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6. Igen, invertdlhat6. Az inverze f~1(x)

(x # —1).
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7. Az f(x)
keressiik: A0
f'(z) = 0,001 — —, mely x = 200-ban t{inik el.
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Ez lokélis minimum, hiszen a mésodik derivalt: f"(r) = — pozitiv.
x

A fiiggvénynek 0 < x esetén van értelme, a széleken a fiiggvény:

liI(I)l f(x) = 400, lim f(x) = 400, igy a lokalis minimum globalis is.
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Tehat 200 métert érdemes felgyalogolni.

8. ET: R, zérushely nincs, paros, peridédus nincsen.

lirin f(x) = +o0, ferde aszimptota y = x a +o0o-ben, y = —x a —oo-ben.
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nullhelye nincs.
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