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Variational nonequilibrium thermodynamics of reaction-diffusion systems.
lll. Progress variables and dissipation of energy and information
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We continue, in this article, to develop the formalism of nonequilibrium thermodynamics in
variational form. We prove that in the framework of progress variables, the Hamilton—Jacobi
equation has always a simple solution, and we prove that this solution becomes a state function if
and only if there is a thermodynamic equilibrium for the system. We study an inequality between the
dissipation of energy and of information, and we discuss the notion of relative entropy. Finally we
also study in detail the case of a system with one chemical species, where all the previous quantities
can be calculated explicitly. @001 American Institute of Physics.
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I. INTRODUCTION sager relations as well as a general approach to first order
. o phase transitions in nonequilibrium situatichs.
In two previous publicatioris(referred to below as Parts In this work, we study the information potential in term

| and 1), we have introduced a new formalism for nonequi—of the progress variablesee Ref. B and we derive a
Ii_brium thermodynamics of reaction-diffusion systems at 3 amilton—Jacobi equation in term of these variables, al-
fixed tem'peraturésee Refs. 2 and 3 for gengral references 3%hough this does not lead to a state function in genesed
well as different approaches to these questions and Ref. 4 f@§e¢ *y) |n Sec. I1I, we also state and derive an inequality
applications of this formalism The dynamics of such sys- y|4ting the dissipation of energy to the dissipation of infor-
tems can be described by a Master EquatiRef. 2 because  maiion which is valid for any reaction-diffusion system at
the rate constants of all processes, chemical or diffusive arg, oq temperature. This inequality was also derived in a
well defined, the temperature being kept fixed. The stationarg"ghﬂy less general context in Ref. 10. In Sec. IV, we study
probability distribution on the state space is the stationanf,q (e|ative entropy. In Sec. V, we examine the action of
solution of this Master equathﬁs(x) (xis theslgl_bel of the external reservoirs maintaining a nonequilibrium situation in
state of the syste}mnd, following Kuboet .al., . it can be the system. We show that the natural condition is that the
approximated in the large volume approximation as reservoirs maintain constant certain chemical potentials of
Po(X)=Ug(x)exp — VP (X)), certain species rat_her than_ the corre_sp(_)nding concent_rations.
) ) We prove that the information potential in progress variables
whereU, is a prefactorV 'S,;?f volume of the system, and 4 ces a state function in the space of concentration vari-
@ is the information potentiat’ . ables(which is then the information potential in these vari-
This approximation is valid at least away from criticality. gpjeq if and only if the reservoirs maintain external condi-
In an equilibrium situation, the information potential would 4o compatible with the existence of a thermodynamic
be F(x)/kgT, vyh_ereF 1S the.free energy per un!t volume. In equilibrium. We show also that the information potential in
general, ¢ satisfies a Hamilton—Jacobi equation of a non-yq4ress variables is the work performed by the reservoirs to
standard form and its properties have been studied in Part f5intain the non equilibrium situation in the system. In Sec.
We have applied these results to the study and approximatiop; \ye examine the case of a chemical system with only one
of rate constants, first passage times and eigenvalue of the o i-o) species varying freely. A conclusion summarizes

Master equation in Part Il. Amore general formalism for nong, ;¢ resyits and certain detailed proofs are given in the ap-
equilibrium statistical mechanics was introduced in Refs'pendices

7-9, for any stochastic dynamics, and was used to prove a
fluctuation dissipation theorem and derive generalized OnH. DYNAMICS OF PROGRESS VARIABLES

A. Fundamental processes and progress variables

3Electronic mail: gaveau@ccr.jussieu.fr . . .
bElectronic mail: moreau@Iptl.jussieu.fr We consider a vessel of fixed volunvg containing two

9Electronic mail: jtoth@math.bme.hu kinds of chemical species:
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(i) Chemical species denotedl, i=1,...s, which are aQ(r t)
varying freely according to natural chemical reaction/in
We denoten; the number of particleX; andx;=n;/V their

—»25 [Q4({r = 8,5 QUI o= Sagh D]

concentration; . o TQ (1ot 8 QUI o+ Suphit)
(i) Chemical species denotél, 1=1,...s, which are N B
completely under the control of external reservoirs. This —(Qp(r)+(Qg(r))Q(r,v)]. 2.4

means that at any timg the concentrationg,(t), |=1,...s We use now the rescaled progress variablgsr , /V as

are imposed by the external reservoirs. in the definition of Eq/(2.2), to define the rescaled probabll—
The state of the system is given by the set of numberﬁy densityq(u,t) and ratesv™ by

{x;}i=1,...s which specify the concentrations of the freely
varying species. The concentratiofe(t)}, I=1,...s may

be functions of the state variablgs. The simplest situation Q(r.H= Wq(“'t)'
is the case where the reservoirs maintain eacht a fixed
concentration independent of We allow such a general Q,(r)=Vo,(u),

variation g;(t) in Sec. lI-IV and we shall discuss in more
detail the action of the reservoirs in Sec. V.

