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igy a negyedfokd Taylor-polinom x — 3a3.

7. Az f(z) = (z —5) - 180 = 100 _ 5090 fijggvény maximumdt keressiik:

fl(x) = —1%0 4 1000 "mely o = 10- ben tlinik el.
x X
Ez lokdlis maximum, hiszen a mésodik derivalt: f”(z) = 2830 — 380 47 5 = 10

helyen: f”(10) =2 — 3 = —1 negativ.

A figgvénynek 5 < x esetén van értelme, a széleken a fiiggvény:

f(5) =0, lim f(x) =0, tehat a lokdlis maximum globalis is.
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Tehat 10 petakért érdemes arulni a szankot.

8. ET: R, zérushely 0 és 3, paritas, periodus nincsen.

lim f(z) = 400, ferde aszimptota nincs.
T—E00

f/(x) = 42 — 1827 + 18, nullhelyei 0, 2, 3.
— o3 V3 g 3. V3
f"(x) = 122* — 36z + 18, nullhelyei: a = 3 — L2 és b= 3 + 13,
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