Smart Contracts and the Coase Conjecture

Thomas Brzustowski, Alkis Georgiadis and Balázs Szentes

April 15, 2021

Model

- discrete time t = 0, 1, 2...
- seller of a durable good
- buyer with valuation $v \in \{v_l, v_h\}$
- $\mu v_h > v_l$
- payoffs:

$$\delta^T v - \sum_{t=0}^{\infty} \delta^t p_t$$
 and $\sum_{t=0}^{\infty} \delta^t p_t$

- only one-period contracts
- Seller has all the bargaining power

Laffont and Tirole (1988)

- only one-period contracts
- Seller has all the bargaining power

- dynamic contracts
- renegotiation in each period

Laffont and Tirole (1988), Doval and Skreta (2020a, 2020b)

- only one-period contracts
- Seller has all the bargaining power

- dynamic contracts
- renegotiation in each period

What do we do?

Laffont and Tirole (1988)

- only one-period contracts
- Seller has all the bargaining power

- dynamic contracts
- renegotiation in each period

What do we do?

• Seller has all the bargaining power

- dynamic contracts
- renegotiation in each period

What do we do?

• Seller has all the bargaining power

• dynamic contracts

Model

- discrete time t = 0, 1, 2...
- seller of a durable good
- buyer with valuation $v \in \{v_l, v_h\}$
- $\mu v_h > v_l$
- payoffs:

$$\delta^T v - \sum_{t=0}^{\infty} \delta^t p_t$$
 and $\sum_{t=0}^{\infty} \delta^t p_t$

Dynamic Contract

- buyer reports v
- t = 0: trade with v_h with prob α at $p \in (v_l, v_h)$
- t > 0: trade with v with prob β at v

such that

- at t > 0 the static monopoly price is v_l
- seller's continuation value is $> v_l$

Contracting Game

 $t = \mathbf{0}$

- seller chooses contract $c_0 \in \mathcal{C}$
- c_0 determines (x_T, p_T) until it is replaced

t > 0

- seller decides whether to proceed with c_{t-1}
- or deploys a new contract
- c_t determines (x_T, p_T) until it is replaced

The Contract Space *c*

$$c = \left(M_T^b, M_T^s, S_T^b, S_T^s, \mathbf{x}_T, \mathbf{p}_T, \rho_T\right)_{T=0}^{\infty}$$

- T : number of *consecutive* periods c is deployed
- M_T^b, M_T^s : message spaces
- S_T^b, S_T^s : signal spaces

•
$$\mathbf{x}_T, \mathbf{p}_T : \left(M^b_{\gamma}, M^s_{\gamma} \right)_{\gamma=0}^T \times \left(S^b_{\gamma}, S^s_{\gamma} \right)_{\gamma=0}^T \to [0, 1] \times \mathbb{R}$$

•
$$\left(\rho_T^b, \rho_T^s\right) : \left(M_{\gamma}^b, M_{\gamma}^s\right)_{\gamma=0}^T \times \left(S_{\gamma}^b, S_{\gamma}^s\right)_{\gamma=0}^{T-1} \to \Delta\left(S_T^b, S_T^s\right)$$

Buyer Participation

$$r \in M_T^b$$
 for all T

if
$$m_T^b = r$$
 then $x_T = p_T = \mathbf{0}$

Simple and Direct Contract $\ensuremath{\mathcal{D}}$

- T = 0: buyer is asked to report his valuation
- no more communication
- if rejected \Rightarrow delay

Simple and Direct Contract $\ensuremath{\mathcal{D}}$

 $d = (\mathbf{x}_{\tau}, \mathbf{p}_{\tau})_{\tau=0}^{\infty}$

• τ : number of period where d was not rejected since another contract

•
$$M_0^b = \{v_l, v_h, r\}, \ M_\tau^b = \{a, r\} \ \tau > 0$$

•
$$\mathbf{x}_{\tau}, \mathbf{p}_{\tau} : \{v_l, v_h\} \rightarrow [0, 1] \times \mathbb{R}$$

•
$$S^s_{\tau} = \{a, r\}, \ \rho^s_{\tau} = r \Leftrightarrow m^s_{\tau} = r$$

Assumption

 $\mathcal{D}\subset \mathcal{C}$

Equilibrium

Weak Perfect Bayesian Equilibria

+ seller does not update if she deviates

+ seller's beliefs: limit points of beliefs derived by Bayes' rule along a sequence of totally mixed strategy profiles converging to the equilibrium strategy profile

Revelation Principle

- *direct* contract
- incentive compatible
- always deployed
- never rejected

Not operational

Suppose that equilibrium exists for all δ

(If C = D, this is true)

