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Introduc)on:
Eigenvalue sta)s)cs

Wigner’s observation
• Spectrum of nuclei is corrlated, and universal...T. A. Brody et al. : Random-matrix physics

earlier reviews to the stationarity properties of the
measures (the way in which they vary over the spec-
trum); we consider the effects of collectivities and sym-
metries on the strength distributions. We consider,
moreover, the ergodic properties of the ensembles
which we are mainly concerned with, drawing on quite
recent work of Pandey (1979), which goes far toward
giving a theoretical justification for the use of random-
matrix ensembles.
We consider the energy-level fluctuations first,

leaving until later the strength fluctuations, the under-
standing of which makes use of the same concepts. The
study of both kinds of fluctuations has developed because
of the remarkable series of resonances found in the
scattering of slow neutrons on heavy nuclei. The reso-
nances are narrowed because of the strong surface re-
flection of long-wavelength neutrons, and as a conse-
quence one can often observe up to a few hundred reso-
nances, essentially all (if the target state is even-even)
with the same "exact" quantum numbers (J, w; isospin
is also good, but is usually irrelevant). These levels
occur typically at 6 to 8 MeV excitation and are sepa-
rated from the ground-state domain by a "no-man' s
land ' containing perhaps a million levels whose proper-
ties are not easily accessible to study. It is not then
surprising that there has been little attempt to recon-
cile the concepts used in the two energy regions, the
consequence being an (unnecessary) splitting of the sub-
3ect into two noncommunicating domains. In order to
span the no-man's land, and for other purposes as well,
we shall make use not only of experimental data in both
domains, but of shell-model calculations as well. We
shall see, as we proceed, that the fluctuation proper-
ties extend over the entire spectrum (in the sense that a
run of levels taken at any excitation displays almost the
same properties), and indeed over the entire Periodic
Table, a result which we regard as of real significance.
Insofar as averaged properties (as opposed to fluctua-
tions) are concerned, the barrier between high and low
excitations has been breaking down during recent years;
it. is a good thing now that the same thing is happening
for the fluctuations.

B. Level repulsion in spectra
Consider the set.of spectra shown in Figs. 1(a)—1(c),

where we have brought together runs of 50 levels taken
from three very different sources: the slow-neutron
resonance region of '87Er (I iou et al. , 1972), the neigh-
borhood of an isobaric-analogue state in 48V (Prochnow
et a/. , 1972), and a section of a large shell-model cal-
culation with a realistic interaction (Soyeur and Zuker,
1972). The levels in each spectrum have the same (8, &),
and the scales have been chosen so that the average
spacing D is the same for each.
The spectra are similar in their general nature; for

example, the number of spacings much smaller than the
average spacing is statistically the same for all three,
as we have made evident by marking those which are
smaller than D/4. The similarity of the spectra is
made more obvious in Figs. 2(a)-2(c), which give his-
tograms of the nearest-neighbor spacings for each
spectrum. They resemble each other closely enough
that we may regard the three spectra of Figs. 1(a}-1(c}

(b) (e)

as having the same nearest-neighbor spacing distribu-
tions~ UMS exhlbltlng a regulal'lty of a statistlckl na-
ture, even though the spectra themselves differ in the
three examples. The continuous curve shown in the fig-
ures (Wigner's distribution, whose theoretical basis we
discuss below) fits them quite well.
Small spacings in our examples have a small proba-
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FIG. 2. Nearest-neighbor spacing histograms for the six cases
of Fig. 1, constructed by considering all the available levels
instead of the 50 used in Fig. 1. Spacings 80 are expressed in
terms of the local spacing unit D, deriv 9 via uie unfolding op-
eration of Sec. GI.A, where necessary. The Wigner distribu-
tion, Eq. (1.5), is shown for a11 cases, and the Poisson dis-
tribution (1.4) also for the last three.

f)+' 6Er p+ T] (ds) 2'0 Poisson rl+' 'Tp

FIG. 1. Segments of complex spectra, each containing 50 lev-
els and rescaled to the same spectrum span. The first two
show experimental results for neutron and proton resonances,
while Fig. 1(c) shows the central region of a 1206-dimensional,
J» = 2', T =0, shell-model spectrum; in these three cases all
the states have the same exact symmetries. Figure 1(d) shows
a Poisson sequence, while Figs. 1(e) and 1(f) show spectra with
mixed exact symmetries, the first an experimental spectrum
with J=3', 4' and the second a shell model spectrum with J

The arrowheads" xnark the occurrence of
pairs of levels with spacings smaller than one quarter of the
average.
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The arrowheads" xnark the occurrence of
pairs of levels with spacings smaller than one quarter of the
average.
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Level repulsion !



