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Variational nonequilibrium thermodynamics of reaction-diffusion systems.
III. Progress variables and dissipation of energy and information
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We continue, in this article, to develop the formalism of nonequilibrium thermodynamics in
variational form. We prove that in the framework of progress variables, the Hamilton–Jacobi
equation has always a simple solution, and we prove that this solution becomes a state function if
and only if there is a thermodynamic equilibrium for the system. We study an inequality between the
dissipation of energy and of information, and we discuss the notion of relative entropy. Finally we
also study in detail the case of a system with one chemical species, where all the previous quantities
can be calculated explicitly. ©2001 American Institute of Physics.
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I. INTRODUCTION

In two previous publications1 ~referred to below as Part
I and II!, we have introduced a new formalism for noneq
librium thermodynamics of reaction-diffusion systems a
fixed temperature~see Refs. 2 and 3 for general references
well as different approaches to these questions and Ref.
applications of this formalism!. The dynamics of such sys
tems can be described by a Master Equation~Ref. 2! because
the rate constants of all processes, chemical or diffusive
well defined, the temperature being kept fixed. The station
probability distribution on the state space is the station
solution of this Master equationPs(x) ~x is the label of the
state of the system! and, following Kuboet al.,5,6 it can be
approximated in the large volume approximation as

PS~x!.U0~x!exp~2VF~x!!,

whereU0 is a prefactor,V is the volume of the system, an
F is the information potential.1,4

This approximation is valid at least away from criticalit
In an equilibrium situation, the information potential wou
beF(x)/kBT, whereF is the free energy per unit volume. I
general,F satisfies a Hamilton–Jacobi equation of a no
standard form and its properties have been studied in Pa
We have applied these results to the study and approxima
of rate constants, first passage times and eigenvalue o
Master equation in Part II. A more general formalism for n
equilibrium statistical mechanics was introduced in Re
7–9, for any stochastic dynamics, and was used to prov
fluctuation dissipation theorem and derive generalized

a!Electronic mail: gaveau@ccr.jussieu.fr
b!Electronic mail: moreau@lptl.jussieu.fr
c!Electronic mail: jtoth@math.bme.hu
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sager relations as well as a general approach to first o
phase transitions in nonequilibrium situations.9

In this work, we study the information potential in term
of the progress variables~see Ref. 3! and we derive a
Hamilton–Jacobi equation in term of these variables,
though this does not lead to a state function in general~see
Sec. II!. In Sec. III, we also state and derive an inequal
relating the dissipation of energy to the dissipation of info
mation which is valid for any reaction-diffusion system
fixed temperature. This inequality was also derived in
slightly less general context in Ref. 10. In Sec. IV, we stu
the relative entropy. In Sec. V, we examine the action
external reservoirs maintaining a nonequilibrium situation
the system. We show that the natural condition is that
reservoirs maintain constant certain chemical potentials
certain species rather than the corresponding concentrat
We prove that the information potential in progress variab
induces a state function in the space of concentration v
ables~which is then the information potential in these va
ables!, if and only if the reservoirs maintain external cond
tions compatible with the existence of a thermodynam
equilibrium. We show also that the information potential
progress variables is the work performed by the reservoir
maintain the non equilibrium situation in the system. In S
VI, we examine the case of a chemical system with only o
chemical species varying freely. A conclusion summariz
our results and certain detailed proofs are given in the
pendices.

II. DYNAMICS OF PROGRESS VARIABLES

A. Fundamental processes and progress variables

We consider a vessel of fixed volumeV, containing two
kinds of chemical species:
© 2001 American Institute of Physics
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~i! Chemical species denotedXi , i 51,...,s, which are
varying freely according to natural chemical reactions inV.
We denoteni the number of particlesXi andxi5ni /V their
concentration;

~ii ! Chemical species denotedAl , l 51,...,s̄, which are
completely under the control of external reservoirs. T
means that at any timet, the concentrationsal(t), l 51,...,s̄
are imposed by the external reservoirs.

The state of the system is given by the set of numb
$xi% i 51,...,s which specify the concentrations of the free
varying species. The concentrations$al(t)%, l 51,...,s̄ may
be functions of the state variablesxi . The simplest situation
is the case where the reservoirs maintain eachal at a fixed
concentration independent oft. We allow such a genera
variation al(t) in Sec. II–IV and we shall discuss in mor
detail the action of the reservoirs in Sec. V.

The species are reacting and diffusing according top
fundamental processes, which are all reversible, of the t

~a! (
l 51

s̄

n1a
l Al1(

i 51

s

n1a
i Xi�(

l 51

s̄

n2a
l Al1(

i 51

s

n2a
i Xi

and a51,...,p labels the processes. By convention, the f
ward process is from left to right and the backward proces
from right to left.

We denote byr a(t) the number of forward processe
minus the number of backwards processes of typea, up to
time t. In particular,

ni~ t !5ni~0!1(
a

ta
i r a~ t !, ~2.1!

whereta
i is the difference between the stoichiometric nu

bersn6a
i ,

ta
i 5n2a

i 2n1a
i .

We denote byua the algebraic number of processesa per
unit volume

ua5
r a

V
~2.2!

and call these numbers the progress variables, accordin
the usual denomination.

Finally, we define byVa
6 the probability per unit time

that a forward or backward process of typea occurs inV.
Because of Eq.~2.1!, written in rescaled variables, namely

xi~ t !5xi~0!1(
a

ta
i ua~ t !, ~2.3!

the Va
6 can be considered as functions of theub , thexi(0)

and theal .

B. Dynamics of progress variables

We callQ(r ,t) the probability that at timet,r a processes
of type a have occurred,a51,...,p. We denote bydab the
Kronecker symbol. ThenQ satisfies the following Maste
equation~see Part I and Ref. 2 for general references!:
Downloaded 22 Jan 2004 to 152.66.105.22. Redistribution subject to A
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]Q~r ,t !

