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Abstract

The relations between information, entropy and energy, which are well known in equilibrium
thermodynamics, are not clear far from equilibrium. Moreover, the usual expression of the classi-
cal thermodynamic potentials is only valid near equilibrium. In previous publications, we showed
for a chemical system maintained far from equilibrium, that a new thermodynamic potential, the
information potential, can be de4ned by using the stochastic formalism of the Master Equation.
Here, we extend this theory to a completely general discrete stochastic system. For this purpose,
we use the concept of extropy, which is de4ned in classical thermodynamics as the total entropy
produced in a system and in the reservoirs during their equilibration. We show that the statistical
equivalent of the thermodynamic extropy is the relative information. If a coarse-grained descrip-
tion by means of the thermodynamic extensive variables is available (which is the case for many
macroscopic systems) the coarse-grained statistical extropy allows one to de4ne the information
potential in the thermodynamic limit. Using this potential, we study the evolution of such sys-
tems towards a non-equilibrium stationary state. We derive a general thermodynamic inequality
between energy dissipation and information dissipation, which sharpens the law of the maximum
available work for non-equilibrium systems. c© 2002 Published by Elsevier Science B.V.

1. Introduction

The relations existing between information, entropy and energy are well known in
equilibrium thermodynamics and in the corresponding stochastic systems [1], thanks
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to the information de4nition of entropy [2]—although diGerent de4nitions of entropy
have been given [3], and their comparison remains a matter of discussion [3,4]. In fact,
near equilibrium, the classical thermodynamic potentials provide convenient tools for
studying the system evolution, energy dissipation and entropy production. However,
the usual expressions of these potentials in terms of macroscopic variables break down
far from equilibrium. Since most phenomena of theoretical and practical importance
correspond to non-equilibrium situations, much work has been devoted to extending
the thermodynamic de4nitions and to studying the behavior of entropy far from equi-
librium [1,5–8]. In previous publications [9], we addressed these important questions
in the speci4c case of chemical systems maintained far from equilibrium by external
constraints. In particular, we showed that a new thermodynamic potential, called infor-
mation potential, can be de4ned for them using the stochastic formalism of the Master
Equation and its Hamilton–Jacobi approximation. This information potential allows one
to study the evolution towards a non-equilibrium stationary state, and yield interesting
comparisons between energy and information dissipations.
In the present article, our main purpose is to extend this method and to de4ne the

information potential in the general case of a system whose microscopic evolution
is described by a jump process. In order to de4ne the thermodynamic quantities far
from equilibrium, we assume that in a mesoscopic, coarse-grained description, the sys-
tem can be characterized by stochastic, extensive variables obeying a Master Equation.
This method, however, makes necessary to de4ne the information content of the system
properly both on the microscopic and mesoscopic scales, and to relate it to thermody-
namic quantities. This will be done by using the relative information and its physical
counterpart, the statistical extropy of a stochastic system.
Relative information, which is just the negative of Kullback entropy [3], plays an

important role in studying the evolution of non-isolated systems towards a station-
ary distribution [3–8]. However, its physical meaning is not completely clear for open
systems maintained far from equilibrium by external constraints that are frequently con-
sidered in physico-chemistry. For this reason, we prefer to use the concept of extropy,
which is de4ned [10,11] as the total entropy produced by the system and the reservoirs
when they evolve up to equilibrium. This quantity is mainly used in thermodynamics
and in mathematical economics. It is clearly related to other thermodynamic potentials,
such as free energy, but it is more general since, for instance, it does not give a special
role to energy, and does not supposes the existence of a temperature. We shall show
that relative information can be interpreted as statistical extropy, and that it is possible
to relate the statistical extropy of a microscopic system to the similar quantity in a
coarse-grained description, and to the thermodynamic extropy. This method will allow
the general de4nition of the information potential [9,12]. In particular, thanks to the
information potential, it will be proved that the rate of energy dissipation is always
larger than the rate of information dissipation (up to temperature) during the evolution
to a non-equilibrium stationary state.
In the next section, we de4ne and study statistical extropy, and we compare it with

thermodynamic extropy, especially for systems in quasi-equilibrium. The third and main
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section of this paper addresses the case of open systems maintained out of equilibrium
by external constraints. The information potential of such systems is de4ned in relation
to statistical extropy. Its main properties are studied in a general way: they imply that
the information potential is a thermodynamic potential appropriate for studying far from
equilibrium systems.