 $\pi(\mathcal{C}, \delta)$: sup of the seller's payoff across all equilibria

Theorem

 $\exists \underline{\pi} > v_l \text{ such that }$

 $\pi(\mathcal{C},\delta) \geq \underline{\pi}.$

Incentive Compatibility

notation:

$$X_{\tau}(v) = \mathbf{x}_{\tau}(v) \Pi_{t=0}^{\tau-1} (1 - \mathbf{x}(v)_{t})$$

$$P_{\tau}(v) = \mathbf{p}_{\tau}(v) \mathbf{x}_{\tau}(v) \Pi_{t=0}^{\tau-1} (1 - \mathbf{x}(v)_{t})$$

$$d = (X_{\tau}, P_{\tau})_{\tau=0}^{\infty} \in \mathcal{D} \text{ is } \delta\text{-IC if}$$

$$v \in \arg \max_{v' \in \{v_{l}, v_{h}\}} \sum_{t=0}^{\infty} \delta^{t} \left[X_{t}(v') v - P_{t}(v') \right]$$

Abiding Contracts

$$d = (X_{\tau}, P_{\tau})_{\tau=0}^{\infty} \in \mathcal{D}$$
 is δ -abiding if it is δ -IC and

(i)
$$\sum_{t=T}^{\infty} \delta^{t-T} [X_t(v) v - P_t(v)] \ge 0$$
 for all $v \in \{v_l, v_h\}$ and

(ii)
$$\max \{v_l, \mu_T(d) v_h\} = v_l$$

(iii) $\mu_T(d) \sum_{t=T}^{\infty} \delta^{t-T} P_t(v_h) + (1 - \mu_T(d)) \sum_{t=T}^{\infty} \delta^{t-T} P_t(v_l) \ge v_l$

Proof

$$v(d,\delta) = \mu \sum_{t=0}^{\infty} \delta^{t-T} P_t(v_h) + (1-\mu) \sum_{t=0}^{\infty} \delta^{t-T} P_t(v_l)$$

Lemma 1

 $d \text{ is } \delta \text{-abiding} \Rightarrow \pi(\mathcal{C}, \delta) \geq v(d, \delta).$

Lemma 2

 $\forall \delta \exists d_{\delta} \in \mathcal{D} \ \delta$ -abiding contract such that $v(d_{\delta}, \delta) = \underline{\pi} > v_l$.

Lemma 1

 $d \text{ is } \delta \text{-abiding} \Rightarrow \pi(\mathcal{C}, \delta) \geq v(d, \delta)$

Proof

Take an equilibrium such that seller gets $< v(d, \delta)$

Modify it so that seller gets $v(d, \delta)$

- \bullet on path: d is deployed and accepted forever
- if buyer rejects it is deployed again
- off-path: assessment is inherited from the original equilibrium

Lemma 2

 $\forall \delta \exists d_{\delta} \in \mathcal{D} \ \delta$ -abiding contract such that $v(d_{\delta}, \delta) = \pi > v_l$

Proof (for large δ **) by construction (** α , p, β **)**

• t = 0: trade with v_h with prob α at $p \in (v_l, v_h)$

• t > 0 : trade with v with prob β at v

Key Features

1. seller's posterior

$$\widetilde{\mu}(\alpha) = \frac{(1-\alpha)\mu}{1-\mu+(1-\alpha)\mu} \leq \frac{v_l}{v_h}$$

1. choose $\tilde{\beta}(\alpha)$ so that seller's continuation payoff $\tilde{\beta}(\alpha) [\tilde{\mu}(\alpha) v_h + (1 - \tilde{\mu}(\alpha))v_l] + (1 - \tilde{\beta}(\alpha)) v_l = \frac{v_l}{\delta}$

2. choose $\tilde{p}(\alpha)$ so that v_h -buyer's IC constraint binds:

$$lpha(v_h - \widetilde{p}\left(lpha
ight)) = rac{\delta}{1 - \delta + \widetilde{eta}\left(lpha
ight)\delta}(v_h - v_l)$$

What is the seller's payoff?

$$\begin{split} &\mu \alpha \widetilde{p}\left(\alpha\right) + \delta \left(1 - \mu \alpha\right) \frac{v_l}{\delta} \\ &= \mu \alpha \widetilde{p}\left(\alpha\right) + \left(1 - \mu \alpha\right) v_l \\ &= v_l + \left(v_h - v_l\right) \left(1 - \frac{1 - \mu}{1 - \widetilde{\mu}\left(\alpha\right)} - \frac{\mu v_l}{\widetilde{\mu}\left(\alpha\right) v_h + \left(1 - \widetilde{\mu}\left(\alpha\right)\right) v_l}\right) \end{split}$$

does not depend on $\boldsymbol{\delta}$