus

K(u, τ) =
K(ds, dτ)

dτ
=

K(dŝ′, dτ ′) +
(

1−γ
‖v‖2

E

[K(dŝ′, dτ ′),K(v, τ ′)]τ
′

+ γdτ ′
)
K(v, τ ′)

γ
(
dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ ′

c2

) =

=

(
K(v, τ ′) + 1

γ

K(dŝ′,dτ ′)
dτ ′

+ 1+γ
γc2

[
K(dŝ′,dτ ′)

dτ ′
,K(v, τ ′)

]τ ′
K(v, τ ′)

)

1 +

[
K(d ̂s′,dτ ′)

dτ ′
,K(v,τ ′)

]τ ′

c2

=

(
K(v, τ ′) + 1

γ
K(u′, dτ ′) + 1+γ

γc2
[K(u′, dτ ′),K(v, τ ′)]τ

′

K(v, τ ′)
)

1 + [K(u′,dτ ′),K(v,τ ′)]τ ′

c2

.

2.2. Acceleration, momentum and energy. Our starting point is the velocity vector
(or four-velocity). The absolute time coordinate is τ , this defines a world line of form

S(τ) = K(s(τ), τ) + τe4. Its proper time is τ0 =
τ
γ
= τ

√
1−

‖v‖2
E

c2
, where v is the velocity

vector of the moving frame. By definition

V (τ) :=
dS(τ)

dτ0
= γ

(
d(K(s(τ), τ))

dτ
+ e4

)
.

If the shape-function is a linear mapping then d(K(s(τ),τ))
dτ

= K(ṡ(τ), 1) := K(v(τ), 1) and
we also have

[V (τ), V (τ)]+,T = γ2
(
[K(v(τ), 1),K(v(τ), 1)]1 − c2

)
= −c2.

The acceleration is defined as the change in four-velocity over the particle’s proper time.
Hence now the velocity of the particle is also a function of τ as without γ we have the
function γ(τ). The definition is:

A(τ) :=
dV

dτ0
= γ(τ)

dV

dτ
= γ2(τ)

d2K(s(τ), τ)

dτ 2
+ γ(τ)γ′(τ)

d(K(s(τ), τ))

dτ
+ γ(τ)γ′(τ)e4,

where with notation a(τ) = v′(τ) = s′′(τ),

γ′(τ) =


 1√

1−
‖v(τ)‖2

E

c2




′

=


 1√

1− [K(v(τ),1),K(v(τ),1)]1

c2




′

=
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=

[
d(K(v(τ),1)

dτ
,K(v(τ), 1)

]1

c2
(
1− [K(v(τ),1),K(v(τ),1)]1

c2

) 3
2

=

[
d(K(v(τ),1)

dτ
,K(v(τ), 1)

]1

c2
γ3(τ),

In the case of linear shape-function it has the form

A(τ) = γ2(τ)K(a(τ), 0) + γ(τ)γ′(τ)K(v(τ), 1)) + γ(τ)γ′(τ)e4,

Since in this case [V (τ), V (τ)]+,T = −c2, we have

[A(τ), V (τ)]T,+ = γ3(τ)
(
[K(a(τ), 0),K(v(τ), 1)]1+

+γ2(τ)
[K(a(τ), 0),K(v(τ), 1)]1

c2
‖v(τ)‖2E − γ2(τ) [K(a(τ), 0),K(v(τ), 1)]1

)
=

= γ3(τ)

(
[K(a(τ), 0),K(v(τ), 1)]1 −

c2 − ‖v(τ)‖2E
c2 − ‖v(τ)‖2E

[K(a(τ), 0),K(v(τ), 1)]1
)

= 0.

By Theorem 2 on the derivative of the product (corresponding to smooth and strictly
convex norms) we also get this result, in fact we have

0 =
d[V (τ), V (τ)]+,T

dτ
= 2

[
dV

dτ
, V

]+,T
+
∂[V (τ), V (τ)]τ

∂τ
(1) · 0 =

2

γ
[A(τ), V (τ)]+,T .

