2. vizsga végeredményei
4. korlatos
5. (a)
6. Ha x # 2, akkor folytonos. A 2-ben a hatarérték:
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ami megyegyezik a 2-beli fliggvényértékkel, igy ez nem szakadas. Tehat a fiiggvény
mindenititt folytonos.
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7. Az f(x) = @ - % = 72z — 422 fiiggvény maximumét keressiik:
f'(x) =72 — 8z, mely x = 9-ben tiinik el.
Ez lokélis maximum, hiszen a masodik derivalt: f”(x) = —8 negativ.
A fiiggvénynek 0 < x esetén van értelme, a széleken a fiiggvény:

lim f(x) =0, lim f(x) = —oo, tehat a lokdlis maximum globdlis is.
z—0+ T—00

Tehat 9 méasodpercig érdemes késziteni egy hogolyot.

8. ET: (—1,1), zérushely: 0, paros, periédus nincsen.
lim f(x) = —o0, igy x = £1 fliggbleges aszimptota.
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9. f(x) =2eV® + C, ahol C = 2 — 2¢?, azaz f(z) = 2eV® + 2 — 2¢°
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11. A fiiggvény derivéltja: f'(x) = (:U\/E)/ = (3:%)/ = 322 = 3/2. Az {vhossz:

2

374
/\/ d:p—/ Vitdede =32 (1+%0)°] = $-(10V10-1) ~ 9,07



