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Á.G.Horváth
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Abstract

We discuss here the concept of the so-called shadow boundary belonging to a given direc-
tion x of the Euclidean n-space Rn lying on a centrally symmetric convex ball K. (Actually
K can be considered as the unit ball of a Minkowski normed space.) We introduce the notion
of the general parameter spheres of K corresponding to the above direction x and prove that
if all of the non-degenerated general parameter spheres are topological manifolds then the
shadow boundary itself becomes a topological manifold, as well. Moreover, using the approx-
imation theorem of cell-like maps we obtain that all these parameter spheres are homeomor-
phic to the (n − 2)-dimensional sphere S(n−2). We also prove that the bisector (equidistant
set of the corresponding normed space) belonging to the direction x is homeomorphic to
R(n−1) iff all of the non-degenerated general parameter spheres are (n− 2)-manifolds imply-
ing that if the bisector is a homeomorphic copy of R(n−1) then the corresponding shadow
boundary is a topological (n − 2)-sphere.

MSC(2000): 52A21, 52A10, 46C15

Keywords: Bisectors, general parameter sphere, shadow boundary, Minkowski spaces, cell-
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1 Introduction

1.1 Notation and Terminology

R, Rn, Sn : The real line, the n-dimensional Euclidean space and the n-dimensional unit sphere,
respectively.

bd(K), int(K), cl(K) : The boundary, interior and closure of the set K, respectively.

dim(K) : The topological (covering) dimension of the set K.

ANR : Absolute neighbourhood retract. (See paragraph 2 after Lemma 1. )

concepts without definition: connectivity (arcwise, locally), contractibility (locally), mani-
fold, manifold with boundary, retract, compact metric space, inverse limit of topological
spaces, bonding maps, standard hyperplane.

topological hyperplane: A homeomorphic copy H of the space R(n−1) is a topological hy-
perplane if there is a homeomorphism of Rn onto itself which sends H onto a standard
hyperplane of Rn. We recall such a homeomorphism as a standard embedding of H into
Rn.
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topological n-sphere: is a homeomorphic copy of an n-dimensional Euclidean sphere. The
embedding of a topological n-sphere S into the unit (n + 1)-sphere Sn+1 is standard, if
S ⊂ Sn+1 and there is a homeomorphism of Sn+1 onto itself which sends S onto an equator
n-sphere of Sn+1.

cellular set, map: The definition can be seen in the paragraph 2 after Theorem 1.

cell-like set, map: The definition can be seen in the paragraph 2 before Theorem 1.

near homeomorphism : The definition can be seen in the paragraph 2 before Theorem 1.

S(K,x): The shadow boundary of the body K in direction x, resp. (See in at the beginning of
paragraph 2.)

K+, K−: The positive and negative part of bdK, resp. (See in paragraph 2.)

P+, P−: The positive and negative pole of bdK, resp. (See in paragraph 2.)

longitudinal parameter curve : The two dimensional intersection curve of bdK with a plane
through the poles. (See in paragraph 2.)

λ0: The smallest value λ for which λK and λK + x are intersecting.

γλ(K,x): the generalized parameter sphere of K corresponding to the direction x and to the
parameter λ ≥ λ0. (See Def.2 in paragraph 3.)

Hx: The bisector of the vector x. It is the equidistant set belonging to the starting and ending
point of the vector x.

px: The orthogonal projection mapping of the space Rn onto a hyperplane orthogonal to the
vector x.

1.2 Historical remarks and the results

If K is a 0-symmetric, bounded, convex body in the Euclidean n-space Rn (with a fixed origin
O) then it defines a norm whose unit ball is K itself (see [12]). Such a space is called Minkowski
normed space. The main results in this topic are collected in the surveys [17], [18] and [16].
In fact, the norm is a continuous function which is considered (in geometric terminology as in
[12]) as a gauge function. The metric (the so-called Minkowski metric), i.e. the distance of two
points induced by this norm, is invariant with respect to the translations of the space.

The unit ball is said to be strictly convex if its boundary contains no line segment.

In some previous papers on this topic ([10], [11]), we examined the boundary related to
the unit ball of the norm and gave two theorems (Theorem 2 and Theorem 4) similar to the
characterization of the Euclidean norm investigated by H.Mann, A.C.Woods and P.M.Gruber
in [15], [24], [6], [7] and [8], respectively. We proved that if the unit ball of a Minkowski normed
space is strictly convex then every bisector, which is the collection of those points of the
embedding Euclidean space which have the same distance (with respect to the Minkowskian
norm) to two given points of the space, is a topological hyperplane (Theorem 2). Example 3 in
[10] showed that strict convexity does not follow from the fact that all bisectors are topological
hyperplanes.

