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What features an “idea

|.  must be safe and effective

Il.  should be well absorbed orally and/or bioavailable
lll. metabolically stable and with a long half-life

IV. nontoxic with minimal or no side effects

V. should have selective distribution to target tissues

ADMET properties of drugs:
Absorption

Distribution

Metabolism

Excretion

Toxicity

: Large intestine
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https://quizlet.com/136552549/pharmacology-ch-4-what-happens-after-a-drug-has-been-administered-flash-cards/



Drug discovery and development process

* The development of any potential drug begins with years of scientific study to determine the biochemistry behind a
disease, for which pharmaceutical intervention is possible. The result is the determination of specific receptors (targets)
that must be modulated to alter their activity by some means. After target identification, the goal then is to find
compounds that interact with the receptor by mass screening (lead).

* From this point onward, a cycle of iterative refinement and testing continues until a drug is developed that undergoes
clinical trials. The techniques used to refine drugs are combinatorial and structure-based design.

Number of molecules
tested through the
developmental process

Basic research

Drug discovery

Preclinical research
Clinical research
Approved drug

https://www.technologynetworks.com/drug-discovery/articles/exploring-the-drug-development-process-331894
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The Drug Discovery Process

Early Discovery:2-5y - $4M Development: 5 -10 y - S40M
:>| —
$1M SM2 $13M $20M Licensing: 1-2 y, $2M |
1-3y ly Xm-2y 1-4y |_;inedie...,$20M
— S 3 D I—— ——

Phase Il (PoC) Phase IlI O‘ Phase IV
Proof Multicenter Postmarketing
of Concept Trials Surveillance

TargetID

Target Validation ; -
Target selection

- 1
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Lead Molecule Candidate Molecule Drug Drug
Effective in target Effective in animal models - : Effective Effective MEDICINE
in X00 humans in X000 humans

Program/drugs attrition per phase, in failifeiates]
i L O ——

* The system works like a pipeline, each phase feeding the following one with backups in prevention of program failures.

40%

* Each stage output is the input of the next one.

* Individual pipelines represent therapeutic concepts. Failed stages are not replaced by backups when there are no more appropriate
molecules available, on target liabilities appear, compound does not prove therapeutic efficacy, or strategic decisions are applied.

* Costs and timelines represent the values for unique iterations of the respective phases.
https://doctortarget.com/machine-learning-applied-drug-discovery/



> It is inherent to the nature of biology. We still don’t understand biology
well enough to know what proteins to target or how drugging a target of
interest will affect an organ system or the entire human body, simply

Why |S d rug because of the complexity of the human being. Drug targets are parts of

complex cellular networks leading to unpredictable changes. In addition,

d iscove ry biological systems also show a high degree of redundancy, which could
blunt the effects of even the most specifically-targeted therapeutics.

ta keS SO IO ng » New drugs have to be significantly better than currently available
treatments, so building a new drug for a disease with prior treatments
a n d SO becomes increasingly more difficult.
» Safety of new drugs is just as important as efficacy. Whit increasing
: ? experience and knowledge of adverse effects and safety concerns,
expe nS |Ve . regulatory requirements for safety assessment of new drugs is evolving
continuously.

* Inthe last two decades the industry shifted from iterative medicinal
chemistry coupled with phenotypic assays to the serial filtering of a
static compound library against a given target. However, the ability of
high-throughput screening of large chemical libraries to a specific target to
tell researchers that a drug candidate will be safe and effective in human
clinical trials is very limited.

» Capturing, representing, and perturbing that complex biological
network in silico is the holy grail of machine learning for drug discovery.

https://www.bvp.com/atlas/roadmap-unlocking-machine-learning-for-drug-discovery



The pharmaceutical industry benefits from scientific revolutions

in both biomedicine and computer science.

