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Editorial

The subject of the papers in the present issue is geometry, and the guiding
principle in them is visualization. The authors present their results either in
theory or application or education by illustrating them with well designed figures
in order to help the reader to understand also the abstract ideas.

In the theory of non-Euclidean and higher dimensional geometry visualization
is based on an appropriate model, in which the reader can rely on his or her
understanding of three dimensional Euclidean space. That helps to imagine the
abstract structures. In the applications everyday objects are shown in order to
illustrate the ideas of the authors about the presented subject. Visualization has
a particularly important role in education either in geometry or in other fields of
science. It is not only a technique in the presentation of disciplines, but also the
task of the teaching process. Electronic teaching materials help to develop the
ability of the students in spatial imagination and thinking. The authors dealing
with education show a rich collection of the used techniques and a number of nice
examples from their teaching material.

These articles were presented at the conference held in October 21–22, 2014 in
Sopron, Hungary with the title “Visual methods in engineer and teacher educa-
tion in science”. The conference and the printing of this issue was supported by
the International Visegrad Fund Small Grants No. 11420082. We thank for this
financial support and also the authors for their cooperation in editing this issue.

Guest Editors
M. Szilvási-Nagy and J. Szirmai
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EXPERIENCES IN THE DEVELOPMENT OF DIGITAL
LEARNING ENVIRONMENT

A. BÖLCSKEI and J. KATONA

Abstract. In this article our experiences on the development and usage of some
e-learning materials are reported. We formulate seven statements about the require-
ments a useful digital content should fulfil.

Introduction

Usually it is difficult to predict the success of a movie or a book. It is also often the
case that the critics and the public have basically different opinion about the same
artworks. Similarly, it is also difficult to estimate the acceptance of a textbook or
an e-learning content among students and teachers.

In this article our experiences on the development and usage of some e-learning
materials are reported. We formulate seven statements about the requirements a
useful digital content should fulfil. However, we are aware that no curriculum can
be universal and can be optimal for all types of learners. The statements therefore
characterize such learning environments that may be suitable for the vast majority
of students. (For exact proof of the above instructions a comparative survey
would be necessary. Till that our comments may be better called conjectures or
experiences.)

The digital contents we developed were related to the subjects “Descriptive Ge-
ometry” and “Information Technology for Engineers”, both for engineer students.
However, these teaching materials not only provided specialized knowledge, but
aimed also general goals, such as the development of spatial abilities. The state-
ments in this article are general. We hope that our experiences will be useful not
only in teaching geometry and 3D modeling, but also in teaching mathematics and
information technology.

Received December 22, 2014.
2000 Mathematics Subject Classification. Primary 97C50, 97D20, 97C80; Secondary 97U50,

97U70, 97U80.
Key words and phrases. spatial ability, e-learning, maths didactics.
This work was supported by the Visegrad Fund, small grant 11420082.
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1. Background

The main motivation for our development was provided by the experienced dif-
ficulties of teaching and illustrating the traditional descriptive geometry and 3D
geometric modeling. If a figure with the complete construction is given, then the
consecutive steps are hardly seen and difficult to follow, the description however
is long and wordy:

Figure 1. Rytz’s construction from the book Szabó Ferdinánd: Műszaki Ábrázolás II.
Győr, 2006, p. 17.

Considering the figure it is not easy to see what was given initially, what is the
final result, and what are the consecutive steps leading to the result. To avoid this
problem we made sequences of figures, animations and movies for each teaching
material that showed the process of construction step by step.

A further advantage of e-learning materials is that we can add interactive 3D
models to them. This greatly facilitates the understanding that can otherwise be
similarly effective giving specific models in hands. The relationship between the
spatial position and the views becomes understandable in virtual space. In this
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respect the change of viewpoints, moving, rotating the models and to vary the
display modes (changing the rendering, the transparency of bodies; using lights
and shadows) play a big role. In addition to these advantages many other benefits
of e-learning materials will be given in Chapter 2.

1.1. Specifics

Motivated by the difficulties listed in the previous paragraph, in the past 10 years,
we developed several digital learning materials at the Szent István University, Ybl
Miklós Faculty of Architecture and Civil Engineering. These all were criticized by
reviewers and our colleagues. Based on the feedbacks we revised the materials. The
products are repeatedly used in the education and their effects were investigated
[12, 13, 14, 15].

Among the teaching materials there were plain text files, charts and tables.
These were used for setting the tasks, for example, or to summarize, systematize
things, also make reminders. It was important to provide the easy distribution,
and the colorful and aesthetic appearance of the documents.

Another well-known type of electronic learning materials is the presentation.
This can be considered as a complete curriculum. Its application is vulgar, we
also took some advantages, e.g. animated images, videos, and links were inserted.
Beside all that we created interactive web sites, and a large amount of teaching
videos. These videos can be considered as successors of the previously used edu-
cational films. Compared to them our videos are much easier to handle, think on
the storage, sharing, playback, etc. From the teacher’s point of view it has great
advantages too, because it is easier to update, to reconstruct and to correct the
errors.

We collected also the students’ feedback. These were the following: spontaneous
conversations, interviews (with 12 students), specific questionnaires (the number
of subjects were 106). In addition, we asked the students about a possible con-
tinuation of the content. We conducted a comparative educational survey with
app. 50 subjects, where the progress of those 25 who used the digital content was
referred to the control group of 25 people.

Based on all that we formulated the requirements of an „ideal” digital teaching
content. Our own developments do not fulfil all the criteria, they will be taken
into account in the next revision.

2. Comparison of paper-based and digital learning materials

The computer is a versatile, universal tool. Using this excellent machine, however,
does not mean automatically that any digital curriculum has good quality. It could
even be said that despite the widened possibilities, there are much more way to
slip up.

Consequently, there is a unity in the literature, that it is not enough to digitize
the traditional curriculum [1, 2, 3], and that we need the same basic principles in
the development of e-learning materials as for the traditional curricula. We have to
try for being visual; to show the hidden connections, to connect to precognition,



6 A. BÖLCSKEI and J. KATONA

and we must stabilize what the students learned, by repetitions and exercises
[4, 11].

A possible model for the progress of the development of digital learning mate-
rials is shown below:

Figure 2. Model for the progress of the development of digital learning materials.

The aims of teaching and traditional instruments are considered to be given.
The development of digital curriculum is based also on them. The completed
digital contents will be then reviewed, published and tried out. Then the feedback
comes: based on experiences one can change the targets; or what much more often
happens: we revise the digital curriculum. Curriculum published in electronic
form has a huge advantage in this regard: it can be changed much easier and
faster. The teacher may open the source file every time, can modify (for example,
correct typos, add a paragraph, update, etc,) and upload to the Internet. The
students download the best possible version all the time.

A further advantage of e-learning contents is the usage of multimedia materials,
space-saving storage and easy sharing. However, the computer can not be used
only as content provider. It allows you to experiment with, for example, you can
run your simulation models. It may improve the appearance of our work, or the
accuracy of our constructions and planes. In the digital learning environment,
using social networks permit cooperative learning [5, 6]; and interactive test. The
teacher can generate thousands of similar problems by computer [7].
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The downside of digital learning materials is addiction on technology, lack of
manual activities and the decline of personal pedagogical influence. For all these
reasons do not use it instead of the traditional tools, but parallel to them.

3. Students’ criteria

Based on the feedback mentioned in Section 1.1, students set the following seven
characteristics for a good curriculum. The requirements we have to meet are then:

3.1. Digital

It seems that all students can come at a computer with Internet access. Registra-
tion to the university networks, as e.g. applications for exams; information about
the description and requirements of subjects, homework; sharing teaching mate-
rials and other information – these happen all electronically nowadays. It does
not cause any problem for the students to submit their tasks digitally. They can
install without a problem even such resource-intensive softwares as CAD systems.
We can conclude, therefore, that there are no fundamental technical barriers.

The computer and the media lost their motivation effect, it is obvious for the
students to use the computer for learning. However, digital learning materials are
expected, because they do not want to carry paper-based media, whose purchase,
storage and sharing is more difficult.

3.2. Free for the students

There is probably no need to justify it long. The social status of many students
does not allow purchasing expensive books. Besides, many of the students down-
load films and music for free, they are not willing to give money for any textbook.
(We should add that the majority of free films, music and teaching material are
legal. But we know that there exist and spread the black, but at least the gray
copies, too.) Free electronic contents may refer to works published by other au-
thors, a simple link can point to external materials.

If a curriculum is free of charge for the students, it does not imply that the
extra work of the authors can not be rewarded. There are examples that in this
case the author is paid by the higher education institution from public or private
project resources. Since the author receives the money independently from the
number of copies sold; therefore the higher education institution, the tenderer and
the referees are responsible for the quality.

3.3. Full but moderate

The students do not like to collect the necessary knowledge from many sources.
The information collected from several locations may not be uniform concerning
notions, level and order. In addition, the students also often complain, if the
selected bibliography is deeper and want to teach them more. Many students seek
after the minimum, and reject to learn more than needed.
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In contrast, a good curriculum can be found at a specific location, is consistent,
complete, and teaches you exactly that the requirements of the subject contain.

3.4. Independent from the platform

Today, the boundaries among television, different type of computers (desktop,
laptop, notebook, netbook, tablet) and smartphone are dissolved. Smart TVs will
play movies and music from a memory stick, display photographs, and are also
suitable for Internet browsing. In addition, smartphones can be used for recording
audio files, images, videos and have GPS, too. The camera, microphone and
speaker of a simple PC are suitable for videotelephony.

A large number of platforms and operating systems are around us. Students
want to display the e-learning materials on a variety of devices, without installing
special softwares and plug-ins. Therefore, we must adhere to the most commonly
used format: hypertext (HTML) for the browsers, and the almost standardized
video, image and document types, as e.g. PDF, JPEG, MPEG, AVI.

3.5. Suitable for single study

The digital material should not only complement the lectures and exercises, but
it must also include them. This is especially true for correspondent students who
often are not able to attend the lectures; or are not fresh enough to understand
what they learn for instance on Saturday night classes. For ordinary students it
is often the case that they could not participate the classes for various reasons:
illness, two classes at the same time, other tasks that can not be postponed,
examination, or simply laziness.

In our institution often happens that the daily load is 8 classes (45 minutes
each) or possibly even more. However, mathematics has a strict structure, even
a moment’s inattention threatens the understanding. The digital teaching materi-
als can be replayed, so student can follow the train of thought. Another advantage
is that no need to take notes, because the teacher publishes the lecture notes
electronically. The student can focus on understanding, instead.

3.6. Visual, colorful, practical, interesting, playful and funny

It seems that merely a new material is not absorbing enough. But we have good ex-
periences with useful and practical problems, which are closely related to everyday
life and have the potential to teach the new materials while solving them.

The success of the online game „Honfoglaló” shows that even the dead descrip-
tive geography, or the years of historical events can also be amusing to deal with,
when they are processed in a playful manner. („Honfoglaló” is an online game
where quiz questions on history or geography must be answered, and better per-
form imply to conquer regions from the opponents on a virtual map.)

Another secret of success was probably the development of race condition. For
instance, we found very useful the games that develop the spatial abilities [8, 9].
There are many traditional ones, as building blocks, metal building, Babylon, Java,
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Lego, Geomag, Polidron, Rubik’s cube, etc, but also digital games: 3D tetris,
Welltris, Tubis, spatial tic-tac-toe, etc.

The curriculum should be visual in the sense that it helps to understand the
complicated terminology by vision. All illustration must be aesthetic and colorful.
(In geometry it is much easier to show and to hint to the red segment instead of the
segment AB. In a crowded figure it is sometimes difficult to mark the corresponding
letter close to the point in question. Colored segments are much easier to notice.)
Of course, these findings are well-known, and are valid not only for the electronic,
but equally to the traditional curriculum. Colorful graphics are, however, cheaper
to perform electronically, than printed.

3.7. Consist of distinct, small parts

The vast majority of students do not read the entire chapter of the textbook before
solving the problems. Very commonly, having received the task they start to collect
the necessary knowledge in the book. Therefore, a detailed table of contents and
index is very important in the traditional teaching, while the searching function
in digital contents makes the navigation more effective.

Therefore, for curricula, the students expect that kind of structure that do not
cite previous chapters; or does not matter if they are repeated. More study also
concludes that the members of Z-generation expect immediate and rapid results,
even if the curriculum is processed not linearly, but in parallel, or in random
order [8, 10]. The findings of these papers were reconfirmed by the completed
questionnaires of our students: many of them found our teaching materials slow
and expected more dynamic, faster and shorter videos.

4. Conclusion

The criteria of teachers and those of students are not incompatible at all. The
teachers’ intention is to transmit useful knowledge and quality, within a given
time, and want to improve the effectiveness of teaching. Most students, however,
want to learn using the least possible time, so they want to increase the effec-
tiveness of learning. We believe that e-learning curricula that fulfil the principles
of mathematics-didactics, and the seven properties listed above, can satisfy both
requirements.

We also need to realize that there is no best textbook, there is no best digital
curriculum. It is impossible to compile a curriculum that would be perfect for all
types of learners at all level. Therefore it is important to provide the choice: the
same chapter should be worked up in different ways, using different approaches,
with more or less details.
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ON THE HYPERBOLIC TRIANGLE CENTERS

ÁKOS G. HORVÁTH

Abstract. Using the method of C. Vörös, we establish results on hyperbolic plane
geometry, related to triangles. In this note we investigate the orthocenter, the
concept of isogonal conjugate and some further center as of the symmedian of a
triangle. We also investigate the role of the "Euler line" and the pseudo-centers of
a triangle.

1. Introduction and preliminaries

In an earlier work of the author [9, 10]), the concept of distance extracted from
the work of Cyrill Vörös was investigated. By translating the standard methods
of Euclidean plane geometry into the hyperbolic plane, he applied these methods
for various configurations. We gave a model independent construction for the
famous problem of Malfatti (discussed in [8]) and gave some interesting formulas
connected with the geometry of hyperbolic triangles. In this paper we follow the
investigations above for some other concept of the hyperbolic triangle.

1.1. Well-known formulas on hyperbolic trigonometry

The points A, B, C denote the vertices of a triangle. The lengths of the edges
opposite to these vertices are a, b, c, respectively. The angles at A, B, C are
denoted by α, β, γ, respectively. If the triangle has a right angle, it is always at
C.

The symbol δ denotes half of the area of the triangle; more precisely, we have
2δ = π − (α+ β + γ).
• Connections between the trigonometric and hyperbolic trigono-
metric functions:

sinh a = 1
i sin(i a), cosh a = cos(i a), tanh a = 1

i tan(i a).

• Law of sines:

sinh a : sinh b : sinh c = sinα : sinβ : sin γ. (1)

Received August 28, 2014, and in revised form January 29, 2015.
2000 Mathematics Subject Classification. Primary 51M10, 51M15.
Key words and phrases. cycle, hyperbolic plane, triangle centers.
This work was supported by the Visegrad Fund, small grant 11420082.
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• Law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cos γ. (2)

• Law of cosines on the angles:

cos γ = − cosα cosβ + sinα sinβ cosh c.

• The area of the triangle:

T := 2δ = π − (α+ β + γ), tan T
2 =

(
tanh a1

2 + tanh a2
2

)
tanh ma

2 ,

where ma is the height of the triangle corresponding to A and a1, a2 are
the signed lengths of the segments into which the foot point of the height
divides the side BC.

• Heron’s formula:

tan T
4 =

√
tanh s

2 tanh s−a
2 tanh s−b

2 tanh s−c
2 .

• Formulas on Lambert’s quadrangle: The vertices of the quadrangle are
A,B,C,D and the lengths of the edges are AB = a, BC = b, CD = c and
DA = d, respectively. The only angle which is not right-angle is BCD]=ϕ.
Then, for the sides, we have:

tanh b = tanh d cosh a, tanh c = tanh a cosh d,

and
sinh b = sinh d cosh c, sinh c = sinh a cosh b,

moreover, for the angles, we have:

cosϕ = tanh b tanh c = sinh a sinh d, sinϕ = cosh d
cosh b = cosh a

cosh c ,

and
tanϕ = 1

tanh a sinh b = 1
tanh d sinh c .

1.2. The distance of the points and the lengths of the segments

In [9] we extracted the concepts of the distance of real points following the method
of the book of Cyrill Vörös [18]. We extend the plane with two types of points,
one type of the points at infinity and the other one the type of ideal points.
In a projective model these are the boundary and external points of a model
with respect to the embedding real projective plane. Two parallel lines determine
a point at infinity and two ultraparallel lines an ideal point which is the pole of
their common transversal. Now the concept of the line can be extended; a line
is real if it has real points (in this case it also has two points at infinity and the
other points on it are ideal points being the poles of the real lines orthogonal
to the mentioned one). The extended real line is a closed compact set with finite
length. We also distinguish the line at infinity which contains precisely one point at
infinity and the so-called ideal line which contains only ideal points. By definition
the common lengths of these lines are πk i, where k is a constant of the hyperbolic
plane and i is the imaginary unit. In this paper we assume that k = 1. Two
points on a line determine two segments AB and BA. The sum of the lengths
of these segments is AB + BA = π i. We define the length of a segment as an
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element of the linearly ordered set C̄ := R + R · i. Here R = R ∪ {±∞} is the
linearly ordered set of real numbers extracted with two new numbers with the “real
infinity” ∞ and its additive inverse −∞. The infinities can be considered as new
“numbers” having the properties that either “there is no real number greater or
equal to ∞” or “there is no real number less or equal to −∞”. We also introduce
the following operational rules: ∞+∞ =∞, −∞+ (−∞) = −∞, ∞+ (−∞) = 0
and ±∞ + a = ±∞ for real a. It is obvious that R is not a group, the rule of
associativity holds only such expressions which contain at most two new objects.
In fact, 0 = ∞ + (−∞) = (∞ + ∞) + (−∞) = ∞ + (∞ + (−∞)) = ∞ is a
contradiction. We also require that the equality ±∞+b i = ±∞+0 i holds for every
real number b and for brevity we introduce the respective notations ∞ :=∞+ 0 i
and −∞ := −∞+0 i. We extract the usual definition of hyperbolic function based
on the complex exponential function by the following formulas

cosh(±∞) :=∞, sinh(±∞) := ±∞, and tanh(±∞) := ±1.

We also assume that ∞ · ∞ = (−∞) · (−∞) = ∞, ∞ · (−∞) = −∞ and
α · (±∞) = ±∞.

Assuming that the trigonometric formulas of hyperbolic triangles are also valid
with ideal vertices the definition of the mentioned lengths of the complementary
segments of a line are given. We defined all of the possible lengths of a segment
on the basis of the type of the line contains them.

The definitions of the respective cases can be found in Table 1. We abbreviate
the words real, infinite and ideal by symbols R, In and Id, respectively. d means
a real (positive) distance of the corresponding usual real elements which are a real
point or the real polar line of an ideal point, respectively. Every box in the table
contains two numbers which are the lengths of the two segments determined by
the two points. For example, the distance of a real and an ideal point is a complex
number. Its real part is the distance of the real point to the polar of the ideal
point with a sign, this sign is positive in the case when the polar line intersects
the segment between the real and ideal points, and is negative otherwise. The
imaginary part of the length is (π/2) i, implying that the sum of the lengths of two
complementary segments of this projective line has total length π i. Consider now
an infinite point. This point can also be considered as the limit of real points or
limit of ideal points of this line. By definition the distance from a point at infinity
of a real line to any other real or infinite point of this line is ±∞ according to that
it contains or not ideal points. If, for instance, A is an infinite point and B is a
real one, then the segment AB contains only real points has length ∞. It is clear
that with respect to the segments on a real line the length-function is continuous.

We can check that the length of a segment for which either A or B is an infinite
point is indeterminable. On the other hand if we consider the polar of the ideal
point A we get a real line through B. The length of a segment connecting the
(ideal) point A and one of the points of its polar is (π/2) i. This means that we
can define the length of a segment between A and B also as this common value.
Now if we want to preserve the additivity property of the lengths of segments on
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B

R In Id

R AB= d

BA=−d+ π i

AB=∞
BA=−∞

AB= d+ π
2 i

BA=−d+ π
2 i

A In AB=∞
BA=−∞

AB=∞
BA=−∞

Id AB= d+ π i

BA=−d

Table 1. Distances on the real line.

a line at infinity, too then we must give the pair of values 0, π i for the lengths of
segment with ideal ends. The Table 2 collects these definitions.