We examined the connection between the shadow boundaries of the unit ball and the bisectors
of the Minkowskian space. We were sure that the following statement is true: A bisector is
a topological hyperplane if and only if the corresponding shadow boundary is a
topological (n−2)-dimensional sphere, however, we proved the conjecture only in the three
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dimensional case (Theorem 2 and Theorem 4). We also examined the basic properties of the
shadow boundary (Section 2) and defined a useful class of sets - the so-called general parameter
spheres.

In this paper we discuss some further topological observations on shadow boundary and gen-
eral parameter spheres. We prove that, the general parameter spheres and the shadow boundary
are not ANRs in general (see in [4] or [20]), but still are compact metric spaces, containing
(n−2)-dimensional closed, connected subsets separating the boundary of K. We investigate the
manifold case and (using the approximation theorem of cell-like mappings) we prove that the
general parameter spheres and the corresponding shadow boundary are homeomorphic to the
(n−2)-dimensional sphere. A consequence of this result (if the bisector is a homeomorphic copy
of R(n−1) then the shadow boundary is a topological (n− 2)-sphere) yields the proof of the first
direction of the above mentioned conjecture. We have two more questions left concerning the
same conjecture: Is the converse statement true or not? Is it possible that in the manifold case
the embedding of the bisector and the shadow boundary are not standard ones? In the fourth
paragraph we prove that the embedding of the examined sets (in the manifold case) are always
standard ones, but the first question remains still open.

2 Once more on the shadow boundary of the unit ball

There are several well-known properties of the shadow boundary of a convex body with respect
to a given direction of the n-space (see in [16]), but I could not find a comprehensive list of
its topological properties. Of course, the shadow boundaries have been considered frequently in
convexity theory. I mention only two interesting results in context of Baire categories see [9] and
[23]. In [9] the authors proved that a typical shadow boundary of a convex body under parallel
illumination from a direction vector has infinite (n − 2)-dimensional Hausdorff measure, while
having Hausdorff dimension (n − 2). In [23] it is shown that, in the sense of Baire categories,
most of the n-dimensional convex bodies have infinitely long shadow boundaries if the light
vector comes along one of the (n − 2)-dimensional subspaces.

Definition 1 Let K be a centrally symmetric, compact, convex body in the n-dimensional Eu-
clidean space En and let S(n−1) denote the (n−1)-dimensional unit sphere in En. For x ∈ S(n−1)

the shadow boundary S(K,x) of K in direction x consists of all those points P in bdK for
which the line {P + λx : λ ∈ R} supports K, i.e. it meets K but does not meet the interior of
K. The shadow boundary S(K,x) is sharp if any of the above supporting lines of K intersects
K exactly in the point P . If S(K,x) is not sharp, in general, it may have sharp point for that
the above uniqueness holds.

To make this paper more self-contained, we list and show some topological properties of the
shadow boundary. (Of course some of these are well-known facts.) First we introduce a notation:

K+ := {y ∈ bdK| there is τ > 0 such that y − τ · x ∈ int(K)}, (1)

K− := {y ∈ bdK| there is τ > 0 such that y + τ · x ∈ int(K)}.

We call the congruent (thus homeomorphic) sets K+ and K− the positive and negative
part of bdK, respectively. The line passing through the origin and parallel to the vector x
intersects the boundary of K at the points P+ ∈ K+ and P− ∈ K− showing that the positive
and negative part of bdK are not empty, respectively. We call the points P+ and P− the positive
and negative pole of K, respectively. The intersection of bd(K) by a 2-plane containing the
poles is called a longitudinal parameter curve of K.
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Statement 1 The shadow boundary decomposes the boundary of K into three disjoint sets:
S(K,x), K+ and K−. S(K,x) is an at least (n − 2)-dimensional closed (so compact) set in
bd(K) which is connected for n ≥ 3, the sets K+ and K− are homeomorphic copies of R(n−1)

giving two arcwise connected components of their union.

Proof: The first statement is obvious. Let px be the orthogonal projection of the embedding
space Rn onto a hyperplane orthogonal to the vector x. Since the orthogonal projection is a
contraction then it is continuous (i.e. it is a mapping of the space). px(K) is a convex body of
the image hyperplane. The interior of px(K) is the image of the sets K+ and K−, respectively
and its boundary is the image of S(K,x). Since px restricting for K+ is a bijection, there exists
a homeomorphism on K+ to R(n−1). Using the same argument for K− we proved the validity
of the first part of the statement on K+ and K−. Of course their union is open therefore the
shadow boundary is closed.