]t
5(

b
@Vb

1~$r a2dab%!Q~$r a2dab%,t !#

1Vb
2~$r a1dab%!Q~$r a1dab%,t !

2~Vb
1~r !1~Vb

2~r !!!Q~r ,t !]. ~2.4!

We use now the rescaled progress variablesua5r a /V as
in the definition of Eq.~2.2!, to define the rescaled probabi
ity densityq(u,t) and ratesva

6 by

Q~r ,t !5
1

Vp q~u,t !,

Va
6~r !5Vva

6~u!,

and Eq.~2.4!, can be rewritten,

1

V

]q~u,t !

]t
5(

b
Fvb

1S H ua2
dab

V J DqS H ua2
dab

V J ,t D
1vb

2S H ua1
dab

V J DqS H ua1
dab

V J ,t D
2~vb

1~u!1vb
2~u!q~u,t !!G . ~2.5!

For largeV, we obtain an approximate Fokker–Plan
equation in the usual way from Eq.~2.5!,

]q~u,t !

]t
52(

b

]

]ub
„~vb

12vb
2!q…

1
1

2V (
b

]2

]ub
2 „~vb

11vb
2!q…. ~2.6!

However, it has been shown that this equation does not g
the correct results for stationary state and the large time
namics of the full Master equation~see Ref. 11 and Part I!.

C. Approximation dynamics for large V

For largeV, following Kubo5 and other authors6 ~see
also Part I for a systematic use!, one can try a formal
asymptotic expansion forq(u,t) ~which is reminiscent of the
WKB-expansion in quantum mechanics!,

q~u,t !5exp~2Vc!FU01
1

V
U11¯G . ~2.7!

The variations of the prefactorU0 are usually negligible
compared to the variations of the dominant exponen
exp(2VF). However, the prefactor becomes preponder
near criticality, when the argument of the exponential va
ishes. On the other hand, the method of Kubo would m
no sense ifU0 was singular. For all these reasons, a furth
study of the prefactor is necessary for a sound mathema
foundation of the present formalism. This study, which
somewhat intricate and needs abstract topological argume
will be presented elsewhere.15

The expansion~2.7! can be used either in the Fokker
Planck equation Eq.~2.6!, or directly in the Master equation
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~2.5!. In both cases, it is easily shown~as in Part I! that the
function c satisfies a Hamilton–Jacobi equation in progre
variables,

H8S u,
]c

]u D50, ~2.8!

whereH8 is either the Fokker–Planck HamiltonianHFP8 or
the Master HamiltonianHM8 ,

HFP8 ~u,p!5(
b

@~vb
12vb

2!pb1 1
2~vb

11vb
2!pb

2 #,

~2.9!

HM8 ~u,p!5(
b

@vb
1~exp~pb!21!

1vb
2~exp~2pb!21!#, ~2.10!

wherepb is the conjugate momentum ofub . As in Part I, we
have

HM8 ~u,p!5HFP8 ~u,p!10~ upu3!. ~2.11!

We notice here that all the results proved in Part I for t
Hamilton–Jacobi equation associated with the Master equ
tion are valid for the Hamilton–Jacobi equation in progress
variables.

D. Relation with the usual master equation

The usual Master equation~see Part I! is an equation for
functions of the state variables~here thexi!. Although the
formal derivation of the usual Master equation and of
approximations~Fokker–Planck and Hamilton–Jacobi! are
the same as in Sec. II C, their physical meaning is comple
different, because theua are not state variables. They a
related to the state variables by Eq.~2.3!. If one knows the
ua , one can deduce the variation of the state variab
xi(t)2xi(0) but in general not conversely.In part I, we have
been using thexi variables and we introduced the rate p
unit volumewr(x) of a transition,$xi%→$xi1(r i /V)%. It is
clear that

wr~x!5 (
a:ta

i
5r i

va
1~x!1 (

a:ta
i

5r i

va
2~x!. ~2.12!

The usual Kramers–Moyal expansion of the Mas
equation~see Refs. 2, 4, 11, and Part I! yields the usual
Fokker–Planck equation in concentration variables,

]p

]t
52(

i

]

]xi
~Aip!1

1

2V (
i , j

]2

]xi]xj
~Di j p!,

with the following expressions forAi andDi j :

Ai5(
r

r iwr5(
a

ta
i ~va

12va
2!, ~2.13!

Di j 5(
r

r i r jwr5(
a

ta
i t a

j ~va
11va

2!. ~2.14!

Finally, Eq. ~2.3! shows that the evolution remains, fo
all time, in the subspaceE(x(0)) of the state space of the
$xi%, given by parametric equations,
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E~x~0!!5H x5$xi%uxi5xi~0!1(
a

ta
i uaJ .

It is clear that this subspace is the same as the subs
introduced in Part I, Sec. II, because the set of the 2p vectors
6$ta

i %, a51,...,p is exactly the set of the vectors$r i%, and
each subspaceE(x(0)) carries a stationary probability dis
tribution. We shall assume henceforth that we reduce
situation to a given subspace E(x(0)), so that the dynamics
is irreducible and has a unique stationary state in this su
space.

Notice that when we do this, we can used variables
x1 ,...,xd , whered is the dimension ofE(x(0)), to param-
etrize E(x(0)). The other variablesxd11 ,...,xs are still
present~so that the chemical processesa are the same! but
they are certain linear functions of thex1 ,...,xd .

In Part I, we have introduced the HamiltonianHM(x,z)
of the Master equation,

HM~x,j!5(
r

wr~x!~er ,z21!,

wherez i is the conjugate variable ofxi and

r •j5(
i

r ij i .

Let us define now

pa5(
i

ta
i j i ,

~2.15!

xi5xi~0!1(
a

ta
i ua

then using Eq.~2.12!, the master HamiltonianHM8 in (u,p)
variables reduces to the master HamiltonianHM in (x,j)
variables,

HM8 ~u,p!5HM~x,j!. ~2.16!