New tools available improved our ability to create, manipulate, and measure biological systems at scale:

Create

* models reflecting unique biological dynamics and variation: R
* induced pluripotent stem cell (iPSCs) o \
* organoids that reflect three-dimensional tissue dynamics / \\\
* patient-derived xenografts (PDX) to mimic human disease in / A
mouse models. Scalaa Rapaat Perturb
* ability to perturb these models in a genome or protein-targeted e N
fashion. ey D
* CRISPR/Cas9-based gene editing ﬁ\ |
* Robotic automation and microfluidics gy /
* High resolution microscopy — high content screening (HCS) N Measure <
* New generation sequencing HS(‘;OP;::V

https://www.bvp.com/atlas/roadmap-unlocking-machine-learning-for-drug-discovery



Tissue on a
chip

(a) Spleen (c)

Interconnected neurons

Drug Discovery Today

* Drug Discovery Today, February 2012, Pages 173-181



https://www.sciencedirect.com/science/journal/13596446

Tissue on a chip

This lung-on-a-chip serves as an
accurate model of human lungs to
test for drug safety and efficacy.
(Wyss Institute for Biologically
Inspired  Engineering, Harvard
University Photo)

Liver Chip Kidney Chip Lung Chip Body Chip
h ’

https://ncats.nih.gov/tissuechip/about
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Why is it
advantageous
to use new
computational
tools during

the process?

With significant improvement in biological models,
computational tools and machine learning techniques can be
efficiently used in the drug development process:

» Shorten the timeline of drug development— Timeline of
drug exclusivity on the market is limited by the patent
expiry date, which is 15 years after filing.

» Increase the throughput of screening steps
» 3R — Replace, reduce, refine — minimalize animal testing

» Reduce the risk of failure during clinical studies — save
money



Computational and machine learning opportunities in drug
discovery

Target Drug o
Discovery / Discovery and Lead Preclinical
Validation Sernaing optimization Development
e GWAS e High-throughput e Medicinal e In vitro safety and e Patient
/Sequencing screening chemistry and / efficacy in recruitment,
e Crystallography e Structure-based or ratinal drug alternate cell lines engagement, and
e In vitro and in vivo drug design design to * In vivo safety and oversight
functional assay e Molecular optimize drug-like efficacy in mice / * Regulatory
dynamics properties non-human documentation
e Initial in vitro e Absorption, primates and feedback
safety assessment distribution,
metabolism,

excretion, and
toxicity studies
(ADMET)

https://www.bvp.com/atlas/roadmap-unlocking-machine-learning-for-drug-discovery



Early Discovery

* Target identification, validation and selection:

* A set benchmark compounds is proved active against a
documented target and a disease-relevant experimental
model.

* Hit to Lead:

d eve | O p me nt * Active molecules on a selected targets are evaluated for
potency and selectivity and undergo further optimization

by chemical improvement.
* Lead to Candidate:

* Lead compounds are tested for efficacy,
pharmacokinetics, pharmacodynamics and safety.

Phases of drug
discovery and




Phases of drug discovery and development

Early Discovery

1. Target identification, validation and selection:

» A biological target can be anything within a living organism to which an endogenous ligand or a drug is directed
and/or binds, resulting in a change in its behavior or function.

Proteins
* G protein-coupled receptors (~700 approved drugs, 35% of total drugs):

* Examples: drugs to treat allergy, blood pressure, HIV infection, Parkinson
* enzymes (especially protein kinases, proteases, esterases, and phosphatases),

* Examples: Cancer treatments, neurological diseases, Paxlovid
* ionchannels

* Examples: epilepsy, pain
* nuclear hormone receptors

e structural proteins such as tubulin

* membrane transport proteins

nucleic acids
* Examples: siRNA therapy, remdesivir, molnupiravir

® GPCRs

# GPCR-related

* Protein kinases
LGICs

= VGICs

= Transporters

» Others

Fig. 2. The estimated proportion of genes from different gene families that
are targets for approved drugs. GPCRs comprise the single largest such
group. VGICs: voltage-gated ion channels; LGICs: ligand-gated ion
channels.