Atomic spectra

smooth transition from the orthogonal or symplectic en-
sembles to the unitary ensemble. We discuss the transi-
tion from the Gaussian orthogonal ensemble (GOE) to
the Gaussian unitary ensemble (GUE), following Pan-
dey and Mehta (1983, see also Mehta and Pandey, 1983;
Mehta, 1991).

The complex Hermitian M3M matrix

H5H01iaA (6)

is decomposed into a real symmetric matrix H0 and a
real antisymmetric matrix A with imaginary weight ia .
(Here we denote the matrix dimension by M instead of
N to avoid a confusion of notation later on in this re-
view.) The two matrices H0 and A are independently
distributed with the same Gaussian distribution, so that
the distribution of H is

P~H!}expS 2(
i ,j

F
~Re Hij!

2

4v2 1
~Im Hij!

2

4v2a2 G D . (7)

The variance v2 determines the mean level spacing
d5pv/AM at the center of the spectrum for M@1 and
a!1. [To have the same mean level spacing for all a ,
one should replace v2 by v2(11a2)21.] The distribution
of H interpolates between the GOE for a50 and the
GUE for a51. The transition is effectively complete for
a!1. Indeed, the spectral correlations on the energy
scale d are those of the GUE when the effective strength
va of the term in Eq. (6), which breaks time-reversal
symmetry, exceeds d , hence when a*1/AM .

To relate the parameter a to the magnetic field B , we
consider the shift dEi of the energy levels for a!1. On
the one hand, from the Hamiltonian (6) one obtains, to
leading order in a ,

dEi5a2(
jfii

A
ij

2

Ei2Ej

. (8)

In order of magnitude, udEiu.a2v2/d.Ma2d . On the
other hand, the typical curvature of the energy levels
around B50 is given by the Thouless energy:
udEiu.Ec(eF/h)2, where F is the magnetic flux through
the system. Taken together, these two estimates imply

Ma2
.S

eF

h
D

2
Ec

d
. (9)

The GOE-GUE transition is completed on the energy
scale E if udEiu*E , hence if F*(h/e)AE/Ec. Since
d!Ec in a metal, it requires much less than a flux quan-
tum to break time-reversal symmetry on the scale of the
level spacing.

Microscopic justification for the probability distribu-
tion of Eq. (7) has been provided by Dupuis and Mon-
tambaux (1991) (for a disordered ring) and by Bohigas
et al. (1995) (for a chaotic billiard). The precise relation
between a and B depends on the geometry of the sys-
tem and on whether it is disordered or ballistic. For a
disordered two-dimensional disk or three-dimensional
sphere (radius R much greater than mean free path l)
the relation between a and F5pR

2
B is (Frahm and

Pichard, 1995a)

Ma25S
eF

h
D

2 \vFl

R
2d

3H
p/4 disk,

2p/15 sphere.
(10)

Here vF is the Fermi velocity. For a ballistic disk or
sphere (R!l), which is chaotic because of diffuse
boundary scattering, the relation is instead

Ma25S
eF

h
D

2 \vF

Rd
3H

4/3 disk,

8p/45 sphere.
(11)

For a ballistic two-dimensional billiard (area A) with a
chaotic shape, Bohigas et al. (1995) find Ma2

5c(eF/h)2\vF /dAA , with c a numerical coefficient de-
pending only on the shape of the billiard. In each case,
Ma2 } Ec in accordance with Eq. (9), the Thouless en-
ergy being given by Ec.\vFR

22min(l ,R).