Also in the case of linear shape-function the momentum is

P = m0V = γm0 (K(v(τ), τ) + e4)

where m0 is the invariant mass. We also have that

[P, P ]+,T = γ2m2
0(‖v‖

2
E − c2) = (m0c)

2.

Similarly the force is

F =
dP

dτ
= m0γ

2(τ)K(a(τ), τ) + γ(τ)γ′(τ)K(v(τ), τ)) + γ(τ)γ′(τ)e4,

and thus holds

[F, V ]+,T = 0.

3. General relativity theory

In time-space there is a way to describe and visualize certain spaces which are so-
lutions of Einstein’s equation. The first method is when we embed into an at least
four-dimensional time-space a four-dimensional manifold which inner metric is a solution
of the Einstein equation. Our basic references here are the books [1] and [8].

3.1. Metrics embedded into a time-space.
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3.1.1. Minkowski-Lorentz metric. The simplest example of a Lorentz manifold is the flat-
space metric which can be given as R4 with coordinates (t, x, y, z) and the metric function:

ds2 = −c2dt2 + dx2 + dy2 + dz2.

In the above coordinates, the matrix representation is

η =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




In spherical coordinates (t, r, θ, φ), the flat space metric takes the form

ds2 = −c2dt2 + dr2 + r2dΩ2.

Here f(r) ≡ 0, g = id and τ = t implying that K (v, τ) = v and the hypersurface is the
light-cone defined by τ = ‖v‖E. It can be considered also in a 5-dimensional time-space
with shape-function K (v, τ) = v as the metric of a 4-dimensional subspace through the
absolute time-axis. By the equivalence of time axes in a usually space-time it also can
be considered as arbitrary subspace distinct to the 4-dimensional subspace of space-like
vectors, too.

3.1.2. The de Sitter and the anti-de Sitter metrics. The de Sitter space is the space defined
on the de Sitter sphere of a Minkowski space of one higher dimension. Usually the metric
can be considered as the restriction of the Minkowski metric

ds2 = −c2dt2 + dx21 + dx22 + dx23 + dx24

to the sphere −x20 + x21 + x22 + x23 + x24 = α2 = 3
Λ
, where Λ is the cosmological constant

(see e.g. in [8]). Using also our constant c this latter equation can be rewrite as

−ct2 + (x′1)
2 + (x′2)

2 + (x′3)
2 + (x′4)

2 = 1 where x0 = t ,
1

α
= c and x′i =

1

α
xi.

This shows that in the 5-dimensional time space with shape-function K (v, τ) = v it is
the hyperboloid with one sheet with circular symmetry about the absolute time-axis.

The anti-de Sitter space is the hyperbolic analogue of the elliptic de Sitter space.
The Minkowski space of one higher dimension can be restricted to the so called anti-
de Sitter sphere (also called by in our terminology as imaginary sphere) defined by the
equality −x20 + x21 + x22 + x23 = −α2. The shape function again is K (v, τ) = v and the
corresponding 4-submanifold is the hyperboloid of two sheets with hyperplane symmetry
as the 4-subspace S of space-time vectors.

3.1.3. Friedmann-Lemâıtre-Robertson-Walker metrics. A standard metric forms of the
Friedmann-Lemâıtre-Robertson-Walker metrics (F-L-R-W) family of space-times can be
obtained by using suitable coordinate parameterizations of the 3-spaces of constant cur-
vature. One of its forms is

ds2 = −dt2 +
R2(t)

1 + 1
4
k(x2 + y2 + z2)

(
dx2 + dy2 + dz2

)

where k ∈ {−1, 0, 1} is fixed. By the parametrization τ = t this metric is the metric of a
time-space with shape-function K (v, τ). Observe that

‖v‖2E = [K (v, τ) ,K (v, τ)]τ =
R2(τ)

1 + 1
4
k‖v‖2E

‖K (v, τ) ‖2E.
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Note that we can choose the constant k also as a function of the absolute time τ giving
a deterministic time-space with more generality. Hence the shape-function is

K (v, τ) =

√
1 + 1

4
k(τ)‖v‖2E

R(τ)
v.

