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Euclidean space
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semi-inner-product indefinite-inner-product

⇓ ⇓

normed space and pseudo-euclidean space

ց ւ

Minkowski space
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The

{
semi − inner − product

indefinite − inner − product
on a complex vector space V is a complex

function [x, y] : V × V −→ C with the properties

{
s1, s2, s3, s4
i1, i2, i3, i4

s1=i1: [x + y, z] = [x, z] + [y, z] (additivity of the first argument)

s2=i2: [λx, y] = λ[x, y] for every λ ∈ C (homogeneity of the first argument)

s3: [x, x] > 0 when x 6= 0 (positivity)

i3: [x, y] = [y, x] for every x, y ∈ V (antisymmetry)

s4: |[x, y]|2 ≤ [x, x][y, y] (Cauchy-Schwartz inequality)

i4: [x, y] = 0 for every y ∈ V then x = 0. (nondegeneracy)
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History of these concepts

Semi-inner-product

raised by G.Lumer in 1961, in 1967 J.R. Giles prove that the property

s5: [x, λy] = λ̄[x, y] for all complex λ (homogeneity in the second argument)

can be imposed.

Indefinite-inner-product

first used by Minkowski, Lorentz, Einstein at the beginning of the twentieth
century in the theoretical physics, the first application in mathematics (to the
theory of zones of stability for canonical differential equations with periodic
coefficients) were obtained by M.G.Krein in 1964,

I.M.Gelfand, N.Levinson, I.Gohberg,...
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Connections from among the axioms:

1. s1, s2, s3, s5 =⇒ i4

2. i1, i2, i3, s3 =⇒ s4
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Semi-indefinite- inner-product

The semi-indefinite-inner-product on a complex vector space V is a complex
function [x, y] : V × V −→ C with the following properties

1: [x + y, z] = [x, z] + [y, z] (additivity of the first argument)

2: [λx, y] = λ[x, y] for every λ ∈ C (homogeneity of the first argument)

3: [x, λy] = λ̄[x, y] for all complex λ (homogeneity in the second argument)

4: [x, x] ∈ R for x ∈ V (the corresponding quadratic form is real valued)

5: [x, y] = 0 for every y ∈ V or [y, x] = 0 for every y ∈ V then x = 0.
(nondegeneracy)

6: |[x, y]|2 ≤ [x, x][y, y] holds on nonpositive and nonnegative subspaces of V
(Cauchy-Schwartz inequality is valid on positive and negative subspaces,
resp.)
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Remark

(V, [·, ·]) is a Semi-inner-product space ⇐⇒ [·, ·] is positive

(V, [·, ·]) is a Indefinite-inner-product space ⇐⇒ [·, ·] is antisymmetric
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A s.i.i.p. space in which there is no positive (resp. negative)
subspace with dimension n ≥ 2.

Consider the boundary of a cross-polytope:

C = ∪{ conv {εiei|i = 1, . . . , n} for all choices of εi = ±1}.

and define a mapping from V into V ⋆ on the following manner:

for v ∈ C let v⋆ be the functional for which v⋆(v) = (−1)k

where k = dimFv

(λv)⋆ = λv⋆

[u, v] := v⋆(u)
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Main example for semi-indefinite-inner-product

C is the unit sphere of a normed linear space, P(C) = C/ ∼.

By the Hahn-Banach theorem there exists at least one

continuous linear functional, and we choose exactly one such

that ‖ṽ⋆‖ = 1 and ṽ⋆(v) = 1 for v ∈ C.

Consider a sign function ε(v) with value ±1 on P(C),

and if ε([v]) = 1 denote by v⋆ = ṽ⋆

and if ε([v]) = −1 define v⋆ = −ṽ⋆,

homogeneously extend it to V the mapping v 7→ v⋆ by the

equality (λv)⋆ = λv⋆.

For the duality mapping

v 7→ v⋆ the equalities v⋆(v) := ε([v0])‖v‖2 and ‖v‖ = ‖v⋆‖ are

hold.

[u, v] = v⋆(u) satisfies 1-5.

If U is a nonnegative subspace then it is positive and we have

for all nonzero u, v ∈ U :

9



|[u, v]| = |v⋆(u)| = |v⋆(u)|
‖u‖ ‖u‖ ≤ ‖v⋆‖‖u‖ = ‖v‖‖u‖, proving 6.



The generalized Minkowski space

Definition : Let (V, [·, ·]) be an s.i.i.p. space. Let S, T ≤ V be

positive and negative subspaces, where T is a direct complement

of S with respect to V . Define a product on V by the equality

[u, v]+ = [s1 + t1, s2 + t2]
+ = [s1, s2] + [t1, t2], where si ∈ S and

ti ∈ T , respectively. Then we say that the pair (V, [·, ·]+) is a

generalized Minkowski space with Minkowski product [·, ·]+. We

also say that V is a real generalized Minkowski space if it is a

real vector space and the s.i.i.p. is a real valued function.