The species are reacting and diffusing accordingto 1 o'?q u t)
fundamental processes, which are all reversible, of the type 2

and Eq.(2.4), can be rewritten,

- (oo

Oup
ot 228 ol [ 221
and a=1,...p labels the processes. By convention, the for- N B
ward process is from left to right and the backward process is —(wg(U)+og(u)gu,t))|.
from right to left.
We denote byr ,(t) the number of forward processes For largeV, we obtain an approximate Fokker—Planck
minus the number of backwards processes of typep to  equation in the usual way from E(R.5),
time t. In particular,

1)
Zap
a/+V

M o

S S
(0[) |=21 nlJraA|+iZl ViJraXi;)

=1

(2.9

aq(u,t)
| PR ey mﬁwwm
() =ni(0)+ 2 71(t), (2.0
' “ 1 P o,
where 7, is the difference between the stoichiometric num- + N% @((‘”ﬁ twg)a). (2.6
bersv, ,

o : However, it has been shown that this equation does not give
Ta= Voo Vig the correct results for stationary state and the large time dy-

We denote byu, the algebraic number of processeser namics of the full Master equatioisee Ref. 11 and Par}.|

unit volume

U=t (2.2) C. Approximation dynamics for large  V

For largeV, following Kubo® and other authofs(see
and call these numbers the progress variables, according &so Part | for a systematic useone can try a formal
the usual denomination. asymptotic expansion fay(u,t) (which is reminiscent of the

Finally, we define by}, the probability per unit time WKB-expansion in quantum mechanics
that a forward or backward process of typeoccurs inV.
Because of Eq(2.1), written in rescaled variables, namely, q(u,t)=exp(— Vi)

1
Ut o U1+

(2.7)

Xi(1)=%;(0)+ X 7hu,(1), 2.3 The variations of the prefactat, are usually negligible
“ compared to the variations of the dominant exponential

the O}, can be considered as functions of thg, thex;(0)  exp(~V®). However, the prefactor becomes preponderant
and thea, . near criticality, when the argument of the exponential van-
ishes. On the other hand, the method of Kubo would make
no sense iU, was singular. For all these reasons, a further
study of the prefactor is necessary for a sound mathematical
foundation of the present formalism. This study, which is

We callQ(r,t) the probability that at timé,r , processes somewhat intricate and needs abstract topological arguments,
of type a have occurrede=1,...p. We denote bys,; the  will be presented elsewhet?.
Kronecker symbol. TherQ satisfies the following Master The expansion2.7) can be used either in the Fokker—
equation(see Part | and Ref. 2 for general references Planck equation E(q2.6), or directly in the Master equation

B. Dynamics of progress variables
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(2.5). In both cases, it is easily showas in Part ) that the .
function y satisfies a Hamilton—Jacobi equation in progress ~ E(x(0)={x={x}[x=x(0)+ 2> 7,u,
variables, “
o It is clear that this subspace is the same as the subspace
H’(u, )—0, (2.9 introduced in Part I, Sec. Il, because the set of thev@ctors
J ={7}, a=1,...p is exactly the set of the vectofs;}, and
whereH’ is either the Fokker—Planck Hamiltonidth:, or ~ each subspacE(x(0)) carries a stationary probability dis-

the Master Hamiltoniar , , tribution. We shall assume henceforth that we reduce the
situation to a given subspaceg(¥0)), so that the dynamics
H'FP(UaW)IEB [(wg_w;)wﬁJr %(“’EJ”*’E)W/ZB]' is irreducible and has a unique stationary state in this sub-
space
(2.9 Notice that when we do this, we can udevariables
X1,..-Xq, Whered is the dimension oE(x(0)), to param-
Hy(u,m)=2 [wj(exp(mg)—1) etrize E(x(0)). The other variablesxy,1,....Xs are still
P present(so that the chemical processesre the samebut
+ wg(exp(— ) —1)], (2.10 they are certain linear functions of tixe,... Xq4

In Part I, we have introduced the Hamiltonigky, (X, )

wherem g is the conjugate momentum of;. As in Part I, we of the Master equation,

have

Hy(u,m)=H{(u,7)+0(] 7). (2.11 Hy(x,&) =2 w,(x)(e"{—1),

We notice here that all the results proved in Part | for the
Hamilton-Jacobi equation associated with the Master equa-where(; is the conjugate variable of and
tion are valid for the HamiltorJacobi equation in progress

variables r,gzzi rE.
D. Relation with the usual master equation Let us define now
The usual Master equatidsee Part)lis an equation for _
functions of the state variablgsere thex;). Although the Ta=, TE,
formal derivation of the usual Master equation and of its i
approximations(Fokker—Planck and Hamilton—Jacpksire (2.19

the same as in Sec. I C, their physical meaning is completely  x, =x;(0)+ >, Tiaua
different, because tha, are not state variables. They are a
related to the state variables by H.3). If one knows the
u,, one can deduce the variation of the state variables
X;(t) —x;(0) but in general not converselin part I, we have

then using Eq(2.12), the master Hamiltoniahly, in (u, )
SVariables reduces to the master Hamiltonidgy, in (x,£&)

been using the; variables and we introduced the rate pervarlables,
unit volumew, (x) of a transition{x;}—{x;+ (r;/V)}. It is Hu(u,m) =Hy(x,&). (2.16
clear that
In particular, if d(x) is a solution of the Hamilton—Jacobi
w(x)= X el()+ X w,(X). (2.12  equation,
a:‘rlﬂ=ri a:TI,,=ri

