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The elimination of fast variables from the master equation of a complex chemical system is studied. Numerical 
treatments of full chemical schemes are compared with the results given by the master equation of r e d u d  
chemical schemes, and to a simple approximation of the full master equation based on a quasistationary assumption. 
It is found that although both methods give correct values of the deterministic concentrations, they do not permit 
the precise estimation of the variances. It is also shown that the systematic projection technique developed by 
other authors, when available, yields accurate values for the variance; in case this procedure cannot be used 
practically, useful bounds can nevertheless be obtained from the simple methods studied here. 

1. Introduction 

The problem of time evolution of a chemical system can be 
treated starting from two opposite levels of description; while 
"formal kinetics" investigates macroscopic kinetic equations which 
should correspond to the stoichiometry, microscopic theories deal 
with elementary reaction acts and try to find expressions for the 
reaction rates from the atomic and molecular properties. The 
reaction mechanisms deduced from stoichiometry are usually 
not unique; only recently, with development of new expefimental 
techniques, one has been able to propose realistic mechanisms for 
a large class of chemical reactions. One found that even 
stoichiometrically simple reactions consist of many elementary 
steps involving various transient compounds, radicals etc. The 
mathematical description of such "full" schemes involving systems 
of coupled nonlinear differential quations is very difficult and 
usually only numerical analysis is possible (this analysis is not 
always reliable because of the instability of numerical procedures 
of solutions of nonlinear differential quations). Because of the 
above difficulties, much work has been done to find some models 
which would be sufficiently simple to allow for a detailed 
mathematical analysis (e&, by means of the bifurcation theory) 
but also could display such features as spatial or temporal 
oscillations, excitability, multistability or chaotic behavior. 
Among such models one may quote the Brusselator, Oregonator, 
the SchlOgl model, and the Rbsler model (for a review, see ref 
1). These models are often regarded as simplified versions of 
realistic multistage schemes reduced by suitable approximations 
in a deterministic description. The most currently used approx- 
imation is elimination of fast variables using quasistationary 
hypothesis; the outline of the method is shortly summarized in 
section 2. Section 3 is devoted to the problem of elimination of 
fast variables in the presence of internal fluctuations in the master 
equation formalism. In particular, an approximation based on 
a quasistationary approximation of the full master equation is 
proposed. Section 4 presents an example of the application of 
our method to the cubic autocatalator model, and the Ogg's model 
of decomposition of N2Os is analyzed in section 5 .  Section 6 
contains discussion of numerical results and comparison of our 
approach with the projector procedure used by Janssen. Con- 
clusions are presented in section 7. 
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2. Deterministic Reduction 

X, Y, the concentrations of which are x y :  
Let us consider formal kinetic equations involving two species 

dx/dt =f(xy)  

Here f and gare given functions, and z is a small parameter. Then 
y evolves much more rapidly than x toward a quasistationary 
value yo(x) such that g vanishes, and the system 

&/dt = f(xsVo(x)) 

gives an approximate solution of (1). This method, which is 
sketched here in its simplest form, is usually used in chemistry2 
or in biochemistry to treat models of enzymatic reactions.3 Its 
mathematical foundations and more detailed formulations have 
been given by Tikh~nov.~ 

It has tobe stressed that theapplicabilityof themethoddepends 
on the chemical considerations and experimental results; in 
particular one has to choose properly the small parameters. One 
should also remark that the rate functions in kinetic equations 
derived from the full schemes are polynomials, while in the reduced 
schemes they are often rational fractions and they reduce to 
polynomials only if some terms are neglected, which is often not 
justified from the chemical point of view. 

3. Stochastic Approach 
In studying the fluctuations in chemical systems one applies 

usually simplified models (like the SchlOgI model or Brusselator), 
arguing that these models are justified from chemical point of 
view because they may be obtained by the reduction of some real 
schemes (in particular it concerns trimolecular steps which are 
presented as condensed sequences of bimolecular stepss.6). One 
performs the direct stochastization of reduced deterministic 
schemes. Practically all analytical results as well as Monte Carlo 
or molecular dynamics simulations are limited to such models. 
There are only few works dealing with more realistic 

On the other hand, one may start from the full stochastic 
description and then proceed with reduction: this should in 
principle be a correct, although heavy, procedure. 