3.2. Three-dimensional visualization of a metric in a four-time-space. The sec-
ond method is when we consider a four-dimensional time-space and a three-dimensional
sub-manifold in it with the property that the metric of the time-space at the points of the
sub-manifold can be corresponded to the given one. This method gives a good visualiza-
tion of the solution in a case when the examined metric has some speciality e.g. there is
no dependence on time or (and) the metric has a spherical symmetry. The examples of
this section are also semi-Riemannian manifolds. We consider now such solutions which
have the form:

ds2 = −(1 − f(r))c2dt2 +
1

1− f(r)
dr2 + r2(dθ2 + sin2 θdφ2)

where

dΩ2 := dθ2 + sin2 θdφ2

is the standard metric on the 2-sphere. Thus we have to search a shape function K (v, τ)
of the embedding space and a sub-manifold of it on which the Minkowski-metric gives the
required one. If the metric isotropic we have a chance to give it by isotropic coordinates.
To this we substitute the parameter r by the function r = g(r⋆), and solve the differential
equation:

f(g(r⋆)) = 1−

(
r⋆g′(r⋆)

g(r⋆)

)2

for the unknown function g(r⋆). Then we get the metric in the isotropic form

ds2 = −

(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2
(
dr⋆2 + r⋆2(dθ2 + sin2 θdφ2)

)
.

For isotropic rectangular coordinates x = r⋆ sin θ cosφ, y = r⋆ sin θ sinφ and z = r⋆ cos θ
the metric becomes

ds2 = −

(
r⋆g′(r⋆)

g(r⋆)

)2

c2dt2 +
g2(r⋆)

r⋆2
(
dx2 + dy2 + dz2

)
,

where r⋆ =
√
x2 + y2 + z2. From this substituting ds2 = 0 and rearranging the equality,

we get that the velocity of the light is
√

dx2

dt2
+

dy2

dt2
+

dz2

dt2
=
r⋆2g′(r⋆)

g2(r⋆)
c,

independent from its direction and varies with only the radial distance r⋆ (from the point
mass at the origin of the coordinates). In the points of the hypersurface t = r⋆ =√
x2 + y2 + z2 the metric can be parameterized by the time:

ds2 = −

(
tg′(t)

g(t)

)2

c2dt2 +
g2(t)

t2
(
dx2 + dy2 + dz2

)
,

and from the equation
tg′(t)

g(t)
dt = dτ
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we can give a re-scale of the time by the parametrization

τ :=

∫
t
g′(t)

g(t)
dt = t ln(g(t))−

∫
ln(g(t))dt.

From this equation we determine the inverse function ĝ for which t = ĝ(τ). Since ĝ(τ) =

t = r⋆ =
√
x2 + y2 + z2 we also have that the examined set of points of the space-time is

a hypersurface defined by the equality:

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)√
x2 + y2 + z2.

This implies a new form of the metric at the points of this hypersurface:

ds2 = −c2dτ 2 +
g2(ĝ(τ))

ĝ(τ)2
(
dx2 + dy2 + dz2

)
.

The corresponding inner product has the matrix form:



−c2 0 0 0

0 g2(ĝ(τ))

ĝ(τ)2
0 0

0 0 g2(ĝ(τ))

ĝ(τ)2
0

0 0 0 g2(ĝ(τ))

ĝ(τ)2




and hence the Euclidean lengthes of the vectors of the space depend only on the absolute
moment τ in which we would like to measure it. Thus we can visualize the examined
metric as a metric at the points of the hypersurface

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)
‖v‖E

of certain time-space. We note that this is not the inner metric of the examined surface
of dimension 3 which can be considered as metric of a three-dimensional space-time. To
determine the shape-function observe that

‖v‖2E = [K (v, τ) ,K (v, τ)]τ =
g2(ĝ(τ))

ĝ(τ)2
‖K (v, τ) ‖2E

from which we get that

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v.