2. Relative information and statistical extropy

This section summarizes some well known results concerning entropy and related
quantities that were obtained or discussed by a number of authors [1,3–8]. It also
emphazises the similarities and diGerences between the statistical, or microscopic, and
the thermodynamic, or macroscopic points of views, which is necessary for Section 3.

2.1. Relative information of a stochastic system

Let us consider a discrete stochastic system. Its states are denoted by {i}i=1; :::;N .
We will call these states “microscopic states”, or “microstates”, although they are not
necessarily the ultimate description of matter: they just represent the most detailed
description of the system which is available in the frame of a given study. Let pi(t)
be the probability to 4nd it in state i at time t. We assume that pi(t) satis4es the
Master Equation:

d
dt
pi =

∑
i′

(Wii′pi′ −Wi′ipi) ≡ L({pi}) ; (1)

where Wii′ is the transition rate for jumping from i′ to i. It is independent of t for a
time homogeneous process, which will be assumed from now on. Following Shannon
[2] we de4ne the information entropy S({pi}) by

S({pi}) =−
∑
i

pi lnpi : (2)

According to Shannon, −lnpi is the amount of information gained when the system
is observed in state i, if the a priori probability of i is pi. Thus, lnpi measures the
disorder associated to state i by the distribution {pi}, and S({pi}) is the average
disorder of {pi}.
If the states i are actually microscopic in the physical sense, S({pi}) is generally

considered [4] to be equal (up to the Boltzmann factor, which will be taken equal to
1) to the thermodynamic entropy when the system is in thermodynamic equilibrium.
The same assumption is made if the system is in a quasi-equilibrium state such that
the macroscopic properties of the system are completely described by the macroscopic
values of the thermodynamic variables. It is an important question to know if this
property is conserved when the states i are not physically microscopic, but result from
some coarse-grained description. This point will be partially addressed below, although
its complete discussion remains outside the scope of the present paper.
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We now consider two probability distributions {pi} and {qi} obeying the Master
Equation (1). Let us de4ne the relative information of {pi} with respect to {qi} as

S({pi}={qi}) =
∑
i

pi lnpi=qi (3)

S({pi}={qi}), which is just the opposite of the relative entropy, or Kullback entropy
[3], is the average disorder created by replacing {pi} by {qi}, the average being taken
on the initial distribution. It is also the average information lost when {pi} is replaced
by {qi}.
It is remarkable and well known [3,4,7–9,13] that this relative information is a

non-negative, non-increasing function of time for the evolution de4ned by the Master
Equation (1)

S({pi}={qi})¿ 0 ;

d
dt
S({pi}={qi})6 0 (4)

the equality holding, in both cases, if and only if pi =qi for any i (with the condition,
for the second inequality, that the system is irreducible: any state i can be reached
from any other state in a 4nite number of jumps). Thanks to these properties, relative
entropy or relative information have been used in many articles [4–8,14,15] to study
the asymptotic evolution of stochastic systems for large times. We shall assume now
on that the Master Equation (1) is irreducible, which implies that there is one unique
stationary distribution {p0

i }. Then, inequalities (4) hold, in particular, if {qi} is this
stationary distribution, and any solution of the Master Equation tends asymptotically
to {p0

i }.
The relative information S({pi}={p0

i }) can be considered as the e7ective informa-
tion contained in distribution {pi}. In fact, the stationary distribution {p0

i }, which is
asymptotically realized for any initial con4guration of the system, can be taken as the
lowest possible level of information. Then lnpi=p0

i is the information gained when we
learn that the probability of state i is pi, and S({pi}={p0

i }) is the average information
obtained when we know that the actual probability distribution is {pi}, rather than the
standard, stationary distribution {p0

i }. In the next section, it is shown that if {p0
i } is

an equilibrium distribution, the relative information S({pi}={p0
i }) is the microscopic

counterpart of the thermodynamic extropy, as remarked by diGerent authors [4,7–9,13].