Since R(n−1) is arcwise connected the second part of the statement on K+ follows from the
fact that an arc connecting two points of K+ and K− should be decomposed into two relative
open sets by K+ and K−, which is a contradiction. (Arcwise connectivity of a set implies its
connectivity, too.) Thus the shadow boundary separates the boundary of K. By a theorem of
Alexandrov (Th. 5.12 in vol.I of [1]), we get, that the topological dimension of S(K,x) is at
least (n − 2), as we stated.

We now prove that (for n ≥ 3) the set S(K,x) is connected. Assume that K1 and K2 are two
closed disjoint subsets of the shadow boundary for which K1 ∪ K2 = S(K,x). First we observe
that each of the metric segments lying on a longitudinal parameter curve and parallel to x is
a connected subset of S(K,x), thus its points (by the ”basic lemma of connectivity” see vol.I
p.13 in [1]) belong either to the set K1 or to the set K2. Let C1 and C2 the sets defined by the
union of those longitudinal parameter curves which intersect the sets K1 and K2. In this case
C1 ∪C2 = bdK and C1 ∩C2 = {P+, P−} hold. The sets Ci are closed in bdK, meaning that the
sets Ci \ {P+, P−} give a decomposition of bdK \ {P+, P−} into disjoint relative closed subsets,
too. Since the latter set is connected it follows that either K1 or K2 is empty. 2

In general the dimension of S(K,x) is (n − 2) or (n − 1). We prove that there is an (n − 2)-
dimensional closed, connected subset of S(K,x) separating bdK, too.

Lemma 1 The boundary (frontier) of the closure of the set K+ (denoted by bd(cl(K+))) is a
closed, connected (n − 2) dimensional subset of S(K,x) separating the boundary of K.

Proof:

By its definition it is closed. Since cl(K+) ⊃ K+ and cl(K+) ∩ K− = ∅ we have K+ ⊂
cl(K+) ⊂ K+ ∪ S(K,x). On the other hand bd(cl(K+)) ∩ K+ = ∅ (K+ is an open subset of
cl(K+)), thus we get that bd(cl(K+)) ⊂ S(K,x).

The separating property follows from the fact that the union of the pairwise disjoint sets
bdK \ cl(K+), int(cl(K+)), bd(cl(K+)) fills the boundary of K and the first two sets are open.

Now the separating property implies (again by the Alexandrov theorem above) the inequality
dim(bd(cl(K+))) ≥ (n − 2). On the other hand a closed connected set of dimension (n − 1) on
bdK contains an interior point relative to bdK (see p.174 in volI. of [1] ) which contradicts to
the definition of bd(cl(K+)). 2

Before proving the main statement of this paragraph, we consider three examples which
clearly show the strange attitude of the sets defined above. In the first example we construct
such a centrally symmetric convex body whose shadow boundary is neither locally connected
nor locally contractible. This implies that the shadow boundary (in general) is not an absolute
neighborhood retract (ANR) (especially topological manifold). We recall that the space Y is
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Figure 1: Shadow boundary which is not a topological manifold.

an ANR if whenever it is embedded as a closed subset of a separable metric space, then it is a
retract of some its neighbourhood in that space. An ANR is always a locally contractible space.

Examples:

1. Consider the following sequence of segments of R3 (with respect to a fixed orthonormal

coordinate system) sn = {(t, 1
n
,
√

n2−1
n

)| − 1 ≤ t ≤ 1}, n ∈ N with limit segment s =

{(t, 0, 1)|−1 ≤ t ≤ 1}. Connect the point (1, 1
n
,
√

n2−1
n

) with the point (−1, 1
n+1 ,

√
(n+1)2−1

n+1 )
by arc, which is the intersection of the 2-plane containing the points and orthogonal to the
[x,y]-plane with the cylinder C := {(t, r, s)| − 1 ≤ t ≤ 1, r2 + s2 = 1, r, s ≥ 0}. The union
of these curves forms a connected, closed set lying on the cylinder C. This set is neither
arcwise nor locally connected moreover it is not a locally contractible one. It is easy to see
that if we add this curve to their reflected images to the plane [x, z], and the result union
curves we add to its reflected images in the plane [x, y], finally we have a single centrally
symmetric closed curve γ belonging to the cylinder {(t, r, s)| − 1 ≤ t ≤ 1, r2 + s2 = 1}.
The convex hull of γ (similar to the so-called ”topologist’s sine curve”) is a centrally
symmetric convex body. If the direction of the light is parallel to the x-axis, then we have
S(K,x) = bd(cl(K+)) = bd(cl(K−)) = γ. Since it is not locally contractible it can not be
an ANR.