B

In Id

A
In AB= 0

BA=π i

AB= π
2 i

BA= π
2 i

Id AB= 0

BA=π i

Table 2. Distances on the line at infinity.
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Figure 1. The cases of the ideal segment and angles.

The last situation contains only one case: A, B and AB are ideal elements,
respectively. As we showed in [9]. The length of an ideal segment on an
ideal line is the angle of their polars multiplied by the imaginary unit i.
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Id
p
i
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Table 3. Angles of lines.

Similarly as in the previous paragraph we can deduce the angle between arbi-
trary kind of lines (see Table 3). In Table 3, a and b are the given lines, M = a∩ b
is their intersection point, m is the polar of M and A and B is the poles of a
and b, respectively. The numbers p and a1 represent real distances, can be seen
on Fig 1, respectively. The general connection between the angles and distances
is the following: Every distance of a pair of points is the measure of
the angle of their polars multiplied by i. The domain of the angle can
be chosen on such a way, that we are going through the segment by
a moving point and look at the domain which described by the moving
polar of this point.

1.3. Results on the three mean centers

There are many interesting statements on triangle centers. In this section we men-
tion some of them concentrating only the centroid, circumcenters and incenters,
respectively [9, 10].

The notation of this subsection follows the previous part of this paper: the
vertices of the triangle are A, B, C, the corresponding angles are α, β, γ and the
lengths of the sides opposite to the vertices are a, b, c, respectively. We also use
the notion 2s = a+b+c for the perimeter of the triangle. Let denote R, r, rA, rB ,
rC the radius of the circumscribed cycle, the radius of the inscribed cycle (shortly
incycle), and the radiuses of the escribed cycles opposite to the vertices A, B, C,
respectively. We do not assume that the points A, B, C are real and the distances
are positive numbers. In most cases the formulas are valid for ideal elements and
elements at infinity and when the distances are complex numbers, respectively.
The only exception when the operation which needs to the examined formula is
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understandable. Before the examination of hyperbolic triangle centers we collect
some further important formulas on hyperbolic triangles. We can consider them
in our extracted manner.

1.3.1. Staudtian and angular Staudtian of a hyperbolic triangle. The
Staudtian of a hyperbolic triangle something-like similar (but definitely dis-
tinct) to the concept of the Euclidean area. In spherical trigonometry the twice
of this very important quantity called by Staudt the sine of the trihedral angle
O−ABC and later Neuberg suggested the names (first) “Staudtian” and the “Norm
of the sides”, respectively. We prefer in this paper the name “Staudtian” as a token
of our respect for the great geometer Staudt. Let

n = n(ABC) :=
√

sinh s sinh(s− a) sinh(s− b) sinh(s− c),

then we have
sin α

2 sin β
2 sin γ

2 = n2

sinh s sinh a sinh b sinh c .

This observation leads to the following formulas on the Staudtian:

sinα = 2n
sinh b sinh c , sinβ = 2n

sinh a sinh c , sin γ = 2n
sinh a sinh b . (3)

From the first equality of (3) we get

n = 1
2 sinα sinh b sinh c = 1

2 sinhhC sinh c, (4)

where hC is the height of the triangle corresponding to the vertex C. As a conse-
quence of this concept we can give homogeneous coordinates for the points of the
plane with respect to a basic triangle as follows:

Definition 1.1. Let ABC be a non-degenerated reference triangle of the hy-
perbolic plane. If X is an arbitrary point we define its coordinates by the ratio of
the Staudtian X := (nA(X) : nB(X) : nC(X)) where nA(X), nB(X) and nC(X)
means the Staudtian of the triangle XBC, XCA and XAB, respectively. This
triple of coordinates is the triangular coordinates of the point X with respect
to the triangle ABC.

Consider finally the ratio of section (BXAC) where XA is the foot of the
transversal AX on the line BC. If n(BXAA), n(CXAA) mean the Staudtian
of the triangles BXAA, CXAA, respectively then using (4) we have

(BXAC) = sinhBXA
sinhXAC

=
1
2 sinhhC sinhBXA
1
2 sinhhC sinhXAC

= n(BXAA)
n(CXAA) =

=
1
2 sinh c sinhAXA sin(BAXA)]
1
2 sinh b sinhAXA sin(CAXA)]

= sinh c sinhAX sin(BAXA)]
sinh b sinhAX sin(CAXA)] = nC(X)

nB(X) ,

proving that

(BXAC) = nC(X)
nB(X) , (CXBA) = nA(X)

nC(X) , (AXCB) = nB(X)
nA(X) . (5)

The angular Staudtian of the triangle defined by the equality:

N = N(ABC) :=
√

sin δ sin(δ + α) sin(δ + β) sin(δ + γ),
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is the “dual” of the concept of Staudtian and thus we have similar formulas on it.
From the law of cosines on the angles we have

cos γ = − cosα cosβ + sinα sinβ cosh c

and adding to this the addition formula of the cosine function we get

sinα sinβ (cosh c− 1) = cos γ + cos(α+ β) = 2 cos α+β+γ2 cos α+β−γ2 .

From this we get

sinh c
2 =

√
sin δ sin (δ+γ)

sinα sin β .

Analogously we get

cosh c
2 =

√
sin (δ+β) sin (δ+α)

sinα sin β .

From these equations

cosh a
2 cosh b

2 cosh c
2 = N2

sinα sin β sin γ sin δ .

Finally we also have that

sinh a = 2N
sin β sin γ , sinh b = 2N

sinα sin γ , sinh c = 2N
sinα sin β , (6)

and from the first equality of (6) we get

N = 1
2 sinh a sinβ sin γ = 1

2 sinhhC sin γ.

The connection between the two Staudtians gives by the formula

2n2 = N sinh a sinh b sinh c. (7)

In fact, from (3) and (6) we get

sinα sinh a = 4nN
sin β sin γ sinh b sinh c

implying that
sinα sinβ sin γ sinh a sinh b sinh c = 4nN.

On the other hand from (3) we get immediately that

sinα sinβ sin γ = 8n3

sinh2 a sinh2 b sinh2 c

and thus
2n2 = N sinh a sinh b sinh c,

as we stated. The connection between the two types of the Staudtian can be
understood if we dived to the first equality of (3) by the analogous one in (10) we
get sinα

sinh a = n
N

sin β
sinh b

sin γ
sinh c implying the equality

N
n = sinα

sinh a .
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1.3.2. On the centroid (or median point) of a triangle. We denote the
medians of the triangle by AMA, BMB and CMC , respectively. The feet of the
medians MA, MB and MC . The existence of their common point M follows from
the Menelaos theorem [17]. For instance if AB, BC and AC are real lines and the
points A,B and C are ideal points then we have that AMC = MCB = d = a/2
implies that MC is the middle point of the real segment lying on the line AB
between the intersection points of the polars of A and B with AB, respectively
(see Fig. 2).
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M
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C

M

d d A B
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M
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X

H

M
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B
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Figure 2. Centroid of a triangle with ideal vertices.

Theorem 1.2 ([10]). We have the following formulas connected with the cen-
troid:

nA(M) = nB(M) = nC(M), (8)
sinhAM

sinhMMA
= 2 cosh a

2 , (9)
sinhAMA

sinhMMA
= sinhBMB

sinhMMB
= sinhCMC

sinhMMC
= n

nA(M) (10)

sinh d′M =
sinh d′A+sinh d′B+sinh d′C√
1+2(1+cosh a+cosh b+cosh c)

, (11)

where d′A, d
′
B, d

′
C , d

′
M mean the signed distances of the points A, B, C, M to a

line y, respectively. Finally we have

coshYM = coshY A+coshY B+coshY C
n

nA(M)
, (12)

where Y a point of the plane. (11) and (12) are called the “center of gravity”
property of M and the “minimality” property of M , respectively.

1.3.3. On the center of the circumscribed cycle. Denote by O the center
of the circumscribed cycle of the triangle ABC. In the extracted plane O always
exists and could be a real point, point at infinity or ideal point, respectively.
Since we have two possibilities to choose the segments AB, BC and AC on their
respective lines, we also have four possibilities to get a circumscribed cycle. One of
them corresponds to the segments with real lengths and the others can be gotten
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if we choose one segment with real length and two segments with complex lengths,
respectively. If A, B, C are real points the first cycle could be circle, paracycle or
hypercycle, but the other three are always hypercycles, respectively. For example,
let a′ = a = BC is a real length and b′ = −b+π i, c′ = −c+π i are complex lengths,
respectively. Then we denote by OA the corresponding (ideal) center and by RA
the corresponding (complex) radius. We also note that the latter three hypercycle
have geometric meaning. These are those hypercycles which fundamental lines
contain a pair from the midpoints of the edge-segments and contain that vertex of
the triangle which is the meeting point of the corresponding edges.

Theorem 1.3. The following formulas are valid on the circumradii:

tanhR = sin δ
N , tanhRA = sin(δ+α)

N (13)

tanhR =
2 sinh a

2 sinh b
2 sinh c

2

n , tanhRA =
2 sinh a

2 cosh b
2 cosh c

2

n

nA(0) : nB(O) = cos(δ + α) sinh a : cos(δ + β) sinh b.

1.3.4. On the center of the inscribed and escribed cycles. We are aware
that the bisectors of the interior angles of a hyperbolic triangle are concurrent at
a point I, called the incenter, which is equidistant from the sides of the triangle.
The radius of the incircle or inscribed circle, whose center is at the incenter
and touches the sides, shall be designated by r. Similarly the bisector of any
interior angle and those of the exterior angles at the other vertices, are concurrent
at point outside the triangle; these three points are called excenters, and the
corresponding tangent cycles excycles or escribed cycles. The excenter lying
on AI is denoted ba IA, and the radius of the escribed cycle with center at IA
is rA. We denote by XA, XB , XC the points where the interior bisectors meets
BC, AC, AB, respectively. Similarly YA, YB and YC denote the intersection of
the exterior bisector at A, B and C with BC, AC and AB, respectively.

We note that the excenters and the points of intersection of the sides with
the bisectors of the corresponding exterior angle could be points at infinity or also
could be ideal points. Let denote the touching points of the incircle ZA, ZB and ZC
on the lines BC, AC and AB, respectively and the touching points of the excycles
with center IA, IB and IC are the triples {VA,A, VB,A, VC,A}, {VA,B , VB,B , VC,B}
and {VA,C , VB,C , VC,C}, respectively (see in Fig. 3).

Theorem 1.4 ([10]). On the radiuses r, rA, rB or rC we have the following
formulas:

tanh r = n
sinh s , tanh rA = n

sinh(s−a) , (14)

tanh r = N
2 cos α2 cos β2 cos γ2

,

coth r = sin(δ+α)+sin(δ+β)+sin(δ+γ)+sin δ
2N , (15)

coth rA = − sin(δ+α)+sin(δ+β)+sin(δ+γ)−sin δ
2N , (16)

tanhR+ tanhRA = coth rB + coth rC ,

tanhRB + tanhRC = coth r + coth rA,
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Figure 3. Incircles and excycles.

tanhR+ coth r = 1
2 (tanhR+ tanhRA + tanhRB + tanhRC) ,

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c, (17)
nA(IA) : nB(IA) : nC(IA) = − sinh a : sinh b : sinh c.

The following formulas connect the radiuses of the circles and the lengths of the
edges of the triangle.

Theorem 1.5. Let a, b, c, s, rA, rB, rC , r, R be the values defined for a
hyperbolic triangle above. Then we have the following formulas:

− coth rA − coth rB − coth rC + coth r = 2 tanhR, (18)

coth rA coth rB + coth rA coth rC + coth rB coth rC =

= 1
sinh s sinh(s−a) + 1

sinh s sinh(s−b) + 1
sinh s sinh(s−c) , (19)

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =

= 1
2 (cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c) , (20)

coth rA + coth rB + coth rC =

= 1
tanh r (cosh a+ cosh b+ cosh c− coth s (sinh a+ sinh b+ sinh c)) , (21)

tanh rA + tanh rB + tanh rC =

= 1
2 tanh r (cosh a+ cosh b+ cosh c− cosh(b−a)− cosh(c−a)− cosh(c−b)) , (22)
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2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c) =

= tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB+

+ tanh rA tanh rC + tanh rB tanh rC .

Proof. From (15), (16) and (13) we get

− coth rA − coth rB − coth rC + coth r = 2 sin δ
N = 2 tanhR,

as we stated in (18).
To prove (19) consider the equalities in (14) from which

coth rA coth rB + coth rA coth rC + coth rB coth rC =

= sinh(s−a) sinh(s−b)+sinh(s−a) sinh(s−c)+sinh(s−c) sinh(s−b)
n2 =

= 1
sinh s sinh(s−a) + 1

sinh s sinh(s−b) + 1
sinh s sinh(s−c)

Similarly we also get (20):

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =

= sinh s sinh(s− a) + sinh s sinh(s− b) + sinh s sinh(s− c) =

= 1
2 (cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c) .

Since we have

− 2 tanhR+ coth r = coth rA + coth rB + coth rC =

= sinh(s−a)+sinh(s−b)+sinh(s−c)
n = (sinh(s−a)+sinh(s−b)+sinh(s−c))

sinh s tanh r =

= cosh a+cosh b+cosh c−coth s(sinh a+sinh b+sinh c)
tanh r

and so (20) is given. Furthermore we also have

tanh rA + tanh rB + tanh rC =

= n(sinh(s−a) sinh(s−b)+sinh(s−a) sinh(s−c)+sinh(s−b) sinh(s−c))
sinh(s−a) sinh(s−b) sinh(s−c) =

= sinh s
n (sinh(s−a) sinh(s−b) + sinh(s−a) sinh(s−c) + sinh(s−b) sinh(s−c)) =

= (sinh(s−a) sinh(s−b)+sinh(s−a) sinh(s−c)+sinh(s−b) sinh(s−c))
tanh r =

= 1
2 tanh r (cosh a+ cosh b+ cosh c− cosh(b− a)− cosh(c− a)− cosh(c− b))

implying (21). From (19) and (21) we get

tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB+

+ tanh rA tanh rC + tanh rB tanh rC =

= cosh(a+b)+cosh(a+c)+cosh(b+c)−cosh(b−a)−cosh(c−a)−cosh(c−b) =

= 2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c)

which implies (22). �

The following theorem gives a connection from among the distance of the in-
center and circumcenter, the radiuses r,R and the side-lengths a, b, c.
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Theorem 1.6 ([10]). Let O and I the center of the circumsrcibed and inscribed
circles, respectively. Then we have

coshOI = 2 cosh a
2 cosh b

2 cosh c
2 cosh r coshR+ cosh a+b+c

2 cosh(R− r).

2. Further formulas on hyperbolic triangles

2.1. On the orthocenter of a triangle.

The most important formulas on the orthocenter are also valid in the hyperbolic
plane. We give a collection in which the orthocenter is denoted by H, the feet
of the altitudes are denoted by HA, HB and HC , respectively. We also denote
by ha, hb or hc the heights of the triangle corresponding to the sides a, b or c,
respectively.

Theorem 2.1. With the notation above we have the formulas:

tanhHA · tanhHHA = tanhHB · tanhHHB = tanhHC · tanhHHC =: h, (23)

sinhHA · sinhHHA : sinhHB · sinhHHB : sinhHC · sinhHHC =

= coshhA : coshhB : coshhC , (24)

nA(H) : nB(H) : nC(H) = tanα : tanβ : tan γ. (25)

Furthermore, if P is any point of the plane then we have

nA(H) coshPA+ nB(H) coshPB + nC(H) coshPC = n coshPH (26)

and also
cosh c sinhHAC + cosh b sinhBHA = coshhA sinh a. (27)

Finally we have also that

(h+ 1) coshOH =
(
cothhA
sinhHA + cothhB

sinhHB + cothhC
sinhHC

)
coshR. (28)

Before the proof we prove Stewart’s Theorem on the hyperbolic plane.

Theorem 2.2 (Stewart’s theorem). Let ABC be a triangle and A′ is a point
on the side BC. Then we have

coshAB sinhA′C + coshAC sinhBA′ = coshAA′ sinhBC.

Proof. Using (2) to the triangles ABA′ and ACA′, respectively, we get

coshAA′ sinhBC = coshAA′ sinh(BA′ +A′C) =

= sinhBA′ coshA′C coshAA′ + sinhA′C coshBA′ coshAA′ =

= sinhBA′(sinhA′C sinhAA′ cos(AA′C]) + coshAC)+

+ sinhA′C(sinhBA′ sinhAA′ cos(π −AA′C]) + coshAB) =

= sinhBA′ coshAC + sinhA′C coshAB

as we stated. �
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Figure 4. Stewart’s theorem and the orthocenter.

Remark 2.3. Considering third-order approximation of the hyperbolic func-
tions we get the equality:(

1 + AA′2

2

)(
BC + BC3

6

)
=
(

1 + b2

2

)(
BA′ + BA′3

6

)
+
(

1 + c2

2

)(
A′C + A′C3

6

)
or equivalently the equation

a+ AA′2

2 a+ a3

6 = BA′ + b2

2 BA
′ + BA′3

6 +A′C + c2

2 A
′C + A′C3

6 .

Since a = BA′ +A′C

AA′2

2 a+
(
BA′3

6 + BA′2A′C
2 + BA′A′C2

2 + A′C3

6

)
= b2

2 BA
′ + BA′3

6 + c2

2 A
′C + A′C3

6

implying the well-known Euclidean Stewart’s theorem:(
AA′

2
+BA′ ·A′C

)
a = b2BA′ + c2A′C.

Proof. (Proof of Theorem 2.1) (27) is the Stewart’s theorem for the point HA.
From the rectangular triangles HCHA and HHCA we get

tanhHHA : tanhHC = cosHAHC] = tanhHHC : tanhHA.

Similarly we get also that

tanhHHB : tanhHC = cosHBHC] = tanhHHC : tanhHB.

Thus we have (23):

tanhHA · tanhHHA = tanhHB · tanhHHB = tanhHC · tanhHHC .
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From this we get
sinhHA·sinhHHA
coshHA·coshHHA = sinhHB·sinhHHB

coshHB·coshHHB .

Thus
sinhHA·sinhHHA
sinhHB·sinhHHB = coshHA·coshHHA

coshHB·coshHHB = coshAHB
coshBHA

implying (24). From (5) we get

nA(H) : nB(H) = (AHCB) = sinhAHC : sinhHCB = tanα : tanβ

implying (25). Use now the Stewart’s Theorem for the triangle PAB and its secant
PHC (see in Fig. 4), where P is arbitrary point of the plane. Then we get

coshPA sinhHCB + coshPB sinhAHC = coshPHC sinh c.

Applying Stewart’s theorem again to the triangle PCHC and its secant PH, we
get

coshPC sinhHHC + coshPHC sinhCH = coshPH sinhCHC .

Eliminating PHC from these equations we get

coshPA sinhHCB + coshPB sinhAHC + coshPC sinhHHC sinh c
sinhCH =

= coshPH sinhCHC sinh c
sinhCH .

On the other hand we have

2nC(H) = sinhHHC sinh c.

We also have

2nB(H) = 2 sinhHHB sinh b = 2 sinhCHA sinhAH = 2 sinhAHC sinhCH,

and similarly
2nA(H) = 2 sinhHCB sinhCH

implying the equality

nA(H) coshPA+ nB(H) coshPB + nC(H) coshPC =

= coshPH sinhCHC sinh c
2 = n coshPH

as we stated in (26).
Use (26) in the case when P =O is the circumcenter of the triangle. Then we

have
nA(H) coshR+ nB(H) coshR+ nC(H) coshR = n coshOH.

Thus we have

coshOH = nA(H)+nB(H)+nC(H)
n coshR =

(
sinhHHA
sinhhA

+ sinhHHB
sinhhB

+ sinhHHC
sinhhC

)
coshR.

From (24) we get
sinhHHB = sinhHHA

sinhHA
sinhHB

coshhB
coshhA

and also
sinhHHC = sinhHHA

sinhHA
sinhHC

coshhC
coshhA
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implying that

coshOH =

= sinhHHA sinhHA
coshhA

×
(

coshhA
sinhHA sinhhA

+ coshhB
sinhHB sinhhB

+ coshhC
sinhHC sinhhC

)
coshR =

=
(

coshhA
sinhHA sinhhA

+ coshhB
sinhHB sinhhB

+ coshhC
sinhHC sinhhC

)
× coshR

tanhHHA tanhHA+1 .