In particular, if F(x) is a solution of the Hamilton–Jacob
equation,

HMS x,
]F

]x D50, ~2.17!

then the function,

c~u!5FS H xi~0!1(
a

ta
i uaJ D

induces a solution of the Hamilton–Jacobi equation in
progress variable form,

HM8 S u,
]c

]u D50 ~2.18!

because

]c

]ua
5( ta

i ]F

]xi
.

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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But conversely, a solutionc(u) of the Hamilton–Jacob
Eq. ~2.18! does not necessarily produce a function in t
state variablesx anda fortiori does not define a solution o
Eq. ~2.17!.

E. Free energy and rate constants in the
unconstrained system

We consider now the vesselV, in which thep processes
take place, but we switch off the exchanges of moleculesAl ,
l 51,...,s̄ with the reservoirs~but still maintaining the tem-
peratureT constant!, so that the concentrations xi and al

vary freely according to the natural chemical processesa
51,...,p in the vessel. The state will then reach a therm
equilibrium. At thermal equilibrium, the probability distribu
tion on the state space, which consists now of the fre
varying concentrationsxi andal , is for largeV,

peq~$xi%,$al%!;U0 expS 2
VF~x,a!

kBT D , ~2.19!

whereF is the free energy~of the state~x,a!! per unit vol-
ume,T is the temperature, andU0 is a prefactor. At equilib-
rium, all processesa satisfy the condition of detailed ba
ance, which can be written asymptotically, for largeV, as

va
1~x,a!expS 2

V

kBT
F~x,a! D

5va
2~x,a!expS 2

V

kBT
FS H xi1

ta
i

V J ,H al1
ta
l

V J D D ,

whereta
l 5n2a

l 2n1a
l , from which we deduce

kBT log
va

2

va
1 5(

i

]F

]xi
ta

i 1(
l

]F

]al
ta
l for all a.

~2.20!

For perfect gases or solutions, one assumes usually tha
va

6 are given by

va
65ka

6S)
i

x
i

n6a
i D S)

l
a

l

n6a
l D , ~2.21!

whereka
6 are temperature dependent constants. It is imm

diate to check that the usual partial equilibrium form10

F~x,a!5(
i

Fi~xi !1(
l

Fl~al ! ~2.22!

~whereFi is the free energy of the ideal gas law at tempe
ture T and concentrationsxi! satisfies Eq.~2.20!. In fact, the
chemical potentials are

m i5
]F

]xi
5

dFi

dxi
5kBT logxi1 f i~T! ~2.23!

and Eq.~2.20! reduces to the equation

kBT log
ka

2

ka
1 5(

i
ta

i f i~T!1(
l

ta
l f l~T!. ~2.24!

Here eachf i(T) is calculed using the partition functions o
the internal degrees of freedom of the speciesXi and Eq.
~2.24! is the usual expression for the equilibrium consta
Downloaded 22 Jan 2004 to 152.66.105.22. Redistribution subject to A
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Ka,eq of the processa in term of the partition function of the
internal degrees of freedom of the species appearing in
processa.

In many circunstances, like for imperfect gases or so
tions, electrolytes, etc..., one needs a more general form
tion of the free energyF(x,a), not necessarily of the form o
Eq. ~2.22!. This is why we shall work with the most gener
free energyF(x,a).

From Eq.~2.20!, it is easy to see that for alla,

va
1FexpS 1

kBT

]F

]ua
D21G1va

2FexpS 2
1

kBT

]F

]ua
D21G50,

~2.25!

where

]F

]ua
5(

i

]F

]xi
ta

i 1(
l

]F

]ul
ta
l ~2.26!

so thatF satisfies the Hamilton–Jacobi equation~2.8!,

HM8 S u,
1

kBT

]F

]u D50

with HM8 given by Eq.~2.10!, where, invb
6 , one uses the

variables

xi5xi~0!1(
a

ta
i ua ,

al5al~0!1(
a

ta
l ua .

III. DISSIPATION OF ENERGY AND OF INFORMATION

A. Dissipation of information

From now on, we shall assume again that, on a giv
subspaceE(x(0)), thestate of the vessel reaches a station
statep(x);U0 exp(2VF) with the concentrationsal being
entirely controlled by the reservoirs and having fixed var
tions al(t).

If we consider a statex5$xi%, it evolves macroscopi-
cally according to the deterministic equations,

dxi

dt
5Ai~x!5(

a
ta

i ~va
12va

2!.

The value of the state functionF evolves as

dF

dt
5(

i

]F

]xi

dxi

dt
5(

i ,a
~va

12va
2!

]F

]ua
. ~3.1!

We know from Sec. II E, thatHM8 (u,(]F/]u))50. But ex

21>x, so that

05(
a

Fva
1S expS ]F

]ua
D21D1va

2S expS 2
]F

]ua
D21D G

>(
a

~va
12va

2!
]F

]ua
.

As a consequence, we obtain the inequality

]F

dt
<0. ~3.2!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Moreover, the equality is attained if and only if for eacha,
va

1(]F/]ua)5va
2(]F/]ua)50. In particular, if the deter-

ministic state reaches a stationary pointxi
(0) , for which

Ai(x
(0))50, then dF/dt50, and ]F/]ua50 or va

15va
2

50.
The quantity dF/dt computed along a deterministic tra

jectory is always negative. It can be interpreted as a dis
pation of information per unit time.

In fact, VF(x) can be considered as the average inf
mation which is obtained when the system is observed in
statex rather than being stochastically distributed with t
stationary probability distribution ps(x);exp(2VF(x)),
which is the sate of lowest information, when the system
coupled to the various reservoirs of heat and of chem
speciesAl . We have

VF~x!.(
y

d~y2x!log
d~y2x!

ps~y!
[2 log ps~x!, ~3.3!

whered(y2x) is the Dirac distribution atx. The sum of Eq.
~3.3! is really on the space of discrete statesx5@ni /V#, so
that d(y2x) is in fact a Kronecker symbol. Along a dete
ministic path,F decreases with time while the statex tends
to a deterministic stationary state which is a local minimu
of F.