2. Secondly we refer to the Example 1 in paper [11] which is a presentation of a shadow
boundary as it is shown in Fig.1. This body K is also closed, for which S(K,x) is an ANR
but is not a manifold. The sets bd(cl(K+)) = bd(cl(K−)) coincide with the same metric
circle.

3. In this example the sets bd(cl(K+)), bd(cl(K−)) form the common boundary of the sets
S(K,x) and K+, S(K,x) and K−, respectively. They are homeomorphic to S1 but S(K,x)
is neither 1-manifold nor 2-manifold with boundary. Consider the regular octahedron as
K and let the direction of the light be parallel to an edge of K. The shadow boundary is
the polyhedron containing four faces of K that are connected to each other either with a
common edge (parallel to x) or with a common vertex. The sharp points of the shadow
boundary are these two vertices. Of course, there is no neighbourhood of this points
homeomorphic to a segment or a plane.

Now we focus to the cases when the above sets are topological manifolds. We need to recall
some useful definitions and theorems on the topic of cell-like mappings. There are several good
papers on this important chapter of geometric topology (e.g. [13], [14] or [21]). We follow here
the setting up of the paper of W.J.R.Mitchell and D.Repovs [19].

A non-empty compactum K is said to be cell-like if for some embedding of K in an ANR
M , the following property holds: For every neighbourhood U of K in M , there exists a neigh-
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bourhood V such that K ⊂ V ⊂ U and the inclusion i : V −→ U is nullhomotopic. Given a
map (by definition it is a continuous function) f : X −→ Y , we say that f is cell-like, if for
each y ∈ Y , the inverse image f−1(y) is cell-like. We will use the following theorem:

Theorem 1 (Cell-like Approximation Theorem for manifolds) Let n 6= 3 be a positive
integer. For every cell-like map f : M −→ N between topological n-manifolds, and every ε > 0,
there is a homeomorphism h : M −→ N such that d(f, h) < ε in the sup-norm metric on the
space of all continuous maps (so f is a so-called near homeomorphism).

The long history of this result can be read in [19]. We note that in the 3-dimensional case
there is an analogous approximation theorem for a subset of the class of cell-like mappings called
the class of cellular maps. A set of the manifold M is called cellular, if it is an intersection
of a sequence of closed cells Bi of M with the properties K ⊂ Bi and Bi+1 ⊂ intBi. A map is
cellular if the inverse images are cellular sets. Cellularity is originated from the work of M.Brown
[2] while the concept of cell-likeness has been introduced by R.C.Lacher in [13]. The concept of
cellularity depends on the embedding of the examined metric space K in M , this dependence on
embedding was eliminated in the concept of cell-likeness. In fact, (in the manifold case) every
cellular map is a cell-like map, since every cellular set is a cell-like one. Conversely, if we consider
a wild arc in R3 which has non-simply-connected complement it is non-cellular set, while the
standard embedding manifestly is cellular in R3, showing that it will be a cell-like set.

We also remark that a cellular (or cell-like) map (in a general case) is not a near homeomor-
phism since there is a cellular map on S1 × [0, 1] to S1 (here [0, 1] means the unit interval of
the real line) which is not near homeomorphism (if we have a near homeomorphism between
compact metric spaces then these two spaces should be homeomorphic to each other).

Now we can prove the main theorem of this paragraph.

Theorem 2 If the shadow boundary S(K,x) is a topological manifold of dimension (n−2) then
it is homeomorphic to the (n − 2)-sphere S(n−2). If it is an (n − 1)-dimensional manifold with
boundary then it is homeomorphic to the cylinder S(n−2) × [0, 1].

Proof: Consider first the projection px (which was defined in the proof of Statement 1), and
restrict it to the shadow boundary of K parallel to x. It is a cell-like map because of the inverse
images are points or segments, respectively. In this way for n 6= 5 by the approximation theorem
above we have that this restricted map is a near homeomorphism on S(K,x) to a homeomorphic
copy S̃(n−2) of S(n−2) implying that they are homeomorphic to each other. On the other hand
this map is also cellular, since the metric segments and points of S(K,x) are cellular sets in
S(K,x). To prove this, let s = p−1