The usual Kramers—Moyal expansion of the Master HM( ax) 0, (217
equation(see Refs. 2, 4, 11, and Pait Yields the usual
Fokker—Planck equation in concentration variables, then the function,

__E ax. (Aip)+ ZV.EJ IX;9X| axax (DiP)s ‘/’(u):q)([xi(o)"'; T'aua})

with the following expressions fok; andD;; : induces a solution of the Hamilton—Jacobi equation in the

progress variable form,

A= rw=2 7 wl—w,), (2.13
r a (?lp
Hylu,—|=0 (2.19
au
- Er rw,= E Ao +o]). (2.19
because
Finally, Eq.(2.3) shows that the evolution remains, for
all time, in the subspackE(x(0)) of the state space of the ‘M _2
“ax

{x;}, given by parametric equations,
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But conversely, a solutiogk(u) of the Hamilton—Jacobi K, . of the process in term of the partition function of the

Eq. (2.18 does not necessarily produce a function in theinternal degrees of freedom of the species appearing in the

state variablex anda fortiori does not define a solution of processa.

Eq. (2.17). In many circunstances, like for imperfect gases or solu-
tions, electrolytes, etc..., one needs a more general formula-

. tion of the free energ¥ (x,a), not necessarily of the form of
E. Free energy and rate constants in the Eq. (2.22. This is why we shall work with the most general
unconstrained system free energyF (x,a).

We consider now the vess¥| in which thep processes From Eq.(2.20), it is easy to see that for adt,

take place, but we switch off the exchanges of molecAles 1 oF 1 9F
|=1,...s with the reservoirgbut still maintaining the tem- + - | = - | —-1|=
s | g o exp{ T (9%) 1 exp{ KT ¢9Ua) 1} 0,

peratureT constant, so thatthe concentrations ;xand g

+to,

vary freely according to the natural chemical processes (229

=1,..p in the vessel. The state will then reach a thermawhere

equilibrium. At thermal equilibrium, the probability distribu- IF OF 9F

tion on the state space, which consists now of the freely WZE %Tla‘i‘zl a_u,tl‘" (2.26
a | i

varying concentrations; anda,, is for largeV,
VF(x,a) so thatF satisfies the Hamilton—Jacobi equati@8),

pecﬁ{xi}v{al})wuo eXF{ - kB—T 1 &F)

H l’\/l< u, ﬁ -
whereF is the free energyof the state(x,a) per unit vol- gl du
ume, T is the temperature, and, is a prefactor. At equilib-  ith Hy, given by Eq.(2.10, where, inwg, one uses the
rium, all processes satisfy the condition of detailed bal- yariables
ance, which can be written asymptotically, for laigeas

; (2.19

Xi=%(0)+> 7u,,

. Vv
w,(X,a)exp — kB—TF(x,a)

v 7 t a=2a(0)+ 2 thu,.
=w;(x,a)exr(—kB—TF [xi+ Va},{aﬁ—va} ) @
wheret! =n' _—n', . from which we deduce 1. DISSIPATION OF ENERGY AND OF INFORMATION
w- JE . JF A. Dissipation of information
KeT |ng—z_=2i (9_xi7|“+2| (9_a|t|“ for all a. From now on, we shall assume again that, on a given

(2.20 subspac&(x(0)), thestate of the vessel reaches a stationary
ﬁéatep(x)~uo exp(—V®) with the concentrations; being
entirely controlled by the reservoirs and having fixed varia-
tions a(t).

If we consider a stat&={x;}, it evolves macroscopi-
' (2.29 cally according to the deterministic equations,

For perfect gases or solutions, one assumes usually that t
w, are given by

i |
w;:k;([[ Xivia H alnta
I

+ . . _ dX .
wherek,, are temperature dependent constants. It is imme A= A0 —wD).

diate to check that the usual partial equilibrium fo?m dt
The value of the state functioh evolves as
F(x,a)=2 Fi(x)+ 2 Fi(a) (222
_ _ @ZE Eﬁzg (0 —w> g (3.1
(whereF; is the free energy of the ideal gas law at tempera- dt T oox dt 1o e “7au,” '

ture T and concentrations;) satisfies Eq(2.20. In fact, the
chemical potentials are

gF  dF,

—1=X, so that
= = ' 4 f L
M= 0% = % kgT logx;+f;(T) (2.23 0= ex;{—ﬂ)—lﬂ

w,lexp—|-1|tow,
au,
and Eq.(2.20 reduces to the equation

K, =S (0l —w)) o
a i = wa—wa -—.
kg T Iogk—+=§i: Tlafi(T)-i-El thf,(T). (2.24) m AU,

We know from Sec. Il E, thaH,(u,(d®/du))=0. But *

] ] N ] As a consequence, we obtain the inequality
Here eachf;(T) is calculed using the partition functions of
the internal degrees of freedom of the specigsand Eq. @<O 3.2
(2.29 is the usual expression for the equilibrium constant dt '
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Moreover, the equality is attained if and only if for eaeh  and[da /dt].— (da /dt) is the actual variation of the con-

o, (d®/du,)=w, (d®/Ju,)=0. In particular, if the deter- centrationa, in the reservoir.

ministic state reaches a stationary poidf’), for which In Eq. (3.5 the first two terms are, using E.26),