Now we have

(h+ 1) coshOH =
(

1
tanhhA sinhHA+ 1

tanhhB sinhHB + 1
tanhhC sinhHC

)
coshR,

showing (28). �

2.2. Isogonal conjugate of a point

Let define the isogonal conjugate of a point X of the plane in the following way:
Reflect the lines through the point X and any of the vertices of the triangle with
respect to the bisector of that vertex. Then the getting lines are concurrent at a
point X ′ which we call the isogonal conjugate of X. To prove the concurrence of
these lines we have to observe that if the lines AX and AX ′ intersect the line of
the side BC in the points Y and Y ′ then the ratio of these points with respect to
B and C has an inverse connection. In fact, by (1) we have that

sinh c
sinhBY = sinAY B]

sinBAY] and sinh b
sinhY C = sin(π−AY B])

sinCAY] .

This implies that
(BY C) = sinhBY

sinhY C = sinh c
sinh b

sinBAY]
sinCAY] .

For the point Y ′ we get similarly that

(BY ′C) = sinh c
sinh b

sinBAY ′]
sinCAY ′] = sinh c

sinh b
sinCAY]
sinBAY]

implying the equation
(BY C)(BY ′C) = sinh2 c

sinh2 b
. (29)

If Z, Z ′ or V , V ′ are the intersection points of the examined lines with the corre-
sponding sides CA or AB, respectively, then we get the equation

(BY C)(BY ′C)(CZA)(CZ ′A)(AV B)(AV ′B) = 1

showing that the first three lines are concurrent if and only if the second three
lines are. Hence we can prove the following:

Lemma 2.4. If X and X ′ are isogonal conjugate points with respect to the
triangle ABC then their triangular coordinates have the following connection:

nA(X ′) : nB(X ′) : nC(X ′) = sinh2 a
nA(X) : sinh2 b

nB(X) : sinh2 c
nC(X) . (30)

Proof. Using (29) we have

(nC(X) : nB(X)) (nC(X ′) : nB(X ′)) = (BNAC)(BN ′AC) = sinh2 c
sinh2 b

implying that
nB(X ′) : nC(X ′) = sinh2 b

nB(X) : sinh2 c
nC(X)
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as we stated in (30). �

Corollary 2.5. As a first consequence we can see immediately (17) again on
the triangular coordinates of the incenter. By (30) the triangular coordinates of
the isogonal conjugate H ′ of the orthocenter is

nA(H ′) : nB(H ′) : nC(H ′) = sinh2 a
tanα : sinh2 b

tan β : sinh2 c
tan γ .

Thus
nA(H ′) : nB(H ′) = sinh2 a

tanα
tan β
sinh2 b

= sinα cosα
sin β cos β = sin 2α

sin 2β

implying that

nA(H ′) : nB(H ′) : nC(H ′) = sin 2α : sin 2β : sin 2γ.

Comparing the coordinates of H ′ with the triangular coordinates of the circumcen-
ter we can see that the isogonal conjugate of the orthocenter is the circumcenter
if and only if the defect of the triangle is zero implying that the geometry of the
plane is Euclidean.

A minimality property of the incenter follows from a generalization of the equal-
ity (26). Similarly as in the proof of (26) (see Theorem 2.1) we can prove that for
any triangle ABC with any fixed point Q and any various point P of the plane
the following equality holds:

nA(Q) coshPA+ nB(Q) coshPB + nC(Q) coshPC = n(ABC) coshPQ. (31)

Theorem 2.6. The sum of the triangular coordinates of a point P of the plane
is minimal if and only if P is the center of the inscribed circle of the triangle ABC.

Proof. Assume that the vertices of the triangle ABC are real points and the
edges of it are those real segments which are connecting these real vertices, respec-
tively. Let A′, B′ and C ′ be the respective poles of the lines BC, AC and AB.
These poles are ideal points and the corresponding lines A′B′, A′C ′ and B′C ′ are
also ideal lines, respectively. If P is any point of the plane let d(P,BC), εA and
α′ be the distance of P and the line BC the sign of this distance and the angle
of the polar triangle at the vertex A′, respectively. We choose the sign to positive
if P and A are the same (real) half-plane determined by the line BC. Then the
investigated quantity is

nA(P ) + nB(P ) + nC(P ) =

= 1
2

(
εA sinh d(P,BC) sinh a+εB sinh d(P,AC) sinh b+εC sinh d(P,AB) sinh c

)
=

= 1
2 i

(
cosh

(
d(P,BC)+εA

π
2 i
)

sinh a+cosh
(
d(P,AC) + εB

π
2 i
)

sinh b+

+cosh
(
d(P,AB) + εC

π
2 i
)

sinh c
)

=

= 1
2 i

(
coshPA′ sinh a+ coshPB′ sinh b+ coshPC ′ sinh c

)
.

Hence using (31) we have that
1
2 i

(
coshPA′ sinh a+ coshPB′ sinh b+ coshPC ′ sinh c

)
= 1

2 in(A′B′C ′) coshPQ,
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where the triangular coordinates of the point Q with respect to the polar triangle
are

nA′(Q) = sinh a, nB′(Q) = sinh b, and nC′(Q) = sinh c.

It follows from (4) that the Staudtian of the triangle A′B′C ′ is

n(A′B′C ′) = 1
2 sinα′ sinh b′ sinh c′ = 1

2 sin a
i sinh iβ sinh i γ = i

2 sinh a sinβ sin γ

implying that.

nA(P ) + nB(P ) + nC(P ) = 1
4 sinh a sinβ sin γ coshPQ = N

2 coshPQ,

where the triangular coordinates of Q are sinh a, sinh b and sinh c, respectively.
Thus we get Q = I and the sum in the question is minimal if and only if P is
equal to Q = I. This proves the statement. �

2.2.1. Symmedian point. We recall that the isogonal conjugate of the centroid
is the so-called symmedian point of the triangle. The triangular coordinates of
the symmedian point are

nA(M ′) : nB(M ′) : nC(M ′) = sinh2 a : sinh2 b : sinh2 c.

From (4) immediately follows that the hyperbolic sine of the distances of the
symmedian point to the sides are proportional to the hyperbolic sines of the cor-
responding sides:

sinh d(M ′, BC) : sinh d(M ′, AC) : sinh d(M ′, AB) = sinh a : sinh b : sinh c

showing the validity of the analogous Euclidean theorem in the hyperbolic geom-
etry, too.

We note that the symmedian point of a hyperbolic triangle does not coincides
with the Lemoine point L of the triangle. This center can be defined on the
following way: If tangents be drawn at A, B, C to the circumcircle of the triangle
ABC, forming a triangle A′B′C ′, the lines AA′, BB′ and CC ′, are concurrent.
The point of concurrence, is the Lemoine point of the triangle. The concurrency
follows from Menelaos-theorem applying it to the triangle A′B′C ′. We note that
L is also (by definition) the so-called Gergonne point of the triangle A′B′C ′.
To prove that the symmedian point does not coincides with the Lemoine point we
determine the triangular coordinates of the latter, too. Let LA, LB or LC be the
intersection point of AA′∩BC, BB′∩AC or CC ′∩AB (see in Fig. 5), respectively.
Then we have

nB(L) : nA(L) = (ALCB) = sinhALC
sinhLCB

= sinhC′B
sinhC′A

sinAC′LC]
sinBC′LC] = sinAC′LC]

sinBC′LC] .

On the other hand we have by (1)

sinAC′LC]
sinCAC′] = sinhCA

sinhCC′ and sinBC′LC]
sinCBC′] = sinhCB

sinhCC′
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Figure 5. The Lemoine point of the triangle.

implying that

sinAC′LC]
sinBC′LC] = sinhCA sinCAC′]

sinhCB sinCBC′] = sinhCA cosCAO]
sinhCB sinCBO] =

2 sinh CA
2 cosh CA

2 cosCAO]
2 sinh CB

2 cosh CB
2 sinCBO]

=

=
sinh CA

2 cosh CA
2

tanh CA
2

tanhR

sinh CB
2 cosh CB

2

tanh CB
2

tanhR

=
sinh2 b

2

sinh2 a
2

= (cosh b− 1) : (cosh a− 1) .

Thus the triangular coordinates of the Lemoine point are:

nA(L) : nB(L) : nC(L) = (cosh a− 1) : (cosh b− 1) : (cosh a− 1) .

Now the symmedian point and the Lemoine point coincides for a triangle if and
only if the equation array

(cosh a− 1) sinh2 b = (cosh b− 1) sinh2 a,

(cosh a− 1) sinh2 c = (cosh c− 1) sinh2 a

gives an identity. Since

(cosh a− 1)(cosh2 b− 1) = (cosh a− 1)(cosh b− 1)(cosh b+ 1) =

= (cosh b− 1)(cosh a− 1)(cosh a+ 1) = (cosh b− 1) sinh2 a

implies a = b, the only solution is when a = b = c and the triangle is an equilateral
(regular) one.
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2.3. On the “Euler line”.

An interesting question in elementary hyperbolic geometry is the existence of the
Euler line. Known fact (see e.g. in [17]) that the circumcenter, the centroid and
the orthocenter of a triangle having in a common line if and only if the triangle is
isoscale. In this sense Euler line does not exist for each triangle. A nice result from
the recent investigations on the triangle centers is the paper of A. V. Akopyan [1] in
which the author defined the concepts of ”pseudomedians” and ”pseudoaltitudes"
giving two new centers of the hyperbolic triangle holding a deterministic Euclidean
property of Euclidean centroid and orthocenter, respectively. He proved that the
circumcenter, the intersection points of the pseudomedians (pseudo-centroid), the
intersection points of the pseudoaltitudes (pseudo-orthocenter) and the circumcen-
ter of the circle through the footpoints of the bisectors (the center of the Feuerbach
circle) are on a hyperbolic line. A line through a vertex is called by pseudome-
dian if divides the area of the triangle in half. (We note that in spherical geome-
try Steiner proved the statement that the great circles through angular points of a
spherical triangle, and which bisect its area, are concurrent (see [5]). Of course the
pseudomedians are not medians and their point of concurrency is not the centroid
of the triangle. We call it pseudo-centroid. He called pseudoaltitude a cevian
(AZA) with the property that with its foot ZA on BC holds the equality

AZAB]− ZABA]−BAZA] = CZAA]− ZAAC]−ACZa],

where the angles above are directed, respectively. Throughout on his paper Akopy-
an assume that “any two lines intersects and that three points determine a circle”.
He note in the introduction also that “Consideration of all possible cases would
not only complicate the proof, but would contain no fundamentally new ideas. To
complete our arguments, we could always say that other cases follow from a theorem
by analytic continuation, since the cases considered by us are sufficiently general
(they include an interior point in the configuration space). Nevertheless, in the
course of our argument we shall try to avoid major errors and show that the
statements can be demonstrated without resorting to more powerful tools”. We
note that in our paper the reader can find this required extraction of the real
elements by the ideal elements and the elements at infinity. We also defined all
concepts using by Akopyan with respect to general points and lines, furthermore
his lemmas and theorem can be extracted from circles onto cycles with our method.
This prove the truth of Akopyan’s note, post factum.

To see the equivalence of the two theory on real elements we recall that between
the projective (Cayley-Klein-Beltrami) and Poincare models of the unit disk there
is a natural correspondence, when we map to a line of the projective model to the
line of the Poincare model with the same ends (points at infinity). On Fig. 6 we
can see the corresponding mapping. A point P can be realized in the first model
as the point P ′ and in the second one as the point P ′′. It is easy to see that if the
hyperbolic distance of the points P and O is a then the Euclidean distances P ′O or
P ′′O are equals to tanh a or tanh(a/2), respectively. Thus our analytic definitions
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Figure 6. The connection between the projective and conformal models.

on similarity or inversion are model independent (end extracted ) variations of the
definitions of Akopyan, respectively. Thus we have

Theorem 2.7 ([1]). The center O of the cycle around the triangle, the center
of the cycle F around the feet of the pseudomedians, the pseudo-centroid S and
the pseudo-orthocenter Z are on the same line.

By Akopyan’s opinion this is the Euler line of the triangle and thus he avoided
the problem is to determination of the connection among the three important
classical centers of the triangle. Our aim to give some analytic determination for
the pseudo-centers introduced by Akopyan.

Theorem 2.8. Let SA, SB, SC be the feet of the pseudo-medians. Then we
have the following formulas:

sinh ANC
2 : sinh NCB

2 = cosh b
2 : cosh a

2 ,

sinh BNA
2 : sinh NAC

2 = cosh c
2 : cosh b

2 , (32)

sinh CNB
2 : sinh NBA

2 = cosh a
2 : cosh c

2
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implying that they are concurrent in a point S. We call S the pseudo-centroid
of the triangle. The triangular coordinates of the pseudo-centroid hold:

nA(R) : nB(R) : nC(R) = 1

(cosh2 b
2 cosh2 c

2+cosh a
2 cosh b

2 cosh c
2 )

:

: 1

(cosh2 a
2 cosh2 c

2+cosh a
2 cosh b

2 cosh c
2 )

: 1

(cosh2 b
2 cosh2 a

2+cosh a
2 cosh b

2 cosh c
2 )
. (33)

Proof. We know that

cosh a
2 cosh b

2 cosh c
2 = N2

sinα sin β sin γ sin δ .

equation (7) says that
2n2 = N sinh a sinh b sinh c,

and we also have

sinα sinβ sin γ sinh a sinh b sinh c = 4nN.

From these equalities we get the analogous of the spherical Cagnoli’s theorem:

sin δ= N2

sinα sin β sin γ cosh a
2 cosh b

2 cosh c
2

= N2 sinh a sinh b sinh c
4nN cosh a

2 cosh b
2 cosh c

2

= n
2 cosh a

2 cosh b
2 cosh c

2

.

But

cosh a
2 sinh b

2 sinh c
2 =

=
√

sin (δ+β) sin (δ+γ)
sin γ sin β

√
sin δ sin (δ+β)
sin γ sinα

√
sin δ sin (δ+γ)
sinα sin β = N2

sin(δ+α) sinα sin β sin γ ,

implying (with the above manner) the equality

sin(δ + α) = n
2 cosh a

2 sinh b
2 sinh c

2

.

From these equalities we get
sin(δ+α)

sin δ = cosα+ cot δ sinα = coth b
2 coth c

2 .

Thus if the area of a triangle and one of its angles be given, the product of the
semi hyperbolic tangents of the containing sides is given. Since the area of the
examined triangles are equals to each other we get

n

2 cosh a
2 cosh

BNC
2 cosh

CNC
2

= sinh a sinhBNC sin β

4 cosh a
2 cosh

BNC
2 cosh

CNC
2

=
sinh a

2 sinh
BNC

2 sin β

cosh
CNC

2

and similarly
n

2 cosh b
2 cosh

NCA

2 cosh
CNC

2

=
sinh b

2 sinh
NCA

2 sinα

cosh
CNC

2

implying that

sinh a
2 sinh BNC

2 sinβ = sinh b
2 sinh NCA

2 sinα.

From this we get
sinh

ANC
2

sinh
NCB

2

=
sinh a

2 sin β

sinh b
2 sinα

=
cosh b

2

cosh a
2

as we stated in (32). The product of the equalities in (32) gives the equality

sinh ANC
2 sinh BNA

2 sinh CNB
2 = sinh NCB

2 sinh NAC
2 sinh NBA

2 .
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On the other hand the triangles CANC , NBAB having equal areas and also
have a common angle, in virtue of (32) we get

tanh b
2 tanh ANC

2 = tanh c
2 tanh NBC

2 ,

implying that

tanh ANC
2 tanh BNA

2 tanh CNB
2 = tanh NBC

2 tanh NCB
2 tanh NAC

2 .

So we also have

cosh ANC
2 cosh BNA

2 cosh CNB
2 = cosh NBC

2 cosh NCB
2 cosh NAC

2 ,

and as a consequence the equality

sinhANC sinhBNA sinhCNB = sinhNCB sinhNAC sinhNBA.

Menelaos theorem now gives the existence of the pseudo-centroid.
From (32) we get

cosh a
2

cosh b
2

=
sinh

(
c
2−

ANC
2

)
sinh

ANC
2

= sinh c
2 coth ANC

2 − cosh c
2 ,

hence
coth ANC

2 =
cosh b

2 cosh c
2+cosh a

2

sinh c
2 cosh b

2

or equivalently

cosh ANC
2 =

cosh b
2 cosh c

2+cosh a
2

sinh c
2 cosh b

2

sinh ANC
2 .

From this we get

1 = sinh2 ANC
2

(
− 1 +

(
cosh b

2 cosh c
2+cosh a

2

sinh c
2 cosh b

2

)2)
=

=
− sinh2 c

2 cosh2 b
2+(cosh b

2 cosh c
2+cosh a

2 )
2

sinh2 c
2 cosh2 b

2

sinh2 ANC
2 =

=
cosh2 b

2+2 cosh a
2 cosh b

2 cosh c
2+cosh2 a

2

sinh2 c
2 cosh2 b

2

sinh2 ANC
2 .

Thus

sinhANC = 2 sinh ANC
2 cosh ANC

2 =

= 2 sinh2 ANC
2

cosh b
2 cosh c

2+cosh a
2

sinh c
2 cosh b

2

= 2
sinh c

2 cosh b
2 (cosh b

2 cosh c
2+cosh a

2 )
cosh2 b

2+2 cosh a
2 cosh b

2 cosh c
2+cosh2 a

2

.

Hence we also have

sinhNCB = 2
sinh c

2 cosh a
2 (cosh a

2 cosh c
2+cosh b

2 )
cosh2 a

2+2 cosh a
2 cosh b

2 cosh c
2+cosh2 b

2

implying that

nB(N) : nA(N) = (ANCB) =

=
(
cosh2 b

2 cosh c2 + cosh b2 cosha2
)

:
(
cosh2 a

2 cosh c2 + cosha2 cosh b2
)

=

=
(
cosh2 b

2 cosh2 c
2 + cosha2 cosh b2 cosh c2

)
:
(
cosh2 a

2 cosh2 c
2 + cosha2 cosh b2 cosh c2

)
.
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From this we get

nA(N) : nB(N) =

= 1

(cosh2 b
2 cosh2 c

2+cosh a
2 cosh b

2 cosh c
2 )

: 1

(cosh2 a
2 cosh2 c

2+cosh a
2 cosh b

2 cosh c
2 )
.

Similarly we get

nB(N) : nC(N) =

= 1

(cosh2 c
2 cosh2 a

2+cosh c
2 cosh b

2 cosh a
2 )

: 1

(cosh2 b
2 cosh2 a

2+cosh a
2 cosh b

2 cosh c
2 )

as we stated in (33). �

Remark 2.9. We note that there are many Euclidean theorems that can be
investigated on the hyperbolic plane by our more–less trigonometric way. We note
that on the hyperbolic plane the usual isoptic property of the circle lost (see [6])
and thus all the Euclidean statements using this property can be investigated only
in the way mentioned in [1]. To that we can use trigonometry in this method we
can concentrate on the introduced concept of angle sums which in a trigonometric
calculation can be handed well. Thus the isoptic property of a cycle (or which
is the same the cyclical property of a set of points) can lead for new hyperbolic
theorems suggested by known Euclidean analogy.

Acknowledgement. Thank you Vojtech Bálint for helpful comment to this
article.
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THE EUCLIDEAN VISUALIZATION AND PROJECTIVE
MODELLING THE 8 THURSTON GEOMETRIES

E. MOLNÁR, I. PROK and J. SZIRMAI

Abstract. The so-called Thurston geometries are well known. Here E3, S3 and
H3 are the classical spaces of constant zero, positive and negative curvature, re-
spectively; S2×R, H2×R are direct product geometries with S2 spherical and H2

hyperbolic base plane, respectively, and a distinguished R-line with usual R-metric;
S̃L2R and Nil with a twisted product of R with H2 and E2, respectively; further-
more Sol as a twisted product of the Minkowski plane M2 with R. So that we have
in each an infinitesimal (positive definite) Riemann metric, invariant under certain
translations, guaranteing homogeneity in every point.