It will be shown that in general these two paths to obtain a 
reduced stochastic model do not "commute" and that reduced 
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chemical schemes are often unable to describe concentration 
fluctuations. Thus one should only use some approximations 
deduced from the complete description. 

There were already some attempts to perform stochastic 
reduction starting from stochastic differential equationlo according 
to the stochastic center manifold theory. It was done for small 
noise by Knobloch and WiesenfeldIl and by Schoner and Haken12 
(also taking as a reference deterministic solutions). A more 
general approach was proposed by Arnold and Boxler.1' 

Recently, Sulpice et aI.l4 applied a stochastic version of the 
normal form theory to study a continuous approximation of the 
master equation in the neighborhood of a Hopf bifurcation, and 
in more complex cases. However the method cannot be handled 
easily, and it gives no practical response to the question of 
approximating a complex system by a simpler one which would, 
at least qualitatively, reproduce the behavior of the system in a 
large range of parameters. 

An alternative approach is to start from a multivariate master 
quation.' We consider the formal case of two species X,Y 
reacting according to the mechanism 

Frankowicz et al. 

ki 
ax + BY - PI 

where a, 8, y, and 6 are stoichiometric coefficients, and PI and 
P2 the products. The number of molecules X changes by a ( c )  
in the first (second) reaction, and the number of Y changes by 
b (4; a, b, ..., may differ from a, 8, ..., if X or Y appears among 
the products. 

The probability P(X,Y,t) of having X and Y molecules of the 
respective species at time r obeys the master equation 

dP(X,Y,t)/dt = flX-u,Y-b) P(X-u,Y-b,t) - 
f lX,Y)  P(X,Y,t) + g(X-c,Yd) P(X-c,Y-d,r) - 

where f and g are the transition rates of the first and second 
reaction. Following van KampenI6 and Janssen,Is we introduce 
the operators E," and E; (where m and n are positive or negative 
integers) which respectively change X into X + m and Y into Y 
+ n; for instance E:changes a function @(x) into @(X+m). Then 
(4) can be written in the condensed form 

g(X,Y)W,Y,t) (4) 

dP(X,Y,t)/dt = <E;"qb - I)jP + (E;ce - I)gP ( 5 )  
If one reation in the scheme (3 )  is much faster than the other one, 
an approximate solution of (5) can be investigated. Following 
the general theory of van Kampen,lb Janssenls has developed a 
projection technique that permits in particular cases to obtain an 
approximate master equation explicitly. However, the procedure 
is complex, rather heavy, and cannot be applied in all cases. The 
results of Janssen, when available, will be used for numerical 
treatment. However, we will now study less systematic but far 
simpler method, which applies when one of the variables evolves 
much more rapidly than the other ones. This situation is expected 
to hold-but not necessarily-if some of the rate constants are 
much larger than the other ones; furthermore it is not obvious, 
as it will be shown later, which variables are fast and which are 
slow: the conclusion should be deduced from the analysis of the 
macroscopic equations or from simulations. Let us suppose, for 
instance, that Yis much faster than X. Then the present method 
is based on the intuitive assumption that its conditional probability 
for a given value of X tends rapidly toward a quasistationary 
distribution (a similar assumption is currently done for open 
systems when the concentrations of some chemical species are 
kept constant). 

On this purpose we first obtain an equation for the reduced 

probability: 

Summing q 4 over Y gives 

are respectively the conditional average offand the conditional 
probability of Y when X is given. Obviously, (6) is not a closed 
equation. We introduce now the main assumption which implies 
that P( llX) approximately satisfies the one-dimensional master 
equation obtained whenxis kept constant. Although nocomplete 
justification of this assumption can be given, it is supported by 
the physical interpretation of the conditional probability, which 
is the probability distribution of Y when Xis  known; since Xis  
practically constant on the time scale of fast variations of Y, we 
apply the master equation to Y only, as is currently donel when 
somechemical species are kept constant. Using the mathematical 
definition of conditional probabilities, it can be seen that the 
assumption implies that P( rvr) is a sharply peaked function of 
Y but changes only slowly with X, which is intuitively necessary 
in order to separate the motions of X and Y. It is clear that the 
method can be valid only if the fluctuations of the fast variable 
are not too large. Then we have 

Wycx)/at = (E;b - IlF(ycx) + (E;d - I ) g W W  (7) 
which allows us to calculate the conditional averages ($Y) and 
(fl) and to close eq 6. 