2.2. Equilibrium system and statistical extropy

Let us assume that a homogeneous system is in contact with reservoirs, exchanging
with them the extensive quantities X�; �=0; 1; : : : ; n. Then, its equilibrium distribution
is {pe

i }

pe
i =

1
Ze exp

(
−
∑
�

�R�Xai

)
: (5)
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Here �R� is the reservoir intensive variable corresponding to the extensive quantity X�,
and X�i is the value of the extensive quantity X� of the system when it is in state
i (in general, state i is not completely de4ned by the {X�i}, and many states may
correspond to the same values {X�i}). The partition function Ze, which is de4ned from
the normalization of {pe

i }, is a function of {�R�}.
The thermodynamic quantities are connected to the statistical description of the sys-

tem by classical relations. The macroscopic value of X� is its average 〈X�〉, which is,
at equilibrium

〈X�〉e =−@ ln Ze

@�R�
: (6)

If the energy E plays a special role for the system under study, we give it the label 0
among the extensive variables X�: E = X0, and TR = l=�R0 is the reservoir temperature.
Then the non-equilibrium (generalized) free energy F can be de4ned as

F = 〈E〉 − TRS +
∑
�¿0

TR�R� 〈X�〉 (7)

and its equilibrium value Fe is

Fe =−TR ln Ze : (8)

The second principle implies that the maximum work that can be produced by the
system during its evolution to equilibrium is the opposite of the corresponding vari-
ation of F . The relations between energy and entropy, which are evoked by this
result, were the object of deep discussions by a number of authors [4–8]. How-
ever, energy is not necessarily de4ned for the systems considered here, and rather
than the variation of F , we shall generally prefer using the variation of S, which is
extropy.
In fact, the thermodynamic extropy � is [10,11] the total entropy produced by the

system and the reservoirs when they evolve up to equilibrium. The initial macroscopic
state of the system is characterized by the respective values �� and 〈X�〉 of its inten-
sive and extensive variables �. The thermodynamic equilibrium is determined by the
reservoir intensive variables �R� , and it is shown [10] that the thermodynamic extropy
is in the quasi-equilibrium approximation (see Section 2.3.)

� =
∑
�

(�R� − ��)〈X�〉 : (9)

In similarity with the de4nition of thermodynamic extropy, the statistical, or micro-
scopic extropy �({pi}={pe

i }) can be de4ned as the total entropy change of the system
and of the reservoirs when the system distribution evolves from {pi} to the equilibrium
distribution {pe

i }

�({pi}={pe
i }) =−

∑
i

pe
i lnp

e
i +

∑
i

pi lnpi +
∑
�

�R� (〈X R
� 〉e − 〈X R

� 〉) : (10)
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The last sum in the right-hand side of (10) is the entropy change of the reservoirs,
〈X R

� 〉e and 〈X R
� 〉 being, respectively, the equilibrium and initial average values of X� in

the reservoir. According to the de4nition of a thermodynamic reservoir, the intensive
quantities �R� are maintained to 4xed values for any evolution of the reservoirs.
In this section, we assume that all extensive quantities X� are conservative, i.e., for

all � the total value of X� in the system and in the reservoirs is constant during the
exchanges, so that

〈X R
� 〉e − 〈X R

� 〉= 〈X�〉 − 〈X�〉e : (11)

Using expression (5) of pe
i and the previous conservation laws, we get

�({pi})={pe
i }) = ln Ze +

∑
�

�R� 〈X�〉+
∑
i

pi lnpi

=
∑
i

pi lnpi=pe
i = S({pi}={pe

i }) : (12)

Thus, the statistical extropy �({pi}={pe
i }) is the relative information of {pi} with

respect to {pe
i }, i.e., it is the eGective information of the initial distribution {pi},

according to the 4nal remark of Section 2.1. It remains to connect it with thermody-
namic, macroscopic extropy.

2.3. Statistical interpretation of thermodynamic extropy

An important diGerence between thermodynamic and statistical extropies is that the
latter one is de4ned for any initial distribution {pi}, whereas thermodynamic extropy
only makes sense if the initial state is completely determined by the non-equilibrium
values of the macroscopic variables 〈X�〉, at least for a homogeneous medium. In
practice, this condition is often approximately realized, and this justi4es the use of
non-equilibrium classical thermodynamics for many systems. The macroscopic vari-
ables of these systems evolve very slowly compared with the microscopic degrees of
freedom, so that at any time t, the distribution {pi} is practically the quasi-equilibrium
distribution {p∗

i } corresponding to the average values 〈X�〉(t) at time t: this is the
adiabatic, or quasi-equilibrium approximation. The distribution {p∗

i } maximizes the
entropy, or minimizes the relative entropy, under the constraints of given values 〈X�〉(t).
Then the instantaneous intensive variables ��(t) of the system can be de4ned as the
Lagrange multipliers corresponding to these constraints, and we have

p∗
i (t) =

1
Z(t)

exp

(
−
∑
�

��(t)X�i

)
(13)

Z(t) = Z({��(t)}) being determined by the normalization of {p∗
i }; and {��(t)} by