More generally, we can define the relative informati
~see Refs. 7–9, 14! of a probability distributionsp(x,t) as

I ~pups!5(
y

p~y,t !log
p~y,t !

ps~y!
~3.4!

for any stochastic system evolving according to a Mark
process with stationary stateps .

This quantityI (pups) is the average information gaine
if one knows that the system is in the statep(y,t) at time t,
rather than in the state of lowest informationps(y) ~given
the reservoirs or, the stochastic mechanisms!. I (pups) is the
opposite of the relative entropyS(pup0) used by various au
thors ~see Refs. 7–9 and 14!.

B. Dissipation of energy

We consider now the variation of the free energy alo
the deterministic trajectory, namely,

dF

dt
5(

i

]F

]xi

dxi

dt
1(

l

]F

]al

dal

dt

which we write as

dF

dt
5(

i

]F

]xi

dxi

dt
1(

l

]F

]al
Fdal

dt G
c

2(
l

]F

]al
S Fdal

dt G
c

2
dal

dt D , ~3.5!

where@dal /dt#c is the variation of theal due to the various
chemical processesa in the vesselV, so that

Fdal

dt G
c

5(
a

~va
12va

2!ta
l ~3.6!
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and @dal /dt#c2(dal /dt) is the actual variation of the con
centrational in the reservoir.

In Eq. ~3.5! the first two terms are, using Eq.~2.26!,

(
a

~va
12va

2!S (
i

ta
i ]F

]xi
1(

l
ta
l ]F

]al
D

5(
a

~va
12va

2!
]F

]ua
. ~3.7!

Now Eq. ~2.25! says that for eacha,

05va
1FexpS 1

kBT

]F

]ua
21D G1va

2FexpS 2
1

kBT

]F

]ua
D21G

>~va
12va

2!
1

kBT

]F

]ua
,

so that we deduce

(
i

]F

]xi

dxi

dt
1(

l

]F

]al
Fdal

dt G
c

5( ~va
12va

2!
]F

]ua
<0.

~3.8!

On the other hand, the quantity in Eq.~3.5!,

w[2(
l

]F

]al
S Fdal

dt G
c

2
dal

dt D 52(
l

ml S Fdal

dt G
c

2
dal

dt D
~3.9!

is the work given to the system by the reservoirs to impo
the evolutional(t) for each concentrational in the vesselV,
where we have denoted byml the chemical potential with
respect to the speciesAl ,

ml5
]F

]al
.

Then, from Eqs.~3.5! to ~3.9!,

dF

dt
2w<0 ~3.10!

and the quantity dF/dt2w is the dissipation of energy in th
system, per unit time.

C. Inequality between the dissipation of information
and of energy

It is proven in Appendix A that the dissipation of info
mation and the dissipation of energy satisfy the fundame
inequality,

1

kBT S dF

dt
2wD<

dF

dt
<0, ~3.11!

so that, in absolute value the dissipation of information
always less than the dissipation of energy. Moreover, ther
equality if and only if we have an equilibrium situation.

This inequality has been derived in Ref. 10 in a sligh
more restrictive situation. It is completely general~for reac-
tion diffusion systems at a fixed temperature!. This is differ-
ent from the usual inequalities for the rate of production
entropy given by various authors~see Refs. 2 and 12!. The
main reason is that for non equilibrium situations, it is n
easy to relate directly entropy production and energy di
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pation. In fact, heredF/dt is not an absolute production o
entropy ~as in Refs. 2 and 12! but a production of relative
entropy as discussed at the end of Sec. III A, and below.

IV. INFORMATION POTENTIAL IN THE CONSTRAINED
SYSTEM

In this section, we shall assume that the free ene
of the whole vesselV is a given functionF(x,a) of the
various concentrations, the temperatureT being fixed. We
recall Eq.~2.20!,

kBT log
va

2

va
1 5(

i

]F

]xi
ta

i 1(
l

]F

]al
ta
l . ~4.1!

The reservoirs maintain a fixed evolutional(t) for each
concentration of the speciesAl . We call the chemical poten
tials,

m i5
]F

]xi
, ml5

]F

]al
. ~4.2!

We would like to define a solution of the Hamilton J
cobi equationHM8 (u,(]C/]u))50 in the progress variables

A. The action of the reservoirs

We shall assume that the reservoirs of the$Al% act in
such a way as to maintain constant the chemical potent
ml with respect to al for all l 51,...,s̄, at a value ml

5ml
(0) .
For example, when the so-called partial equilibrium si

ation holds, namely,

F~x,a!5F1~x!1F2~a!, ~4.3!

then theml5(]F2 /]al)(a) depend only ona and our hy-
pothesis means that the reservoirs maintain the conce
tions al fixed, which is the standard assumptions f
reaction-diffusion systems. In general, however, we sh
show below that the constancy of the chemical potentielsml

is a more natural condition. In this case, we assume t
each time a processa occurs in the vesselV, the reservoirs
provide to the vessel a quantitysa

l of the speciesl, in such a
way that, for alll 51,...,s̄ and alla one has

(
i

]ml

]xi
ta

i 1(
k

]ml

]ak
~ ta

k 1sa
k !50. ~4.4!