A (x?9)=0, thend®/dt=0, and 9P/du,=0 or v} =w, oF

=0. ) o E(w —w )(Etao—,x 2 0101
The quantity @/dt computed along a deterministic tra- ¢ i ! a

jectory is always negative. It can be interpreted as a dissi- oF

pation of information per unit time E (w)—w )&u 3.7
In fact, V& (x) can be considered as the average infor- “«

mation which is obtained when the system is observed in thelow Eq. (2.25 says that for each,

statex rather than being stochastically distributed with the 1 oF ) i 1 oF )
AT u, o TR iegT au,

stationary probability distribution pg(x) ~exp(—V®(x)), o= o
which is the sate of lowest information, when the system is

coupled to the various reservoirs of heat and of chemical 1 9F
speciesA, . We have =0 —w,)c=—1,
a T kT du,
o(y—x)
VO()=2, sly=xlog——5==—logpy(x), (3.3 SO thatwe deduce
g T 9F dx; JF [da . JF
where §(y—X) is the Dirac distribution ax. The sum of Eq. 2 e EJFE Ja | dt :2 (W, —w )W<O
(3.9 is really on the space of discrete stakes[n;/V], so ' ! ' ! ¢ 38
that 6(y—x) is in fact a Kronecker symbol. Along a deter- 38
ministic path,® decreases with time while the statéends On the other hand, the quantity in E@.5),
to a deterministic stationary state which is a local minimum JF ([da day day day
e [ )y [0
More generally, we can define the relative information roda || dt] dt ! dt], dt
(see Refs. 7-9, 24of a probability distributiong(x,t) as 3.9
(y.t) is the work given to the system by the reservoirs to impose
I(p|ps)= 2 p(y, t)|ogp Y, (3.4 the evolutiona,(t) for each concentratioa, in the vesseV,
Ps(Y) where we have denoted by, the chemical potential with
for any stochastic system evolving according to a MarkoWeSPect to the specids ,
process with stationary stafg . JE
This quantityl (p|ps) is the average information gained m':o’?_a|'

if one knows that the system is in the staffy,t) at timet,
rather than in the state of lowest informatipg(y) (given  Then, from Eqs(3.5) to (3.9),
the reservoirs or, the stochastic mechanjsii®|p,) is the dE
opposite of the relative entro@(p|p,) used by various au- a—wso (3.10
thors(see Refs. 7-9 and 14
and the quantity dFdt—w is the dissipation of energy in the
system, per unit time

B. Dissipation of energy
C. Inequality between the dissipation of information
We consider now the variation of the free energy alongang of energy

the deterministic trajectory, namely,
: Y Y It is proven in Appendix A that the dissipation of infor-

dF 6’_F %+2 OF da mation and the dissipation of energy satisfy the fundamental
dt 4 ox, dt 4 ga, dt inequality,
' ' 1 (dF do
which we write as ﬁ(a_w) - HSO’ (3.11
dF oF dx JF [da B
dat (9_)(IE+Z Jay E} so that, in absolute value the dissipation of information is
¢ always less than the dissipation of energy. Moreover, there is
2 JF (| da da equality if and only if we have an equilibrium situation
-4 (;_al dt c_ dt |’ (3.9 This inequality has been derived in Ref. 10 in a slightly

more restrictive situation. It is completely geneffar reac-
where[da, /dt]. is the variation of they, due to the various tion diffusion systems at a fixed temperaturEhis is differ-

chemical processes in the vesseV, so that ent from the usual inequalities for the rate of production of
da entropy given by various authofsee Refs. 2 and 12The

[— => (0 —w )t (3.6)  main reason is that for non equilibrium situations, it is not

dt c ¢ easy to relate directly entropy production and energy dissi-
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pation. In fact, herel®/dt is not an absolute production of Remark If it is assumed as usual that the concentrations
entropy(as in Refs. 2 and 22obut a production of relative a;, considered as stochastic variables, are maintained con-
entropy as discussed at the end of Sec. Ill A, and below. stant by the reservoirs, this implies the relation

tX+ok=0 for all « and k, (4.4)
IV. INFORMATION POTENTIAL IN THE CONSTRAINED which will replace Eq.(4.4) under this assumption. Condi-
SYSTEM tions (4.4) and (4.4') are equivalent when Edq4.3) holds.

This is the case in many situatiofsee Appendix B How-
>éver, it seems more natural to assume that the reservoirs
maintain the chemical potentials constant for each spaces
since the equilibrium conditions between the system and the
reservoirs(with respect to the speciely) are expressed by
o, JF JF the equality of these chemical potentials in the system and in
kgT |09F=E KTI +E a —tl, (4.)  the reservoirs.
a ! ' ! It could be argued that Eq&4.4) or (4.4) express very
The reservoirs maintain a fixed evolutief(t) for each  strong controls on each speci@s, which are difficult to
concentration of the speciég. We call the chemical poten- implement in actual systems. Nevertheless, the hypotheses of
tials, the constancy of species, are usually assumed in works
9F 9F about the Master equation in chemical contexts. Further-
M=o m|=£. (4.2 more, we show in Appendix B, that such hypotheses are
' ! justified provided theA; are local concentrations of the cor-
We would like to define a solution of the Hamilton Ja- responding species, near the interface between the system
cobi equatiorHy,(u,(9¥/du))=0 in the progress variables. and the reservoirs.