These translations are commuting only in E3, in general, but a discrete (dis-
continuous) translation group – as a lattice – can be defined with compact fun-
damental domain in Euclidean analogy, but with some different properties. The
additional symmetries can define crystallographic groups with compact fundamen-
tal domain, again in Euclidean analogy, moreover nice tilings, packings, material
possibilities, etc.

We emphasize some surprising facts. In Nil and in S̃L2R there are orientation
preserving isometries, only. In Nil we have a lattice-like ball packing (with kissing
number 14) denser than the Euclidean densest one [12, 19]. Moreover, in [23] we
have formulated a conjectute in S2×R for the densest geodesic ball packing with
equal balls for all Thurston geometries. In Sol geometry there are 17 Bravais types
of lattices, but depending on an infinite natural parameter N >2 [13]. Except E3,
S3, S2×R, H2×R there is no exact classification result for possible crystallographic
groups.

Our projective spherical model, initiated in [10], is based on linear algebra over
the real vector space V4 (for points) and its dual V 4 (for planes), upto positive real
factor, so that the proper dimension is 3, indeed. We illustrate and visualize the
topic in the Euclidean screen of computer with some new pictures mainly in H3,
S̃L2R, Sol and Nil on the base of our publications [5, 6, 13, 16, 20, 21, 23].

After a more popular introduction to the classical projective space, we shall
illustrate our topic more sketchily by figures and hints to our former works. As
a new initiative, we give a fresh interpretation of Nil geometry on the base of [2]
and [11].
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1. On the classical projective geometry in E3

Analyzing the viewing process of a painter, Leonardo da Vinci and Albrecht Dürer
(∼ 1520) made the model of practical perspective in Fig. 1, 2. Here the (one) eye S
of a painter looks at a (say) horizontal base plane Σ (e.g. the triangle ABC). and
describes it on a vertical (say first) picture plane Π imitating the light rays into
his eye S trough Π which meet it in the image points A′, B′, C ′, respectively.

We introduce the so-called box model with two additional planes through S
with intersection line s: the eye plane, parallel to Σ meeting Π in the line l′,
horizontal line, and the support plane, parallel to Π meeting Σ in the line t, pedal
line. The intersection line x = Σ ∩Π is called axis, each of its points is fixed at
this projection.

As a parallel line e to BC on Σ (in Fig. 1 (a) shows, its image e′ in Π intersects
B′C ′ in I ′ on the horizontal line l′, so that SI ′ ‖ BC ‖ e. This insists us to
introduce a new point of Σ, the ideal point I, common with lines BC, e and SI ′,
so that I ′ is just the image of this ideal point I on l′ at the projection from S.
Thinking of other parallel lines (as in a pencil) of Σ, we can introduce their new
ideal point and its analogous image on l′ at this projection.

(a) (b)

Figure 1. Box model and the “pushing” procedure.

The next step in the abstraction, that we consider the collection of ideal points
in Σ as belonging to a new ideal line l of Σ, so that the horizontal line l′ is just
the image of this line l at the projection from S. Parallel planes will have common
ideal line, so as Σ and the eye plane through S have the common ideal line l.
Analyzing further the above situation, we see that the above pedal line t of Σ and
of the support plane can be considered as preimage of the ideal line t′ of the picture
plane Π at the projection from S. This latter mapping then becomes a bijective
one π : Σ∪ l→ Π ∪ t′ between the extended planes, called then projective planes,
with the same simpler notation.

Furthermore, any ideal line belongs to a parallel plane pencil. Then we unite
all ideal lines to a unique ideal plane so that the Euclidean space E3 extends to
a projective space P3.
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The box model in Fig. 1 (a) is, and will be, the base of our further considerations.
E.g. “pushing” together the side planes around the lines x, l′, s, t onto the picture
plane Π in Fig. 1 (b), we get an important construction mapping of the united
Σ = Π onto itself, from the above one with the same notations

A→ A′, B → B′, C → C ′, I → I ′, e→ e′, l→ l′, t→ t′, etc.

The derived mapping will be a central axial collineation with x as axis, where any
line and its image line intersect; and with a centre (S), where the rays AA′, BB′,
CC ′, . . . , XX ′ meet, for any point X and its image X ′. It turns out, from the
above pushing procedure, that the centre (S) will be just the rotated image of the
eye S about the horizontal line l′ (compare Fig. 1 (a), (b).

Fig. 2 (a) shows, how to construct the picture of a cube by the above procedure,
the height h of the cube is equal to the side of the rotated base square. The line
xh is the new axis for the upper face of the cube (x ‖ xh in distance h).

Fig. 2 (b) shows a principal procedure, used by the renaissance painters: For
a given convex quadrangle A′B′C ′D′, not a parallelogramme, construct the eye
point S, so that A′B′C ′D′ be a projection of a square ABCD from S. First
the “horizontal” line l′ can be constructed by the intersection points A′B′ ∩D′C ′
and A′D′ ∩ B′C ′. Then (S) will be the intersection of two Thales half-circles.
Comparing with Fig. 1, we obtain S by a spacial construction, up to similarity.

(a) (b)

Figure 2. (a) How to picture a cube. (b) A quadrangle A′B′C′D′ can
be the image of a square ABCD.

The practical perspective above is called also of two direction points. The integer
coordinate pairs of an infinite chess board of Σ will be preserved in the quadrangle
net at the projection in Fig. 2 (b). Imagine the origin at D (and D′), DA is the
coordinate axis (new) x, DC is the y axis, so asD′A′ → x′ D′C ′ → y′, respectively.
The repeated quadrangles accumulate near the horizontal line l′. The “other side”
of l′ and “near the ideal line t′” the situation is not clear yet. This is why we shall
prefer the so called homogeneous coordinate simplex later on (from Sect. 2).

At the cube picture in Fig. 2 (a) we can imagine also a spacial coordinate system,
where the third z-axis is parallel to the picture plane Π. The so called central
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or projective axonometry, or also called perspective of three direction points will
generalize the previous method. These ideas were also known for the renaissance
painters.

We look at Fig. 3 (a) the picture planeΠ, the eye S in distance d with orthogonal
projection S0, the distance circle centred in S0 with radius d = SS0. Space will
be described by a Cartesian coordinate system . Its origin E0 shall be in Π for
simplicity; E∞1 , E∞2 , E∞3 are the ideal points of the coordinate axes x, y, z,
respectively. E10, E20, E30, are the corresponding unit points. Our task is to
describe the projections from S into Π, so that the spacial situation has to be
reconstructed from the picture, as Fig. 4 indicates it.

(a) (b)

Figure 3. (a) General projection of a coordinate system E0 E∞1
E∞2 E∞3 . (b) Construction scheme for Fig. 4.

To this we translate the coordinate system to the eye S, so that E0 → S and
we determine the images E′1 = U ′x, E′2 = U ′y, E′3 = U ′z of the ideal (infinite = un-
endliche in German) points of the axes, first in Fig. 3 (b), then in Fig. 4. Comparing
these two figures, we see that a prescribed acute angle triangle E′1E′2E′3 will define
the situation above. Namely, the orthocentre (height point) of this latter triangle
will be just S0, and the distance d = SS0 can be reproduced by the Thales half-
circle over any height segment as diagonal (see Fig. 3 (b); the construction is not
indicated over E′3T3 in Fig. 4: e.g. d2 = E′3S0 · S0T3).

The box model, now with not orthogonal base plane and picture plane can be ap-
plied also now for constructing the image unit points E′10, E′20, E′30. By rotation of
the coordinate plane, first E0E

∞
1 E∞3 with the eye plane SE′1E′3 about its horizon-

tal line E′1E′3 and about axis through E0 = E′0 (a parallel to E′1E′3, not indicated in
Figure 4), we get the rotated (S)2 and E0(E10)2 ‖ (S)2E

′
1 and E0(E30)2 ‖ (S)2E

′
3.

Then we get E′10 on the line (S)2(E10)2 and we get E′30 on the line (S)2(E30)2.
Similar construction provides E′20 (and again E′30) from the rotation of the coordi-
nate plane E0E

∞
2 E∞3 together with the eye plane SE′2E′3 about E′2E′3 and about

its parallel through E0 = E′0 (first we get (S)1 then E0(E20)1 ‖ (S)1E
′
2, then E′20

on (S)1(E20)1).
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Figure 4. The basic constructions of central axonometry.

These classical drawing methods belong to mastership of an “old” architect. See
e.g. the paper [25] of our architect colleague, Mihály Szoboszlai. Fig. 5 illustrates
this construction by the computer program AUTOCAD. As an extra home work
our MSC student, Bettina Szukics (2011) made a phantasy picture on the Paris’
Triumphal Arch. Nowadays computer algorithms, on the base of homogeneous
coordinates by linear algebra, are much more effective. This modern machinery
will be applied in the following, by shorter introduction for the more experienced
reader.

2. The projective sphere and plane modelled in Euclidean 3-space

All the Thurston 3-geometries will be uniformly modelled in the projective spherical
space PS3 that can be embedded into the affine so into the Euclidean 4-space. Our
main tool will be a 4-dimensional vector space V4 over the real numbers R with
basis {e0, e1, e2, e3}, which is not assumed to be orthonormal.

Our goal will be to introduce convenient additional structures on V4 and on its
dual V 4.

The method will be illustrated and visualized first in dimensions 2 (Fig. 6)
where V3 is the embedding real vector space with its affine picture A(O,V3,V 3),
so in E3. Let {O; e0, e1, e2}, be a coordinate system in the affine 3-space A3 = E3

with origin O and a (not necessarily orthonormal) vector basis {e0, e1, e2}, for V3,
where our affine model planeA2 = E2 ⊂ P2 = A2∪(i) is placed to the point E0(e0)
with equation x0 = 1. Here any non-zero vector x = x0e0 + x1e1 + x2e2 =: xiei
(the index convention of Einstein-Schouten will be used) represents a point X(x)
of A2, but also a point of the projective sphere PS2 after having introduced the
following positive equivalence. For non-zero vectors x ∼ cx with 0 < c ∈ R re-
present the same point

X = (x ∼ cx) of PS2; z ∼ 0 e0 + z1e1 + z2e2
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Figure 5. “The Triumphal Arch” in central axonometry.

will be an ideal point (z) of PS2 to A2.
We write: (z) ∈ (i), where (i) is the ideal line (circle) to A2, extending the affine

plane A2 into the projective sphere PS2. Here (z) and (−z), and in general (x) and
(−x), are opposite points of PS2. Then identification of the opposite point pairs of
PS2 leads to the projective plane P2. Thus the embedding A2 = E2 ⊂ P2 ⊂ PS2
can be formulated in the vector space V3 in a unified way. We can present PS2 in
Fig. 6 also as a usual sphere (of arbitrary radius) and think of the celestial sphere
as the map of stars of the Universe. The equator (x0 = 0) represents the ideal
points to A2, as ideal line (circle). The upper half-sphere describes A2 = E2 with
x0 = 1. We also see how the double affine plane describes PS2, as the opposite
direction in the abstraction (see also the lower plane x0 = −1 in Fig. 6).

Remark 2.1. The above 3-dimensional embedding of the Euclidean, or the
more general affine plane, to characterize the ideal (infinite) points as well, comes
from the previous practical perspective. But there are some surprising facts in the
history of projective geometry which show that a 2-dimensional plane cannot always
embed into a 3-dimensional space. This topic, on the role of Desargues theorem
(axiom) in the 2-dimensional affine-projective geometry, illustrate also the barrier
of visuality in geometry and in mathematics, in general. We do not mention more
details in this paper.
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The dual (form) space V 3 to V3 is defined as the set of real valued linear
functionals or forms on V3. That means that we pose the following requirements
for any form u ∈ V 3

u : V3 3 x 7→ xu ∈ R

with linearity
(ax + by)u = a(xu) + b(yu)

for any x,y ∈ V3 and for any a, b ∈ R.

Figure 6. Our scene for dimensions 2 with projective sphere PS2 em-
bedded into the real vector space V3 and its dual V 3.

We emphasize our convention. The vector coefficients are written from the
left, then linear forms act on vectors on the right (as an easy associativity law,
analogous conventions will be applied also later on).

This “built in” linear structure allows us to define the addition u + v of two
linear forms u, v, and the multiplication uc of a linear form u by a real factor c,
both resulting in linear forms of V 3. Moreover,we can define for any basis {ei} in
V3 the dual basis {ej} in V 3 by the Kronecker symbol δji :

eie
j = δji =

{
1, if i = j,
0, if i 6= j,

i, j = 0, 1, 2.

Furthermore, we see that the general linear form u := e0u0+e1u1+e2u2 := ejuj
takes on the vector x := x0e0 + x1e2 + x2e2 := xiei the real value

(xiei)(e
juj) = xi(eie

j)uj = xiδji uj = xiuj := x0u0 + x1u1 + x2u2.
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Thus, a linear form u ∈ V 3 describes a 2-dimensional subspace u, i.e. a vector
plane of V3 through the origin. Moreover, forms

u ∼ uk with 0 < k ∈ R

describe the same oriented plane of V3.
As in Fig. 6 a positive equivalence class of forms (u) gives an open half-space

(u)+ of V3, i.e. the vector classes (x) for which

(u)+ : {(x) : xu > 0}.

This gives also a corresponding half-sphere of PS2, and a corresponding half-plane
of A2.

In order to concentrate on our main goal, we introduce a bijective linear mapping
T of V3 onto itself, i.e.

T : V3 3 x 7→ xT =: y ∈ V3

with requirements

xiei 7→ (xiei)T = xi(eiT) = xitjiej =: yjej , det(tji ) 6= 0.

Assume that T has the above matrix (tji ) with respect to basis {ei} of V3

(i, j = 0, 1, 2). Then T defines a projective point transformation τ(T) of PS2 onto
itself, which preserves all the incidences of subspaces of V3 and so incidences of
points and lines of PS2, respectively. The matrix (tji ) and its positive multiples
(ctji ) = (tji c) with 0 < c ∈ R (and only these mappings) define the same point
transformation τ(T ∼ Tc) of PS2 by the above requirements. As usual, we define
the composition, or product, of transforms T and W of vector space V3 in the
order (right action on V3) by

TW : V3 3 x→ (xT)W = yW = z =: x(TW)

with matrices (tji ) and (wkj ) to basis {ei} (i, j, k = 0, 1, 2) as follows by our index
conventions:

ei(TW) = (eiT)W = (tjiej)W = (tji )(w
k
j ek) = (tjiw

k
j )ek,

etc. with summation (from 0 to 2) for the occurring equal upper and lower indices.
Moreover, we get the group of linear transforms of V3 in the usual way, and so
the group of projective transforms of PS2 and P2, accordingly.

We also mention that the inverse matrix class of above (tji ), now denoted by
(T kj ) ∼ 1

cT
k
j , with t

j
iT

k
j = δki induces the corresponding linear transform T of the

dual V 3 (i.e. for lines) onto itself, and its inverse T−1, i.e. in

T : V3 3 v 7→ Tv =: u ∈ V 3 so that yv = (xT)v = x(Tv) = xu,

especially 0 = xu = (xT)(T−1u) = yv, so

0 = yv = (yT−1)(Tv) = xu, XIu↔ Y := Xτ Iv := τu (1)

hold for the τ -images of points and lines, respectively. We can see that the induced
action on the dual V 3 is a left action and so is the induced action on the lines
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of PS2. This is according to our conventions, may be strange a little bit at the
first glance, but we will utilize some benefits in the next sections.

3. Line → point polarity describing orthogonality of lines for S2,
E2, M2, G2 and H2 geometries

Till now we have not considered metric (distance, angle) problems of our model
plane in PS2. As we shall see, this will be related to the additional structure of
the vector space V3 and that of its dual V 3 (see e.g. in [1, 12]).

In our suggested interpretation the concept of polarity Π(∗) has some advan-
tages, considered as a linear symmetric mapping of the dual (form) space V 3 into
the starting vector space V3. Thus we associate with any (polar) line u(u) its
(pole) point U(u) of PS2 as follows

Π(∗) : V 3 3 u 7→ u∗ =: u ∈ V3

by the matrix πij to the dual basis pair {ei}, {ej}; eje
i = δij (i, j = 0, 1, 2, ),

according to ei 7→ ei∗ =: ei = πijej with symmetry requirement πij = πji, thus

u = eiui → (eiui)∗ = uie
i
∗ = uiπ

ijej =: ujej .

At the same time, we can introduce a symmetric bilinear scalar product by this
polarity (and vice versa, equivalently):

〈 , 〉 : V 3 × V 3 → R, 〈u,v〉 = (u∗)v = uv ∈ R,

〈u,v〉 = 〈eiui, ejvj〉 = (uie
i
∗)(e

jvj) = uiπ
irδirvj = uiπ

ijvj .

This shows the usual computations and the symmetry 〈u,v〉 = 〈v,u〉 as well.
Now we say that the line u(u) is perpendicular or orthogonal to line v(v), if the

pole (u∗)=(u)=U is incident to line v(v). Then 0 = u∗v = 〈u,v〉 = 〈v,u〉 = v∗u,
so the pole V (v) of v(v) is also incident to u(u), showing the symmetry of ortho-
gonality as well.

Now we can define the classical plane geometries S2, E2, H2 in our “model
plane” PS2 according to Fig. 6 and Fig. 7.

First, we geometrize the dual basis pair {ei}, {ej} with eie
j = δji by introducing

a coordinate triangle (simplex, in more general) with vertices E0(e0), E1(e1),
E2(e2), and sides

e0(e0) = E1E2, e1(e1) = E2E0, e2(e2) = E0E1.

Because of the positive equivalence, we also introduce the so-called unit point
E(e ∼ e0 +e1 +e2) and unit line e(e ∼ e0 +e1 +e2) to fix the representative basis
vectors {ei} and basis forms {ej} up to a common positive constant factor, say c
to {ei} and 1

c to {ej}; (i, j = 0, 1, 2). This projective freedom provides benefits for
later simplifications.

Now by symmetry of the polarity matrix πij above, it is well known (Inertia law
of Sylvester), that πij has a so called diagonal form πi

′j′ to an appropriate dual
basis pair {ei′}, {ej

′}, (i′, j′ = 0′, 1′, 2′) Here primes refer to a linear basis change
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(Schouten’s primed index conventions). That means ej′ei
′

= δi
′

j′ (Kronecker) and

ei
′

∗ 7→ ei
′

= πi
′j′ej′ so that πi

′j′ = 0 if i′ 6= j′ and πi
′i′ = 1 or 0,−1.

Moreover, although the basis change is not uniquely determined, the so-called
signature, i.e. the range (sign) of diagonal elements is unique, up to permutation.
Namely,

S2(1, 1, 1), E2(0, 1, 1), H2(−1, 1, 1), M2(0,−1, 1), G2(0, 0, 1)

hold for S2 (spherical plane), E2 (Euclidean plane), H2 (hyperbolic or Bolyai-
Lobachevsky plane), M2 (Minkowski or pseudo-Euclidean plane), G2 (Galilei or
isotropic plane), respectively. Multiplication by (−1) provides equivalences

S2(−1,−1,−1), E2(0,−1,−1), H2(1,−1,−1), M2(0, 1,−1), G2(0, 0,−1).

Our Fig. 6 also illustrates the possible S2–structure if PS2(V3,V 3) is specified
by polarity ei−→

∗
ei = ei, (i = 0, 1, 2) also by conventional matrix form

(e0, e1, e2)−→
∗

e0

e1

e2

 =

1 0 0
0 1 0
0 0 1

e0
e1
e2


(by usual row-column multiplication). That means that the basis {ei} is orthonor-
mal and our model plane PS2 becomes indeed to a metric sphere S2. The polarity
orders to any line (equator circle) its usual pole.

The angle of lines (angular domain) of u(u) and v(v) is usually defined by

cos 1
r (u, v) = −〈u,v〉√

〈u,u〉〈v,v〉
.

While cos 1
r (U, V ) = 〈u,v〉/

√
〈u,u〉〈v,v〉 leads to the (angular) distance or length

of segment (U, V ) between their poles U(u) and V (v), r denotes the radius of the
sphere. This is natural, since the above polarity Π(∗) with matrix πij is invertible.
In our Fig. 6 there is indicated also the plane E2, i.e. the Euclidean structure of
PS2 if our polarity is degenerate by

(e0, e1, e2)−→
∗

 0
e1

e2

 =

0 0 0
0 1 0
0 0 1

e0
e1
e2

 .