Equations~4.4! for l 51,...,s̄ are the mathematical expre
sions of the hypothesis of the constancy of the chemical
tentialsml . It should be pointed out that Eq.~4.4! expresses
the fact all theml(x,a) are maintained constant by the actio
of reservoirs. In fact, theml(x,a) are stochastic variables
the increment ofml in time Dt is

Dml5(
a

S (
i

]ml

]xi
ta

i 1(
k

]ml

]ak
~ ta

k 1sa
k ! DDua ,

Dua being the increment in timeDt of the progress variable
ua of reactiona. But, for givenx,a, theDua are independen
random variables. Thus,Dml50 with probability 1, if and
only if the coefficients of all theDua are 0, namely, if Eq.
~4.4! holds for alla, and determines the quantitiessa

k .
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Remark: If it is assumed as usual that the concentratio
al , considered as stochastic variables, are maintained
stant by the reservoirs, this implies the relation

ta
k 1sa

k 50 for all a and k, ~4.48!

which will replace Eq.~4.4! under this assumption. Cond
tions ~4.4! and ~4.48! are equivalent when Eq.~4.3! holds.
This is the case in many situations~see Appendix B!. How-
ever, it seems more natural to assume that the reserv
maintain the chemical potentials constant for each spaceAl

since the equilibrium conditions between the system and
reservoirs~with respect to the speciesAl! are expressed by
the equality of these chemical potentials in the system an
the reservoirs.

It could be argued that Eqs.~4.4! or ~4.48! express very
strong controls on each speciesAl , which are difficult to
implement in actual systems. Nevertheless, the hypothese
the constancy of speciesAl are usually assumed in work
about the Master equation in chemical contexts. Furth
more, we show in Appendix B, that such hypotheses
justified provided theAl are local concentrations of the co
responding species, near the interface between the sy
and the reservoirs.

B. Solution of the Hamilton–Jacobi equation in
progress variables

In the function log(va
2/va

1) defined in Eqs.~4.1!, we
shall replacexi andal by the values

xi5xi~0!1(
a

ta
i ua ,

~4.5!
al5al~0!1(

a
~ ta

l 1sa
l !ua .

These expressions give the actual values of thexi and
the al , knowing their initial values, afterua processes of
type a, a51,...,p have occurred. In particular, by definition
the state$xi% of the system remains on the subspaceE(x(0))
as defined in Sec. II D. When all thexi andal are replaced by
their expressions of Eqs.~4.5!, the log(va

2/va
1) are functions

of the progress variables$ua%, depending parametrically o
the initial concentration$xi(0)% and $al(0)%. We prove in
Appendix C, that

]

]ub
S log

va
2

va
1D 5

]

]ua
S log

vb
2

vb
1D . ~4.6!

As a consequence,we can define a function
C(uux(0),a(0)) of the u, depending parametrically on the
initial values x(0),a(0) of the concentrations such that

]c

]ub
5 log

vb
2

vb
1 , ~4.7!

and C is unique up to an additive constant.
Clearly,C will satisfy for anyb,

vb
1FexpS ]c

]ub
D21G1vb

2FexpS 2
]c

]ub
D21G50, ~4.8!
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and a fortiori, it satisfies the Hamilton–Jacobi equation
progress variables,

HM8 S u,
]c

]u D50. ~4.9!

We shall show now that the new solutions satisfying E
~4.7! corresponds to a very special path in term of t
progress variables, namely the ‘‘antideterministic path.’’ W
recall here that the usual kinetic deterministic path cor
sponds to the trivial solutionF50 of the Hamilton–Jacob
equation,

HM~x,¹F!50.

C. The antideterministic path in progress variables

As we have said at the end of Sec. III C, all the resu
proved in Part I, forHM(x,]F/]x)50 are still valid for the
HM8 Eq. ~4.9!. In particular, we can define the antidetermi
istic path in Sec. V of Part I, by the formula

dua

dt
5

]HM8

]pa
5va

1epa2va
2e2pa,

pa5
]c

]ua
5 log

va
2

va
1,

so that the antideterministic path satisfies

dua

dt
5va

22va
1 . ~4.10!

Thus, the antideterministic path in progress variables is
deterministic path run backwards in time.

D. Comparison of C with the free energy

We have constructed, for givenx(0) anda(0), thefunc-
tion C(uux(0),a(0)) of the progress variables using Eq
~4.7!. We can now compute the difference

W~uux~0!,a![F~x,a!2kBTc~uux~0!,a!, ~4.11!

wherex,a are replaced by their expressions of Eqs.~4.5! in
term of the initial valuesx(0),a(0), and of theprogress
variablesu. It is easy to see from Eqs.~4.11!, ~4.7!, and~4.1!
that

]W~uux~0!,a!

]ub
5(

l

]F

]al
sb

l 5(
l

ml
~0!sb

l ,

ml
(0) being the fixed value of the chemical potentialml .

The deterministic evolution ofW is then

dW~uux~0!,a!

dt
5(

l ,b
ml

~0!sb
l ~vb

12va
2!

becausedub /dt5vb
12vb

2 . So comparing to Eq.~3.9! we
see that

dW~uux~0!,a!

dt
5w ~4.12!
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is the work done by the reservoirs per unit time, during t
evolution of the vessel and the reservoirs. Comparing n
Eqs.~4.11! and ~4.12!, we see that

dF

dt
2w5kBT

d

dt
c~uux~0!,a~0!!<0 ~4.13!

so that kBT(d/dt)c(uux(0),a(0)) is the dissipation of en-
ergy per unit time.

E. The function c in the space of concentrations

We have constructed a functionc(uux(0),a(0)) on the
space of progress variables using Eq.~4.7!, which is
uniquely defined up to an additive constant. We would like
know if c corresponds to a state functionc̄(x,a), using the
substitution defined by the progress variables of Eqs.~4.5!,

xi5xi~0!1(
a

ta
i ua ,

~4.14!

al5al~0!1(
a

~ ta
l 1sa

l !ua .

We shall prove the following facts in Appendix C:
~i! Let us assume that there exists a thermodynamic e

librium state( x̄,ā), so that

vb
2~ x̄,ā!5vb

1~ x̄,ā! for all b,
~4.15!

ml~ x̄,ā!5ml
~0! for all l .

Then there exists a functionc̄(x,aux̄,ā) such that

c̄S xi~0!1( ta
i ua ,al~0!1( ~ ta

l 1sa
l !uaux̄,āD

5c~uux~0!,a~0!!. ~4.16!