In this section, we shall assume that the free energ
of the whole vesseV is a given functionF(x,a) of the
various concentrations, the temperatdrébeing fixed. We
recall Eq.(2.20),

A. The action of the reservoirs

We shall assume that the reservoirs of f#g} act in
such a way as to maintain constant the chemical potential
m; with respect to a for all I=1,...s, at a value m
=m,(°). In the function logp,/w,) defined in Egs.(4.1), we

For example, when the so-called partial equilibrium situ-shall replacex; anda; by the values
ation holds, namely,

F(x,a)=F(x)+Fy(a), 43 Xi=xi(0)+§ 7u,,

then them,=(dF,/da;)(a) depend only ora and our hy- (4.9
pothesis means that the reservoirs maintain the concentra- a,=a;(0) +2 (th+ol)u,.

tions a; fixed, which is the standard assumptions for

reaction-diffusion systems. In general, however, we shall These expressions give the actual values ofxthand
show below that the constancy of the chemical potentigls the a;, knowing their initial values, afteu, processes of
is a more natural condition. In this case, we assume thatype «, «=1,...p have occurred. In particular, by definition,
each time a process occurs in the vessal, the reservoirs the statgx;} of the system remains on the subsp&¢g(0))
provide to the vessel a quantit, of the species$, in such a  as defined in Sec. Il D. When all the anda, are replaced by

B. Solution of the Hamilton—Jacobi equation in
?)rogress variables

way that, for alll=1,...s and all« one has their expressions of Eq#4.5), the log, /) are functions
om; Im of the progress variablea,}, depending parametrically of
—T'a+2 _'(t';+0‘;):0_ (4.4  the initial concentratio{x;(0)} and{a,;(0)}. We prove in
T X kK day Appendix C, that
Equations(4.4) for 1=1,...s are the mathematical expres- P o
sions of the hypothesis of the constancy of the chemical po- 70 (I og— H(Iog—f_). (4.6
tentialsm, . It should be pointed out that E(4.4) expresses Ug @ “p

the fact all them;(x,a) are maintained constant by the action As a consequence,we can define a function
of reservoirs. In fact, then(x,a) are stochastic variables; ¥ (u|x(0),a(0)) of the y depending parametrically on the

the increment ofm, in time At is initial values X 0),a(0) of the concentrations such that
omy . am, (7¢ .
Am= — A+ —(tk+ %) |Au,, - £
! % Eu 2 Zk day (tat o) &uﬁ IOg “.7

Au, being the increment in timaAt of the progress variable and¥ is unique up to an additive constant
u, of reactiona. But, for givenx,a, theAu, are independent Clearly, ¥ will satisfy for any 3,

random variables. Thugym,=0 with probablllty 1, if and

only if the coefficients of all the\u, are 0, namely, if Eq. + ex;{%) 1+ w2 exy{ — %> —1}:0 (4.9
(4.4) holds for all @, and determines the quantitie . p dug £ dug 7
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and a fortiori, it satisfies the Hamilton—Jacobi equation in is the work done by the reservoirs per unit time, during the

progress variables, evolution of the vessel and the reservoirs. Comparing now
» Eqgs.(4.1) and(4.12), we see that
——w=kgT = #(u|x(0),a(0))<0 (4.13

We shall show now that the new solutions satisfying Eq. dt dt
(4.7) corresponds to a very special path in term of theso that kgT(d/dt)(u|x(0),a(0)) is the dissipation of en-
progress variables, namely the “antideterministic path.” Weergy per unit time
recall here that the usual kinetic deterministic path corre-

sponds to the trivial solutio® =0 of the Hamilton—Jacobi

equation, E. The function « in the space of concentrations
Hu(x,V®)=0. We have constructed a functioi(u|x(0),a(0)) on the
space of progress variables using E@.7), which is
C. The antideterministic path in progress variables uniquely defined up to an additive constant. We would like to

As we have said at the end of Sec. Il C, all the resultsknow if ¢ corresponds to a state functiq?p{x,a), using the
proved in Part I, foH,,(x,a®/dx) =0 are still valid for the substitution defined by the progress variables of E45),
Hy Eg. (4.9. In particular, we can define the antidetermin-

istic path in Sec. V of Part |, by the formula X =x;(0)+ >, riaua,
du, dHy ‘. o (4.19
= = wae “— wae “ | |
dt gm, a=2/(0)+2 (th+o,)u,.
P W, . . .
m,=—=log—, We shall prove the following facts in Appendix C:
g W4 (i) Let us assume that there exists a thermodynamic equi-
so that the antideterministic path satisfies librium state(x,a), so that
du, . wg(X,a)=wgz(xa) for al g,
oo (4.10 (4.1

mxa)=m° for all I.

Thus, the antideterministic path in progress variables is the_l_h h . f L — — h th
deterministic path run backwards in time en there exists a functiop(x,a/x,a) such that

ﬁxi<0>+2 T, (0)+ 2 (t+ol)u &
D. Comparison of W with the free energy = y(u[x(0),a(0)). (4.16

We have constructed, for givetf0) anda(0), thefunc-
tion W(u|x(0),a(0)) of the progress variables using Eg.
(4.7). We can now compute the difference

W(u|x(0),a)=F(x,a) —kgT#(u|x(0),a), (4.11)

Moreover, we have
+C

(4.17
wherex,a are replaced by their expressions of E@E5) in ) ) o
term of the initial valuesx(0),a(0), and of theprogress for @ certain constant C which depends ¢Dy,a(0) x,a.