Mol Pharmacol 93:251-258, April 2018 K. Sriram and P. A. Insel G Protein-Coupled Receptors as
Targets for Approved Drugs: How Many Targets and How Many Drugs?


https://en.wikipedia.org/wiki/G_protein-coupled_receptor
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Protein_kinase
https://en.wikipedia.org/wiki/Protease
https://en.wikipedia.org/wiki/Esterase
https://en.wikipedia.org/wiki/Phosphatase
https://en.wikipedia.org/wiki/Nuclear_receptor
https://en.wikipedia.org/wiki/Protein#Structural_proteins
https://en.wikipedia.org/wiki/Tubulin
https://en.wikipedia.org/wiki/Membrane_transport_protein

Role of computation tools
in target identification

1. Target identification:

» bioinformatics can help reveal the key genes from a massive
amount of genomic data thus provide possible target proteins
for drug screening and design

» GWAS: Genome-wide association study:

frequencies of genetic variants are compared between
individuals with a disease (cases) and unaffected individuals
(controls).

T variant (red) is enriched in cases compared to controls.

tens of millions of sequence variants are tested in this manner
and are able to detect small differences in frequency in well-
powered studies.

GWAS results are typically displayed as a “Manhattan plot” that
shows significance levels on the vertical axis against the
chromosomal positions of sequence variants.

an association signal typically results in a ‘peak’, arising from
regional correlation of genetic variation caused by linkage
disequilibrium among SNP (single nucleotide polymorphisms).

Sequence Variation

Disease

GWAS

ATGCCAGTGTTTCAAGATGCTTGGCCAGCTGGACGAGGGCGATGAC
ATGCCAGTGTTTCAAGATGTTTGGCCAGCTGGACGAGGGCGATGAC

TYTYYYYYTY teeeeeeeeeed
YOIV  eireeeeees
YYYYYYYY M‘mwn

Affected cases Unaffected controls
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Urolithiasis 2019 Feb;47(1):11-21. Genetics of common complex kidney stone disease: insights from genome-
wide association studies. Runolfur Palsson12, Olafur S Indridason 2, Vidar O Edvardsson23, Asmundur Oddsson &



https://pubmed.ncbi.nlm.nih.gov/?term=Palsson+R&cauthor_id=30523390
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-1
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-2
https://pubmed.ncbi.nlm.nih.gov/?term=Indridason+OS&cauthor_id=30523390
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-3
https://pubmed.ncbi.nlm.nih.gov/?term=Edvardsson+VO&cauthor_id=30523390
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-4
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?term=Oddsson+A&cauthor_id=30523390
https://pubmed.ncbi.nlm.nih.gov/30523390/#affiliation-6

CADD: Computer aided drug design

2. Target structure:

» Protein structure prediction methods
can provide protein structures with

reasonable precision X o™
\o- 7 A
> Biomolecular simulations with - o ¢ - T\ .
. ASA I - Pocking
multiscale models allow for #

" g
. . . ‘ ‘/ ,\ \ - \
investigations of both structural and PSp AR »__results

. - .'/ n?, \‘(
thermodynamic features of target L4 .

. . X o S
proteins on different levels, which are b

useful for identifying drug binding sites
and elucidating drug action
mechanisms.

https://www.technologynetworks.com/drug-discovery/news/potential-for-anti-chagas-therapies-
using-structure-based-drug-design-292690



CADD Computer-aided drug
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» Structure-based drug design (SBDD): :W ; QL. /
. . . . . 3 .,J 5 V;::::Ln «2‘(*/[\3" ‘ n)\
* 3D structure and biological function of target protein are available @N % : 1k
and large numbers of ligand are screened against it. b i bt g Commtee
* Candidate drugs that are predicted to bind to the target with high C Chemical iatabess
affinity and selectivity are designed. B
o Ligand'baSEd drug dESign (LBDD): m Lipinski’s filter
* 3D structure of the target protein is not known. e
* The only information available are ligands and their biological B = @
activities, computer-aided LBDD is an effective method to design “
compounds with improved biological activity. T T
* Chemical entities of single ligand is used to screen hit compounds e, T e commounes

and/or screened against various protein targets of interest.