4. Brownian motion

In the previous subsection we considered the
magnetic-field dependence of the energy levels around
B50, to investigate the transition from the orthogonal
to the unitary ensemble. Once the transition is com-
pleted, the level distribution becomes B independent.
Individual energy levels still fluctuate as a function of
B in some random way (see Fig. 2). These spectral fluc-
tuations are a realization of the Brownian-motion pro-
cess introduced by Dyson (1962c, 1972) as a dynamical
model for the Coulomb gas. A review of this topic has
been written by Altshuler and Simons (1995). Since it is
not directly related to transport, we restrict ourselves
here to the basics.

Following Lenz and Haake (1990, see also Haake,
1992), we consider the Hamiltonian

H5e
2tH01~12e

22t!1/2HGUE , (12)

which interpolates between the M3M complex Hermit-
ian matrices H0 and HGUE as the parameter t increases

FIG. 2. Illustration of the magnetic-field dependence of energy
levels in a chaotic system (magnetic field B and energy E in
arbitrary units). This plot is based on a calculation of the spec-
trum of the hydrogen atom in a strong magnetic field by Gold-
berg et al. (1991).

735C. W. J. Beenakker: Random-matrix theory of quantum transport

Rev. Mod. Phys., Vol. 69, No. 3, July 1997

Spectrum of Hydrogen in magnetic field

„Artificial atoms”

Ennslin group (ETH Zurich)

A. J. Keller, L. Peeters, C. P. Moca, I. Weymann, 
D. Mahalu, V. Umansky, G.Z., and D. 

Goldhaber-Gordon, Nature 526, 237 (2015)



Sensitivity of eigenvalues
• Accidental degeneracies are rare...

! = −ℏ
!Δ!"
2 ' + ) *, ,

Spectrum

Hamilton operator

(levels)

Levels are sensitive to external voltages and potentials

Rare degeneracies

To see degeneracy, fine-tuning of parameters needed !

Assume

In appropriate basis

degeneracies are rare

change, e.g.



Wigner’s idea

• Universality symmetries matter only

• Hamilton matrix is a random HermiDan matrix

• Basis is irrelevant for spectrum

measure in 
space of Hamiltonian matrices

Distribution : 

Basic symmetry classes
Time reversal symmetry

basis where is

Spectrum is basis invariant: 

is not essential (only sets energy scale) 

real

with any
orthogonal matrix

Gaussian Orthogonal Ensemble = GOE



Basic symmetry classes

• Time reversal symmetry 2

• No time reversal symmetry

Gaussian Unitary Ensemble = GUE

with any
unitary matrix

with any
symplectic matrix

Gaussian Symplectic Ensemble = GSE

Hermi0an

Joint eigenvalue probability density

• GOE :

• GUE :

• GSE :

Ramark: level repulsion in prefactor... 



Wigner surmise

T. A. Brody et al. : Random-matrix physics
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metries on the strength distributions. We consider,
moreover, the ergodic properties of the ensembles
which we are mainly concerned with, drawing on quite
recent work of Pandey (1979), which goes far toward
giving a theoretical justification for the use of random-
matrix ensembles.
We consider the energy-level fluctuations first,

leaving until later the strength fluctuations, the under-
standing of which makes use of the same concepts. The
study of both kinds of fluctuations has developed because
of the remarkable series of resonances found in the
scattering of slow neutrons on heavy nuclei. The reso-
nances are narrowed because of the strong surface re-
flection of long-wavelength neutrons, and as a conse-
quence one can often observe up to a few hundred reso-
nances, essentially all (if the target state is even-even)
with the same "exact" quantum numbers (J, w; isospin
is also good, but is usually irrelevant). These levels
occur typically at 6 to 8 MeV excitation and are sepa-
rated from the ground-state domain by a "no-man' s
land ' containing perhaps a million levels whose proper-
ties are not easily accessible to study. It is not then
surprising that there has been little attempt to recon-
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run of levels taken at any excitation displays almost the
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Table, a result which we regard as of real significance.
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tions) are concerned, the barrier between high and low
excitations has been breaking down during recent years;
it. is a good thing now that the same thing is happening
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Consider the set.of spectra shown in Figs. 1(a)—1(c),
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resonance region of '87Er (I iou et al. , 1972), the neigh-
borhood of an isobaric-analogue state in 48V (Prochnow
et a/. , 1972), and a section of a large shell-model cal-
culation with a realistic interaction (Soyeur and Zuker,
1972). The levels in each spectrum have the same (8, &),
and the scales have been chosen so that the average
spacing D is the same for each.
The spectra are similar in their general nature; for