— 1
w<x,a|za=@<F(x.a>—2i i@~ 2 ma,

variablesu. It is easy to see from Eqés.11), (4.7), and(4.1) (if) If one chooses another solutiofx’,a’) of Egs.
that (4.19), then the functiony(x,alx,a) — ¢(x,a[x’,a’) is con-
stant during the evolution given by the progress variables
dW(u|x(0),a) .S r?_FO_, =S m©4 [see Eq(4.17)].
dug T ooa o TR (i) The functiony(x,alx;a) satisfies the Hamilton

m|(o) being the fixed value of the chemical potentia). Jacobi equation associated with the Master equation

The deterministic evolution ddV is then
> w,(x,a)| ex Zr-&—‘/' -1|=0 (4.189
dW(u|x(0),a) © 1, 4 - A ™ ox :
B TE— =2 m~og(wg—w,) _ _ _ _ _
L5 provided that in this equatign(x,a) are replaced by their

expressions (4.5) in term of the progress variables

Thus, the functiony of the progress variables corre-
sponds to a state functiaf if the conditions imposed by the
constraints allow the existence of a detailed balance equilib-
rium.

becausdl uB/dt=w;—wg . So comparing to Eq3.9 we
see that

dW(u|x(0),a)
—q W (4.12
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F. The case of a partial equilibrium free energy the dimension of the space0))). It is then always pos-
We assume now that E¢4.3) holds il(%l()a to choose Xn the subspace &(0)) for any given
F(x,a)=Fi(x)+Fy(a). (4.19 These general statements can be confirmed by explicit

calculations in the case where there is only one chemical
spaces varying freely in the volumé In this situation, ev-
erything can be calculated explicitly, in particular the non-
equilibrium information potentialsee Part)L.

In Sec. IV A, we have seen that, in this case, the evolu-
tion maintaining the chemical potential, of the specied\
is constant, such that,

I 4l
04~ ta

as in Eq.(4.4'), i.e., the reservoirs cancel exactly the actionV- CONCLUSION

of the chemical processes. In this situation, the concentration |n this article, which concludes the first two parts of our
a, of the chemical specief, can be considered as fixed general study of nonequilibrium reaction-diffusion systems,
parameters. The functiog(x|x,a) satisfies more precise we have mainly considered the situation of systems which
properties than those of Sec. IV E. In fact, it can be assertedire maintained out of equilibrium by external constraints.

under these conditions, that Because of this nonequilibrium situation, the standard ther-
(i") There exists a functioE(xR,a) such that modynamics potentials are not fully appropriate to study the
approach to the stationary nonequilibrium state.

x(0)+ > 7usX.al=w(ulx(0),a 4.2 We have defined an information potential in progress
E( i(0) E A8 W(ulx(0).2) 429 variables and we have shown that it can be defined very

if and only if there exists a statg;} such that{x,a} is a easily in term of its first order partial derivatives. It is not in
thermodynamic equilibrium state, i.e., all processes are irfdéneral a state function, but it gives exactly the work pro-

equilibrium at{x,a}, vided by the reservoirs to maintain the system in a nonequi-

L o librium situation. Moreover we have shown that the informa-

wg(X,a)=wg(x,a) for all g (4.2 tion potential in progress variables is a state function if the
and we have reservoirs maintain conditions such that the system reaches a

thermal equilibrium. In this case, it is identical to the infor-

mation potential in the concentration variables. We have also

discussed in detail the action of the reservoirs and we have
(4.22 shown that a natural condition is that the reservoirs maintain
constant certain chemical potentials rather than the concen-
trations. Finally, we have shown that the dissipation of en-
ergy is always larger or equal to the dissipation of informa-
tion (in absolute valug the equality holding only at
equilibrium. Our results are restricted to reaction-diffusion
systems at a fixed temperature. Further publications will pro-
pose an extension to variable temperature systems as well as
a more detailed study of the actions of the reservoirs in sto-
=0 chastic dynamics contexts:®

— 1 aFy
IXIx,2)= (| Foxa) =3 Z=(xa | +C

where C is a constant

(ii") If X" is another solution of Eq. (4.21) (for given,a)
y(x[x;a) — (x|X",a) restricted to the subspace(¥(0)) is
a constant

(i ') As a function of xy(x|X,a) satisfies the Hamilton
Jacobi equation of the Master equatjon

2 W, (X) exp(Ei rij—z) -1

and the restriction ofy(x|x,a) to E(x(0)) satisfies the APPENDIX A: PROOF OF THE INEQUALITY (3.11)

Hamilton Jacobi equation of the Master equation on the in-  \ve have from Eqs(3.5), (3.9), and(3.9), the equality
variant subspace &(0)). ' ' ’ '