x
(v) be a segment in S(K,x) for some v ∈ S̃(n−2). If now

Q ∈ s is a point, consider a metric ball Bǫ(Q) ⊂ bd(K) with center Q and radius ǫ > 0 for which
int(Bǫ(Q)) ∩ S(K,x) is homeomorphic to R(n−2). Such an ǫ > 0 surely exists. In fact, Q has
a neighbourhood NQ in S(K,x) homeomorphic to R(n−2). If for every ǫ we can choose a point
Pǫ ∈ Bǫ(Q)∩S(K,x) which does not belong to NQ then we have a sequence of points (Pǫ) having
the same property and tending to Q. Since NQ is open in S(K,x), this is impossible. Thus
there is an ǫ > 0 for which Bǫ(Q)∩S(K,x) = Bǫ(Q)∩NQ. It implies that int(Bǫ(Q))∩S(K,x)
is an open subset of NQ relative to the topology of S(K,x). Of course, ǫ depends on Q, but s is
a compact set, thus there is a finite number of points Qi and positive real numbers ǫi, such that
for the minimal value ǫ∗ of ǫi’s we have ∪int(Bǫ∗(Qi)) ⊃ s. Here ∪int(Bǫ∗(Qi)) is the interior
of the closed cell ∪(Bǫ∗(Qi)). Since Bǫ(Q)∩S(K,x) = Bǫ(Q)∩NQ also holds for every ǫ′ which
is less or equal to ǫ, we have an infinite sequence of sets of form ∪(Bǫ∗(Qi)) with the property
needed to prove the cellularity of s.

Observe now that if S(K,x) is an (n−1)-manifold with boundary then its boundary has two
connected components which are equal to bd(cl(K+)) and bd(cl(K−)), respectively.
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First we can see that bd(cl(K+)) is the set of the common boundary points of cl(K+)
and S(K,x) yielding bd(cl(K+)) ⊂ bd(S(K,x)). (Analogously we have that bd(cl(K−)) ⊂
bd(S(K,x))).

Secondly we note that there is no point of int(cl(K+)) belonging to S(K,x). Indirectly
assume that the point P is in int(cl(K+)) ∩ S(K,x). Then

– either one can find a neighbourhood U of P in S(K,x) which is homeomorphic to the
(n− 1)-dimensional half-space and therefore P is a boundary point of cl(K+) (in U there exists
a point Q with a neighbourhood V ⊂ S(K,x) homeomorphic to R(n−1) such that Q ∈ V ⊂ U .
It means that Q is a point of the complement of cl(K+)),

– or there is a neighbourhood U homeomorphic to the space R(n−1) for which P ∈ U ⊂
S(K,x). In this case P is in the interior of S(K,x) contradicting the assumption that it is a
point of int(cl(K+)).

In this way int(cl(K+)) = K+ and then bd(cl(K+)) = bd(K+) is the common boundary of
K+ and S(K,x). Applying Lemma 1 we obtain that bd(cl(K+)) is a connected closed subset of
the boundary of S(K,x).

Using the fact that bd(cl(K−)) is the image of bd(cl(K+)) by a central projection, we have
a similar result for bd(cl(K−)), too. (It is the common boundary of K− and S(K,x).) We will
prove that the boundary of S(K,x) is the disjoint union of these two sets.

The relation bd(S(K,x)) ⊂ bd(cl(K−)) ∪ bd(cl(K+)) is obvious. Consider a point P from
the intersection bd(cl(K−)) ∩ bd(cl(K+)). Let U be a neighbourhood of P in S(K,x). (It is
homeomorphic to a half-space of R(n−1).) Let B be a metric (n − 1)-ball around P with such a
sufficiently small radius ǫ > 0, that the sets B ∩ U and B \ (B ∩ U) serve as topological images
of a closed and the complementary open half-spaces of R(n−1), respectively. (Similarly as the
proof of the cellularity property of a segment goes one can show that such an ǫ > 0 and ball B

exist.) Since B contains points from each of the sets K+ and K− we have a contradiction by
the separating property of S(K,x). (There is no point of S(K,x) in the complementary domain
B \ (B ∩ U).)

This implies that the boundary of S(K,x) has two connected components which are the
common boundaries of S(K,x) and K+, S(K,x) and K−, respectively. Of course, these sets
are also (n − 2)-manifolds connected with straight line segments through all of their points.
So we have that S(K,x) = bd(cl(K+)) × [0, 1] holds. We still have to prove that in this case
bd(cl(K+)) is homeomorphic to S(n−2), too. Since px on bd(cl(K+)) into S(n−2) is also a cell-like
(and cellular) mapping, bd(cl(K+)) is an (n − 2)-dimensional manifold and this restricted map
is one to one, the last statement of the Theorem follows from Theorem 1, too. 2

3 General parameter spheres

We now recall the definition of general parameter spheres (see [11] ).