〈X�〉(t) =− @
@��

ln Z�(t) : (14)
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We now show that the thermodynamic extropy � coincides with the statistical extropy
when the quasi-equilibrium approximation applies

� =�({p∗
i }={pe

i }) ≡ S({p∗
i }={pe

i }) : (15)

As a matter of fact, inserting (13) into (12) yields

S({p∗
i }={pe

i }) = ln Ze − ln Z +
∑
�

(�R� − ��)〈X�〉 : (16)

Now, if the set of extensive variables {X�} is complete in the sense that the set
of accessible states i of the system is completely de4ned by the {X�}, ln Z can be
expressed in terms of the intensive variables only. Since it should also be an extensive
quantity, it should vanish and we obtain

S({p∗
i }={pe

i }) =
∑
�

(�R� − ��)〈X�〉 (17)

which is the thermodynamic extropy � as given by (9).
In principle, the previous considerations should only apply for systems that remain

homogeneous during all their evolution, which would strongly limit their validity. How-
ever, it will be seen in Section 2.5 that they can be extended to inhomogeneous systems
in the frame of the local equilibrium approximation.

2.4. General comparison of statistical and thermodynamic extropies

Let us now consider a non-equilibrium distribution {pi(t)} and the quasi-equilibrium
distribution {p∗

i (t)} corresponding to the same average values 〈X�〉(t) as {pi(t)}, given
by expression (12). The diGerence between the statistical and thermodynamic extropies
is

S({pi}={pe
i })− S({p∗

i }={pe
i }) =−

∑
i

pi ln
p∗
i

pi
+
∑
i

(pi − p∗
i ) ln

p∗
i

pe
i
: (18)

However, the last sum in the right-hand side of (18) vanishes [10] because 〈X �〉 has
the same value when it is computed with {pi(t)} and with {p∗

i (t)}. Then
S({pi}={pe

i })− S({p∗
i }={pe

i }) =−
∑
i

pi ln
p∗
i

pi
¿ 0 (19)

the equality holding only if pi=p∗
i for all i. Thus, the statistical extropy is always larger

than the thermodynamic extropy, except if the quasi-equilibrium distribution is exactly
realized: then, statistical and thermodynamic extropies coincide, but this is generally
not true.
Now, in order that the adiabatic approximation be valid during the whole approach

to equilibrium (except, perhaps, during a transitory regime) it is necessary that {p∗
i (t)}

be an approximate solution of the Master Equation (7). As a consequence, according
to properties (4) of relative information, we have (at least approximately)

− d
dt
S({p∗

i }={pe
i })¿ 0 : (20)
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Furthermore, it can be shown that under appropriate assumptions the rate of statistical
entropy production is always larger than the rate of thermodynamic entropy production

− d
dt
S({pi}={pe

i })¿− d
dt
S({p∗

i }={pe
i })¿ 0 : (21)

Relations (20) and (21) seem quite reasonable, since the quasi-equilibrium distribu-
tion clearly contains less information, and fewer sources of disorder than the exact,
non-equilibrium distribution. However, inequalities (21) are not straightforward conse-
quences of our basic equations, because their validity requires non-trivial assumptions
that will be discussed elsewhere. Similar inequalities will be derived in Section 3 when
the system is described by means of its extensive variables, which represents another
case of reducing the information contents in its description.

2.5. Inhomogeneous systems

In the case of an inhomogeneous, spatially extended system, we assume that it is
divided into N cells, and the values of the macroscopic variables are given in each
cell. The cells are chosen to be much smaller than the total system, in order to be
approximately homogeneous, but still large enough to be considered as macroscopic.
Each extensive quantity in each cell can be exchanged with other cells and with the
reservoir, the total value of an extensive quantity being the sum of the values in each
cell and in the reservoirs. For energy, if de4ned, this assumption implies that the energy
interactions between cells can be neglected, as it is usually admitted in the multivariate
Master Equation describing reaction–diGusion systems [1]. It is convenient to consider
that a macroscopic variable has diGerent labels for diGerent cells. We will adopt this
convention from now on.
With the previous conventions, the adiabatic approximation described in Section 2.3

corresponds to the local equilibrium hypothesis [1,16]. This widely used hypothesis
considers that each cell is at a thermodynamic equilibrium, even if it is not equili-
brated with the other cells. Then, all cells are homogeneous but the intensive variables
can have diGerent values in diGerent cells. In these conditions, most of the foregoing
formulas hold, provided that at equilibrium each intensive variable corresponding to a
given physical quantity has the same value in all cells.
The local equilibrium approximation, introduced by Jaynes [16], does not take into

