Random matrices and the geometry of their random eigenstates Zaránd Gergely (BME)

A BME

Werner Miklós Kormos Márton Grabarits András Pascu Moca (Nagyvárad) Hetényi Balázs (Bilkent)

FU Berlin Felix von Oppen and Alex Penner

TU Munchen Lovas Izabella

Trondheim Arne Brataas

Universitaet Köln Martin Zirnbauer

Outline

Introduction, examples of random matrices in physics

Wigner's idea and eigenvalue statistics Scattering properties and circular ensembles

- Random matrix models for quantum work
- Quantum Geometric Tensor and its statistics
- Summary

Introduction: Eigenvalue statistics

Wigner's observation

4

• Spectrum of nuclei is corrlated, and universal...

0

Level repulsion !

Atomic spectra

Spectrum of Hydrogen in magnetic field

FIG. 2. Illustration of the magnetic-field dependence of energy levels in a chaotic system (magnetic field B and energy E in arbitrary units). This plot is based on a calculation of the spectrum of the hydrogen atom in a strong magnetic field by Goldberg *et al.* (1991).

Sensitivity of eigenvalues

Accidental degeneracies are rare...

Levels are sensitive to external voltages and potentials

 $E_{2} = E_{2}(V_{1}, V_{2}, ..., B)$

Rare degeneracies

degeneracies are rare

To see degeneracy, fine-tuning of parameters needed !

Wigner's idea

• Hamilton matrix is a random Hermitian matrix

Basic symmetry classes

Time reversal symmetry $(B = \phi)$

- \exists basis where \mathcal{H}_{ij} is real
- Spectrum is basis invariant:

$$d_{\mu}(H) = d_{\mu}(O H O^{T})$$

with O any orthogonal matrix

• P(H) is not essential (only sets energy scale)

 $P(H) \rightarrow e^{-\frac{N}{4}} + (H^2)$

Gaussian Orthogonal Ensemble = GOE

Basic symmetry classes

• No time reversal symmetry (5 🗲 💋)

 $\lambda_{\mu}(H) = \lambda_{\mu}(S^{\dagger}HS)$

 H_{ij} Hermitian with any $J_{\mu}(H) = J_{\mu}(U^{\dagger}HU)$ unitary matrix

Gaussian Unitary Ensemble = GUE

• Time reversal symmetry 2

with any symplectic matrix

Gaussian Symplectic Ensemble = GSE

Joint eigenvalue probability density

$$P(\{E_i\}) \sim T|E_i - E_j|^{\beta} e^{-\frac{N\beta}{4}} \sum_{i=1}^{N} E_i^2$$

Ramark: level repulsion in prefactor...

Wigner surmise

Two level's separation:

Wigner surmise:

$$P(s) \sim s^{\beta} \cdot e^{-cst \cdot s^2}$$

ゝ

Scattering problem

GaAs/AlGaAs

Nanophysics Group, ETH-Zurich

$$G = \frac{I}{v} = \frac{7}{v}$$

Scattering problem

Conductance (Landauer-Büttiker)

$$G = \frac{e^2}{k} t + \left\{ t t^+ \right\}$$

Dimensionless conductance: $T = tr \{t \ t^+\}$

Symmetry classes

Some interesting results

Average conductance N channels in, N channels out

CUE	$\langle T \rangle = \frac{N}{2}$	random
COE	$\langle T \rangle = \frac{N}{2} - \frac{N}{4N+2}$	"localization"
CSE	$\langle T \rangle = \frac{N}{2} + \frac{N}{2N - 2}$	"anti-localization"

Conductance distribution of a device

Fig. 7. Distribution of T for N = 2: the same numerical simulation of the previous figures is contrasted with the theoretical prediction arising from COE and CUE.

Theory of quantum work

Questions Role of avoided level crossings ? Landau-Zener transitions

- Full energy distribution after "quench"? •
- Probability of adiabatic evolution ?

Random Matrix Setup

Motion in random matrix ensemble

$$H(t) = H_{q} \cos(\lambda(t)) + H_{2} \sin(\lambda(t))$$

from GUE / GOE / GSE

Time dependent dynamics

$$i\,\partial_t\varphi(t)=H(t)\,\varphi(t)$$

determinant formula for $P(W) = P(E_{\text{final}} - E_{\text{initial}})$

I. Lovas, A.Grabarits, M. Kormos, and G.Z., Phys. Rev. Research, 2 2643 (2020); , A.Grabarits, I. Lovas, M. Kormos, and G.Z., submitted (2021).

