5. vizsga végeredményei

4. paros

5. ()

6. Ha x # 1; 3, akkor a fliggvény folytonos. A hatarértékek:
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ami nem egyezik meg a fliggvény értékével, igy ez egy megsziintetheto szakadas.
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nem létezik, de liI{li f(z) = Foo, tehat ez szingularis szakadas.
T—

7. Az f(x) =124/ + 3(16 — ) = 12/x + 48 — 3z fliggvény maximumat keressiik:
f(x )— — 3, mely x = 4-ben tlinik el.
Ekkor a fuggveny értéke: f(4) = 60.
Ez lokalis maximum, hiszen a mésodik derivalt: f”(x) = —=% negativ.
A figgvénynek 0 < x < 16 esetén van értelme, a széleken a fiiggvény:
f(0) =48, f(16) = 48, igy a lokalis maximum globalis is.
Tehat 4 6ran at érdemes elméletet, és 12 6ran at gyakorlatot tanulni.

8. ET: R, zérushely x = 0, paritas, periddus nincsen.

lirf f(z) = 400, ferde aszimptota nincs.
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lim f(x) =0, vizszintes aszimptota: y = 0.
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9. Parcialis integraldssal
f(z) = /chosa:dx = 3zsinx — /SSina:d:E = 3z sinz + 3cosx + C,

ahol C'= —1, igy f(x) = 3zsinx + 3cosz — 1.
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11. A metszéspontok: \/z = § egyenlet megoldasai, azaz x = 0 és = = 4.
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