4. Cubic Autocatahtor Model 
Let us first consider the model reaction scheme: 

ki 

k- I 
A + X i = Y  

k2 
X + Y - 3 X  

h x - c  
The above scheme was investigated in detail from the deterministic 
point of view by Cook et aI.1' If k-l and k2 are very large in 
comparison with kl and kj, the concentration y of Y is a fast 
variable, and its elimination yields 

(9 )  

When k-l >> kzx, this kinetics corresponds approximately to the 
scheme 

k 
A + 2 X - 3 X  

h x - c  (10) 

with k 
scheme 

klkzlk-1, whereas if k-l << kzx, it corresponds to the 
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kl 
A + X + 2 X  

ki x-c 
The full master equation for P(X,Y,t) reads 

aP/at  kl(EJ,,-' - I)AXP + k-,(E;'E, - I )YP + 
k2(EL2EY - I)XYP + k3(Ex - I)XP (12) 

and the reduced master equation for &X,t) = ZvP(X,Y,t) is 

a P / a t =  k , ( E , - O R X P +  k- , (EL'-I ) (YCY)P+ 
k2(EL2 - I)X( W)P + k3(E, - OXP (13) 

The procedure is completed by assuming that P'= P( ryr> satisfies 

aP'/at = k,(E,-' - I )AXP'+ k- , (Ey-I )YP'+ 
k,(E, - OXYP' (1 4 )  

which yields 

(1 3) with (1 5 )  is closed and yields for the average (X) and the 
variance (6x2) 

3k1kr4 ( k-, X2 + k$ ) (17) 

These equations can be treated by the classical expansions in 
powers of the inverse volume by writingI6 

(X) = Qx, X = Qx + a1'2t (18) 
The first-order term gives the deterministic equation for x.  

The following order gives a closed equation for (1,). In the case 
when k2x >> k-1 we get for the original variable X 

d -(X) ( k , A  - k3)(X)  dt 

d(6X2)  = 2(k,A - k3)(6X2)  + ( 5 k , A  + k , ) ( X )  (19) dt 
which (for k l A  # k3) gives an exponential time behavior for (XI 
and (6x2): 

(X) = ( X ( 0 ) )  exp(-W 

(ax2) = ( ~ ~ ( 0 ) )  exp(-2~r) + ( ~ ( ~ ) ) u ( e x p ( - ~ t )  - 
exp(-2Xt)) (20)  

with X = k3 - klA and u = 1 + 6klA/(k3 - klA).  If k3 < klA, 
the system is explosive and the fluctuations diverge (so that (18) 
does not hold); for &3 > klA, both (X) and (6s) decrease 
exponentially. For ka >> k l A  the system becomes quasi-Pohnian 
((X) Y (W)), but the assumption k3x >> &-I is no longer valid 
when (X) becomes very small. In any case the fluctuations do 
not obey the kinetics of the reduced reaction scheme (1 l), although 
the concentration does. 

5. Decomposition of N20s 
As a more realistic example, we will now consider the 

decomposition of N~OS. It can take different forms depending 
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Figure 1. Cubic autocatalator model. kl = 0.002, k-I = 0.0001, k2 = 
0.1, k3 = 0.0012. Initial numbers of particles: A(0) = 1000, X(0)  = 
2000, Y(0) = C(0) = 0. Results of simulations: averaged over 104 runs. 
(a) Time evolution of the mean concentration of X. Solid line denotes 
deterministic model (full scheme), broken line is the reduced model. 
Asterisks denote results of stochastic simulations for the full scheme. (b) 
Time evolution of the variance of X. Long dashes correspond to the 
pro@ method (cq 20), short dashes to thereduced model (1 I) ,  asterisks 
to stochastic simulations of the full model. 