We now give some examples.

3.2.1. Schwarzschild metric. Besides the flat space metric the most important metric in
general relativity is the Schwarzschild metric which can be given in the set of local polar-
coordinates (t, r, ϕ, θ) by

ds2 = −

(
1−

2GM

c2r

)
c2dt2 +

(
1−

2GM

c2r

)−1

dr2 + r2dΩ2

where, again, dΩ2 is the standard metric on the 2-sphere. Here G is the gravitation
constant and M is a constant with the dimensions of mass. The function f is

f(r) =
2GM

c2r
:=

rs
r

with constant rs =
2GM

c2
.
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The differential equation on g is

rs
g(r⋆)

= 1−

(
r⋆g′(r⋆)

g(r⋆)

)2

with the solution

g(r⋆) =
rs
4
c1r

⋆

(
1 +

1

c1r⋆

)2

,

and if we choose 4
rs

the parameter c1 we get the known (see in [1]) solution

g(r⋆) = r⋆
(
1 +

rs
4r⋆

)2
.

For isotropic rectangular coordinates the metric becomes

ds2 = −
(1− rs

4r⋆
)2

(1 + rs
4r⋆

)2
c2dt2 +

(
1 +

rs
4r⋆

)4
(dx2 + dy2 + dz2).

The equation between τ and t is

τ =

∫
(1− rs

4t
)

(1 + rs
4t
)
dt =

∫
4t− rs
4t+ rs

dt = t− 2rs

∫
1

4t+ rs
dt = t−

rs
2
ln
(
t+

rs
4

)
+ C.

Of course we can choose C = 0. Similarly to the known tortoise-coordinates there is
no explicite inverse function of this parametrization which we denote by ĝ(τ) = t. The
shape-function of the corresponding time-space is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

(
1 +

rs
4ĝ(τ)

)−2

v.

3.2.2. Reissner-Nordström metric. In spherical coordinates (t, r, θ, φ), the line element for
the Reissner-Nordström metric is

ds2 = −

(
1−

rS
r
+
r2Q
r2

)
c2 dt2 +

1

1− rS
r
+

r2
Q

r2

dr2 + r2 dθ2 + r2 sin2 θdφ2,

here again t is the time coordinate (measured by a stationary clock at infinity), r is the
radial coordinate, rS = 2GM/c2 is the Schwarzschild radius of the body, and rQ is a
characteristic length scale given by

r2Q =
Q2G

4πε0c4
.

Here 1/4πε0 is the Coulomb force constant. The function f is

f(r) =
rs
r
−
r2Q
r2

The differential equation on g is

rs
g(r⋆)

−
r2Q

g2(r⋆)
= 1−

(
r⋆g′(r⋆)

g(r⋆)

)2

with the solution

g(r⋆) =

√
r2s
4
− r2Q

c1
2
r⋆
(
1 +

1

c1r⋆

)2

−

√
r2s
4

− r2Q +
rs
2
,



RELATIVITY THEORY IN TIME-SPACE. 17

if we choose c1 :=
2√

r2s
4
−r2

Q

we get a more simple form:

g(r⋆) = r⋆


1 +

√
r2s
4
− r2Q

2r⋆




2

−

√
r2s
4

− r2Q +
rs
2

= r⋆

(
1 +

r2s
4
− r2Q
4r⋆2

)
+
rs
2
.

For the isotropic rectangular coordinates we have:

ds2 = −




r⋆
(
1−

r2s
4
−r2Q

4r⋆2

)

r⋆
(
1 +

r2s
4
−r2

Q

4r⋆2

)
+ rs

2




2

c2dt2 +




r⋆
(
1 +

r2s
4
−r2Q

4r⋆2

)
+ rs

2

r⋆




2

(dx2 + dy2 + dz2).