Moreover, we have

c̄~x,aux̄,ā!5
1

kBT S F~x,a!2(
i

m i~ x̄,ā!xi2(
l

ma
l al D 1C

~4.17!

for a certain constant C which depends of x(0),a(0),x̄,ā.
~ii ! If one chooses another solution( x̄8,ā8) of Eqs.

~4.15!, then the functionc̄(x,aux̄,ā)2c̄(x,aux̄8,ā8) is con-
stant during the evolution given by the progress variab
@see Eq.~4.17!#.

~iii ! The functionc̄(x,aux̄,ā) satisfies the Hamilton–
Jacobi equation associated with the Master equation,

(
r

wr~x,a!FexpS (
i

r i

]c̄

]xi
D 21G50 ~4.18!

provided that in this equation, ~x,a! are replaced by their
expressions (4.5) in term of the progress variables.

Thus, the functionc of the progress variablesu corre-
sponds to a state functionc̄ if the conditions imposed by the
constraints allow the existence of a detailed balance equ
rium.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F. The case of a partial equilibrium free energy

We assume now that Eq.~4.3! holds

F~x,a!5F1~x!1F2~a!. ~4.19!

In Sec. IV A, we have seen that, in this case, the evo
tion maintaining the chemical potentialml of the speciesAl

is constant, such that,

sa
l 52ta

l

as in Eq.~4.48!, i.e., the reservoirs cancel exactly the acti
of the chemical processes. In this situation, the concentra
al of the chemical speciesAl can be considered as fixe
parameters. The functionc̄(xux̄,a) satisfies more precis
properties than those of Sec. IV E. In fact, it can be asser
under these conditions, that

~i8! There exists a functionc̄(xux̄,a) such that

c̄S xi~0!1( tb
i ubUx̄,aD5c~uux~0!,a! ~4.20!

if and only if there exists a state$x̄i% such that$x̄,a% is a
thermodynamic equilibrium state, i.e., all processes are
equilibrium at$x̄,a%,

vb
1~ x̄,a!5vb

2~ x̄,a! for all b ~4.21!

and we have

c̄~ x̄ux,a!5
1

kBT S F~x,a!2(
]F1

]xi
~ x̄,a!xi D1C,

~4.22!

where C is a constant.
~ii 8! If x̄8 is another solution of Eq. (4.21) (for given a,

c̄(xux̄,a)2c̄(xux̄8,a) restricted to the subspace E(x(0)) is
a constant.

~iii 8! As a function of x,c̄(xux̄,a) satisfies the Hamilton
Jacobi equation of the Master equation,

(
r

wr~x!FexpS (
i

r i

]c̄

]xi
D 21G50

and the restriction ofc̄(xux̄,a) to E(x(0)) satisfies the
Hamilton Jacobi equation of the Master equation on the
variant subspace E(x(0)).

~iv8! If there exists an isolated attracting point of th

vector field Ai(x,a) on E(x(0)), thenc̄(xux̄,a) on E(x(0))
is the unique regular solution of the Hamilton–Jacobi equa-
tion of the Master equation on the subspace E(x(0)). This

means thatc̄(xux̄,a) on E(x(0)) is the information potential
F itself.

The proof of these statements is given in Appendix
We have seen above, that the functionc(uux(0),0) is the
restriction to the subspaceE(x(0)) ~parametrized by the
progress variablesub! of a functionc̄(xux̄,a) if and only of
one can find a statex̄ such that (x̄,a) is the thermal equilib-
rium state. But,a priori, the statex̄ does not necessaril
belong to the same subspaceE(x(0)). Finally, the following
fact can be easily derived.

~v! The choice of x̄will depend in general on s–d free
parameters (where s is the number of the species Xi and d is
Downloaded 22 Jan 2004 to 152.66.105.22. Redistribution subject to A
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d,

n

-

.

the dimension of the space E(x(0))!. It is then always pos-
sible to choose x¯ in the subspace E(x(0)) for any given
x(0).

These general statements can be confirmed by exp
calculations in the case where there is only one chem
spaces varying freely in the volumeV. In this situation, ev-
erything can be calculated explicitly, in particular the no
equilibrium information potential~see Part I!.

V. CONCLUSION

In this article, which concludes the first two parts of o
general study of nonequilibrium reaction-diffusion system
we have mainly considered the situation of systems wh
are maintained out of equilibrium by external constrain
Because of this nonequilibrium situation, the standard th
modynamics potentials are not fully appropriate to study
approach to the stationary nonequilibrium state.

We have defined an information potential in progre
variables and we have shown that it can be defined v
easily in term of its first order partial derivatives. It is not
general a state function, but it gives exactly the work p
vided by the reservoirs to maintain the system in a noneq
librium situation. Moreover we have shown that the inform
tion potential in progress variables is a state function if
reservoirs maintain conditions such that the system reach
thermal equilibrium. In this case, it is identical to the info
mation potential in the concentration variables. We have a
discussed in detail the action of the reservoirs and we h
shown that a natural condition is that the reservoirs main
constant certain chemical potentials rather than the con
trations. Finally, we have shown that the dissipation of e
ergy is always larger or equal to the dissipation of inform
tion ~in absolute value!, the equality holding only at
equilibrium. Our results are restricted to reaction-diffusi
systems at a fixed temperature. Further publications will p
pose an extension to variable temperature systems as we
a more detailed study of the actions of the reservoirs in s
chastic dynamics contexts.13–15

APPENDIX A: PROOF OF THE INEQUALITY „3.11…

We have from Eqs.~3.5!, ~3.9!, and~3.8!, the equality,

dF

dt
2w5(

i

]F

]xi

dxi

dt
1(

l

]F

]al
Fdal

dt G
C

5(
a

~va
12va

2!
]F

]ua
, ~A1!

dF

dt
5(

a
~va

12va
2!