Definition 2 Let
λ0 := sup{t|tK ∩ (tK + x) = ∅}

be the smallest value λ for which λK and λK + x are intersecting. Then the generalized
parameter sphere of K corresponding to the direction x and to the parameter λ ≥ λ0 is the
following set:

γλ(K,x) :=
1

λ
(bd(λK) ∩ bd(λ(K) + x)).

In [11] we mentioned that in general the above sets are not topological spheres of dimension
(n − 2) and are not homeomorphic to each other. E.g. the dimension of γλ0

(K,x) may be 0,
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1 · · · (n − 1) while the topological dimension of γλ(K,x) is at least (n − 2) because this set
divides the surface of K. We remark that the interiors of the given two caps of the boundary
are also homeomorphic to each other as in the case of shadow boundary. In fact a central
projection from 1

λ
x sending the left half of bdK onto the left one of 1

2λ
(bd(λK) + x) is an

appropriate homeomorphism. (The latter set is congruent to the right half of bdK since the
body λK ∩ λK + x is a centrally symmetric one.) We also proved that the shadow boundary
S(K,x) is the limit of the generalized parameter spheres γλ(K,x), with respect to the Haussdorff
metric, when λ tends to infinity.

We have showed (in the proof of Lemma 1 in [11]) that the general parameter sphere γλ(K,x)
is the shadow boundary of the convex body 1

λ
(λK ∩λK +x) thus the statements of the previous

section can be adapted to them.

Before our result we recall a nice theorem of M.Brown on the projective limit of compact
metric spaces and corresponding near homeomorphisms (see [3] or [22]). The concept of the
near homeomorphism of topological manifolds can be adapted to the case of compact metric
spaces, too. A map from X to Y between compact metric spaces is a near homeomorphism if it
is in the closure of the set of all homeomorphisms from X onto Y , with respect to the sup-norm
metric on the space C(X,Y ) of all maps from X to Y . Now the mentioned theorem is:

Theorem 3 (M.Brown) Let (Xn) be an inverse sequence of compact metric spaces with limit
X∞. If all bonding maps Xk −→ Xn are near homeomorphisms, then so are the limit projections
Xk −→ X∞.

The purpose of this section is to examine the manifold case. We prove the following theorem:

Theorem 4 I, The shadow boundary S(K,x) is an (n − 2)-dimensional manifold if all of the
non-degenerated general parameter spheres γλ(K,x) with λ > λ0 are (n− 2)-dimensional mani-
folds, conversely if S(K,x) is an (n− 2)-dimensional manifold then all of the general parameter
spheres are ANRs.

II, The shadow boundary S(K,x) is an (n− 1)-dimensional manifold with boundary iff there
is a λ for which the general parameter sphere γλ(K,x) is an (n− 1)-dimensional manifold with
boundary.

Before the proof let us give an example showing that we should distinguish the above two
cases.

Example: Consider the union of the six connecting rectangles ±{(r, 1, t)| − 1 ≤ r, t ≤ 1},
±{(r, s, t)|r + s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1}, ±{(r, s, t)|r − s = 2, 1 ≤ r ≤ 2,−1 ≤ t ≤ 1} and
the segments ±{(r, 0, 2)| − 3

2 ≤ r ≤ 3
2}. The convex hull K of this set is a convex polyhedron. If

now the vector x is the position vector directed into the point (4, 0, 0) we have three important
values for the parameters of the generalized parameter spheres. For λ0 = 1 the degenerated
sphere γλ0

(K,x) is a segment. For 1 < λ ≤ 5
4 the general parameter spheres γλ(K,x) are

homeomorphic to S1. In the range 5
4 < λ ≤ 3

2 the general parameter sphere γλ(K,x) is a
simplicial complex containing one or two-dimensional simplices, respectively. (This space is
an ANR but is not a topological manifold.) Finally, in the last parameter domain λ > 3

2 the
set γλ(K,x) is homeomorphic to the cylinder S1 × [0, 1]. Since S(K,x) is the union of six
quadrangles, parallel to the x-axis it is also a cylinder.

We also remark that if S(K,x) is an (n − 2)-dimensional manifold than probably all of the
non-degenerated parameter spheres are the same, too. Unfortunately we could not prove this
statement.