Plant Pathol J. 2017:33(6):529-542



Structure-based drug design (SBDD)  [EYSEsrey

* Homology modelling: homology model based on primary sequence

— H; & —cCO 3‘{)}% 7‘% similarity of the target to homologous proteins, of which 3D structure is
) ~

empirically known, can be created.

Detector Xeray diffraction d [
l = S
_\‘{_5—’

* Molecular docking. If the model of active sites is available, protein-

; ,_,,V,.ﬂ"-‘ et % .

xn;“ — gﬁ&ﬁ; ’\1\\\{?5@‘ ligand interactions can be explored through molecular docking,

A daraliyaag Protin modeting U predicting energetically stable ligand binding. Degree of interaction
Homology modeling Crystallography Known actives stability is determined by using the mathematical methods of scoring

* Force field —based on the strength of intermolecular van der Waals and
electrostatic interactions between the two molecules in the complex using a
force field.

*  Empirical —counting the number of various types of interactions between the

| | ‘ functions. There are four general classes of scoring functions:

v

I [

| Druggability I Lo

: " Prediction 1 two binding partners.

i : *  Knowledge-based - statistical observations of intermolecular close contacts in
: y I J large 3D databases

| | Docking-based | : *  Machine-learning —not assuming a predetermined function for the relationship
: Virtual Screen : l _ T between binding affinity and the structural features of protein-ligand complex.
| I I

: , v o 7~ L * Structure-based virtual screening (SBVS). The search for new
I Structure-based | I ; , ° . . -~ .

| | Pharmacophore | : chemical compounds as lead molecules is a critical step during the
: g : Bioassay Synthesis process of drug discovery. Once the target is selected, the small
: [ re— : | J molecules database are selected for virtual screening and their
: Dynamics ‘ : l binding interactions with the selected drug target are explored.

! 1

I [

1 I

! 1

| a

'  De novo ligand design (DnLD). Using 3D structure information of the
Front Chem 2018 Mar 12:6:57. target, ligand can be designed de novo.



' : o == X r R
Ligand base drug design (LBDD) ﬂ/ =0 T cj%

When the 3D structure of the target protein is not known, and the only information available Al ] 335’ u‘:

are ligands and their biological activities, computer-aided LBDD is an effective method to NediChd | — &"eﬁé A’ ¥ SQ"
design compounds with improved biological activity. Availability of 3D structure of target t ) a>d
protein present in cell surface or membrane are very limited due to difficulties in protein
crystallization. Since more than 50 % of current FDA-approved drugs targeting membrane
proteins LBDD methodologies have a significant impact on drug development. | |

Eloctron density map Protein modeling

Crystallography Known actives

Major LBDD methods:

. . - . . LBDD
* Pharmacophore models identifying the minimum, steric and electronic features that are
required for interaction of target protein with ligand(s).
Ligand-based
* Ligand-based virtual screening (LBVS). Large diverse set of candidate compounds can be Pharmacophore
scanned to predict whether candidate ligands are likely to bind to the target through u
comparison to the pharmacophore model. LBVS works as a chemical database filters.
s .. . . - . . 3D-QSAR
* Quantitative structure-activity relationships (QSAR) yielding quantitative estimates of
activities based on physiochemical properties. Quantitative structure—activity u
relationship (QSAR) models are regression or classification models used to predict
o . . . . : 2D Similarity-
activities of new chemical compounds based on their physico-chemical properties. LascdiSamch

* Similarity searching, which explores compounds with similar properties as well as various ) s i
o Bioassay ynthesis
combinations of the above. I J

v

Scaffold Hopping

» Overall improvements have been achieved by sophisticated data mining techniques and l
by more accurate mathematical descriptions of molecules through molecular mechanics ¥
(MM) and quantum mechanics (QM) methods. ADMET
' Prediction

Front Chem 2018 Mar 12;6:57.