]F

]ua
,

pa5
]F

]ua
, pa5

1

kBT

]F

]ua
, ~A2!

so thatpa satisfies the Hamilton–Jacobi equation,

(
a

@va
1~epa21!1va

2~e2pa21!#50 ~A3!

andpa satisfies the detailed balance condition,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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va
1~epa21!1va

2~e2pa21!50 for all a. ~A4!

From Eqs.~A3! to ~A4!, by subtraction we obtain

(
a

~va
1~epa2epa!1va

2~e2pa2e2pa!!50. ~A5!

But ey2ex>ex(y2x) with equality only if y5x so that
from Eq. ~A5!,

(
a

~va
1epa~pa2pa!1va

2e2pa~2pa1pa!!<0.

By Eq. ~A4!, pa5 log(va
2/va

1), so that

2( ~va
12va

2!~pa2pa!<0 ~A6!

which, by Eqs.~A1!, ~A2! implies inequality~3.11!.
In Eq. ~A6!, we have equality if and only ifpa5pa for

all a, or

F5
F

kBT
1cst,

which means that we are at equilibrium.

APPENDIX B: PROOF OF EQ. „4.6…

We have to prove that for alla, b,

]

]ua
S log

vb
2

vb
1D 2

]

]ub
S log

vb
2

vb
1D 50

or

]

]ua
S (

i
m itb

i 1(
l

ml tb
l D 2

]

]ub
S (

i
m ita

i 1(
l

ml ta
l D 50.

~B1!

Now, by definition of our constraints, theml stay con-
stant in the evolution of the system, due to the action
reservoir, so we have to verify that

]

]ua
S (

i
m itb

i D 2
]

]ub
S (

i
m ita

i D 50

or

(
j

F ]xj

]ua

]

]xj
S (

i
m itb

i D 2
]xj

]ub

]

]xj
S (

i
m ita

i D G
1(

k
F ]ak

]ua

]

]ak
S (

i
m itb

i D
2

]ak

]ub

]

]ak
S (

i
m ita

i D G50. ~B2!

Here]xj /]ua5ta
j , ]ah /]ua5ta

h1aa
h according to Eq.

~4.5!. Using]2F/]xi]xj5]m i /]xj5]m j /]xi , the first sum-
mation in Eq.~B2! disappears, so that Eq.~B2! reduces to

(
k,i

@~ ta
k 1sa

k !tb
i 2~ tb

k 1sb
k !ta

i #
]m i

]ak
50. ~B3!

Now by Eq.~4.4!,
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ta
k 1sa

k 52(
l , j

Mkl
21 ]ml

]xj
ta

j ,

whereMhl5]ml /]ak and M 21 is the inverse of the matrix
M. Thus, Eq.~B3! reduces to

(
k,i , j ,l

Mkl
21 ]ml

]xj

]m i

]ak
~ta

j tb
i 2tb

j ta
i !50. ~B4!

But

(
(kl

Mkl
21 ]ml

]xj

]m i

]ak
5(

kl
Mkl

21 ]2F

]al]xj

]2F

]ak]xi

is a symmetric quantity ini,j becauseMkl is ]2F/]ak]al and
so M 21 is symmetric and Eq.~B4! obviously holds.
Remarks

~1! If, instead of Eq.~5.4! expressing that the chemica
potentialsml are constant, we assume that the concentrati
al are constants, it is easily found that Eq.~B1! is equivalent
to

(
i ,k

~ta
i tb

k 2tb
i ta

k !
]mk

]xi
50. ~B5!

Equation~B5! obviously holds if themk are functions of the
al only, in which case the constancy of the chemical pot
tials ml is indeed equivalent to the constancy of the conc
trationak . Otherwise, Eq.~B5! implies relations between th
x and thea which, in general, are not compatible with th
kinetic equations. So, in general, Eq.~4.6! holds only if we
assume the constancy of the chemical potentialml .

~2! It has been observed in Sec. V A, that relations~4.4!
or ~4.48! imply a very strong control on the speciesAl which
could be difficult to realize in practice. Nevertheless, suc
control could be effective, at least in the following situatio
All species in the system are free~i.e., evolve according the
chemical laws!. However some of them, sayXl can be di-
rectly and rapidly exchanged with the reservoirs by diffusi
processes for example at the interfaces with the reserv
This can be expressed by pseudochemical reactions,

Xl�Al ,

with Al denoting the same chemical species asXl , but con-
sidered inside the reservoirs. If the rate of exchange fromAl

to Xl is assumed to be constant~which it a standard hypoth
esis!, this will correspond to a strictly constant concentrati
or chemical potential forAl . On the other hand the chemica
potential forAl is independent of theX, so that we recover
the general formalism, just by considering thatAl is also a
chemical species of the system.

APPENDIX C: THE FUNCTION c AS A STATE
FUNCTION

We recall from Eqs.~4.7! and ~4.1! that

]c

]ub
5 log

vb
2

vb
1 5

1

kBT S (
i

m itb
i 1(

l
ml

~0!tb
l D

so its differential is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



t
m
n

t

n

-

e in

689J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Thermodynamics of reaction-diffusion systems
dc5
1

kBT S (
i ,b

m itb
i dub1(

l ,b
ml

~0!tb
l dubD . ~C1!

1. Proof of „i…, Sec. IV E

c comes from a functionc̄ depending onx, a @using the
substitution of Eqs.~4.5!#, if and only if dc can be rewritten
as a linear combination of thedxi anddal with the variations
given by Eqs.~4.5!,

dxi5( tb
i dub ,

~C2!

dal5( ~ ta
l 1sa

l !dua ,

with coefficients depending on~x,a! ~and no more onub!.
From Eq.~C1! using Eqs.~C2!, we have

dc5
1

kBT S (
i

m i dxi1(
l

ml
~0!dal D

2
1

kBT (
l ,b

ml
~0!sb

l dub . ~C3!