(iv') If there exists an isolated attracting point of the 2 JF dx E JF da
vector field A(x,a) on E(x(0)), theny(x|x,a) on E(x(0)) % dt day [ dt |
is the unique regular solution of the Hamiltedacobi equa-
tion of the_l\/laster equation on the subspace@®)). This ZE (w+_w7)£, (A1)
means thaiy(x|x,a) on E(x(0)) is the information potential ce
O itself. d
The proof of these statements is given in Appendix C. —=2 (W, —w,)—,
We have seen above, that the functigu|x(0),0) is the “«
restriction to the subspacE(x(0)) (parametrized by the 9D 1 OF
progress variables) of a functiony(x|x,a) if and only of WaZE, p“:kB_T ETE (A2)

one can find a stafe such that ,a) is the thermal equilib-

rium state. But,a priori, the statex does not necessarily SO thatm, satisfies the Hamilton—Jacobi equation,

belong to the same subspdeéx(0)). Finally, the following

fact can be easily derived. E [w:;(e“a— 1)+ w,(e""—1)]=0 (A3)
(v) The choice of xwill depend in general on-sd free “

parameters (where s is the number of the speciesd dis andp, satisfies the detailed balance condition,
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o, (ePe—1)+w, (e P«e—1)=0 for all a. (A4)
From Egs.(A3) to (A4), by subtraction we obtain
> (w}i(e"e—ePa)+w (e Ta—e Pa))=0. (A5)

But e¥—e*=¢e*(y—x) with equality only if y=x so that
from Eq. (A5),

2 (w;:epa(ﬂ-a_ pa)+ w;e_pa(_ Tot pa))go

By Eq. (A4), p,=log(w,/w.), so that

~ > (0f ~07)(me—Pa)=<0 (A6)
which, by Egs.(Al), (A2) implies inequality(3.11).
In Eq. (A6), we have equality if and only ifr,=p, for

all a, or

b= + cst,

kT

which means that we are at equilibrium.

APPENDIX B: PROOF OF EQ. (4.6)

We have to prove that for alt, B,

J | wﬁ d | a)_
—| 10 —— 1 IO
(?ua gwﬁ (?Uﬁ g ﬁ

or

=0

1%
u

o 3 it Bty = o 3 ent 3 o

(B1)
Now, by definition of our constraints, th@, stay con-

Gaveau, Moreau, and Toth

whereM,,=dm,/da, andM ! is the inverse of the matrix
M. Thus, Eq.(B3) reduces to

E (9m| &M,( JT 7 ) =0. (B4)
K.l kl c?X day BB
But

2 2
EM_lﬂ%= —1_(?[: oF
Skl ki O7XJ aak Kl ki (9a|l?Xj 5ak07Xi

is a symmetric quantity inj becauseM, is 9°F/da,da, and
soM ™1 is symmetric and Eq(B4) obviously holds.
Remarks

(1) If, instead of Eq.(5.4) expressing that the chemical
potentialsm, are constant, we assume that the concentrations
a, are constants, it is easily found that EB1) is equivalent
to

om
> (k= 7tk =~ =0,

ik IX; (B5)

Equation(B5) obviously holds if them, are functions of the
a, only, in which case the constancy of the chemical poten-
tials m; is indeed equivalent to the constancy of the concen-
trationa, . Otherwise, Eq(B5) implies relations between the
x and thea which, in general, are not compatible with the
kinetic equations. So, in general, E4.6) holds only if we
assume the constancy of the chemical potemtial

(2) It has been observed in Sec. V A, that relati¢h<))
or (4.4") imply a very strong control on the speci@swhich
could be difficult to realize in practice. Nevertheless, such a
control could be effective, at least in the following situation:
All species in the system are fréee., evolve according the
chemical laws However some of them, sa¥, can be di-
rectly and rapidly exchanged with the reservoirs by diffusion

stant in the evolution of the system, due to the action ofprocesses for example at the interfaces with the reservoirs.

reservoir, so we have to verify that

ool B ] 5y 3 o

or
IX; JIXi d
et et e o
E au, &xJ 2’“' 5) dug Ix; Z’“'T“}
aak
J’_
2 au, aak 2 “'Tﬁ)
(Qak J i
~au, 7 Z wit, | |=0. (B2)
Here dx; /du,= o7ah/ﬁua:t2+ ag according to Eq.

(4.5). Using aZF/ax ax =il 9x;=du;lx;, the first sum-
mation in Eq.(B2) dlsappears, so that E¢B2) reduces to

_ i
> [t o) 7= (Ut ol m) 5= (83)

Now by Eq.(4.4),

This can be expressed by pseudochemical reactions,
X|2A,

with A, denoting the same chemical speciesXas but con-
sidered inside the reservoirs. If the rate of exchange ffom
to X, is assumed to be constamthich it a standard hypoth-
esi9, this will correspond to a strictly constant concentration
or chemical potential foA,. On the other hand the chemical
potential forA, is independent of th&, so that we recover
the general formalism, just by considering tifgtis also a
chemical species of the system.