Potential target selection
{(MurD, MurE and Pectate lyase)

CADD protocol example i R
| Tamplat:salectinn
(A) Homology models " Modeler v
(B) Model validation using Ramachandran | ey p————
plot for each model. - S — |
: PROCHECK, Verify 3D, ERRAT @
(C) Ligand selection S SRVESSsam |
(D) Pharmacophore generation. Hydrogen | Hode]vadaton
bond acceptor (green), hydrogen bond " PUBCHEMIDRUG BANK
donor (magenta%, hydrophobic (cyan), | T
and ring aromatic (orange), ionizable | Small compounds
positive charge (red) are shown here. oA ! / @&
e . Y Curcumin A
(E) 3D database screening. | Discovery studio |
(F) Virtual screening and  dockin ¥
interactions. Docking interactions o Pharmachophore generation —
Maybridge database compounds with " Discovery studio |
the models are illustrated. L
3D database search

(G) Identification of lead molecule: the l"%iitéés':Lf.ia;k}}dné;;aiﬁ&igf":l
compound showing best docking e o
interaction with the modelled protein. Candidate lgands

Softwares, databases and servers used in
the case study are given in dotted boxes,

. PyRxandFlexX |

Virtual screening and Docking

: : : . e CD01278
while the process is shown in solid boxes. Docking score and binding interactions ¢ N1-{2,6-dimethylphenyl) -2-2-
Selected LEAD molecule » (1,4,5,6-tetrahydro pyrimidin-2-

yl)benzoyllhydrazine -1-
carbothioamide

Plant Pathol J. 2017;33(6):529-542



Role of computation tools in lead generation

Early Discovery

Hit to Lead (Lead generation)

Active molecule hits from the high throughput screen (HTS) with selected target are evaluated for potency
and selectivity, then undergo limited optimization to identify promising lead compounds.

* Confirmation of drug mechanism of action in vitro

* Physico-chemical parameters, like water solubility, chemical stability

* Pharmacokinetic and pharmacodynamic parameter, drug metabolism

* Initial safety test in vitro

»>QSAR

»Cheminformatics solutions:
(ChemAxon)

» Chemicalize

» Calculators and Predictors: High-quality
physico-chemical calculations and
predictions for drug discovery

Experimental Properties

PROPERTY VALUE

SOURCE

water solubility Sparingly soluble in water FDA label
logP 013 FDA label
Predicted Properties PROPERTY VALUE SOURCE
Water Solubility 0.0886 mg/mL ALOGPS
logp 1.47 ALOGPS
logP 192 Chen
logs -37 ALOGPS
pKa (Strongest Acidic) 4 Chen
pKa (Strongest Basic) -2.8 Cherr
Physiological Charge -1 Chen
Hydragen Acceptor Count 8 Chen
Hydrogen Donor Count 3 Chen
Polar Surface Area 14092 A? Cherr
Rotatable Bond Count 9 c
Refractivity 121.44 m3mol” Cher
Polarizability 48.55 A? Cher
Number of Rings 2 Chenm
Bioavailability 1 Chen
Rule of Five Yes Chen
198#categories-header Ghose Filter No Chen



Role of computation tools in lead optimization

Early Discovery

« Lead to Candidate (Lead optimization)
 Chemical modification of the hit structure with the purpose of
* Improved efficacy
* Reduced off-target activities
* Optimized physiochemical/metabolic properties

* Prediction of Physicochemical Properties

* Prediction of ADME Properties

* Prediction of Toxicity

* Physicochemical and ADMET Property-based Design

> SAR
»Cheminformatics solutions:

» Calculators and Predictors: High-quality
physico-chemical calculations and
predictions for drug discovery




Role of computation tools in preclinical development

Preclinical development

* Preclinical development
* The main goals are to
« Determine a starting, safe dose for first-in-human study
« Assess potential toxicity

« Testing

« Pharmacodynamic (what the drug does to the body) PD
Pharmacokinetic (what the body does to the drug) PK
ADME (Absortion, Distribution, Metabolsim, Excretion)
Toxicology
In vitro
Animal tests

>»PBPK models and simulators



Physiological based pharmacokinetic (PBPK) models and simulators

Computational modeling approach that incorporates blood flow and tissue composition of organs to
define the pharmacokinetics (PK) of drugs.