Our process now leads to the new time parameter

τ = t−
(rs
4
−
rQ
2

)
ln

((
t+

rs
4

)2
−
r2Q
4

)
− rQ ln

(
t+

rs
4
+
rQ
2

)
+ C,

which in the case of C = rQ = 0 gives back the parametrization of Schwarzschild solution.
The shape-function of the searched time-space can be determined by the corresponding
inverse t = ĝ(τ), it is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

ĝ(τ)

ĝ(τ)

(
1 +

r2s
4
−r2

Q

4ĝ(τ)2

)
+ rs

2

v.

Analogously can be computed the time-space visualization of the Schwarzschild-de
Sitter solution which we now omit.

3.2.3. Bertotti-Robinson metric. The Bertotti-Robinson space-time is the only confor-
mally flat solution of the Einstein-Maxwell equalities for a non-null source-free electro-
magnetic field. The metric is:

ds2 =
Q2

r2
(
−dt2 + dx2 + dy2 + dz2

)
,

and on the light-cone t = r it has the form

ds2 = −
Q2

t2
dt2 +

e2

t2
(
dx2 + dy2 + dz2

)
.

By the new time coordinate

τ = Q ln t or t = e
τ
Q

using orthogonal space coordinates we get the form

ds2 = −dτ 2 +
Q2

e
2τ
Q

(
dx2 + dy2 + dz2

)
.

Thus it can be visualize on the hypersurface τ = e ln r of the time-space with shape-
function:

K (v, τ) :=
e

τ
Q

Q
v.
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3.3. Einstein’s equation. As we saw in the previous section the direct embedding of a
solution of Einstein’s equation into a time-space requires non-linear and very complicated
shape-functions. It can be seen also that there are such solutions which there are no
natural embedding into a time-space. This motivates the investigations of the present
section. Our building up follows the one of the clear paper of Prof. Alan Heavens [9], we
would like to thank to him for his downloadable PDF.

3.3.1. Homogeneous time-space-manifolds and the Equivalence Principle. We consider
now such manifolds which tangent spaces are four-dimensional time-spaces with given
shape-functions. More precisely:

Definition 10. Let S be the set of linear mappings K(v, τ) : E3 × R −→ E3 holding the
properties of a linear shape-function given in Definition 7. Giving for it the natural topol-
ogy we say that K is the space of shape-functions. If we have a pair a four-dimensional
topological manifold M and a smooth (C∞) mapping K :M −→ S with the property that
at the point P ∈ M the tangent space is the time-space defined by KP (s, τ) ∈ S we say
that it is a time-space-manifold. The time-space manifold is homogeneous if the mapping
K is a constant function.

Note that a Lorentzian manifold is such a homogeneous time-space manifold which
shape-function is independent from the time and it is the identity mapping on its space-
like components, namely KP (s, τ) = s for all P and for all τ . Its matrix-form (using the
column representation of vectors in time-space) is:




1 0 0 0
0 1 0 0
0 0 1 0




Our purpose to build up the theory of global relativity in a homogeneous time-space-
manifolds. We accept the so-called Strong Equivalence Principle of Einstein in the fol-
lowing form:

Axiom 3. (Equivalence Principle) At any point in a homogeneous time-space manifold
it is possible to choose a locally-inertial frame in which the laws of physics are the same
as the special relativity of the corresponding time-space.

According to this principle, there is a coordinate-system in which a freely-moving
particle moves with constant velocity with respect to the time-space K(P ) = KP (s, τ) =
K(s, τ). It is convenient to write the world line

S(τ) = K(s(τ), τ) + τe4

parametrically, as a function of the proper time τ0 =
τ

γ(τ)
. In subsection 2.2 we determined

the velocity using the time-space parameter τ :

V (τ) = γ(τ)

(
d(K(s(τ), τ))

dτ
+ e4

)
= γ(τ) (K(v(τ), 1) + e4) .