on the conditions, the simplest one obeying the overall equation 

2 N 2 0 5  - 4 N 0 2  + 0, (21) 
However it is found experimentally that the kinetics is of first 
order, the concentration [N20s] of N2O5 obeying 

(22)  
d 
-[N2051 dt = -k[N,Os] 

The following detailed mechanism was proposed by Ogg18 in 
1947: 

ki 

k- i 
N 2 0 5  + NO2 + N O 3  

ki 
NO2 + N O ,  + NO2 + N O  + 0 2  

k3 
N O 3  + NO - 2 N 0 ,  (23) 

where the second and fourth reactions are much faster than the 
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Figure 2. Decomposition of N20s. kl = 0.01, k-I = 1, k2 = 10, k3 = 
1oooO. Initial numbers of particles: N20s(O) = 100 OOO, other species 
are initially absent. Results of simulations: averaged over IO3 runs. (a) 
Time evolution of the mean concentrations of NzOs, N02, and 02 (full 
scheme). Solid line, deterministic model; asterisks, results of stochastic 
simulations. (b) Time evolution of the mean concentrations of NO3 and 
NO (full scheme). Full line, deterministic model; triangles, results of 
stochastic simulations. (c) Time evolution of the variance of the number 
of particles of N2Os. Solid line, reduced scheme (cq 22); dotted line, full 
model; short dashes, our method; long dashes, Janssen's method (q 25). 

others. Assuming that NOp and NO are fast variables and 
performing their macroscopic elimination, it is found that N205 

does obey the kinetics of eq 22 with 

Stochastic elimination of two variables (NO and NO3) by the 
method of quasi-stationary conditional probability can be easily 
done; it leads to the following equations for the mean and the 
variance of the number of molecules of N2O5 (denoted XI): 

(25) 
d 
dt -(MI2) = -2k(6XI2) + kY(Xl)  

where k is given by (25) and Y = 1 + kJk2. For the stochastic 
version of the reduced model (21), Y = 1. Janssen's method15 
gives Y = 1 + (k-l/(k-I + 2k2))2. 

6. Numerical Simulations a d  DLscuaoion 
A series of stochasticsimulations was performed for both models 

discussed above, and the results were compared with those given 
by the proposed approximation, The Monte Carlo algorithm 
based on Gillespie's method19 was used (this kind of algorithm 
was used in modeling some realistic chemical schemes7**). The 
initial number of particles was of the order of los, and the results 
were averaged over lo3 runs. Simulations of full reaction schemes 
(8) and (23) gave good agreement for the evolution of mean 
values, which in our approximation is given by the deterministic 
ratelaw (Figures la  and 2a,b), but thevariance wassystematically 
overestimated (Figures l b  and 2c). The discrepancies in the 
case of the decomposition of N2O5 may be partially due to the 
fact that NO is not a fast variable on the same scale as NOp, as 
shown in Figure 2a,b. However, the main reason of the 
overestimation is certainly the fact that the method described in 
section 3 leads to a Poisson distribution of the fast variables, 
whereas the actual distribution of these variables does not reach 
this quasi-quilibrium situation and presumably has a smaller 
variance. On the contrary, it can be seen that the stochastic 
versions of reduced schemes (11) and (21) underestimate the 
value of the variance, since reduced schemes neglect sources of 
fluctuations related to fast variables (which are replaced by their 
quasistationary values). 

7. Conclusions 
In conclusion, the elimination of fast variables in stochastic 

kinetics is a complex procedure which should be thoroughly studied 
before using a reduced chemical scheme for the sophisticated 
theoretical applications which are currently treated in the 
literature. As a full stochastic analysis is very difficult, it is 
important to have some approximate methods which would give 
someestimations about the truestochastic behavior of thesystem. 
The systematic approaches developed by some authors14Js lead 
to correct approximations, but they are rather heavy and can 
only be applied in special cases. It seems that no simple and 
general method gives reliable quantitative approximations for 
the variance. However, the stochastization of the reduced 
deterministic scheme leads in general to the underestimation of 
the fluctuations, whereas the method of quasistationary condi- 
tional probabilities overestimates them; thus both approaches 
may be used at least qualitatively to determine upper and lower 
bounds for internal fluctuations of the full scheme. 
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