example, the number of spacings much smaller than the
average spacing is statistically the same for all three,
as we have made evident by marking those which are
smaller than D/4. The similarity of the spectra is
made more obvious in Figs. 2(a)-2(c), which give his-
tograms of the nearest-neighbor spacings for each
spectrum. They resemble each other closely enough
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as having the same nearest-neighbor spacing distribu-
tions~ UMS exhlbltlng a regulal'lty of a statistlckl na-
ture, even though the spectra themselves differ in the
three examples. The continuous curve shown in the fig-
ures (Wigner's distribution, whose theoretical basis we
discuss below) fits them quite well.
Small spacings in our examples have a small proba-
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FIG. 1. Segments of complex spectra, each containing 50 lev-
els and rescaled to the same spectrum span. The first two
show experimental results for neutron and proton resonances,
while Fig. 1(c) shows the central region of a 1206-dimensional,
J» = 2', T =0, shell-model spectrum; in these three cases all
the states have the same exact symmetries. Figure 1(d) shows
a Poisson sequence, while Figs. 1(e) and 1(f) show spectra with
mixed exact symmetries, the first an experimental spectrum
with J=3', 4' and the second a shell model spectrum with J

The arrowheads" xnark the occurrence of
pairs of levels with spacings smaller than one quarter of the
average.
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Wigner surmise:

Scattering: Circular ensembles



Level statistics

Nanophysics Group, ETH-Zurich

GaAs/AlGaAs

Scattering problem

Scattering problem

transmi(ed
wave

reflected

Scattering matrix

random unitary :



Sca?ering problem

Conductance (Landauer-Büttiker)

Dimensionless conductance: 

Symmetry classes

Orthogonal
Unitary
SymplecDc

Circular Ensemble

& = tr {+ +' }

Some interes@ng results

! = #
2

! = #
2 −

#
4# + 2

CUE

COE

! = #
2 +

#
2# − 2CSE

Average conductance N channels in, N channels out

random

„localization”

„anti-localization”



Conductance distribu@on of a device

Random matrix models for 
quantum work



Theory of quantum work

time time

Some nanocircuit...

• Role of avoided level crossings ? 

• Full energy distribution after „quench” ?

• Probability of adiabatic evolution ?

Landau-Zener transitions

Ques@ons

Random Matrix Setup

Motion in random matrix ensemble

I. Lovas, A.Grabarits, M. Kormos, and G.Z., Phys. Rev. Research, 2 2643 (2020);
, A.Grabarits, I. Lovas, M. Kormos, and G.Z., submitted (2021).

Time dependent dynamics

determinant formula for

from GUE / GOE / GSE

! " = ! $"#$%& − $#$#'#%&

& '(( ) = * ) (())



Probability of adiabaticity 

0 5 10 15
0

0.5

1

0 50 100
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0.5

1

(!" ) ≈ 1
8- ./ )̃ #/% 1&' () *+ ⟨ .3 ⟩ = ./ )̃

diffusion constant 
in energy space

average work (⟨3⟩ ∼ ) ) 

Probability
to stay

in ground state

Quantum geometric tensor
of random eigenstates



Fubini-Study metric
Distance of states in Hilbert space? 

|φ / ⟩

Consider smooth family of (normalized) states in Hilbert space 
(e.g., ground  state as a function of external parameters) 

12) = 1 − ( / + 1/ φ / ) = 1/*1/+ 56 7*+(/)

Distance (Fubini-Study): 

7*+ / = '* ( '+( − '* ( (⟩⟨(|'+(

Quantum Geometric Tensor (gauge invariant)

/ = /,, /), … , /-

Physical content of Quantum Geometric Tensor

Quantum Geometric Tensor (gauge invariant)

• Antisymmetric part:    Berry curvature 

;* / = & ( '* (
<*+ / = '*;+ − '+;*

Berry connection

• Diagonal part:

Conductance

Fidelity susceptibility
measures sensitivity of a quantum state



Random Matrix theory of QGT

* / eigenstates 

6,-
(/) 7Each level  is characterized by some random QGT :

Consider family of random Hamiltonians (tuned by external nobs)

|(. / ⟩ $. /

what is !( 7 ) = ?