Taking into consideration again that the shape-function is linear, the acceleration is :

A(τ) = γ2(τ)K(a(τ), 0) + γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]τ

c2
K(v(τ), 1)+

+γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]τ

c2
e4,

giving the differential equation A(τ) = 0 for such particle which moves linearly with
respect to this frame.
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3.3.2. Affine connection and the metric on a homogeneous time-space-manifold. Consider
any other coordinate system in which the particle coordinates are S ′(τ0). Using the chain
rule, the defining equation

0 = A(τ0) =
dV (τ0)

dτ0
=

d2S(τ0)

dτ 20
becomes

0 =
d

dτ0

(
dS

dS ′

dS ′(τ0)

dτ0

)
=

dS

dS ′

d2S ′(τ0)

dτ 20
+

d

dτ0

(
dS

dS ′

)
dS ′(τ0)

dτ0
=

=
dS

dS ′

d2S ′(τ0)

dτ 20
+

d2S

dS ′dS ′

dS ′(τ0)

dτ0

dS ′(τ0)

dτ0
,

where dS
dS′

means the total derivatives of the mapping of the time-space sending the path

S ′(τ0) into the specific path S(τ0), and the trilinear function d2S
dS′dS′

is the second total
derivatives of the same mapping. (If there is a general smooth transformation between
the coordinate-frames, the corresponding derivatives are exist.) From this equality we get
the tensor form of the so called geodesic equation of homogeneous time-space manifold,
it is:

d2S ′(τ0)

dτ 20
+

(
dS ′

dS

d2S

dS ′dS ′

)
dS ′(τ0)

dτ0

dS ′(τ0)

dτ0
=

d2S ′(τ0)

dτ 20
+ Γ(S ′, S)

dS ′(τ0)

dτ0

dS ′(τ0)

dτ0
= 0.

Here we denote the inverse of the total derivatives dS
dS′

by dS′

dS
. The name of Γ(S ′, S) is

the affine connection.

For the uniform labelling we denote by x4 the identity function. Since the shape
function is a linear mapping we can represent it as the multiplication on left by the 3× 4
matrix K = [kij ] = kij . In the rest of this paragraph we apply all conventions of general
relativity. The Greek alphabet is used for space and time components, where indices
take values 1,2,3,4 (frequently used letters are µ, ν, · · · ) and the Latin alphabet is used
for spatial components only, where indices take values 1,2,3 (frequently used letters are
i, j, ...) and according to the Einstein’s convention, when an index variable appears twice
in a single term it implies summation of that term over all the values of the index. The
upper indices are indices of coordinates, coefficients or basis vectors.

The mapping S : S ′(τ0) −→ S(τ0) sends K(x′1, x′2, x′3, x′4)T + x′4e4 into the vector

K(x1, x2, x3, x4)T + x4e4. Denote by K̃ the 4× 4 matrix with coefficients:



k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
0 0 0 1




then we get S : K̃(x′1, x′2, x′3, x′4)T 7→ K̃(x1, x2, x3, x4)T . If the shape-function K re-
stricted to the subspace S is a regular linear mapping than we also have

K̃−1SK̃(x′
1
, x′

2
, x′

3
, x′

4
)T = (x1, x2, x3, x4)T

and we have that
[
∂xα

∂x′µ

]
=

dK̃−1SK̃

dS ′
= K̃−1 dS

dS ′
K̃ and so

dS

dS ′
= K̃

[
∂xα

∂x′µ

]
K̃−1.

Hence

dS ′

dS
= K̃

[
∂xα

∂x′µ

]−1

K̃−1 = K̃

[
∂x′µ

∂xα

]
K̃−1 and

[
d2S

dS ′dS ′

]α
= K̃

[
∂2xα

∂x′µ∂x′ν

]
K̃−1
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implying that the affine connection is:

Γ(S ′, S)λµν = K̃
∂x′λ

∂xα
∂2xα

∂x′µ∂x′ν
K̃−1 = K̃ΓλµνK̃

−1 = K̃

{
λ
µν

}
K̃−1.