That means that our ideal line (i) = (e0) = E∞1 (e1)E∞2 (e2) is considered to be
orthogonal to any line (to itself as well). Parallel lines to line u(u) have common
orthogonal lines through the pole U∞(u) at infinity, etc. Angles and distances can
be defined according to usual conventions (see [1, 7, 10]).

We only remark that degenerate polarities by

(e0, e1, e2)−→
∗

0 0 0
0 −1 0
0 0 1

e0
e1
e2

 and (e0, e1, e2)−→
∗

0 0 0
0 0 0
0 0 1

e0
e1
e2


in Fig. 6 define Minkowski plane M2 (of special relativity) and Galilei plane G2

(for Newton mechanics), respectively [1].
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The Bolyai-Lobachevsky hyperbolic plane H2 deserves special interest (Fig. 7).
Here the polarity is defined by

(e0, e1, e2)−→
∗

−1 0 0
0 1 0
0 0 1

e0
e1
e2

 . (2)

Now Fig. 7 has to be considered as extension of Fig. 6, i.e. PS2 with polarity
given by (2), where the absolute cone (and conic section) is indicated (Beltrami-
Cayley-Klein model). This is first the set of 2-subspaces of V3, described by the
forms (a) in V 3, i.e. by lines a(a) of PS2 which are incident to their poles A(a).
Thus for

a = e0a0 + e1a1 + e2a2,

a∗ = a0(−1)e0 + a1(1)e1 + a2(1)e2 = a = a0e0 + a1e1 + a2e2,

i.e. a0 = (−1)a0, a1 = a1, a2 = a2 follow, and hold

0 = −a0a0 + a1a1 + a2a2 = −a0a0 + a1a1 + a2a2

the quadratic equations of conics as line set and point set, respectively. That
means, our polarity can be derived by conics, as it is pointed by

u−→
∗
U and p−→

∗
P

in Fig. 7. We refer to [1, 7] for other details.
After having introduced a polarity or scalar product in PS2 to get the above

metric geometries, we can define their groups of transforms, first uniformly as
similarities. These are special projective transforms, induced by linear transforms
(T,T−1) of (V3,V 3) by (1) up to certain equivalence, preserving the given polar-
ity, as the following diagram obviously sketches

V 3 T−1
x(x) −→

∗
X(x)

↓ ↓
y(y) −→

∗
Y (y)

T V3 i.e. πij ∼ tirπrstjs. (3)

We only mention our – seemingly new – initiative to diagram (3): To some linear
transforms gτ(gT,g T

−1) (g = 1, 2, 3, . . . ) (left bottom index) “small number” of
generators, for a group G with certain relations with free parameters), we can
look for all possible polarities (∗) with (πij) which can be invariant under gτ , so
under the group G. Thus e.g., to G we look for possible geometries where G will
be (may be) a discrete group of isometries (see e.g. [9, 10] for crystallographic
applications and a possibility to attack Thurston’s geometrization conjecture, in
general, first for dimensions three, [9, 12, 15, 17, 26]).

We remark that in planes S2, H2, where the polarity is invertible, such trans-
forms constitute the isometry group of S2 and H2, respectively, since in these
cases distance between points will also be preserved. For the other geometries
such a statement does not hold. Then the preserved (invariant) properties need
some further characterizations. E.g. the concept of line reflection seems to be very
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natural to define isometries of the corresponding geometries. Line reflection is an
involutive (involutory) transform, i.e. equal to its inverse, in an axis line u(u) with
its non incident pole U(u) as centre. Namely, any isometry would be defined as
composition or product of finitely many line reflections, as it is usual in Euclidean
geometry E2 as well as also in M2 and G2 (as so-called affine metric geometries).

Figure 7. The hyperbolic plane H2, embedded into P2 ⊂ PS2 by
a conic polarity u(u)→ U(u), p→ P , a→ A.

However, we shall see in dimensions three, such a plane reflection does not exist
in some 3-geometries (e.g. in Nil and S̃L2R).

We do not discuss here the differential geometry of the above 2-geometries. We
know that S2, E2, H2 are Riemann spaces with infinitesimal arc-length, vectors as
differential operators, of constant curvature and other invariants, etc. The stan-
dard method will be illustrated in the next sections for Sol and Nil geometry in
some details, as examples.

4. Dimensions three, S̃L2R geometry modelled on the projective
3-sphere PS3(V4,V 4)

The machinery introduced in the previous sections can be applied to model the
classical 3-spaces S3, E3, H3 on the projective 3-sphere PS3(V4,V 4) (and for E3,
H3 in P3 ⊂ PS3) in the same way with less visuality, but analogies and matrix
(index) conventions can help. Let us introduce again the positive equivalence inV4

for non-zero vectors x ∼ cx with 0 < c ∈ R defines the same point X(x) of PS3,
whose coordinates in x = xiei, with respect to basis {ei} (i = 0, 1, 2, 3), can be
written in matrix form

x = (x0, x1, x2, x3)


e0
e1

e2

e3

 .
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A form

Bu =
(
e0 e1 e2 e3

)
u0
u1
u2
u3


in the dual space V 4, again up to positive equivalence, describes an oriented plane
(2-sphere) of PS3 with the dual basis {ej}, eie

j = δji (the Kronecker symbol)
(i, j = 0, 1, 2, 3). Equalities

(xiei)(e
juj) = xi(eie

j)uj = xiδji uj = xiuj = 0 (4)

express the incidence X I u. Formula (4) describes the set of varying points X(x)
on the fixed plane u(u), and at the same time, the set of planes u(u) incident
to the fixed point X(x). The projective transform τ(T,T−1) with inverse matrix
pair (tji ) to T of V4 and (tji )

−1 ∼ (T kj ) to T−1 of V 4 – with respect to the dual
basis pair {ei}, {ej}, as in formulas (1) – can be described in matrix form. First
for points it is:

(x0, x1, x2, x3)


t00 t10 t20 t30
t01 t11 t21 t31
t02 t12 t22 t32
t03 t13 t23 t33



e0
e1
e2
e3

 ∼ (y0, y1, y2, y3)


e0
e1
e2
e3


and for planes briefly eiT ki uk ∼ eivi. This τ(T,T−1) preserves the incidence
by 0 = (xu) = (yv). These are, again up to positive equivalence, related to a
coordinate simplex E0E1E2E3 with the unit point E(e = e0 + e1 + e2 + e3 and to
e0e1e2e3 with the unit plane e(e = e0 + e1 + e2 + e3, where ei = (EjEkEl) with
{0, 1, 2, 3} = {i, j, k, l}, etc.

Spherical space geometry S3 will be defined with the additional polarity Π(∗)
or scalar product 〈 , 〉 in V 4, with positive diagonal (πij) matrix, and we have
ei∗ = ei = πijej ,

(e0, e1, e2, e3)−→
∗


e0

e1

e2

e3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



e0
e1
e2
e3

 .

For Euclidean E3 geometry and hyperbolic H3 (Bolyai-Lobachevsky) geometry
we indicate only the corresponding πij matrices (i, j ∈ {0, 1, 2, 3}), respectively:

E3 :


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H3 :


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

To other Thurston geometries we attach here Table 1 by [10], where additional
and modified information for transform groups are also indicated.
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Now we concentrate on S̃L2R geometry. The real 2×2 matrices, say in the form(
d b
c a

)
with unit determinant ad− bc = 1. (5)

have many applications. They define the special linear group acting on the real
2-dimensional plane, preserving orientation and area (equiaffine transforms).

These matrices constitute a Lie transformation group by the usual product
operation, taken to act on row matrices as on point coordinates on the right as
follows

(z0, z1)

(
d b
c a

)
= (z0d+ z1c, z0b+ z1a) = (w0, w1).

We get another important application, if z1/z0 =: z represents a point of the
complex projective line C∪∞ =: C∞ (or the usual complex number plane). Then
the projective mapping z → w := w1/w0 is given by the above matrix and related
with the Poincaré upper half-plane model of hyperbolic plane H2 (see later on and
[7, 10]).

At the same time, this group is a 3-dimensional manifold, because of its 3
independent real coordinates (and its usual neighbourhood topology).

In order to have a more geometrical interpretation on the projective 3-sphere
PS3, we introduce new coordinates x0, x1, x2, x3) (for (5), say by

a := x0 + x3, b := x1 + x2, c := −x1 + x2, d := x0 − x3,

with positive equivalence as a projective freedom. Then it follows that

0 > bc− ad = −x0x0 − x1x1 + x2x2 + x3x3 (6)

describes the same 3-dimensional set, namely the interior of the above unparted
(one-sheet) hyperboloid (Fig. 8). Indeed, for x0 6= 0,

x1/x0 =: x, x2/x0 =: y, x3/x0 =: z, lead to 0 > −1− xx+ yy + zz (7)

and to the usual 4-dimensional embedding (in analogy to Fig. 6–7). We look at
the coordinate simplex E0E

∞
1 E∞2 E∞3 where E0(e0 ∼ (1, 0, 0, 0)) is the origin and

E∞1 (e1 ∼ (0, 1, 0, 0)) is the ideal (infinite) point of the axis x, and both lie in the
interior of the hyperboloid solid H. The boundary points of H lie on straight lines
of the surface. Horizontal intersection e.g. with E0E

∞
2 E∞3 provides the Beltrami-

Cayley-Klein model of the hyperbolic plane H2 if we take x = 0 (= x1) as base
plane. From points of thisH2 the pairwise skew straight line fibres “grow out”. The
“gum-fibre model” of H. Havlicek and R. Riesinger shows this in Fig. 8. Imagine
first two circle disks connected with a rotation axis (a piece of E0E

∞
1 = x). Some

points (along concentric circles, say) of lower disk are clipped out, the same is done
with their translated points on the upper disk. Gum-fibres connect the translated
clipped points. This first situation naturally models H2×R (see Tab. 1), the direct
product of H2 (Beltrami-Cayley-Klein model) and R (real gum-lines).

An alternative model of H2×R can be seen also in Fig. 7. Here “translation” by
r ∈ R can be imagined as a multiplication by er – a similarity from the origin cone
apex. Parallel conic sections are the different H2 levels. The logarithm function
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provides the natural connection between the two models. Note that S2×R can be
modelled in analogous way by Fig. 6 [10, 21, 23].

Secondly, twist the gum fibre model (Fig. 8), by rotating the upper disk about
the axis, through a fixed angle. Then the gum-fibres become pairwise skew lines,
so that we obtain the above hyperboloid solid H by (6), as a twisted product of
H2 and R (gum-fibres).

Table 1. Thurston geometries each modelled on PS3 by specified polarity or scalar product and
isometry group.

Space
X

Signature of polarity
Π(?) or scalar product

〈 , 〉 in V 4

Domain of proper
points of X in PS3

(V4(R), V 4)

The group G = IsomX as
a special collineation group

of PS3

S3 (+ + ++) PS3 Coll PS3 preserving Π(?)

H3 (− + ++) {(x) ∈ P3 : 〈x,x〉 < 0} Coll P3 preserving Π(?)

S̃L2R
(− − ++)

with skew line fibering

Universal covering
of H := {[x] ∈ PS3 :

〈x,x〉 < 0} by fibering
transformations

Coll PS3 preserving Π(?) and
fibres with 4 parameters

E3 (0 + ++)
A3 = P3 \ {ω∞}
where ω∞ := (b0),

b0? = 0

Coll P3 preserving Π(?),
generated by plane reflections

S2×R (0 + ++) with
O-line bundle fibering

A3 \ {O},
O is a fixed origin

G is generated by plane
reflections and sphere

inversions, leaving invariant the
O-concentric 2-spheres of Π(?)

H2×R (0 − ++) with
O-line bundle fibering

C+ = {X ∈ A3 :

〈
−−→
OX,

−−→
OX〉 < 0,

half cone} by fibering

G is generated by plane
reflections and hyperboloid

inversions, leaving invariant the
O-concentric half-hyperboloids
in the half-cone C+ by Π(?)

Sol

(0 − ++) and parallel
plane fibering with
an ideal plane φ

A3 = P3 \ φ
Coll. of A3 preserving Π(∗)

and the fibering with
3 parameters

Nil

Null-polarity Π(?)

with parallel line
bundle fibering F with
its polar ideal plane φ

A3 = P3 \ φ Coll. of A3 preserving Π(?)

with 4 parameters

Let us express this more exactly. First we take the following screw transforms
S(φ) = S by an (additive) parameter φ

x = (x0, x1, x2, x3)


e0

e1

e2

e3

→ xS,
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(x0, x1, x2, x3)


cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ



e0
e1
e2
e3

 . (8)

This describes the fibre translation and the fibre orbit line for any point x.

Figure 8. The unparted hyperboloid model of S̃L2R = H̃ of skew line fibres growing
in points of a hyperbolic base plane H2. Gum-fibre model of Hans Havlicek and Rolf

Riesinger, used also by Hellmuth Stachel with other respects (Vienna UT).

We look at the following periodicities: either by π and −π2 < φ < π
2 leads to

P3–action (equivalence by R0-factor, without zero); or by 2π and −π < φ < π
leads to PS3 action (by R+, i.e. positive equivalence). The case φ ∈ R leads to
complete R fibres, i.e. to a covering action leading to the model S̃L2R = H̃ in
a geometric way.

Namely, S(φ) maps H by (6) and (7) onto itself, while horizontal plane in-
tersection lifts the x = 0 plane by φ = 0 to x → ∞ by φ → π

2 , the fibre lines
are twisted in the negative direction (clock-wise, see first picture in Fig. 8), then
π
2 < φ < π lifts the x = 0 plane section to that by −∞ < x < 0, etc. we
sweep the hyperboloid solid H (i.e. cover it) many times as φ varies in R by
periods. Imagine this also in the 4-dimensional space, where φ = π leads to
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(x0, x1, x2, x3) → (−x0,−x1,−x2,−x3) (opposite points in PS3, but the same
point in P3.

A fibre through X(x ∼ xiei intersects the x = 0 base plane in a trace point

Z(z0 = x0x0 + x1x1, z1 = 0, z2 = x0x2 − x1x3, z3 = x0x3 + x1x2) (9)

uniquely, up to positive proportionality, as follows from (8) (Fig. 8 second picture).
We define the isometry group G of our space S̃L2R = H̃ by linear transforms of

V4 leaving invariant our quadratic form and line fibres in (6), (8) both. This is dis-
cussed in [10, 14, 16] in more details. Here we simply give the specific subgroup T,
called the translation group, represented by matrices

T : (tji ) =


x0 x1 x2 x3

−x1 x0 x3 −x2
x2 x3 x0 x1

x3 −x2 −x1 x0


with inverse (up to positive determinant factor)

(tji )
−1 = (T kj )


x0 −x1 −x2 −x3
x1 x0 −x3 x2

−x2 −x3 x0 −x1
−x3 x2 x1 x0

 . (10)

This T above acts transitively on the space H̃ (by the former covering extension);
(tji ) maps the origin E0(1, 0, 0, 0) onto X(x0, x1, x2, x3). We can check ST = TS,
i.e. T−1ST = S, thus T preserves the fibering (8).

It turns out that the above isometry group G has compact stabilizer G0 at E0.
E.g. it maps the fibre parameter φ to −φ by a half-turn about the horizontal line
E0E

∞
2 . Finally, G0 consists of matrices of the form

G0 :


1 0 0 0
0 ±1 0 0
0 0 cosω sinω
0 0 ∓ sinω ± cosω

 , −π < ω ≤ π (mod 2π).

We can introduce also a so-called hyperboloid parametrization by [10] as follows

X(x0 = cosh r cosφ, x1 = cosh r sinφ,
x2 = sinh r cos(θ − φ), x3 = sinh r cos(θ − φ)

with

〈x,x〉 = −x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1. (11)

The fibre line through point X intersects the base plane z1 = 0 in the trace point
Z by (9) with inhomogeneous coordinates

Z
(
z1

z0 = 0, z2

z0 = tanh r cos θ, z3

z0 = tanh r sin θ
)
.

Here the meaning of r and θ becomes obvious, as the polar coordinates of Z in
the hyperbolic base plane H2 (Fig. 8 second picture).
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In the following we only mention the concept of translation line from a starting
point with given unit velocity, then the translation sphere with given centre and
radius. Furthermore, we recall the well-known concept of geodesic line from a
given starting point with unit velocity, then the geodesic sphere with given centre
and radius (see e.g. [4, 10, 14, 16] for more details).

Choose the origin (x0, x1, x2, x3) = (1, 0, 0, 0), of S̃L2R = H̃ in our hyperbo-
loid model, and a starting unit velocity vector with coordinates ω = (0, u = sinφ,
v = cosφ cos θ, w = cosφ sin θ). The roles of φ and θ are consequent with the
above notations in (8) and (11). In general, a curve (x0(s), x1(s), x2(s), x3(s))
with arc-length parameter s = t is called a translation curve, iff by (10) it holds

(q, u, v, w)


x0(s) x1(s) x2(s) x3(s)
−x1(s) x0(s) x3(s) −x2(s)
x2(s) x3(s) x0(s) x1(s)
x3(s) −x2(s) −x1(s) x0(s)

 = (ẋ0(s), ẋ1(s), ẋ2(s), ẋ3(s))

(upper dot means derivative by s), as a first order ordinary differential equation
system (see [14] for special straight line solutions in the hyperboloid model). That
means, the translation to point of parameter s carries the initial tangent into the
tangent at point of s.

Figure 9. Translation half sphere with separating “light-cone” in S̃L2R, R = 1.5.

Our Fig. 9 shows a translation half-sphere with 3 domains of a delicate discus-
sion. The above parameters θ and φ in the formula of the above unit starting
velocity vector ω are just the longitude and altitude parameters of the translation
sphere. The radius R is the final arc-length parameter s = R to each translation
curve, starting in the sphere centre in (θ, φ)-direction with unit velocity as well.
A geodesic line is of locally minimal arc-length, thus it satisfies a second order non-
linear ordinary differential equation system. This can be derived as our colleagues
explicitly solved it in [4].
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Geodesics can start from the origin of the hyperboloid model by (11) and with
some extensions r(0) = 0, φ(0) = 0, θ(0) = θ0 and starting unit velocities as well.
Finally we substitute into (11) for visualization. Fig. 10 shows some geodesic half
spheres as illustrations here, on the base of the explicit solution by [4].

(a) (b)

Figure 10. Geodesic half-spheres in S̃L2R R = 1.5 and R = 1.2

with “light cone” in the interior.

5. On Sol and Nil geometries

5.1. Sol geometry

Sol is an affine metric geometry of projective metric signature (0,−,+,+) (see
Tab. 1), again with

(e0, e1, e2, e3)−→
∗


e0

e1

e2

e3

 =


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



e0
e1
e2
e3

 .

Sol is derived by an affine Lie transform group with right action on points (a, b, c)
or in homogeneous coordinates

(1; a, b, c)→ (1; a, b, c)


1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 = (1;x+ ae−z, y + bez, z + c). (12)

We refer to [13, 20] for more details. For example the invariant arc-length-square
is derived by pull-back with inverse of (12) to the origin (1,0,0,0):

(ds)2 = (dx)2e2z + (dy)2e−2z + (dz)2. (13)

Then the complete isometry group of 3 parameters in Sol can be defined by ex-
tending the above translations with a finite linear stabilizer subgroup G0 of the
origin which leaves invariant the quadratic differential form (13). We have two



54 E. MOLNÁR, I. PROK and J. SZIRMAI

generators for this G0. First, symbolically, then in (12)–type matrix form. These
involutive (involutory) two isometries are the following:
y ↔ −y reflection in the plane (x, z); and x ↔ y z ↔ −z half-turn about

bisector line of axes x and y, or
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ;


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 , (14)

respectively. That means G0 = D4 is a discrete dihedral group of 8 elements.
Its cyclic subgroup C4 of order 4 is generated by the product of the former two
generators in (14), a so-called rotatory reflection

C4 :


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

 .

Then

C2 :


1 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 1

 , (15)

by a usual half turn about the z-axis, defines also a typical stabilizer of second
order. In analogy to Euclidean geometry E3, we can define a discrete lattice
Γ(τ1, τ2, τ3), generated by two commuting horizontal translations

τ1 := (t11, t
2
1, 0)

e1

e2

e3

 , τ2 := (t12, t
2
2, 0)

e1

e2

e3

 ,

and by

τ3 := (t13, t
2
3, t

3
3), or τ3 :


1 t13 t23 t33
0 e−t

3
3 0 0

0 0 et
3
3 0

0 0 0 1

 .