Proof: [Theorem 4] First we note that – for every λ0 < λ′ < ∞ – S(K,x) can be considered as
the inverse limit space X∞ of the metric spaces Xλ := γλ(K,x) for λ′ < λ. In fact, by Lemma
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1 in[11] if for λ > λ0 the intersection of γλ(K,x) by a longitudinal parameter curve, say r is a
segment then r∩ γµ(K,x) with µ > λ is also a segment containing the segment r∩ γλ(K,x). So
in this case the union of the sets r ∩ γµ(K,x) is the segment r ∩S(K,x). On the other hand we
have two possibilities for r ∩ γλ(K,x) being a point. First r ∩ S(K,x) is a point, too, meaning
that for all µ > λ r ∩ γλ(K,x) is also a point. If now r ∩ S(K,x) is a segment then we have a
value λ′ > λ with the property that if µ > λ′ then r ∩ γµ(K,x) is a segment, too. In this latter
case r ∩ S(K,x) = ∪µ≥λ′{r ∩ γµ(K,x)}. Define now the left end of a segment parallel to x as
the end having the smaller parameter in the usual parametrization with respect to x (meaning
that a general point of a line parallel to x is written in the form P + τx where P is a point of
this line.) Let us define the bonding map pλ,µ for γµ(K,x) to γλ(K,x) (µ > λ) in the following
way:

For a point P of γµ(K,x)

pλ,µ(P ) =











r ∩ γλ(K,x) if r ∩ γλ(K,x) is a point
P if r ∩ γλ(K,x) is a segment and P ∈ r ∩ γλ(K,x)
the left end of r ∩ γλ(K,x) if P ∈ r ∩ γµ(K,x) \ r ∩ γλ(K,x)

.

The continuity of this function (with respect to the relative metric) is obvious and the inverse
(projective) limit space X∞ can be identified with S(K,x) by the limit mappings pµ (defined
in an analogous way from S(K,x) to γµ(K,x) as the above functions pλ,µ(P )). (Of course, we
have the sufficient equality pµ′,µ′′ ◦ pµ′ = pµ′′ for µ′′ > µ′.)

Using Theorems 1 and 3 above, the proof of the first direction of the first statement is an easy
consequence. In fact, if for λ > λ0 the space γλ(K,x) is an (n−2)-manifold then using Theorem
1 we know that the bonding maps pµ′,µ′′ : γµ′′(K,x) −→ γµ′(K,x) are near homeomorphisms.
By Theorem 3 we obtain that the limit projections pλ are also near homeomorphisms. This
implies that the space S(K,x) is also an (n − 2) manifold.

Conversely, if now S(K,x) is an (n − 2)-dimensional manifold then it is locally contractible.
By Lemma 1 in [11] this also implies that all of the general parameter spheres are locally
contractible manifolds, too. On the other hand the general parameter spheres can be considered
as the compact subsets of R(n−1) meaning that they are ANRs. (See Theorem 8 p.117 in [5].)

The proof of both parts of the second statement uses Theorem 2. If first we have a general
parameter sphere γλ(K,x) which is an (n − 1)-dimensional manifold with boundary then by
Theorem 2 it is a cylinder with boundaries homeomorphic to S(n−2). In this case the shadow
boundary contains this general parameter sphere showing that all point-inverses with respect
to px are segments (with non-zero lengthes). On the other hand, the sets bdK+ ∩ S(K,x) and
bdK+∩γλ(K,x) coincide, showing that S(K,x) is a cylinder based on an (n−2) manifold home-
omorphic to S(n−2). Since bdK− ∩ S(K,x) is homeomorphic to S(n−2) (by central symmetry)
and these two sets are disjoint we close to that S(K,x) is homeomorphic to S(n−2) × [0, 1], as
we stated.

Conversely, if S(K,x) is an (n − 1)-manifold with boundary, then it is (by Theorem 2)
homeomorphic to S(n−2)×[0, 1]. Since this cylinder is compact there is a positive value ε less than
or equal to the length of any segment intersected from the shadow boundary by a longitudinal
parameter curve. This fact implies that there does exist a λ < ∞ such that γλ(K,x) ⊂ S(K,x).
The intersection γλ(K,x)∩K+ is the same as the intersection S(K,x)∩K+ which is one of the
two components of the boundary of S(K,x) homeomorphic to S(n−2). For this λ it is possible
to find a trivial point-inverse with respect to the map px as we saw it in the example of this
section, but for every λ′ > λ the general parameter sphere γλ′(K,x) is a cylinder. Using now the
fact that it is also the shadow boundary of a centrally symmetric convex body whose positive
part is the set K+, we have proved that it is also a manifold with boundary homeomorphic to
S(n−2) × [0, 1]. 2
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4 On the bisector and its embedding

In this section we investigate the bisector Hx (which is the equidistant set belonging to the
starting and ending point of the vector x) using the system λγλ(K,x) of compact metric spaces.
Our goal is to prove the following theorem:

Theorem 5 Hx is an (n − 1)-dimensional manifold if and only if the non-degenerated general
parameter spheres γλ(K,x) are manifolds of dimension (n − 2).