Lemma : Let (S, [·, ·]S) and (T,−[·, ·]T ) be two s.i.p. spaces.

Then the function [·, ·]− : (S + T) × (S + T) −→ C defined by

[s1 + t1, s2 + t2]
− := [s1, s2] − [t1, t2]

is an s.i.p. on the vector space S + T .
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[s + t, s + t]− := [s, s] − [t, t] and [s + t, s + t]+ := [s, s] + [t, t]

S

T

[s,s]+[t,t]=1

[s,s]+[t,t]=-1

[s,s]-[t,t]=1

Unit spheres in dimension two.
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S

T

The case of the norm L∞.
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Facts on Minkowski spaces

The real generalized Minkowski space is a geometrical Minkowski space if it
is finite dimensional and the s.i.i.p. is an s.i.p..The unit ball of this space is
{v|[v, v] = 1}.

The finite dimensional real generalized Minkowski space is a pseudo-Euclidean
space if the s.i.i.p is an i.i.p, a space-time model if it is pseudo-Euclidean and
its negative direct component has dimension 1. Its signature of corresponds
to the dimensions of S and T .

By Lemma the s.i.p.
√

[v, v]− is a norm function on V which can give an
embedding space for a generalized Minkowski space.

The Minkowski product satisfies the properties 1-5 of the s.i.i.p..

But in general the property 6 does not hold.
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A s.i.p. associated to the L∞ norm is:

[x1e1 + x2e2, y1e1 + y2e2]S := x1y1 lim
p→∞

1(
1+

(
y2

y1

)p) p−2
p

+ x2y2 lim
p→∞

1(
1+

(
y1

y2

)p) p−2
p

.

By Lemma the function

[x1e1 + x2e2 + x3e3, y1e1 + y2e2 + y3e3]− := [x1e1 + x2e2, y1e1 + y2e2]S + x3y3

is an s.i.p. on E3 defining the norm
√

[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]
− :=

√
max{|x1|, |x2|}2 + x2

3.

Consider such a sign function for which ε(v) is equal to 1 if v is in S ∩ C and
is equal to −1 if v = e3 holds. This sign function determine an s.i.i.p. [·, ·], a
Minkowski product [·, ·]+ and a square root function:

f(v) :=
√

[x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3]+ =
√

max{|x1|, |x2|}2 − x2
3.
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The plane x3 = αx2 for 0 < α < 1 is positive subspace with

respect to the Minkowski product but its unit ball is not convex.

x

y

z

z=1/2y

max{|x|,|y|}
2
-1/4y

2
=1

On the other hand f(v) homogeneous thus it is not subaddi-

tive. Since Cauchy-Scwartz inequality implies subadditivity, this

inequality also false in this positive subspace.
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Generalized space-time model

It is a real generalized Minkowski space with dimT = 1.

Let denote by S,L and T the sets of the space-like, light-like

and time-like vectors, respectively. In this case T is a union of

its two parts,

T = T + ∪ T −

where

T + = {s + t ∈ T | where t = λen for λ ≥ 0} and

T − = {s + t ∈ T | where t = λen for λ ≤ 0}.
Theorem : Let V be a generalized space-time model. Then T is

an open double cone with boundary L and the positive part T +

(resp. negative part T −) of T is convex.
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The imaginary unit sphere in a generalized space-time model is

a generalized two sheets hyperboloid corresponding the two

piece of T .

H := {v ∈ V |[v, v]+ = −1}

Usually we deal only with one sheet of the hyperboloid or identify

the two sheets projectively.The positive part of it denoted by H+.

The space-time component s ∈ S of v determines uniquely the

time-like one t ∈ T and thus the function

s 7→ v = s +
√

1 + [s, s]en

gives H+. The graph of such a function called by hypersurface .
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The directional derivatives of a function f : S 7−→ R with respect

to a unit vector e of S can be defined, by the existence of the

limits for real λ:

f ′
e(s) = lim

λ7→0

f(s + λe) − f(s)

λ
.

Lemma :Let V be a generalized Minkowski space and assume

that the s.i.p. [·, ·]|S is continuous. (So the property s6 holds.)

Then the directional derivatives of the real valued function

f : s 7−→
√

1 + [s, s],

are

f ′
e(s) =

ℜ[e, s]
√

1 + [s, s]
.
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Tangent vectors and tangent hyperplane

u is a tangent vector of the hypersurface F in its point v =

(s + f(s)en), if it is of the form

u = α(e + f ′
e(s)en) for real α and unit vector e ∈ S.