APPENDIX C: THE FUNCTION ¢ AS A STATE
FUNCTION

We recall from Eqgs(4.7) and(4.1) that

Y wg 1 i
— = . P (04!
s 09T kT 3wt 3 M

so its differential is
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1 ,
— L (0)4
dis KaT iE,B' MiTgdUg+ IE,B m~tgdug | (C)

1. Proof of (i), Sec. IVE

iy comes from a functiony depending orx, a [using the
substitution of Eqs(4.5)], if and only if d¢s can be rewritten
as a linear combination of thix; andda, with the variations
given by Eqs.(4.5),

dxi=2 riﬁduﬁ,
(C2

da=>, (t\+co!)du

with coefficients depending ofx,a) (and no more orug).
From Eq.(C1) using Egs(C2), we have

1
dy=—=| 2 widx+> m%da
keT | 5 T

m@q! du

Tket ™ €3

In Eq. (C3) the first term is exactly

1
kBT —dF(x,a)

because u;=dF/dx;, m{®=0F/9a, maintained constant
during the evolution. So we need to prove that the last sum-
mation in Eq.(C3) can be rewritten as a linear combination

of thedx; andda, given by Eq.(C2), namely, to findy, , 6, ,

% m% ol dug= 2 yldx+2 6, da,

:gg yiriﬁduﬁ—kg 0|(tlﬁ+a'|ﬁ)du,3.
So we must have for ajB,

E (O) I 2 'Y|Tﬁ+2 al(tﬁ+0'ﬁ)

(C4

Under the hypothesis df) of Sec. IV E, there exists &(a)
with

g (A=, (Xa),

m{%=m(x.a).

From Eq.(4.1), we have for allg,

2 @7t 2 m =0, ()

and we can solve EqC4) with

=pui(x,a).
Then Eq.(C3) becomes

o=m,

1
dy= (| dF(xa) = 2 m(X@dx -2 m®da |,
B i
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and we can take
Y(x,axa)= (F(x a)— > wi(Xa)x
-> m%,|+C (C6)

whereC is a constant adjusted so that

#(0[x(0),a(0))=(x(0),a(0)[x.a)).
This proves the assertidin of Sec. IVE.

2. Proof of (ii), Sec. IVE

Let us consider two equilibrium statesx,&) and
(x’,a’). From Eq.(C6), one has

y(x,axa)—y(x,ax,a)
:_% 2 (mi(X,@)— pi(X’,a’))x; | +cst.
B I

We replacex; by its value of Eq(4.5),

Xi=X(0)+ > g,

and use Eq(C5), to deduce that for alB,
2 m(X@ = 2 (X&) 7=

so when we replaceanda by their expression in term of the
progress variables, given by E@.5), we see that

p(x,a[x;a) — p(x,a[x’ @) =cst.

3. Proof of (iii), Sec. IVE

TakeE as in Eq.(C6) and calculatedy/dug for the
evolution given by Eq(C2), to obtain, using the fact that
m,=dF/da, is constant and equal 1,

Y

XI

9

0, kBTZ (i(x,2) = (@ Ty = 2 7y

Now, ¢ satisfies

Y Y
+ —_—— —
Eﬁ: p ex;{ auﬁ) ex;{ ﬁuﬁ) 1
[provided inm;r , wg , X, anda are replaced by the evolution
of Eqg. (C2)]. So this is

2w EXP(Z hj—f)—l}=0

provided in this equationx and a are replaced by their ex-
pressions of Eq(C2). For a situation of partial equilibrium
free energy, the previous properties are made more precise in
Sec. llIF.

=0

1|+ w,
2, wp

(C7)

Downloaded 22 Jan 2004 to 152.66.105.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



690 J. Chem. Phys., Vol. 115, No. 2, 8 July 2001

4. Proof of (i’), Sec. IVF

We have seen in the asserti¢in of Sec. IV E that the
condition of finding &,a) (thermodynamic equilibrium

statg is a sufficient condition. To see that this condition is

also necessary we come back to £Q1). The functiony

comes from a state functiogi(x), if and only if d¢s can be
written as a linear combination of thek; . In Eq. (C1), we
see that

% 17 dug=dFy(X). (C8)

The second sum in EqCY) is a linear combination of the
dx;, if and only if can findy, with,

| .
or for all B,

EI: m%o)tlﬂ-i— 2 Vi Tiﬁz 0.

(C9
We can always findX;) such that

_F1 5 for all i
%—a—Xi(Y} or all i,

while m{9=gF,/da,(a).

Then Eq.(C9) means exactly that

wg(Xa)=wg(X,a)
which is the equilibrium condition. Then E¢5.26) is evi-
dent from Eq.(C6) in view of the fact thatF=F(x)
+F,(a).

The proofs of assertiongi) and (iii), Sec. IVF are
straightforward from the corresponding assertiGns (iii ) of
Sec. IVE but herer',=—t' so that thea, keep a constant
value, so Eq(C10) is valid for all x in the spaceE(x(0)).
But now, s depends orx(0), only through an additive con-
stant[see EQq.(5.26 for ], so that Eq.(C10) is valid on

every subspack(x(0)) andthus, is valid everywhere in the

space of the concentrations

Gaveau, Moreau, and Toth

5. Proof of (iii’), Sec. VF

We have seen in assertiofii) that J satisfies the

equation
Ip
exp( Z ri&—;> -1

provided one replaces in this equation the variaBlesida
by their expressions in term of the progress variables,

=0 (C10

> wi(x,a)

X=x(0)+ 3 7hp @=a(0)+ 3 (oL,

6. Proof of (iv'), Sec. IVF

This is a consequence of Part |, where it is proven that
the Hamilton—Jacobi equation associated with the Master
equation has a unique smooth solution when there is at least
one attracting zero of the deterministic vector fidld
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