RMT approach (Berry and Shukla, (2020)) 

*(>, ?) = */ + > *0 + ? *1
• */,0,1 random matrices

• (>, ?) two-parameter manyfold

Supersymmetric calculation for GUE
Exact distribution (A. Penner, F. von Oppen, G.Z., M. Zirnbauer)

2

(1) implies that the quantum geometric tensor g(n)
↵�

quite
generally governs the behavior of systems under quantum
quenches which involve small changes of the parameters.

Following Berry and Shukla [8], we consider a family
of Hermitian N ⇥N Hamiltonians

H = H0 + xHx + yHy, (3)

which depends on two real parameters x and y. Evalu-
ating the derivatives in Eq. (2) at x = y = 0, one can
express the quantum geometric tensor in terms of the
eigenenergies En and eigenstates |ni of H0,

g
(n)
↵�

=
X

m( 6=n)

hn|H↵|mihm|H� |ni
(En � Em)2

(4)

with ↵,� 2 {x, y}.
First consider the distribution function of individual

matrix elements of the quantum geometric tensor for an
N ⇥N matrix Hamiltonian H0 of an integrable system,
whose energy eigenvalues are statistically independent.
In this case, the matrix elements of the quantum geo-
metric tensor in Eq. (4) are sums over N � 1 statistically

independent terms, g(n)
↵�

=
P

m( 6=n) xm, and one expects
their probability distributions Pint(g) to converge to a
stable distribution in the limit N ! 1. In the absence
of correlations between the eigenvalues and thus of level
repulsion, the distribution of the individual terms in the
sum falls o↵ as 1/|x|3/2 at large |x|, with large values of
|x| originating from near degeneracies in the spectrum
of H0. Importantly, both the average and the variance
diverge for this distribution. As a result, the sum (4)
does not constitute a standard random walk, for which
the central limit theorem predicts a normal distribution.

Instead, the matrix elements g
(n)
↵�

can be viewed as a
Levy flight and its probability distribution is a Levy sta-
ble distribution. The terms in the sum have random
signs for the real and imaginary parts of o↵-diagonal
matrix elements, but are strictly positive for diagonal
elements, leading to di↵erent stable distributions. For
this particular asymptotic decay, one finds distributions
Pint(g) =

R
d↵
2⇡ e

i↵g
P̃int(↵) with characteristic functions

[25]

P̃int(↵) =

(
e
�
p

1
2 |�↵|(1�i sgn↵) diagonal

e
�
p

|�↵| o↵-diagonal
, (5)

where � controls the scale. Due to the
p

|↵| singularity of
the characteristic function, the distributions Pint(g) fall
o↵ as 1/|g|3/2 at large |g|, implying that they are dom-
inated by individual terms in the sum (4). Physically,
this broad distribution is a direct consequence of the fact
that the level spacing distribution of integrable systems
remains nonzero in the limit of zero spacing.

Joint distribution function for the GUE.—In generic
systems, level repulsion suppresses the likelihood of small

energy denominators and the distribution of matrix ele-
ments of the quantum geometric tensor decays faster.
If we continue to assume that the matrix elements are
dominated by individual terms in the sum (4), the tail of
the distribution can be predicted on the basis of random
2 ⇥ 2 GUE matrices, yielding a faster asymptotic decay
as 1/|g|5/2 [8]. In addition to suppressing the probabil-
ity with which near degeneracies occur, level repulsion
introduces correlations between the terms in the sum in
Eq. (4). As a result, the distribution of the quantum ge-
ometric tensor no longer belongs to the family of Levy
stable distributions. Remarkably, however, it can still be
computed exactly.
We now focus on large random matrices drawn from

the Gaussian unitary ensemble (GUE) which neither
obeys time-reversal symmetry nor imposes any other
(anti)symmetry (symmetry class A in the Altland-
Zirnbauer classification [26, 27]). The matrices H0, Hx,
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Gaussian unitary ensembles,
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Here, the brackets denote the random matrix average and
the first �-function ensures that we consider the quantum
geometric tensor for states which are at the center of the
spectrum with a fixed level spacing [28].
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In the limit of N ! 1, the random-matrix averages can
be performed explicitly. We defer technical details to
further below and the supplemental material (SM), and
focus first on discussing our results.
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For the specific scalings of the GUE matrices in Eq. (6),
we find �

GUE = 4N . Notice that P̃ (0,0) = 1, so that
P (g) is normalized. Equations (9) and (10) give the exact
characteristic function of the distribution of the quantum
geometric tensor for large GUE matrices, and are the
central results of this paper.

We first specify Eqs. (9) and (10) to the distribution
of individual matrix elements of g. The characteristic
function of the distribution of the diagonal elements gxx
and gyy can be obtained by setting ↵0 = ±↵3 = ↵ and
↵1 = ↵2 = 0. Interestingly, the resulting exponential
factor in Eq. (9) has just the same form as in Eq. (5).
The same happens for the distributions of Regyx and the
Berry curvature Imgyx, which are obtained from Eq. (9)
by setting ↵1 = ↵ or ↵2 = ↵, respectively, with all other
↵j = 0. Thus, it is the rational prefactor in Eq. (9)
that accounts for the spectral correlations introduced by
the Gaussian unitary ensemble. Expanding the expo-
nential in Eq. (9), we observe that the leading nonana-
lyticity of P̃ (↵0,↵) is of the form |↵|3/2, which contrasts
with the leading |↵|1/2 singularity of the characteristic
function P̃int(↵) in Eq. (5). This implies that for the
GUE, the distribution function of the quantum geomet-
ric tensor indeed falls o↵ as P (g) / 1/|g|5/2 for large
|g| and thus faster than the corresponding distribution
Pint(g) / 1/|g|3/2 for integrable systems, corroborating
the expectation based on 2⇥ 2 GUE matrices [8].

Our analytical distribution functions of the diagonal
and o↵-diagonal components of the quantum metric ten-
sor are in excellent agreement with numerical results for
GUE random matrices as shown in Figs. 1(a) and (b).
Moreover, we find that the o↵-diagonal element of the
quantum metric tensor has the same distribution as the
Berry curvature [9]. To compare our analytical results to
numerical simulations for GUE random matrices in more
detail, we note that P (g) obtained by Fourier transform-
ing Eq. (9) depends on the quantum geometric tensor
only through its eigenvalues g± = g0 ± |g|. Writing
g = Udiag[g+, g�]U†, the distribution function is inde-
pendent of the diagonalizing unitary matrix U , and it is
useful to define the corresponding joint eigenvalue distri-
bution p(g+, g�) through

P (g)dg = p(g+, g�)dg+dg�dµ(U), (11)

where dµ(U) is the invariant measure of the unitary
group, with the group volume normalized to unity. We
find

p(g+, g�) =
i(g+ � g�)

32⇡2

Z
d↵+d↵�(↵+ � ↵�)

⇥P̃ (↵0,↵)e�
i
2 (g+↵++g�↵�) (12)

A 3D plot of this distribution is shown in Fig. 1(c) and

Figure 1. Distribution functions of (a) the diagonal and (b)
the o↵-diagonal matrix element (real part) of the quantum
geometric tensor. Numerical data for large random matrices
(blue lines) are compared to the Fourier transform of the an-
alytical result obtained from Eq. (9) (orange dots). (c) 3D
plots of the distribution function p(g+, g�) based on the ana-
lytical result in Eq. (12). (d) Corresponding 3D plots obtained
numerically for large random matrices. The numerical distri-
butions are obtained by averaging over 106 realizations of H
in Eq. (3) with H0, Hx, and Hy drawn independently from
the GUE with N = 100. Insets in (a) and (b): Log-log plots,
emphasizing the asymptotic 1/|g|5/2 decays (black line).
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Random matrices provide a fascinatig framework to
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interacting complex systems
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