The third one is, in more exact (12)–type matrix form with non-zero vertical
component

t33 = log
(
N+
√
N2−4
2

)
, where N := p+ s > 2, (16)

by the next Theorem 5.1. This N is a natural parameter fixed for a lattice
Γ(τ1, τ2, τ3) above. All these are essentially connected with the commutator rela-
tions in the characterizing

Theorem 5.1 ([13, 17]). Each lattice Γ(τ1, τ2, τ3) of Sol has a group presenta-
tion

Γ=Γ(Φ)=
{
τ1, τ2, τ3 : [τ1, τ2]=τ−11 τ−12 τ1τ2 =1, τ−13 τ1τ3 =τ1ΦT , τ−13 τ2τ3 =τ2ΦT

}
,
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where Φ =
( p q
r s

)
∈ SL2Z with tr(Φ) =: p+ s =: N > 2, ps− qr = 1, such that

the above matrix
(
t11 t21
t12 t22

)
=: T ∈ GL2R satisfies

ΦT = T−1ΦT =

(
e−t

3
3 0

0 et
3
3

)
(17)

that is just a hyperbolic mapping in the Minkowski base plane M2 (Section 3),
however now by (13), fixed by the component t33 by (16) in τ3 above.

Figure 11. A fundamental lattice of Sol for N = 3 of fundamental “parallelepiped”
with continuous translation from (OPQP ′)→ (OPQP ′)τ3 .

This is a very concise characterization that has some consequences.
(a) Sol has Minkowski base planes (of special relativity but by (13)), depending

on a natural parameter N by (16) and Theorem 5.1.
(b) For the Minkowski base lattice (τ1, τ2) by T above we have some freedom

in choosing τ1(t11, t
2
1) but then

t12
t11

= N−2p−
√
N2−4

2q ,
t22
t21

= N−2p+
√
N2−4

2q (18)

determine τ2(t12, t
2
2) by (N, p, q) in Theorem 5.1.

(c) The number theoretical form of N tells us the possibilities for stabilizer
symmetry group G0 of Γ(τ1, τ2, τ3) together with

(t13, t
2
3) = (0, 0) mod〈τ1, τ2〉, as main case I, or

(t13, t
2
3) 6= (0, 0) mod〈τ1, τ2〉 main case II.

(d) We can define affine equivalence of lattices Γ(N, p, q), with finitely many
affine types for given N , but we prefer a seemingly coarser algorithmic
equivalence into so-called Bravais types [13] in

Theorem 5.2. The lattices in the above main cases I and II, for fixed natural
parameter 2 < N ∈ Z, form at most 17 (seventeen) Bravais types in Sol space.
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Figure 12. The densest translation ball packing by fundamental lattices
of Bravais type I/1 in Sol space N = 4 (see [20]).

This is in analogy to the 14 Bravais types of the Euclidean lattices in E3.
N = 6 is the smallest natural number for that all Bravais types are realizable.

For example, the so called fundamental lattices, with(
p q
r s

)
=

(
0 1
−1 N

)
; (t13, t

2
3) = (0, 0) mod〈τ1, τ2〉 (19)

by (18), belong to type I/1 of primitive monoclinic lattice with point group G0 =
C2 by (15), see also Fig. 11 for N = 3. To these fundamental lattices we make
some remarks.

Remark 5.3. The orbit space Sol/Γ, with lattice Γ above by (19) and Theo-
rem 5.1. (just in analogy to compact Euclidean spaceform E3/Γ, where Γ = P1 is
a usual Euclidean lattice), defines a Sol space form series MN with fundamental
group by (17) and presentation

ΓN =
{
τ1, τ2, τ3 : 1 = τ−11 τ−12 τ1τ2 = τ−13 τ1τ3τ

−1
2 = τ−13 τ−12 τ3τ

N
2 τ1

}
.

Then, by expressing τ2 = τ−13 τ1τ3 and changing to notations τ1 =: x and τ3 := y
we get a 2-generator fundamental group with presentation

ΓN =
{
x, y : xyx−1y−1x−1yxy−1 = 1 = yxy−2xyx−N

}
.

In the joint work [3] we gave some topological characterizations of these space
forms MN which can wear Sol metrics by (13) with “tetrahedron” fundamental
domains, according to the two generators.
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5.2. Nil geometry

Nil is also an affine metric geometry. It was derived originally from the Heisenberg
matrix group from the left action as the matrix product1 x z

0 1 y
0 0 1

1 a c
0 1 b
0 0 1

 =

1 a+ x c+ xb+ z
0 1 b+ y
0 0 1


((a, b, c), (x, y, z) ∈ R3) show, how a translation (x, y, z) acts on a point (a, b, c) of
the 3-space Nil. The fibre translations (0, 0, z) constitute the centre, commuting
with all Nil transforms (see e.g. [2, 10, 11, 17, 26]).

Now we equivalently and more briefly introduce Nil (see [2, 11]) by the help of
null-polarity Π(∗) in A3 ⊂ P3. Here a distinguished point F and its line bundle
provide the fibre structure. The polar plane φ I F will be the ideal plane of
A3 = P3 \ φ. This structure will be the scene of Nil geometry. The isometry
group G of Nil consist of collineations of A3 preserving the null polarity Π(∗)
given say, by

ei∗ = πijej with πji = −πij ;

(∗) : (e0, e1, e2, e3)−→
∗


e0∗
e1∗
e2∗
e3∗

 =


0 0 0 1
0 0 −2 0
0 2 0 0
−1 0 0 0



e0
e1
e2
e3

 .

This antisymmetric matrix πij of Π(∗) guarantees that any pole u∗ = u(u3, 2u2,
−2u1, u0) is incident with its polar plane u(u0, u1, u2, u3)T , as any circle plane
coincides with the centre of a circle.

The translations, rotations about the z-axis, and horizontal line reflection in
the x-axis

1 x y z
0 1 0 − 1

2y
0 0 1 1

2x
0 0 0 1

 ,


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (20)

respectively, are typical isometries of Nil. These preserve the null-polarity by the
scheme (3). Thus, they generate the complete isometry group of 4 parameters in
Nil as specific collineations of P3 \ φ = A3. Here φ = (1, 0, 0, 0)T is the invariant
ideal plane, whose pole F (0, 0, 0, 1) just defines the fibre line bundle parallel to the
z axis, as in the former classical interpretation.

As a benefit to the former interpretation, now it is more clear the role of the
commutator translation of τ1(x1, y1, z1) and τ2(x2, y2, z2) as the following matrix
product shows,

τ−11 τ−12 τ1τ2(0, 0, x1x2 − x2x1)

is a fibre translation, indeed.
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The pull back of a the coordinate differentials (0,dx,dy,dz) at point (1, x, y, z)
into the origin (1, 0, 0, 0)

(0,dx, dy,dz)


1 −x −y −z
0 1 0 1

2y

0 0 1 − 1
2x

0 0 0 1

 = (0,dx, dy, 12 (dx · y − dy · x) + dz)

provides the arc-length-square, as the standard Riemann metric, invariant under
all transforms of (20):

(ds)2 = (dx)2 + (dy)2 +
[
1
2 (dx · y − dy · x) + dz

]2
=

= (dr)2 + (dθ)2r2 +
[
(dz − r2dθ)

]2
=

= (dr, dθ,dz)

1 0 0
0 r2 + r4 −r2
0 −r2 1

dr
dθ
dz

 , (21)

if we prefer cylinder coordinates (r, θ, z) by x = r cos θ, y = r sin θ, z.
These lead, with a standard method, to a second order differential equation

system. Our new explicit but non-elementary solution will be left to another
publication.

As a benefit of this new interpretation we discuss the so-called translation
curves, which will be straight lines in this model of Nil, the curve [x(t), y(t), z(t)]
whose tangent [ẋ(t), ẏ(t), ż(t)] will be translation of the starting tangent ẋ(0) = u,
ẏ(0) = v, ż(0) = w in the origin x(0) = y(0) = z(0) = 0. In the matrix form

(0, ẋ(t), ẏ(t), ż(t)) = (0, u, v, w)


1 x(t) y(t) z(t)

0 1 0 − 1
2y(t)

0 0 1 1
2x(t)

0 0 0 1

 ,

i.e. ẋ(t)=u, ẏ(t)=v, ż(t)=w, yield x(t)=ut, y(t)=vt, z(t)=wt as desired, where
the unit velocity u2 +v2 +w2 = 1, also by (21) leads to arc-length parameter t=s.

The publications, e.g. [2, 11, 19, 22] contain surprising results in Nil geometry,
whose new visualization we are working on. In Fig. 13 we illustrate geodesic and
translation balls in the old model by Heisenberg group.

In the new linear model ofNil, translation ball will be the same as the Euclidean
one, but only at the origin. The metric will be deformed in other points, so a unit
ball can be touched by 14 disjoint other unit balls (see [19] and [22]). In E3 this
“kissing” number is 12, only.

6. On higher dimensional regular polytopes moving in the computer
screen

The theoretical background of our topic is also the d-dimensional projective spher-
ical space PSd(Vd+1;V d+1;R;∼) or projective space Pd. These are modelled as
subspace incidence structure of the real d + 1-dimensional vector space Vd+1 for
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Figure 13. The geodesic (R = 4, left) and translation (R = 10, right) balls of Nil
space in the old model by Heisenberg group.

Figure 14. The 4-cube with Coxeter-Schläfli symbol (4, 3, 3).

points or its dual V d+1 for hyperplanes, respectively (see Sect. 2–4). Here ∼ in-
dicates the multiplicative equivalence by positive reals R+ in case PSd, or by
non-zeros R0 = R \ 0 for Pd. E.g. non-zero Vd+1 vectors x ∼ cx describe
the same point X(x) in PSd iff c ∈ R+.

In this Sect. 6 we only indicate the basic algorithms in visualizing higher di-
mensional regular polytopes P of Euclidean d-space Ed, in the computer p-screen,
projected from a complementary d − p − 1 = s-dimensional centre figure C. The
animation with visibility and shading are our new initiative. See our references
[5, 6] for d = 4, p = 2, s = 1 and the homepage http://www.math.bme.hu/~prok
of I. Prok for free download, hopefully in a more developed form in the future.
Their analogues can exist in each dimension. Projection into p = 3-space seems
to have interesting and important applications as well.

6.1. Concepts and algorithmic problems

1. Projective d-sphere and d-space (d = 2, 3, 4).
2. Metrics by hyperplane → point polarities, non-Euclidean geometries.
3. Polyhedron tiling by barycentric subdivision and D-symbol.

http://www.math.bme.hu/~prok
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Figure 15. The 120-cell with Coxeter-Schläfli symbol (5, 3, 3).

4. Regular polytope.
5. Symmetry by linear mapping, reflection and motion, affine and projective

mapping.
6. Projection by d→ p mapping.
7. Visibility and shading.
8. The algorithms will be combined with each other.

Figure 16. The 5 cell with Coxeter-Schläfli symbol (3, 3, 3) and the 16
cell with Coxeter-Schläfli symbol (3, 3, 4).

Only some aspects have been mentioned in this survey by pictures and titles.
See also our papers [5, 6] furthermore [8, 9, 10, 15, 18, 24, 27] for the combinatorial
and algebraic-geometric theory.
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A GEOMETRICAL PROOF OF SUM OF cosnϕ

LÁSZLÓ NÉMETH

Abstract. In this article, we present a geometrical proof of sum of cos `ϕ where `

goes from 1 up to m. Although there exist some summation forms and the proofs are
simple, they use complex numbers. Our proof comes from a geometrical construc-
tion. Moreover, from this geometrical construction we obtain an other summation
form.

1. Introduction

The Lagrange’s trigonometric identities are well-known formulas. The one for sum
of cos `ϕ (ϕ ∈ (0, 2π)) is

m∑
`=1

cos `ϕ = 1
2

(
sin (m+ 1

2 )ϕ

sin 1
2ϕ

− 1
)
. (1)

The proof of equation (1) is based on the theorem of the complex numbers in
all the books, articles and lessons at the universities ([1], [2]). In the following we
give a geometrical construction which implies the formula (1) and using certain
geometrical properties we obtain an other summation formula without half angles
(ϕ ∈ (0, 2π), ϕ 6= π)

m∑
`=1

cos `ϕ = 1
2

(
sin(m+1)ϕ+sinmϕ

sinϕ − 1
)
. (2)

2. Geometrical construction

Let x and e be two lines with the intersection point A0. Let the angle of them is
α as x is rotated to e (Figure 1). Let the point A1 be given on x such that the
distance between the points A0 and A1 is 1. Let the point A2 be on the line e
such that the distance of A1 and A2 is also equal to 1 and A2 6= A0 if α 6= π/2 and
α 6= 3π/2. Then let the new point A3 be on the line x again such that A2A3 = 1
and A3 6= A1 if it is possible. Recursively, we can define the point A` (` ≥ 2) on
one of the lines x or e if ` is odd or even, respectively, where A`−1A` = 1 and
A` 6= A`−2 if it is possible. Figure 1 shows the first six points and Figure 2 shows

Received December 22, 2014.
2000 Mathematics Subject Classification. Primary 11L03.
Key words and phrases. Lagrange’s trigonometric identities, sum of cosnϕ.
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some general points. We can easily check that the rotation angels at vertices A`
(` ≥ 1) between the line e (or the axis x) and the segments A`−1A` or A`A`+1

are (` − 1)α or (` + 1)α, respectively, as the triangles A`−1A`A`+1 are isosceles.
(The angle iα can be larger the π/2, even larger than 2π. The vertices A` can be
closer to A0 then A`−2 – see Figure 3.) If A1 is on the line e we obtain a similar
geometric construction. In that case those points A` are on line x which have even
indexes.

Figure 1. First seven points of the geometrical construction.

Let A0 be the origin and the line x is the axis x. Then the equation of the line e
is cosα · y = sinα · x. Let A′n be the orthogonal projection of An ∈ e (n ≥ 2) onto
the axis x then from right angle triangle A0A

′
nAn the coordinates of the points

An (see Figure 1) are
xn(α) = cotα sinnα,

yn(α) = sinnα.
(3)

If α = π/2 and α = 3π/2 then all the points An coincide the points A0 or A1,
so in the following we exclude this cases.

The parametric equation system of the orbits of the points An ∈ e can be given
by the help of the Chebyshev polynomial too (for more details and for some figures
of orbits, see in [3]). The equation system is

xn(α) = cosα Un−1(cosα),

yn(α) = sinα Un−1(cosα),
(4)

where α goes from 0 to 2π and Un−1(x) is a Chebyshev polynomial of the second
kind [4].

Let A1 ∈ x and n be even so that n = 2k+2. We take the orthogonal projections
of the segments A`−1A` (` = 1, 2, . . . , n) onto the line x (see Figure 1 and 2). Then
we realize

xn(α) = 1 + 2 (cos 2α+ cos 4α+ · · ·+ cos 2kα) + cos(2k + 2)α, (5)

on the other hand, from (3) or from (4) we have

xn(α) = cosα sin(2k+2)α
sinα . (6)
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Figure 2. General points of the geometrical construction.

Figure 3. General points.

Comparing (5) and (6) we obtain

1 + 2

k∑
`=1

cos 2`α+ cos(2k + 2)α = cosα sin(2k+2)α
sinα . (7)

Using the addition formula for cosine we receive from (7) that

k∑
`=1

cos 2`α = 1
2

(
cosα sin(2k+2)α

sinα − cos(2k + 2)α− 1
)
= (8a)

= 1
2

(
cosα sin(2k+2)α−sinα cos(2k+2)α

sinα − 1
)
= (8b)

= 1
2

(
sin((2k+2)−1)α

sinα − 1
)
= (8c)

= 1
2

(
sin(2k+1)α

sinα − 1
)
. (8d)

If ϕ = 2α then
k∑
`=1

cos `ϕ = 1
2

(
sin(k+ 1

2 )ϕ

sin 1
2ϕ

− 1
)
. (9)

3. Other summation form

In this section, we give an other summation form for the cosines without half
angles by the help of the defined geometrical construction. Now let us take the
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orthogonal projection of the segments A`−1A` (` = 1, 2, . . . , n) onto the line e
(see Figure 1 and 2) and summarize them for all ` from 1 to 2k + 1. (The sum is
equal to x(α) if n = 2k + 1 and A1 ∈ e.) Now we gain a similar equation to (7),
namely

2 (cosα+ cos 3α+ · · ·+ cos(2k − 1)α) + cos(2k + 1)α = cosα sin(2k+1)α
sinα . (10)

With analogous calculation to (8) we obtain
k∑
`=1

cos(2`− 1)α = 1
2

(
cosα sin(2k+1)α

sinα − cos(2k + 1)α
)
= (11a)

= 1
2

(
sin 2kα
sinα

)
. (11b)

Summing equations (8d) and (11b), we have
k∑
`=1

cos 2`α+

k∑
`=1

cos(2`− 1)α = 1
2

(
sin(2k+1)α

sinα + sin 2kα
sinα − 1

)
, (12)

and finally if m = 2k and ϕ = α we obtain formula (2).
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PENDENTIVE REDEFINED

LÁSZLÓ STROMMER

Abstract. This article tries to clarify and refine the geometrical content of the
architectural term pendentive whose description is often not only incomplete and
self-contradictory even in the professional practice, but it contradicts the conven-
tional denominations of historical architectural forms also.

Understanding the Undefined

It may seem to be truism that every concept and object needs a definition – a defi-
nite explanation that describes its meaning – yet, we manage to learn the meaning
of the words of our native language mostly without such precise definitions. We
have learned it the hard way how difficult it is to teach a computer the difference
between for example dogs and cats. Some recent object recognition algorithms try
to achieve this goal by traditional means: “instead of telling the computer what to
look at to distinguish between two objects, they simply feed it a set of images and
it learns on its own means of show ” [1].

However, this approach evidently does not eliminate the necessity of a proper
definition – it only takes it one step further, since someone has to clearly identify
(i.e. understand) the image first in order to be able to teach the computer properly.
Another problem is that in order to reach the desired level of understanding, you
have to present images that are selected with great care, so that they include not
only the most relevant, but all possible forms (since the computer has to identify
all breeds of dogs regardless their differences).

Perhaps surprisingly, the designation of architectural elements (shapes and
structures alike) often raises similar questions. There are some obvious and strict
definitions – but the reality (i.e. architecture itself) often presents forms that are
difficult to classify.

Of course one may argue that all previous generations of architects managed
to get by without such exact definitions – but they were part of a given architec-
tural tradition, hence it was enough to have a “local” consent about the meaning
of the words that were necessary to describe the building (both the object and
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the process).1 Obviously, it does not mean that there were no widely accepted
basic concepts – but the actual details were often different, and these small but
sometimes vital nuances often went unnoticed.

The penetration of 3D CAD modelling have undermined this comfortable “igno-
rance”. Previously it was enough (or it was often thought to be enough) to know
2D plans and elevations of buildings – now it turns out that these does not contain
sufficient information to “build” even a simplified 3D model, and those previously
overlooked subtle differences can gain much higher importance.2 To make things
even worse, in most cases the definitions describe only the most basic and common
shapes – which leaves plenty of room for ambiguity and uncertainty.

In this article we narrow our examination to the term pendentive, and we try
to determine the limits of the domain where this term can be used.

The Traditional Definition

The pendentive is arguably one of the best known architectural terms, therefore
one would think that it has a definite description – but unfortunately it is not the
case.

Figure 1. The Definition of Pendentive in Wikipedia.

Let us start with the definition that can be found in the Wikipedia [2]: “A pen-
dentive is a constructive device permitting the placing of a circular dome over

1One might say that vernacular architecture needs only vernacular language – but the real
point is that even “academic” architecture tends to become “localized” based on local needs,
materials, and traditions.

2If a picture is worth a thousand words – then a model is worth a thousand pictures.
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a square room or an elliptical dome over a rectangular room. The pendentives,
which are triangular segments of a sphere, taper to points at the bottom and spread
at the top to establish the continuous circular or elliptical base needed for the
dome.”

Figure 2. Pendentive – the Traditional Definition.