Since S ′(τ0) = K̃(x′1, x′2, x′3, x′4)T thus we also get three equalities, the first one is:

dS ′(τ0)

dτ0
= K̃

(
dx′1

dτ0
,
dx′2

dτ0
,
dx′3

dτ0
,
dx′4

dτ0

)T
=

(
k1α

dx′α

dτ0
, k2α

dx′α

dτ0
, k3α

dx′α

dτ0
, k4α

dx′α

dτ0

)T
=

=

[
kλα

dx′α

dτ0

]
.

The second equality is:

dS ′(τ0)

dτ0

dS ′(τ0)

dτ0
= K̃

(
dx′1

dτ0
,
dx′2

dτ0
,
dx′3

dτ0
,
dx′4

dτ0

)T (
dx′1

dτ0
,
dx′2

dτ0
,
dx′3

dτ0
,
dx′4

dτ0

)
K̃T =

= K̃

[
dx′µ

dτ0

dx′ν

dτ0

]
K̃T ,

and the third one is:

d2S ′(τ0)

dτ 20
= K̃

(
d2x′1

dτ 20
,
d2x′2

dτ 20
,
d2x′3

dτ 20
,
d2x′4

dτ 20

)T
=

[
kλα

d2x′α

dτ 20

]
.

The geodesic equation now:

0 = K̃

(
d2x′1

dτ 20
,
d2x′2

dτ 20
,
d2x′3

dτ 20
,
d2x′4

dτ 20

)T
+ K̃ΓλµνK̃

−1K̃

[
dx′µ

dτ0

dx′ν

dτ0

]
K̃T ,

or equivalently

0 =

(
d2x′1

dτ 20
,
d2x′2

dτ 20
,
d2x′3

dτ 20
,
d2x′4

dτ 20

)T
+ Γλµν

[
dx′µ

dτ0

dx′ν

dτ0

]
K̃T ,

implying that

0 =
d2x′λ

dτ 20
+ Γλµν

dx′µ

dτ0
kνζ

dx′ζ

dτ0
.

Since for the proper time we have the equality

−c2dτ 20 = dST
(

1 0
0 −c2

)
dS =

(
dS

dS ′
dS ′

)T
η
dS

dS ′
dS ′ = dS ′T gdS ′

hence

g(S ′, S) =

(
dS

dS ′

)T
η
dS

dS ′
.

Let denote by [j
ik] the transpose of the matrix [kij ] and K

i
j the elements of the inverse

of K̃. Then since

g(S ′, S) =
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃TηK̃

[
∂xα

∂x′µ

]
K̃−1

thus

g(S ′, S)ϕψ = ϕ
µK

∂xα

∂x′µ
α
δkηδ,εk

ε
β

∂xβ

∂x′ν
Kν

ψ.
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This matrix is the metric tensor of the homogeneous time-space manifold in question. If

K̃ is the unit matrix, then µ = ϕ, ν = ψ, α = δ and β = ε implying the known formula

gµν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ .

Also note that if K̃ is an orthogonal transformation then we get a more simple form of
the metric:

g(S ′, S) = K̃

[
∂xl

∂x′i

]T
η

[
∂xl

∂x′i

]
K̃T .

To determine the connection between the metric and the affine connection we determine
the partial derivative of the metric.

∂g(S ′, S)

∂x′λ
=
(
K̃−1

)T [ ∂2xα

∂x′µ∂x′λ

]T
K̃TηK̃

[
∂xβ

∂x′ν

]
K̃−1+

+
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃T ηK̃

[
∂2xβ

∂x′ν∂x′λ

]
K̃−1,

and since
∂2xα

∂x′µ∂x′λ
=
∂xα

∂x′ρ
K̃−1Γ(S ′, S)ρµλK̃ =

we have
∂g(S ′, S)ϕψ

∂x′λ
= Γ(S ′, S)ρϕλg(S

′, S)ρψ + g(S ′, S)ϕρΓ(S
′, S)ρλψ

as in the classical case. Denote by g(S, S ′)ϕρ the inverse of the metric tensor then we get
the connection:

Γ(S ′, S)σλµ =
1

2
g(S, S ′)νσ

{
∂g(S ′, S)µ,ν

∂x′λ
+
∂g(S ′, S)λ,ν

∂x′µ
−
∂g(S ′, S)µ,λ

∂x′ν

}
.