Introduction of PBPK M&S

Lung blood flow Lung blood flow

Lung ! >
:Fnt blood flow 1 Fat l < Fat blood flow
> First step is building a reliable model using tons of input FouetloodloW [ Bone ]« Bops tood flow
data from in vitro, animal and human PK studies and Lrunbloodflow ™ p jin |« Brau blood flow
simulations of connection physiology of organs Jeantbloodflow [y Heat blood flow

Muscle blood flow

. . . . . . . . 5 1scle blood flov
> Links in vitro data to in vivo absorption, distribution, Jrecietioodfol  Muscle

FYy

metabolism, and excretion (ADME) and pharmacokinetic / Shanbloodflow ™ g0 e St blood fow o
. - Gut blood flov
pharmacodynamic (PK/PD) outcomes 5 R Gut__ Iﬂ“‘
. ) . o . < epatic blooc O\ir Liver < epatic b 00‘(1 O“.b]logd e
* Enables extrapolation from in vitro to clinical trial data CLis T
 Determination of first-in-human dosing rbia Mool ey B Mol
* Provides information for designing clinical trials, to reduce CASEDIRIICS
trial size and complexity v’ Lead optimization or candidate evaluation
) i . i ) v'DDI potential prediction
* Predlc.ts dosing .recqmmen_dat.lons for d|ffe rent populations v"Human PK and DDI prediction to avoid clinical DDI trials
of patients: pediatrics, geriatrics, ethnicities, organ v'Dose guidance for renal impairment patients
impairment. v'Bridge healthy adults to special populations

Regulatory acceptance and industrial practices around PBPK M&S

Acta Pharmaceutica Sinica B, Volume 6, Issue 5, September 2016, Pages 430-440



https://www.sciencedirect.com/science/journal/22113835/6/5

PBPK modeling strategy:

iterative “learn, confirm, and refine” approach

Initially, the PBPK simulation is performed in
animals using animal PBPK models, animal in
vitro data, and compound-specific
physicochemical data. The animal simulation is
compared with the in vivo data.

If simulation in animals is reasonable then the
healthy volunteer simulation is performed
using a human PBPK model built using healthy
volunteer physiology, human in vitro data, and
compound-specific physicochemical data.

These simulations can then be extended to
various patient populations using relevant
physiology.

If the simulation at any stage is inaccurate, this
would indicate a violation of one or more of
the model assumptions, in this case further
experiments may be performed to understand
the mismatch.

PBPK models and simulators

Discovery Early development Late development

Praclinical species Healthy volunteers Patients >
-5 e O

", S|

= T | o T
s (] g (o) g

- - -— e

Learn Learn,
confirm, confirm,
| and refine and refine
-
L

AV

7
.

\V

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e63



Phases of drug discovery and development

Clinical development

* Phasel
* small groups of healthy volunteers
* small ascending single doses of the drug
* in order to obtain information on the safety, tolerability and pharmacokinetic properties of the drug in humans. Also, to generate
information on optimal dosage of the drug candidate.
* Phasell
* patients who have the targeted disease
* to evaluate the possible therapeutic effects
* continue Phase | safety evaluations in patients with the disease or condition under study.

* Phaselll
* several thousands of patients in a real-life clinical setting.
* This phase is essential in determining whether the drug is safe and effective.
* |If the drug candidate is successful in Phase lll clinical trials, a new drug application can be submitted to regulatory authorities

* Post-marketing surveillance (Phase 1V)
* to evaluate the true safety profile of the drug in large-scale use.