We may supplement that the upper dome can be placed either on a cylindrical
wall called drum, or directly on the top of the pendentives (like in Figure 2).
The dome itself obviously can have any shape, but when the joining curve of the
pendentive and the dome is continuous, without a break it is called pendentive
dome, or more commonly, sail vault [3].

The Base and the Boundary

The above definition duly deals with the possibility of a rectangular room (al-
though it does not mention that the pendentives in that case should be segments
of an ellipsoid, not a sphere). On the other hand, it is obviously a mistake to
say that pendentives can only be used over four-sided (square or rectangular)
base. Theoretically the base can be any polygon that can be inscribed in a circle
(or ellipse), however, aesthetical considerations strongly favour rotational or axial
symmetry, and practical reasons usually limit the number of sides (probably to
about 8).

The most surprising aspect is that in most cases the definitions consistently and
exclusively speak about the tapering surface of the pendentive as being triangular



70 LÁSZLÓ STROMMER

– totally ignoring the fact that it is often untrue.3 A real pendentive can deviate
from the textbook form in two ways: firstly, instead of tapering to a single point
at the bottom it can end in a horizontal arc or line, and have a trapezium-like
appearance, and secondly, it can reach higher than the apexes of the side arches,
forming a continuous secondary domical surface (a segment of the abovementioned
sail vault shape) below the dome.

The pendentive in Figure 3 has been constructed over an octagonal base with
uneven sides – and it illustrates a combination of all three previous deviations
(different base, bottom, and top side).

Figure 3. Pendentive – Generalization.

The Surface

Probably the most common deficiency of the definitions is that if they say anything
at all about the pendentive surface, they describe it as “segment of a sphere” – they
seem to rule out any other possibility. However, if one knows what to look for, it
is quite easy to find visual evidences that disprove this restriction.

The intersection of a sphere and a plane (if it exists, and it is not a single point)
is always a circle. The straight line which is perpendicular to the plane of this
circle and passes through its centre is the axis of the circle – and this axis passes
through the centre of the sphere also. Consequently, when a surface is bounded

3Actually, the English version of Wikipedia presents three photos as illustrations of the pen-
dentive shape – and none of them has triangular form.
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by arcs whose axis does not intersect each other in a single point, the surface is
surly not a spherical segment.

The above consideration means that when we see a pendentive whose top edge
is a full circle, but the side arches are pointed, the pendentive obviously cannot
be a spherical segment. (e.g. Sultan Ahmed Mosque, Istanbul [A]).

Figure 4. Pendentives with Pointed Arches.

As it can be seen in Figure 4, if the base of the vaulting bay is a rotationally
symmetric polygon bounded by pointed arches of equal size, then the horizontal
axes of two adjacent arc segments meet each other on the angle bisector of the
base polygon4. However, this intersection obviously occurs beyond the centre of the
base5, hence these horizontal axes do not meet the vertical axis of the horizontal
circular top edge of the pendentive – therefore the two vertical arcs cannot be
sections of the same sphere as the horizontal circle.

Of course it is easy to find visually similar solutions even in these cases – using
equal radii in every horizontal section for example – but it still means that these
pendentives can never be segments of a sphere.

4More generally in the vertical plane of the angle bisector, if we take into consideration the
possibility of drop arches whose centre points are located beneath the level of the imposts.

5A pointed arch can be seen as a semicircular arch whose middle section has been removed
and the two remaining parts has been placed next to each other. This way the original centre
point obviously gets doubled, and the centres of the arc segments will be located on the opposite
side of the arch.
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The same reasoning applies when the bottom edge of a pendentive is a quarter-
circle (e.g. St. Stephen Basilica, Budapest [B]), since this arc evidently cannot lie
on the same sphere as the circle of the top edge.

Figure 5. Pendentives with Rounded Corners.

As it can be seen in Figure 5, if every horizontal section of the pendentive
is a quarter-circle, then obviously the bottommost horizontal edge will have the
smallest radius – while the topmost edge will have the same radius as in the case
of a spherical pendentive surface (see Figure 2).

Altogether it means that even if we consider the upper horizontal edge of the
pendentive to be determined by the dome above, from that level down the curva-
ture can either decrease or increase, or it even can stay the same – hence the shape
of the pendentive can be significantly different. It is worth noting also that we
cannot be sure whether the surface is truly spherical even if the edges of the pen-
dentive would allow it – despite its different constructional logic, a surface which
has a constant horizontal curvature shows only a relatively small deviation from
the spherical surface [4].

Summary

The main goal of this article is to unravel some of the existing ambiguities in the
terminology of architectural shapes. Based on what we have learned we can safely
say that the academic and everyday use of the term pendentive is considerably
different (much more permissive) than the “official” definitions.
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This paper has tried to gather the principal aspects that we should consider
when we try to distinguish this particular form from the “concurrent” types of
vaulting (e.g. squinch).

As it can be seen in Figure 6, there are other shapes also, which can be seen
as some kind of transitional forms (e.g. Imamaden Mosque, Shiraz [C]). Thus, it
is certainly not the end, but the beginning of the process which might result in a
self-consistent terminology [5].

Figure 6. Schematic Model of Imamaden Mosque, Shiraz.
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DEVELOPMENT OF COMPUTER-BASED VISUAL
DEMONSTRATIONS IN ENGINEERING EDUCATION

MIHÁLY SZOBOSZLAI and ÁDÁM TAMÁS KOVÁCS

Abstract. This paper deals with the question of methods of visualisation using
traditional blackboard construction and using computer programs for descriptive
geometry in engineering education.

Geometry and visualization

There are no doubts that geometry is one of the subjects in basic studies of en-
gineering education, especially in architecture and civil engineering, where visu-
alization is a key-feature of training. Most of the results of design processes are
presented with drawings, both freehand sketches and constructed figures. Scaled
drawings, like floor plans, sections, elevations, and axonometric or perspective
drawings of buildings and built environment are based on projections with „geo-
metrical accuracy”. Basic projection rules and methods are used in the frame of
descriptive geometry, which is a subset of constructive geometry.

Teaching descriptive geometry for engineering students in university courses
one should lay down some theoretical principles, but for understanding gist of
this practical subject is highly depends on constructions made with traditional
tools: triangles and a pair of compasses in lecture halls. Readers were drawing
on the blackboard, showing geometrical construction step-by-step, the constructed
figure was developed together with the students. Drawing on the blackboard made
lectures „slow enough” to be followed by students, since their pencil-made sketches
or construction drawings are 10 or 20-times smaller, then drawings of lecturer. For
many decades this traditional way of teaching was given at many courses, at least
in our practice for students of architecture.

Long tradition and modern technologies

There was not a big advance in modernizing traditional drawing tools for a long
period. If we want to be cynic we can summarize development in lecture-drawing
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Figure 1. Blackboard lecture in descriptive geometry in the beginning of the 20th century.

in a multi-angle triangle, which made our constructions easier: without a second
triangle one can draw perpendicular and 30–45–60 degree angles.

Figure 2. Multi-angled triangle for construction.

Beside showing theoretical proofs in a lecture there is an enormous demand from
students for constructing figures on the blackboard with compasses and triangles.
Advantage of live construction (while lecturer explains what is going on) is, that
speed of explanation and time for understanding are automatically scaled with
speed of construction. Live constructions have a kind of miracle and a satisfaction
for the audience, when they get the same result in their notebooks as shown on the
blackboard. This raises their confidences about a subject, which would be hard to
follow on their own. This brings a stimulation to continue on self-paced problem
solving.
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Figure 3. Constructions on a slate chalkboard.

Some 20 years ago slide-driven courses were promising in descriptive geometry
as well. First those were done with overhead projectors, with pre-constructed
geometrical figures, then computer-based solutions (slide-projections) were used
in lectures and in classrooms for practical lessons. Showing the constructions with
phase-figures helps to understand gist of a theory.

Figure 4. Multi-angled triangle for construction.

Even if computer-assisted lessons brought some revolution to slide-driven class-
room experience, there were many debates on Power Point-based lectures [1].
However constructions with phase-figures can be shown more dynamically and
evolution of problem-solving is more adequate for students, speed of lecture is less
controllable, if we want students to be more active with drawing together, not only
listening lecture.

Visualisation with CAD/CADD programs

There was a big revolutionary change in engineering and architecture by using
computer based design and drafting in offices in the last 2–3 decades. These
computer programs are specialized for different professions.

CAD program for architects (CAAD, Computer Aided Architectural Design)
are fairly differing from CAD programs for mechanical engineers, or other engi-
neering. CAD programs become more and more complex and sophisticated tools
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Figure 5. Repetitive construction using computer program.

in engineering practice year by year. Newly graduated engineers will raise the
level of usage of those CAD programs which usually are company standards after
a while and reached a satisfactory usage among older users. Usual CAD pro-
grams are not tailored for basic geometrical constructions. Those are developed
for professional use of designing structures and buildings. It is an important ques-
tion about systematic use of computers and visual demonstrations in lecture halls
and classrooms is whether we can use those as live demonstration of constructing
“pure” geometric figures.

Well positioned elements (points, lines) in a prepared starting stage will deter-
mine whether drawings will be nice-looking and comprehending. Use of state of
the art computer aided drafting and design (CAD/CADD) application turned into
one of the most crucial question in engineering education in the last two decades.
Besides studying theoretical disciplines, students are expected to acquire practical,
ready to use engineering skills in design by using CAD programs.

One of the most excited and useful moment in demonstrating 2-dimensional ge-
ometrical problems, when one turns 2-dimensional construction into 3-dimensional
environment.

Unplugged geometry

We think that there is a disbelief that using CAD programs will substitute learning
geometric principles and descriptive geometry. Some users state that no need for
traditional human constructions in geometry, since computer programs replaces
all those “old-fashioned” construction in descriptive geometry as well. We have
realised in our teaching experience at university level, that those students, who
were weak in geometry, could not use CAD programs effectively and ergonomically,
some could not solve geometrical problems with computers at all. We believe
that the main advantage of using computers is making engineering work more
ergonomic and more precise. Creativity and solving spatial problems needs more
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Figure 6. 2-dimensional construction in a 3-D environment.

pure (“unplugged”) geometry to know. One should know basic behaviour of shapes
and forms in order to get satisfactory compound spatial objects.

Embedded descriptive geometry

Engineering schools try to keep up with CAD technology and introduce the state
of the art systems to students. Those CAD programs will be used in practice when
students get their degrees. While trying to introduce the latest versions of CAD
applications we are facing to a problem: what graphical applications should we use
for helping teachers job in basic subjects like descriptive geometry. Is there any
dedicated software which serve all pedagogical purposes of teaching descriptive
geometry? We have researched and tested many dynamic geometry programs,
most of them are 2-dimensional, but we did not find any which fully satisfy our
needs from the view of descriptive geometry courses.

Our finding is that we should rather embed problems and geometry courses
into CAD programs, than to wait for getting a dedicated system for just teaching
purposes. If students use CAD systems for solving geometrical problems, they
will became skilled users of the CAD system, while discover the power of solving
problems in space.



80 MIHÁLY SZOBOSZLAI and ÁDÁM TAMÁS KOVÁCS

References

[1] Young J. R., When Computers Leave Classrooms, so Does Boredom, Chronicle of Higher
Education, Vol. 55, No. 42, (2009).

[2] Schmid-Kirsch A., Starting with a Cube as the Perfect Guide to Sketch Geometry in Design
and Architecture Journal for Geometry and Graphics, Volume 14, No. 1, (2010), 117–123.

Mihály Szoboszlai, Budapest University of Technology and Economics, Műegyetem rkp. 3, Bu-
dapest, Hungary,
E-mail address: szoboszlai@arch.bme.hu, http://www.epab.bme.hu

Ádám Tamás Kovács, Budapest University of Technology and Economics, Műegyetem rkp. 3,
Budapest, Hungary,
E-mail address: kovacsadam@arch.bme.hu, http://www.epab.bme.hu

mailto:szoboszlai@arch.bme.hu
http://www.epab.bme.hu
mailto:kovacsadam@arch.bme.hu
http://www.epab.bme.hu


Studies of the University of Žilina
Mathematical Series
Vol. 27/2015, 81–86

81

VORONOI’S CONJECTURE FOR CONTRACTIONS
OF DIRICHLET-VORONOI CELLS OF LATTICES

ATTILA VÉGH

Abstract. Let P and P ⊕ S(z) be parallelotopes, where S(z) is a segment and ⊕
denotes the Minkowski sum. A. Magazinov proved that Voronoi’s conjecture holds
for the parallelotope P ⊕ S(z), if it holds for the parallelotope P. We prove that
Voronoi’s conjecture is true for the parallelotope P if it is valid for the parallelotope
P ⊕ S(z).

1. Introduction

Dirichlet [2] and Voronoi [17] introduced the notion of the Dirichlet-Voronoi
cell, which is called Voronoi polytope, too. We use shortly the name of DV cell.

Definition 1.1. Consider a discrete point set L in the n-dimensional Euclidean
space En. The DV cell of a point Pi of the set L is the set of all points that are
closer to the point Pi than to any other point Pj of the set L.

The DV cells of the lattices are special parallelotopes where the parallelo-
tope P is a convex polytope which translated copies tile the space in a face to
face way. The centers of the parallelotopes form an n-dimensional lattice. The
following important theorem was proved by B. A. Venkov [15] and later P. Mc-
Mullen [12].

Theorem 1.2. A polytope P is a parallelotope if and only if
(i) P is centrally symmetric,
(ii) each facet of P is centrally symmetric, and
(iii) the 2-dimensional orthogonal projection along any (n−2)-face of P is either

a parallelogram or a centrally symmetric hexagon.
The edges of the parallelogram and the centrally symmetric hexagon of the

above property (iii) are the projections of the facets of the parallelotope P. These
facets form a 4 and a 6-belt, respectively.

Consider the parallelotopes P and Q of dimension n. Denote by S(z) the seg-
ment of the direction z and of the length z. If there exists a direction z for which
P⊕S(z) = Q, where ⊕ denotes the Minkowski sum, then P is called the contrac-
tion of Q and Q is the extension of P. V. Grishukhin [7] called the vector z
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free if the Minkowski sum P ⊕ S(z) is again a parallelotope. A parallelotope is
called free, if it has free vectors. V. Grishukhin [6] gave a criterion that any vec-
tor is free and M. Dutour [4] completed the proof of this statement. A vector z
is free, if S(z) is parallel to at least one facet of each belt of a parallelotope P.
The width z of a parallelotope P along z is the minimal length of the intersections
of the parallelotope P and the lines parallel to z. If this minimal length is equal
to zero then a parallelotope P is of zero width in the direction z.

2. Voronoi’s conjecture

G. F. Voronoi asked whether each parallelotope is the affine image of a DV cell.
He proved [17], [18] the conjecture in that case if the parallelotope is primitive.
A parallelotope is called primitive, if every vertex of the parallelotope belongs to
exactly n + 1 translates of the parallelotope. O. K. Zhitomirskii [19] extended
the G. F. Voronoi’s proof to (n− 2)-primitive parallelotopes, i.e. for such par-
allelotopes that every (n−2)-dimensional face of the parallelotope contains exactly
3 tiles. In this case each belt of the parallelotope is a 6-belt. P. McMullen [11]
proved the conjecture for zonotopes from the parallelotopes. R. M. Erdahl gave
an other proof for this in [5].

The zonotope is a Minkowski sum of several segments. A. Ordine [14] proved
the Voronoi’s conjecture for 3-irreducible parallelotopes. This result generalizes
the theorems of G. F. Voronoi and O. K. Zhitomirskii. A. Magazinov [13]
proved that if P and P ⊕ S(z) are parallelotopes and the parallelotope P is the
affine image of a DV cell, then the extension of P is again the affine image of a
DV cell. In this paper we prove the converse of this statement, if the parallelotope
P ⊕ S(z) is the affine image of a DV cell, then the parallelotope P is the affine
image of a DV cell, too. From the two statements it follows that a parallelotope
and one of its extraction are affine images of DV cells at the same time.

In this paper we give a new and direct proof for this statement using constructive
geometric methods, though it can be proved using the Voronoi’s condition [1], [17]:
the parallelotope P is an affine image of a DV cell if and only if the set ±U of
normal vectors to the facets of P can be chosen so that, if ni, nj , nk ∈ ±U are
normal vectors to alternate facets in a 6-belt, then ni + nj + nk = 0.

3. Shadow boundary

Definition 3.1. The shadow boundary of a parallelotope P in the direction z
consists of all boundary points x of P for which the line {x+λz|λ ∈ R} is a support
line of P. (There is no point of the line {x+ λz|λ ∈ R} belonging to the interior
of P). It is denoted by shz(P).

It is well known that the shadow boundary of a convex polytope is the union
of its some closed (n− 1) and (n− 2)-dimensional faces [10]. If the parallelotope
P ⊕S(z) is of non-zero width in a direction z then the shadow boundary contains
only facets which are called facets parallel to z by B. A. Venkov [16].

We denote by Fi a facet of the parallelotope P and by ti the lattice vector
connecting the center of the parallelotope P with a parallelotope Pi where P
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and Pi are adjacent by the facet Fi. We call this lattice vector as the relevant
vector of Fi.

Á. G. Horváth proved in [8] that if the intersection P ∩ Q of the parallelo-
topes P and Q is a k-dimensional face, where 0 ≤ k ≤ n − 1, then this face is
centrally symmetric with the center 1

2PQ, where the lattice points P and Q are
centers of P and Q. N. Dolbilin [3] introduced the term standard face. So
if dim(P ∩ Q) = n − 2, then the face P ∩ Q is centrally symmetric, exactly four
parallelotopes contain this face and P and Q are centrally symmetric with respect
to the center of P ∩Q. V. Grishukhin [6] defined the z-cap of a parallelotope P.
A. Magazinov and Á. G. Horváth used this concept in [13], [9].

Definition 3.2. Let P be an n-dimensional parallelotope and the vector z be
a free vector. The z-cap Capz(P) of a parallelotope P consisting of all facets F of
the parallelotope P satisfying the condition

z · n(F ) < 0,

where n(F ) is the normal vector of the facet F .

Each direction defines two caps, which are centrally symmetric to each other.
If you distinguish the two caps, denote them by Cap+z (P) and Cap−z (P).

4. Main theorem

Lemma 4.1. If an affine transformation L maps the parallelotope P ⊕ S(z) to
the DV cell D⊕S(z′), where L(z) = z′, then the affine transformation L maps the
parallelotope P to the parallelotope D.

Proof. Because of the linearity, L(x+λz) = L(x)+λL(z) for any x ∈ P, where
L(x) ∈ L(P) and λ ∈ R. So the Minkowski sum and the affinity are commutative.
Applying the affinity L for the Minkowski sum

L(P ⊕ λz) = L(P)⊕ λL(z).

If S(z) = {λz|0 ≤ λ ≤ 1} and L(z) = z′, then using the notation L(P) = D, D is
a parallelotope for which L(P ⊕ S(z)) = D ⊕ S(z′). �

It is clear that the parallelotope D is not necessary a DV cell, but we prove
that it is affine image of a DV cell. Consider an (n − 1)-dimensional hyperplane
H orthogonal to z′ which contains the center of the DV cell D ⊕ S(z′). Let
S(z′) = {λz′| − 1

2 ≤ λ ≤ 1
2}, i.e. let the center of the contracted parallelotope D

coincide with the center of the DV cell D ⊕ S(z′) and let any facet of Capz′(D)
be parallel to the according facet of Capz′(D ⊕ S(z′)) for all pairs of facets. So if
the facet F is a facet of Capz′(D), then the facet F + 1

2z
′ or F − 1

2z
′ is a facet of

Capz′(D ⊕ S(z′)), too.

Lemma 4.2. If D ⊕ S(z′) is a DV cell, then there is an orthogonal affinity M
with fixed hyperplane H ⊥ z′ that M(t) ⊥ M(F ) holds for a facet F ∈ Capz′(D)
and its relevant vector t.
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Proof. Consider the facet F+1
2z
′ of Capz′(D⊕S(z′)) and let t+z′ be the relevant

vector of this facet F+1
2z
′. Let si be a basis of aff

(
F+ 1

2z
′), where i=1, . . . , n−1.

In a fixed coordinate system, where z′ = x · en and H = [e1, . . . en−1], there are

t = (t1, . . . tn−1, tn), t+ z′ = (t1, . . . tn−1, tn + x), si = (si1, . . . s
i
n−1, s

i
n).