3.3.3. Covariant derivative, parallel transport and the curvature tensor. Since we deter-
mined the affine connection we can define the covariant derivative of a vectors fields on
the way:

V µ
;λ =

∂V µ

∂x′λ
+ Γ(S ′, S)µλρV

ρ =
∂V µ

∂x′λ
+ K̃ΓµλδK̃

−1V δ.

In fact, it converts vectors into tensor on the basis of the following calculation:

K̃

[
∂x′µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1V ν

;ρ = K̃

[
∂x′µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃ΓνρδK̃

−1V δ

)
=

= K̃

[
∂x′µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃

∂x′ν

∂xα
∂2xα

∂x′ρ∂x′δ
K̃−1V δ

)
=

=
∂V ′µ

∂x′λ
+ K̃

∂x′µ

∂xα
∂2xα

∂x′λ∂x′δ
K̃−1V ′δ =

∂V ′µ

∂x′λ
+ K̃ΓµλδK̃

−1V ′δ = V ′µ
;λ.

Note that the covariant derivative of a co-vector is

Vµ;λ =
∂Vµ

∂x′λ
− Γ(S ′, S)µλρV

ρ,

and the covariant derivative of a tensor has the rule, each upper index adds a Γ term
and each lower index subtracts one. For this reason the covariant derivative of the metric
tensor (by our calculation above) vanishes.
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Again from the definition of the covariant derivative we get that the equation of parallel
transport is now:

dV µ

dτ0
= −Γ(S ′, S)µλν

dx′λ

dτ0
V ν .

From this it follows that the parallel-transport along a side δx′β of a small closed paral-
lelogram is

δV α = −Γαβν(S
′, S)V νδx′

β

and thus the total change around a small closed parallelogram with sides δaµ, δbν is

δV α = (Γαβν;ρ(S
′, S)V ν + Γαβν(S

′, S)V ν
;ρ − Γαρν;β(S

′, S)V ν − Γαρν(S
′, S)V ν

;β) δa
βδbρ

implying that

δV α = R(S ′, S)ασρβV
σδaβδbρ.

Here R(S ′, S)ασρβ is the Riemann curvature tensor defined by

R(S ′, S)ασρβ := Γ(S ′, S)αβσ;ρ−Γ(S ′, S)αρσ;β +Γ(S ′, S)αρνΓ(S
′, S)νσβ −Γ(S ′, S)αβνΓ(S

′, S)νσρ.

The Ricci Tensor and the scalar curvature defined by

R(S ′, S)σβ := R(S ′, S)ασαβ and R(S ′, S) := R(S ′, S)σσ,

respectively.

3.3.4. Einstein’s equation. As we can saw in the previous paragraph all of the notion
of global relativity can be defined in a time-space-manifold thus all of the equations
between them is a well-defined equation. On the other hand Einstein’s equation take into
consideration the facts of physic; hence contains parameters which can not be changed.
Fortunately we noted earlier that the covariant derivative of our metric tensor vanishes,
too. Thus also vanishes the covariant derivative its inverse and hence we can write the
Einstein’s equation with cosmological constant Λ, too. The equation is formally the same
that the original one, but contains a new (undetermined) parameter which is the matrix

K̃ of the shape-function. It is:

R(S ′, S)µν −
1

2
g(S ′, S)µνR(S ′, S)− Λg(S ′, S)µν =

8πG

c4
T µν ,

where the parameter G can be adjusted so that the active and gravitational masses are
equal and T µν is the energy-momentum tensor.
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