Probability of adiabaticity

1

Fubini-Study metric

Distance of states in Hilbert space?

Consider smooth family of (normalized) states in Hilbert space (e.g., ground state as a function of external parameters)

$$|\varphi(\underline{\lambda})\rangle \qquad \underline{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_P)$$

Distance (Fubini-Study):

$$ds^{2} = 1 - \left| \left\langle \varphi(\underline{\lambda} + d\underline{\lambda} | \varphi(\underline{\lambda}) \right\rangle \right|^{2} = d\lambda_{\alpha} d\lambda_{\beta} \operatorname{Re} g_{\alpha\beta}(\underline{\lambda})$$

Quantum Geometric Tensor (gauge invariant)

$$g_{\alpha\beta}(\underline{\lambda}) = \langle \partial_{\alpha} \varphi | \partial_{\beta} \varphi \rangle - \langle \partial_{\alpha} \varphi | \varphi \rangle \langle \varphi | \partial_{\beta} \varphi \rangle$$

Physical content of Quantum Geometric Tensor

Quantum Geometric Tensor (gauge invariant)

• Antisymmetric part: Berry curvature

Berry connection $A_{\alpha}(\underline{\lambda}) = i\langle \varphi | \partial_{\alpha} \varphi \rangle$ $\Rightarrow \quad B_{\alpha\beta}(\underline{\lambda}) = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}$

• Diagonal part:

Fidelity susceptibility

measures sensitivity of a quantum state

Conductance

Random Matrix theory of QGT

Consider family of random Hamiltonians (tuned by external nobs)

 $H(\underline{\lambda}) \implies \text{eigenstates} |\varphi_n(\underline{\lambda})\rangle E_n(\underline{\lambda})$

Each level is characterized by some random QGT : 9

 $g^{(n)}_{\alpha\beta}(\underline{\lambda})$

what is $P(\underline{g}) = ?$

RMT approach (Berry and Shukla, (2020))

 $H(x, y) = H_0 + x H_x + y H_y$

- $H_{0,x,y}$ random matrices
- (*x*, *y*) two-parameter manyfold

Supersymmetric calculation for GUE

Exact distribution (A. Penner, F. von Oppen, G.Z., M. Zirnbauer)

In large N limit, using supersymmetry approaches

$$P(g) = \int \frac{d\alpha_0}{2\pi} \frac{d\boldsymbol{\alpha}}{(2\pi)^3} e^{i[\alpha_0 g_0 + \boldsymbol{\alpha} \cdot \mathbf{g}]} \tilde{P}(\alpha_0, \boldsymbol{\alpha})$$

$$\tilde{P}(\alpha_0, \boldsymbol{\alpha}) = r(\frac{1}{2}\sqrt{\gamma\alpha_+}, \frac{1}{2}\sqrt{\gamma\alpha_-})e^{-\frac{1-i}{2}(\sqrt{\gamma\alpha_+} + \sqrt{\gamma\alpha_-})}$$

$$r(a,b) = 1 + (1-i)(a+b) - \frac{2i}{3}(a^2 + 3ab + b^2) - \frac{1+i}{12}\frac{a^4 + 9a^3b + 17a^2b^2 + 9ab^3 + b^4}{a+b}$$
$$\frac{1}{30}ab(5a^2 + 16ab + 5b^2) + \frac{1-i}{180}\frac{a^2b^2(13a2 + 29ab + 13b^2)}{a+b} + \frac{i}{30}a^3b^3 + \frac{1+i}{240}\frac{a^4b^4}{a+b} + \frac{1}{2160}\frac{a^5b^5}{(a+b)^2}$$

Comparison with real systems...

disordered random flux model

Random hopping of electrons on surface

$$\underline{\lambda} = (\Phi_x, \Phi_y)$$

$$H = \sum_{i} \epsilon_i c_i^{\dagger} c_i + \sum_{i < j} t_{ij} c_i^{\dagger} c_j + h.c.$$

Comparison with real systems...

3-dimensional disordered random flux model (GUE)

L = 12 (12 x 12 x 12 system)

Some references

Random matrices provide a fascinatig framework to study generic properties of random, chaotic and/or interacting **complex systems**

Some interesting applications

- Spectral properties, scattering problems in nanostructures
- Motion under **deformation**
 - Quantum work statistics
 - Quantum geometrical tensor
 - Topological structure of degeneracies

Thank you for your attention !