Let M be an orthogonal affinity with fixed hyperplane H and M(en) = λ · en,
where λ2 = 1 + x

tn
and tn 6= 0 because of F ∈ Capz′(D). The parallelotope

D ⊕ S(z′) is a DV cell, so t+ z′ ⊥ si, where i = 1, . . . , n− 1.
Thus the inner products of t and si are zero:

t1 · si1 + · · ·+ tn−1 · sin−1 + (tn + x) · sin = 0.

Because of the equality λ2 = 1+ x
tn
: (tn + x) · sin = λ2tn · sin. Using this equality

t1 · si1 + · · ·+ tn−1 · sin−1 + λ2tn · sin = 0.

If the inner product of two vectors is zero, then the two vectors are orthogonal, so

(t1, . . . tn−1, λtn) ⊥ (si1, . . . s
i
n−1, λs

i
n).

Thus M(t) ⊥ M(si), where i = 1, . . . , n− 1.
Consequently M(t) ⊥ M(F ). So the lemma is proved. �

Lemma 4.3. If D⊕S(z′) is a DV cell, M is an orthogonal affinity with fixed hy-
perplane H ⊥ z′, M(t1) ⊥ M(F1) holds for a facet F1 ∈ Capz′(D) and its relevant
vector t1, and the facets F1 and Fi have a common belt, then M(ti) ⊥ M(Fi) holds
where ti is the relevant vector of the facet Fi.

Proof. At first we will prove that all belts cut the shadow boundary in at least
(n−2)-dimensional face. The shadow boundary of a parallelotope consists of (n−1)
or (n − 2)-dimensional closed faces and divides the parallelotope for two parts
Cap+z′(D) and centrally symmetric pair Cap−z′(D) and the sets of the inner points
of Cap+z′(D) and Cap−z′(D) are disjoint sets. So the maximal (n − 2)-dimensional
faces of the shadow boundary contain two facets F1 ∈ Cap+z′(D), F2 ∈ Cap−z′(D).
In every belt if F1 ∈ Cap+z′(D), then −F1 ∈ Cap−z′(D), so a belt containing the
facet F1 has at least one point in the shadow boundary. Let G ∈ shz′(D) be any
maximal dimensional face of a belt. If the face G is a facet, then the statement
is true. If G is not a facet, then two facets Fi of the belt contain the face G,
where Fi 6∈ shz′(D) because the face G is a maximal element. So F1 ∈ Cap+z′(D),
F2 ∈ Cap−z′(D). In any belt the intersection F1 ∩F2 is an (n− 2)-dimensional face
and in this situation it belongs to the shadow boundary, so it is G.

Consider an arbitrary facet F ∈ shz′(D ⊕ S(z′)). This facet F is orthogonal to
H and H contains the center of the facet F . The contraction of this facet F is
an (n− 1) or (n− 2)-dimensional face of the parallelotope D of which the centers
coincide with the center of the facet F .

I. At first suppose that the contraction of the facet F is an (n− 2)-dimensional
face G of the parallelotope D. So G⊕S(z′) = F . The face G determines a 4-belt of
D otherwise an 8-belt would be in the DV cell D⊕S(z′). The face G belongs to two
facets F1 and F2 with relevant vectors t1 and t2. The relevant vector t of F and
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G is equivalent. Evidently, relevant vectors of the facets F1 and F2 in the DV cell
D⊕S(z′) are t1+z′ and t2−z′, because in the case of a 6-belt (t1+z′)+(t2−z′) = t,
where t ∈ H. So t1+ t2 = t holds. We prove that M(t2) ⊥ M(F2). Indeed, by the
condition M(t1) ⊥ M(F1) and M(G) ⊂ M(F1), so the face M(G) is orthogonal to
the vector M(t1). G ⊂ F and by the orthogonal affinity M(G) ⊂ F . On the other
hand t ⊥ F , so t ⊥ M(G). Consequently [M(t1), t] ⊥ M(G). By the linearity of
the affine transformation M(t1) +M(t2) = M(t) = t, so M(t2) ⊥ M(G).

The face G determines a 4-belt and it is centrally symmetric (Á. G. Horváth
[8]), so the endpoint of the vector t

2 is the center C of the face G. This center
is in the hyperplane H. Because H is fixed hyperplane of the affinity, the center
of the face M(G) is the point C, too. The midpoints of the relevant vectors
t, t1, t2 are centers of the according faces. If K denotes the center of the facet
M(F1) and O denotes the center of the parallelotope M(D), then

−−→
OK +

−−→
KC = t

2

and M(t1)
2 =

−−→
OK ⊥

−−→
KC. So M(t2)

2 =
−−→
KC ⊥ M(t1)

2 =
−−→
K ′C, where K ′ is the

center of the facet M(F2). Summing up, M(t2) ⊥ M(G) and M(t2) ⊥
−−→
K ′C, so

M(t2) ⊥ M(F2). Consequently, M(ti) ⊥ M(Fi) holds in this 4-belt.
II. On the other hand, consider that the contraction of the facet F is an (n−1)-

dimensional face. We will denote this facet by F . So the relevant vector t of F
is orthogonal to the facet F . Study an arbitrary (n−2)-dimensional face G of the
facet F . This face G determines a 4- or a 6-belt. In a 4 belt, by the condition,
M(t1) ⊥ M(F1), where F1 is a facet containing the face G. Consequently, in this
situation M(ti) ⊥ M(Fi) holds for every facet of this belt, too.

If the face G determines a 6-belt, then denote by F1 and F2 two facets neigh-
boring with F in the 6-belt. The relevant vectors of the facets F1 and F2 in the
DV cell D ⊕ S(z′) are t1 + z′ and t2 − z′. So (t1 + z′) + (t2 − z′) = t, where
t ∈ H. Thus t1 + t2 = t holds. By the condition M(t1) ⊥ M(F1). By the lin-
earity of the affinity M(t1) +M(t2) = M(t) = t, so the relevant vectors t, M(t1),
M(t2) are in a 2-dimensional plane, which is orthogonal to the face M(G), because
t ⊥ M(F ) and M(t1) ⊥ M(F1), so the intersection M(G) = M(F ) ∩M(F1) is or-
thogonal to the vectors t and M(t1). The projection of the parallelotope M(D) to
the 2-dimensional plane in the direction M(G) is a centrally symmetric hexagon,
in which the relevant vectors t and M(t1) are perpendicular bisectors of according
edges of the hexagon. The circumcenter of a triangle is determined by two per-
pendicular bisectors, so M(t2) is perpendicular bisector of the third edge of the
hexagon. On the other hand, M(t2) ⊥ M(G), so M(t2) ⊥ M(F2).

Consequently, if in any 4-belt an arbitrary facet is orthogonal to its relevant
vector, then for other facets of this belt the orthogonality holds, too. In a 6-belt
some facet of the shadow boundary belongs to the 6-belt (otherwise 8-belt would
be in D ⊕ S(z′)) so by the above if two facets are orthogonal to their relevant
vectors then for other facets of this 6-belt the orthogonality holds, too. �

Lemma 4.4. If D ⊕ S(z′) is a DV cell, then there is an orthogonal affinity M
that the parallelotope M(D) is a DV cell.



86 ATTILA VÉGH

Proof. Consider any coherent pairs of the facets of D and D ⊕ S(z′). By lem-
ma 4.2 there exists an orthogonal affinity M that M(t1) ⊥ M(F1) holds for a facet
F1 ∈ Capz′(D) and its relevant vector t1. By lemma 4.3 in each belt containing
this facet F1 each facet is orthogonal to their relevant vectors. The surface of
the parallelotope M(D) is facet-connected, i.e. to arbitrary two facets there is
finite sequence of the facets, where the intersection of two adjacent facets is an
(n−2)-dimensional face. So the orthogonality come down to every facet and their
relevant vectors. Consequently, the parallelotope M(D) is a DV cell. �

First and last we proved the following theorem:
Theorem 4.5. If the parallelotope P ⊕ S(z) is the affine image of a DV cell

D ⊕ S(z′) then the parallelotope P is the affine image of a DV cell M(D), too.
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HOW TO MAKE GEOMETRY MORE ACCESSIBLE TO
STUDENTS

M. VOJTEKOVÁ, D. STACHOVÁ and V. ČMELKOVÁ

Abstract. Geometry is one of the oldest scientific disciplines. What exactly is its
place in technical education in Slovakia today? The aim of this paper is to briefly
review teaching of descriptive geometry at the University of Žilina and to describe
our experience with the use of the GeoGebra system in classes to facilitate teaching
of geometry, to make classes more engaging and lively, and to increase imagination
and spatial orientation. In doing so, we compare traditional and modern teaching
methods and tools, and dicuss their advantages and potential pitfalls.

Introduction

“Let no one ignorant of geometry enter.” According to tradition, this phrase was
engraved at the door of Plato’s Academy, the school he established in Athens.
What is the position of geometry in technical education today? Is geometry un-
necessary for engineers? Should we get rid of geometry because it is too difficult
for students? Can computer graphical programmes substitute geometrical think-
ing? There are many technical programmes at universities where geometry has
been significantly reduced or completely removed in recent years and the future
seems even worse. What can we, geometry teachers, do to improve the situation?
How can we make geometry more engaging for students? In this paper, we try to
answer some of these question.

1. History of teaching of geometry at the University of Žilina

University of Žilina in Žilina was originally founded as Railway University in Pra-
gue by separating from the Czech Technical University in Prague. After relocating
to Žilina as the University of Transport (VŠD), the university consisted of three
faculties – Faculty of Operations and Economics of Transport (PED), Faculty
of Mechanical and Electrical Engineering (SET), and Faculty of Military (VF).
Faculty PED expanded teaching in technical, economical, and telecommunica-
tions programmes and was thus renamed in 1997 to Faculty of Operations and
Economics of Transport and Communications (FPEDAS).
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Descriptive geometry was part of the core curriculum from the inception of
the university. In the 1960s, descriptive geometry was taught at the Faculty of
Electrical Engineering as a one-semester course in the extent 4–4, i.e. 4 lectures and
4 tutorials weekly, later as 3–3. At the Faculty of Civil Engineering, descriptive
geometry classes spanned 5 semesters of full-time and 4 semesters of part-time
studies. Students from this era took altogether between 171 and 226 hours of
descriptive geometry in the form of lectures and tutorials.

In the 1970s, the total number of hours was reduced to between 80 and 180, and
the course spanned at most 3 semesters. Later in 1980s, the extent was further
reduced when the 3-semester form of the course was taught only in Civil Engineer-
ing part-time programmes, whereas in the Electrical Engineering programmes the
course was removed altogether, and in other programmes the course was taught as
2–2 or 1–2 which reduced the total number of hours further to between 60 and 90.

Figure 1. The annual number of hours of classes of descriptive geometry taught at the
current faculties of the University of Žilina. Source: archives of the University of Žilina.

In the 1990, the university finished establishing all of the current faculties,
however descriptive (resp. constructive, or engineering) geometry was taught only
at four of them (Civil, Mechanical, PEDAS, and Faculty of Special Engineering).
Even at present, descriptive (constructive, engineering) geometry is taught only at
these faculties and constructive geometry is taught at the Faculty of Humanities
in general education programmes in combination with mathematics. In the 1990s,
the total extent of the course was between 48 and 84 hours which in most cases
was taught in one semester (two semesters only at the Faculty of Mechanical
Engineering in full-time programmes). Since 2000, the extent has been 52 hours
(1 semester) with the exception of Geodetics Engineering where it is 78 hours
(2 semesters).
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Opinions regarding the form of grading also changed over the years. While
until 1980 the course was graded based on a final examination, possibly including
tutorial grades. At present, the course is more increasingly graded only based on
tutorials. This change diminished the importance of the course in the curriculum,
and more importantly, it reduced the engagement and preparation of students
for the classes. The situation has been further exacerbated by the fact that the
course has over the years been some times mandatory, and other times optional
(in particular, in Civil Engineering programmes) and in many programmes the
course was cancelled altogether.

The space which descriptive geometry used to occupy in the curriculum was
naturally overtaken by courses focusing on applying the newly developping infor-
mation technologies. Initially technical drawing was added to geometry, later the
two subjects were taught separately, but the original content of the course was not
retained. Later (after 1990) new courses were developped such as Computer-aided
construction, Technical writing, Engineering simulation using MATLAB, CAD I.
and CAD II. systems, Computer-aided construction projects, Computer graphics,
Computer geometry, and courses on Geographical Information Systems, which are
taught in selected programmes. Most of the programmes, however, do not teach
pure geometry.

A detailed summary of course hours obtained from archives of the University of
Žilina are shown in Fig. 1. The chart incorporates data from all available course
listings published in “Študijné programy a informácie” since 1962 until present.

2. Methods and tools used in teaching geometry

For many years the main tools used in teaching descriptive geometry were chalk
and blackboard. The teacher used a compass, ruler, and sharp chalk to draft
constructions on a blackboard. Lectures and tutorials were physically challenging
for the teacher. When grading homeworks and student projects the graphical
aspect of the work was paramount. A mature graphical ability was expected from
students both on a paper and on a blackboard. This made descriptive geometry
difficult for many students, and it was a common practice to have the homeworks
made by professional drafters (civil or mechanical engineers) for money, in order
to get a good grade. Sometimes such formalities overshadowed the content. On
the positive side, the use of spatial models in teaching (projections of lines, planes,
spatial bodies in Monge’s projection, surface maps, etc.) helped students develop
spatial orientation.

The 1980s meant a change in teaching practice when the use of overhead pro-
jectors became commonplace. The teacher could prepare drafts on a transparency
ahead of time which were then presented to students via the projector, and the
blackboard was only used to explain particular steps. The projector, however, was
often not functional, transparencies were poorly made, and markers commonly
dry. If the teacher used only transparencies, students could do no more than liter-
arly transcribe the content of transparencies (without having time to understand
them), since the teacher would generally go faster through the material as it was
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no longer necessary to draft on the blackboard alongside the students. Many of,
mostly older, geometry teachers would stick with the tried-and-tested method of
blackboard and chalk. The use of transparencies and projectors however meant
that the teacher was able to present several solutions to the same problem and
discuss different possible approaches, since the material could be prepared ahead
of time and reused across different course offerings.

The “age of computer” also affected teaching of descriptive geometry. Hand-
made transparencies were first substituted by computer text and illustrations pre-
pared using simple graphical software. Many teachers of geometry made their own
drawing programmes on first personal computers. At the University of Transport
and Communications Jozef Kateřiňák pioneered this approach, and already in the
1970 used an HP computer for solving problems from descriptive geometry. Later,
Václav Medek and Jozef Zámožík [5] made further developments and in 1991
published a book “Osobný počítač a geometria” (Personal computer and geome-
try), which demonstrated solutions of geometric problems on a personal computer
(PMD, ZX-Spectrum, and PC-type 16-bit computers). The use of personal com-
puters and plotters for teaching in the 1990 at the University of Transport and
Communications is connected with the name Jaroslav Husarčík, who, among other
things, designed an algorithm to plot a curve given by an implicit equation [4].
The algorithm was at the time more efficient than any then-available mathemat-
ical software. He further wrote customisable drawing software accompanied by
libraries for drawing planar curves, spatial curves, and surfaces (Fig. 2).

Figure 2. Evolute of parabola as the envelope of parabola normals.

The increased use of computers in classrooms and the availability of laptop
computers used by students leads us to the next stage of development of teaching
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tools for descriptive geometry. Today’s generation of students grew up using com-
puters (via computer games). It is thus natural to use computers for teaching; for
us this means namely PowerPoint slides and GeoGebra applets (which we discuss
below).

3. Geogebra

GeoGebra is an interactive geometry, algebra, statistics and calculus application,
aimed to facilitate learning and teaching mathematics and sciences for students of
all levels (from primary school to university). Its creator, Markus Hohenwarter,
started the project in 2001 at the University of Salzburg, continuing it at Florida
Atlantic University (2006–2008), Florida State University (2008–2009), and now
at the University of Linz together with the help of a small group of assistants and
open-source developers and translators all around the world.

GeoGebra is a freely distributable general-purpose mathematical software that
can be utilized in many fields of mathematics education. It is currently available in
more than 50 languages and offers a very user-friendly interface. The programme
was originally designed to be used for solving Euclidean geometry problems. It
allows, for instance, drawing basic geometric objects: points, segments, rays, lines,
and other objects such as a midpoints of segments, axes of segments, intersections
of objects, lines perpendicular or parallel to other lines. There are tools to con-
struct angles, regular polygons, circles, conics and to use various transformations
(rotations, translations, axial symmetries, etc.) and to measure object areas and
distances. GeoGebra later expanded into other fields of mathematics including
mathematical analysis, algebra, statistics, tabular calculations (e.g. analysis of
graphs of functions, probabilistic calculations, linear regression, etc.). All geomet-
rical objects represented in GeoGebra can be expressed analytically as algebraic
formulae. The system supports adding text labels and annotations using TeX-like
scripting language (without the need of installing the TeX system). Another useful
feature of the programme is the ability to produce animations. The programme
also allows enriching the drawing plane with scrollbars, buttons, checkboxes and
text areas. Another advantage of GeoGebra is the possibility to export the con-
structions (as PDF, Postscipt, or bitmap files), and the possibility to produce ap-
plets in an HTML format so that students can use them without having to install
GeoGebra. The HTML applets can be uploaded to the GeoGebra Tube website
and are freely available to anyone. Beginner users can acquaint themselves with
the program in its installation-free online version GeoGebra Start.

4. How to use Geogebra in the teaching process

GeoGebra is for a teacher a useful tool for producing complex drawings for use in
classrooms. What we, the teachers of descriptive geometry, appreciate most about
GeoGebra is its dynamic nature; the possibility to create and then repeat the
construction step by step. It is convenient to have the option of hiding auxiliary
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Figure 3. Construction of osculating circles of ellipse.

Figure 4. Circle and its image in the axial affinity.

lines, the possibility to pause the dynamic applets at any point, to move frame-
by-frame back and forward as needed. This is useful not only in a lecture but also
for students working at home without teacher’s presence. Students can follow the
construction on a computer and with its help do their homework. Students can
use the GeoGebra Tube webpage to find elementary constructions that are needed
(e.g. constructions of polygons, axial symmetry, etc.). Students are furthermore
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given the option to explore the examples by modifying the objects displayed in
the drawing plane and thus acquire a better understanding of the given topic.

Figure 5. Axonometric view of the intersection of a line and a plane.

Figure 6. Orthogonal axonometric view of the plane section of a pentagonal prism.

For our course, we have developped a number of applets for students to help
them better understand the principles of planar and spatial transformations, ap-
plets producing basic constructions of conics: ellipse (Fig. 3), hyperbola and
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parabola, applets constructing objects in axial affinity (Fig. 4) and collineation,
and applets constructing objects using the Monge mapping method and the or-
thogonal axonometry method (Fig. 5 and Fig. 6, respectively).

GeoGebra also plays an important role in teaching point symmetries in cartog-
raphy (Fig. 8), since it allows to depict complex constructions neatly by splitting
the construction into simpler steps which greatly increases understanding.

Figure 7. Reconstruction of rotated top- and side-views of an image of a box.

Among students with difficulties in learning geometry there are sometimes those
who have interest in geometry while also wanting to create something new, not
only do the homework. Fig. 9 shows a work of such a student – using the Method
of intersection to create an axonometric view of an object formed from two ortho-
graphic projections of the object.

5. Conclusion

The goal of this article was to describe the history and the present state of teaching
of descriptive geometry at the University of Žilina. We believe that geometry has
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Figure 8. Cartographic projection of a point on a sphere with coordinates 30◦N 30◦E.

Figure 9. Axonometric view of the skull..

its place in technical education and there are means to modernize its teaching such
as the use of the GeoGebra system. GeoGebra applets can be used to facilitate
the teaching process as well as assist students in self-study. Its dynamic nature,
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accuracy and clarity of presentation are its key useful features. Students appre-
ciate availability, repeatability and comprehensibility of GeoGebra constructions
and consider them very useful. But we must be careful not to completely replace
geometrical thinking with these modern tools. Methods of visualization are inter-
esting for students, they improve imagination, but there is always the danger that
learning geometry gets reduced to “watching movies”. It is a task for the teacher
to find appropriate forms of use of computer drawings tools in teaching in order
to enrich the teaching process but leave room for imagination.
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