Since the neighbourhoods of the point 1
2x (with respect to Hx) can not be homeomorphic to

either Rn or a half space, this is the only manifold case for Hx.

Proof: First we prove that if the non-degenerated general parameter spheres γλ(K,x) are
manifolds of dimension (n − 2) then Hx is an (n − 1)-dimensional manifold. From Theorem
2 we know that the general parameter spheres are homeomorphic copies of S(n−2). Let us
construct now the bisector Hx as the disjoint union of the sets λγλ(K,x) for λ ≥ λ0. The set
Hx,µ = {λγλ(K,x)|µ ≥ λ ≥ λ0} is obviously homeomorphic to γλ(K,x) ∪ K+ meaning that it
is a homeomorphic copy of the closed (n − 1)-dimensional ball. Thus intHx,µ is homeomorphic
to Rn−1 for each µ ≥ λ0. Applying now a theorem of M.Brown (see in [22] or [2]) saying that
if a topological space is the union of an increasing sequence of open subsets, are homeomorphic
to R(n−1), resp. then it is also homeomorphic to R(n−1), we get the required result.

Conversely, if Hx is homeomorphic to R(n−1) then the projection px : Hx −→ R(n−1) is a
cellular map between two manifolds of the same dimension. Thus it is a near homeomorphism
yielding that its restriction to the compact metric space λγλ(K,x) is a near homeomorphism,
too. But its image is the boundary of a convex compact (n − 1)-dimensional body so we get at
once that it is a homeomorphic copy of S(n−2). Hence the general parameter spheres γλ(K,x)
for λ > λ0 are manifolds of dimension (n − 2), as we stated. 2

Corollary: The proof of the first direction of the conjecture follows from theorems 2,4 and 5.
In fact, if Hx is a topological hyperplane then each of the non-degenerated general parameter
spheres is a homeomorphic copy of S(n−2) by Theorem 5 and Theorem 2. So by Theorem 4 we
get that the shadow boundary is also a homeomorphic copy of S(n−2) which is the statement of
the mentioned direction of our conjecture.

On the other hand we could only prove in Theorem 4 that if S(K,x) is a homeomorphic copy
of S(n−2) then the non-degenerated general parameter spheres are ANRs, thus the manifold
property for the bisector does not follow immediately from our theorems. Furthermore, in
the manifold case we prove only that the bisector is a homeomorphic copy of R(n−1) which is
a weaker property as the required one. Consequently we have to investigate the question of
embedding. In fact, all of the examples in geometric topology aiming a non-standard (wild)
embedding of a set into Rn are based on the observation that the connectivity properties of the
complement (with respect to Rn) of the set can change if we apply a homeomorphism to it. In
our case, for example, the complement of the bisector (which is now a homeomorphic copy of
R(n−1)) is the disjoint union of homeomorphic copies of Rn. It gives the chance to the existence
of a homeomorphism on Rn to itself sending the bisector to a hyperplane. It is a well-known
fact that a manifold homeomorphic to S(n−1) in Sn is unknotted if and only if the closures of
the components its complement are homeomorphic copies of the closed n-cell Bn. This implies
that in the manifold case the embedding of the shadow boundary and the general parameter
spheres are always standard. From this it follows the existence of a homeomorphism of the
boundary of K into itself sending these sets into a standard (n− 1)-dimensional sphere of bdK.
Considering bisectors we have to carry out the proof in a bit more sophisticated way. Let ϕ be
a homeomorphism sending Hx into R(n−1) (which is now a hyperplane H of Rn). We consider
the compactification of the embedding space by an element denoted by ∞. Extend first the
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map ϕ to the compact space Hx ∪ {∞} by the condition ϕ(∞) = ∞. Of course, this extended
map gives a homeomorphism between the sets Hx∪{∞} and H ∪{∞}. Since the closure of the
components of the complement of Hx∪{∞} in Rn ∪{∞} are closed n-cells the homeomorphism
ϕ can be extended to a homeomorphism Φ : Rn ∪ {∞} −→ Rn ∪ {∞}. Since by our method we
have: Φ(∞) = ϕ(∞) = ∞ and Φ(Hx) = H we get that the bisector is a topological hyperplane
as we stated. Thus the following statement has been proved:

Theorem 6 In the manifold case the embedding of Hx, S(K,x) and γλ(K,x) are standard,
respectively. This means that if the bisector is homeomorphic to R(n−1) then it is a topological
hyperplane.
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Department of Geometry

Budapest University of Technology and Economics
1521 Budapest, Hungary

e-mail: ghorvath@math.bme.hu

12