The linear hull of the tangent vectors translated into the point s

is the tangent space of F in s. If the tangent space has dimension

(n − 1) we call it tangent hyperplane . We also consider it as

an affine hyperplane through the examined point. So it also

means the set

{
(s + f(s)en) + α

(
e + [e,s]√

1+[s,s]
en

)
: α ∈ R, e ∈ S

}
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Definition : If F is a hypersurface of a generalized space-time

model for which the following properties hold:

i, in every point v of F , there is an (unique) tangent hyperplane

Tv for which the restriction of the Minkowski product [·, ·]+v
is positive,

ii, the function ds2v := [·, ·]+v : F × Tv × Tv −→ R+

ds2v : (v, u1, u2) 7−→ [u1, u2]
+
v

varying differentiable with the vectors v ∈ F and u1, u2 ∈ Tv,

then we say that the pair (F, ds2) is a Minkowski-Finsler space

with semi-metric ds2 embedding into the generalized space-time

model V .
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The main result on the imaginary unit

sphere

Theorem :Let V be a generalized space-time model. Let S be a

continuously differentiable s.i.p. space then

(H+, ds2) is a Minkowski-Finsler space.

To prove this statement we need the concept of orthogonality in a s.i.i.p.
space. We also proved:

Lemma :Let H be the imaginary unit sphere of a generalized space-time
model. Then the tangent vectors of the hypersurface H in its point v =
s +

√
1 + [s, s]en form the orthogonal complement v⊥ of v.

and the theorem:

Theorem :The orthogonal complement corresponding to the point v = s+

t ∈ H is a positive (n-1)-dimensional subspace of the generalized Minkowski
space (V, [·, ·]+).
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The geometry of H+.

Definition : A linear isometry f : H+ −→ H+ of H+ is the

restriction to H+ of a linear map F : V −→ V which preserves

the Minkowski product and which sends H+ onto itself.

We need the concept of generalized adjoint .

Koehler proved that if the generalized Riesz-Fischer representa-

tion theorem is valid in a normed space then for every bounded

linear operator A has a generalized adjoint AT defined by the

equality:

[A(x), y] = [x, AT(y)] for all x, y ∈ V.

This mapping is the usual Hilbert space adjoint if the space is

an i.p. one. In this more general setting this map is not usually

linear but it still has some interesting properties.
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Theorem :Let V be a generalized space-time model. Assume

that

the subspace S is a strictly convex, smooth normed space

with respect to the norm arisen from the s.i.i.p.. Then the s.i.p.

space {V, [·, ·]−} is also smooth and strictly convex. Let FT be

the generalized adjoint of the linear mapping F with respect

to the s.i.p. space {V, [·, ·]−}, and define the involutive linear

mapping J : V −→ V by the equalities J |S = id|S, J |T = −id|T .

The map F |H = f : H −→ H is a linear isometry of the upper

sheet H+ of H if and only if it is invertible, satisfies the equality:

F−1 = JFTJ,

moreover takes en into a point of H+.
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Topological isometry

Definition : Denote by p, q a pair of points in H+ and consider

the set Γp,q of equally oriented piecewise differentiable curves c(t)

a ≤ t ≤ b of H+ emanating from p and terminating at q. Then

the Minkowskian-Finsler distance of these points is:

ρ(p, q) = inf






b∫

a

√
[ċ(x), ċ(x)]+

c(x)
dx for c ∈ Γp,q





,

where ċ(x) means the tangent vector of the curve c in its point

c(x). A topological isometry f : H −→ H of H is a homeo-

morphism of H which preserves the Minkowski-Finsler distance

between each pair of points of H.
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Finsler isometry

Definition : The Minkowski-Finsler semi-metric on H+ is the

function ds2 which assigns at each point v ∈ H+ the Minkowski

product which is the restriction of the Minkowski product to

the tangent space Tv. Finsler isometry is a diffeomorphism of

H onto H which preserves the Minkowski-Finsler semi-metric

function.
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Myers-Steenrod:

In a Riemann space topological isometry ⇔ Finsler isometry .

Deng-Hou:

In a Finsler space topological isometry ⇔ Finsler isometry .

For the hyperboloid model of hyperbolic space embedded in a

pseudo-euclidean space

linear isometry ⇔ Finsler isometry ⇔ topological isometry
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We proved on H+:

linear isometry ⇒ Finsler isometry ⇒ topological isometry .

moreover if

the subspace S is a strictly convex, smooth normed space ,

the group of linear isometries of H+ acts transitively on H+

denoting by d(·, ·) the Minkowski-Finsler distance of H+ we

have:

[a, b]+ = −ch(d(a, b)) for a, b ∈ H+.