In Eq. ~C3! the first term is exactly

1

kBT
dF~x,a!

becausem i5]F/]xi , ml
(o)5]F/]al maintained constan

during the evolution. So we need to prove that the last su
mation in Eq.~C3! can be rewritten as a linear combinatio
of thedxi anddal given by Eq.~C2!, namely, to findg i ,u l ,

(
l ,b

ml
~0!sb

l dub5(
i

g i dxi1(
l

u l dal

5(
i ,b

g itb
i dub1(

l ,b
u l~ tb

l 1sb
l !dub .

So we must have for allb,

(
l

ml
~0!sb

l 5(
i

g itb
i 1(

l
u l~ tb

l 1sb
l !. ~C4!

Under the hypothesis of~i! of Sec. IV E, there exists a (x̄,ā)
with

vb
2~ x̄,ā!5vb

1~ x̄,ā!,

ml
~0!5ml~ x̄,ā!.

From Eq.~4.1!, we have for allb,

(
l

m i~ x̄,ā!tb
i 1(

l
ml

~0!tb
l 50, ~C5!

and we can solve Eq.~C4! with

u l5ml
~0! , g i5m i~ x̄,ā!.

Then Eq.~C3! becomes

dc5
1

kBT S dF~x,a!2(
i

m i~ x̄,ā!dxi2(
l

ml
~0!dal D ,
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and we can take

c̄~x,aux̄,ā!5
1

kBT S F~x,a!2( m i~ x̄,ā!xi

2( ml
~0!al D1C, ~C6!

whereC is a constant adjusted so that

c̄~0ux~0!,a~0!!5c̄~x~0!,a~0!ux̄,ā!).

This proves the assertion~i! of Sec. IV E.

2. Proof of „ii …, Sec. IV E

Let us consider two equilibrium states (x̄,ā) and
( x̄8,ā8). From Eq.~C6!, one has

c̄~x,aux̄,ā!2c̄~x,aux̄8,ā8!

52
1

kBT S (
i

~m i~ x̄,ā!2m i~ x̄8,ā8!!xi D 1cst.

We replacexi by its value of Eq.~4.5!,

xi5xi~0!1( tb
i ub ,

and use Eq.~C5!, to deduce that for allb,

(
i

m i~ x̄,ā!tb
i 2( m i~ x̄8,ā8!tb

i 50,

so when we replacex anda by their expression in term of the
progress variables, given by Eq.~4.5!, we see that

c̄~x,aux̄,ā!2c̄~x,aux̄8,ā8!5cst.

3. Proof of „iii …, Sec. IV E

Take c̄ as in Eq. ~C6! and calculate]c/]ub for the
evolution given by Eq.~C2!, to obtain, using the fact tha
ml5]F/]al is constant and equal toml

(0) ,

]c

]ub
5

1

kBT (
i

„m i~x,a!2m i~ x̄,ā!…tb
i 5(

i
tb

i ]c̄

]xi
.

Now, c satisfies

(
b

vb
1FexpS ]c

]ub
D21G1(

b
vb

2FexpS 2
]c

]ub
D21G50

@provided invb
1 , vb

2 , x, anda are replaced by the evolutio
of Eq. ~C2!#. So this is

(
r

wrFexpS (
i

r i

]c̄

]xi
D 21G50 ~C7!

provided in this equation,x and a are replaced by their ex
pressions of Eq.~C2!. For a situation of partial equilibrium
free energy, the previous properties are made more precis
Sec. III F.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



is

t

-

hat
ster
east

s

690 J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Gaveau, Moreau, and Toth
4. Proof of „i8…, Sec. IV F

We have seen in the assertion~i! of Sec. IV E that the
condition of finding (x̄,a) ~thermodynamic equilibrium
state! is a sufficient condition. To see that this condition
also necessary we come back to Eq.~C1!. The functionc

comes from a state functionc̄(x), if and only if dc can be
written as a linear combination of thedxi . In Eq. ~C1!, we
see that

(
i ,b

m itb
i dub5dF1~x!. ~C8!

The second sum in Eq.~C1! is a linear combination of the
dxi , if and only if can findg i with,

(
l ,b

ml
~0!tb

l dub52( g itb
i dub

or for all b,

(
l

mb
~0!tb

l 1( g itb
i 50. ~C9!

We can always find (x̄i) such that

g i5
]F1

]xi
~ x̄! for all i ,

while ml
(0)5]F2 /]al(a).

Then Eq.~C9! means exactly that

vb
1~ x̄,a!5vb

2~ x̄,a!

which is the equilibrium condition. Then Eq.~5.26! is evi-
dent from Eq. ~C6! in view of the fact thatF5F1(x)
1F2(a).

The proofs of assertions~ii ! and ~iii !, Sec. IV F are
straightforward from the corresponding assertions~ii !, ~iii ! of
Sec. IV E but heresa

l 52ta
l so that theal keep a constan

value, so Eq.~C10! is valid for all x in the spaceE(x(0)).
But now, c̄ depends onx(0), only through an additive con
stant @see Eq.~5.26! for c̄#, so that Eq.~C10! is valid on
every subspaceE(x(0)) andthus, is valid everywhere in the
space of the concentrationsx.
Downloaded 22 Jan 2004 to 152.66.105.22. Redistribution subject to A
5. Proof of „iii 8…, Sec. V F

We have seen in assertion~iii ! that c̄ satisfies the
equation

(
r

wr~x,a!FexpS (
i

r i

]c̄

]xi
D 21G50 ~C10!

provided one replaces in this equation the variablesx anda
by their expressions in term of the progress variables,

xi5xi~0!1(
b

tb
i ub, al5al~0!1(

a
~ ta

l 1sa
l !ua .

6. Proof of „iv 8…, Sec. IV F

This is a consequence of Part I, where it is proven t
the Hamilton–Jacobi equation associated with the Ma
equation has a unique smooth solution when there is at l
one attracting zero of the deterministic vector fieldAi .
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