* drugis used by large patient populations, new rare or long-term side effects may be detected, and real-world data of the
therapeutic value of the drug can be collected



Machine learning tools and their drug discovery applications

~ Supervised learning techniques Unsupervised learning techniques
Regression analysis methods Clustering methods

» v

Nature Reviews Drug Discovery volume 18, pages463-477 (2019) Applications of machine learning in
drug discovery and development



https://www.nature.com/nrd

Drugs
repurposed for
COVID-19 by
virtual
screening of
6,218 drugs
and cell-based
assay

The COVID-19 pandemic caused by SARS-CoV-2 is an unprecedentedly significant health
threat, prompting the need for rapidly developing antiviral drugs for the treatment.

Drug repurposing is currently one of the most tangible options for rapidly developing
drugs for emerging viruses.

Drug repurposing starts with virtual screening of approved drugs employing various
computational methods.

However, the actual hit rate of virtual screening is very low with many false positives. A
strategy for virtual screening with much reduced false positives through incorporating
pre-docking filtering based on shape similarity and post-docking filtering based on
interaction similarity. This advanced virtual screening approach was applied for 6,218
approved and clinical trial drugs for COVID-19.

6,218 compounds were screened against main protease and RNA-dependent RNA
polymerase of SARS-CoV-2, resulting in 15 and 23 potential repurposed drugs,
respectively.

Three of these drugs, emodin, omipalisib, and tipifarnib, show anti-SARS-CoV2 activities
in human lung cells, Calu-3.

Activity of omipalisib is 200-fold higher than that of remdesivir in Calu-3.

Drug combinations of omipalisib/remdesivir, tipifarnib/omipalisib, and
tipifarnib/remdesivir, show strong synergistic effects in inhibiting SARS-CoV-2. Such drug
combination therapy improves antiviral efficacy in SARS-CoV-2 infection and reduces
the risk of each drug’s toxicity.

Woo Dae Janga, Sangeun Jeonc, Seungtaek Kimc and Sang Yup Leea

PNAS 2021 Vol. 118 No. 30



Infection
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» Spike glyroprotein
» Host cell receptor (ACE2)
» Surface protease (TMPRSS2)

L

Polyprotein processing targets
* Main protease (M*/3CL**)
* Papain-like protease (PL*®)

11

Replicase targets

* RNA-dependent RNA polymerase
(RdRp)

» Helicase

» Exonuclease

» Endoribonuclease

Assembly 7N

PNAS 2021 Vol. 118 No. 30

Drugs repurposed for COVID-19
by virtual screening of 6,218
drugs and cell-based assay

* Potential drug targets in SARS-CoV-2 replication cycle.

* Targets for viral attachment and entry include the viral spike
glycoproteins, host receptors (ACE2), and proteases (TMPRSS2).

* Polyprotein processing can be targeted by inhibiting viral
proteases such as main protease Mpro and papain-like
proteases.

* Viral replicase-related enzymes are also attractive drug targets
for antiviral activity. RARp and helicase are important enzymes
involved in the transcription and replication of SARS-CoV-2.
Among these, the most important and less variable Mpro and
RdRp were selected as drug targets in this study
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* Fig. 4. Analyses of drug combinations on anti—SARS-CoV-2 activity, cell viability, and their
synergistic effects.

* Two-dimensional matrix of dose—response for relative viral inhibition:
* omipalisib/remdesivir,

* (D) tipifarnib/omipalisib,

* (@) tipifarnib/remdesivir.

* The heatmap depicts relative viral inhibition scaled to

* therange of 0 to 100%.

* Two-dimensional matrix of dose—response for relative cell viability:

* (B) omipalisib/remdesivir,

* (E) tipifarnib/omipalisib,

* (H) tipifarnib/remdesivir. The heatmap depicts relative cell viability scaled to the range of
0 to 100%.

* Topographic two-dimensional map of synergy scores determined by synergyfinder using
the datain A, D, and G, respectively: (C) omipalisib/remdesivir, (F) tipifarnib/omipalisib, and
(1) tipifarnib/remdesivir. The synergy map highlights synergistic and antagonistic dose regions
in red and green colors, respectively. A yellow box represents the area with the highest
synergy score obtained by synergyfinder.
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