account time correlations [16–18], which may be important on a molecular time scale.
Nevertheless, it can be used on a macroscopic time scale [7] in many cases of great
practical importance. In particular, it is currently adopted as a 4rst approximation in the
kinetic theory of gases or in mechanics of continuous media. A similar but more general
hypothesis will allow us to extend the previous interpretation of relative information
to systems which can be described (at least approximately) in terms of stochastic
thermodynamic variables, when they are submitted to constraints that prevent them to
reach an equilibrium state. This is the purpose of next section.
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3. Non-equilibrium stationary state

3.1. Detailed balance

Let us assume that the distribution {pe
i (t)} is an equilibrium solution of the Master

Equation (1). As it was shown [15], 2 this implies that all possible processes given
by the transition rates Wi′i should be equilibrated, which is the well-known detailed
balance condition

Wi′ipe
i =Wii′pe

i′ : (22)

This dynamic de4nition of equilibrium implies stationarity, but it is obviously much
stronger. It is generally admitted, on the basis of the microscopic time reversibility of
physical laws, that detailed balance holds for elementary physical processes. However,
it imposes strong requirements on the transition rates, which may not be satis4ed
for stochastic processes representing complex phenomena. In this case, the stationary
distribution {p0

i } is a non-equilibrium stationary distribution. Such a non-equilibrium
stationary distribution can also exist in open physical systems, maintained far from
their natural equilibrium state by constraints imposed by the environment. We will
now study such systems, for which our previous calculations in general do not hold.

3.2. General interpretation of non-equilibrium relative information

The relative information, S({pi}={p0
i }) can be de4ned for any stationary distribu-

tion {p0
i }, and it is a positive, decreasing function of time according to the general

inequalities (4). It results from Section 2 that S({pi}={pe
i }) is the statistical extropy

of the system if {p0
i } is the equilibrium distribution {pe

i } given by expression (5).
Now, if we consider a non-equilibrium stationary distribution {p0

i } the derivation of
Section 2.2 does not apply any more. However, it is shown in Appendix A that if
the reservoirs are supposed to remain in a quasi-equilibrium state when the system
evolves, the non-equilibrium relative information S({pi}={p0

i }) again coincides with
the statistical extropy �({pi}={p0

i }) of the system, i.e., it is the total entropy produced
during the evolution towards the stationary state

�({pi}={p0
i }) = S({pi}={p0

i }) : (23)

The quasi-equilibrium hypothesis for the reservoirs, commented in Appendix A,
assumes that the internal equilibrium of the reservoirs is established very rapidly in
comparison with the characteristic evolution time of the system. This assumption will
be adopted here, as it is currently made in thermodynamics. It should be pointed out
that, contrarily to the simple calculations of Section 2.2, the derivation of Eq. (23) pre-
sented in Appendix A does not suppose that the extensive quantities are conservative.

2 See also Ref. [15] (J. Math. Phys. 39 (1998) 1517) for application to non-equilibrium 4rst order transitions.
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3.3. Master equation in terms of macroscopic variables

In practice, it is only possible to observe the macrovariables X�, rather than the
microscopic states i. Thus one should study the “coarse-grained” probabilities

p(x; t) =
∑
Xi=x

pi(t) ; (24)

where x = x0; x1; : : : ; xN represent given values of the macrovariables. It was already
pointed out that x generally does not determine a microscopic state completely. Thus,
in Eq. (24) the sum runs on all microstates i such that the corresponding macroscopic
variables Xi have the value x.

It is known that, in general, the stochastic process x is not Markovian [19]. However,
it can happen that p(x; t) satis4es a new Master Equation that will be called the
coarse-grained Master Equation

d
dt
p(x) =

∑
x′

[w(x=x′)p(x′)− w(x′=x)p(x)] ; (25)

where w(x′=x) is the “coarse-grained” transition rate from x′ to x.
Such a coarse-grained Master Equation only holds in special circumstances. It is

of great interest to study the conditions which ensure its validity, and to relate the
coarse-grained Master Equation to the microscopic Master Equation: in this case only
the description of the system in term of the macrovariables x is self-consistent and can
be really useful. However, we will not address this problem here (see e.g. Refs. [17–
22] for discussion). From now on, we suppose that the coarse-grained Master Equation
(25) is at least approximately valid. Equivalent hypotheses are currently made for the
stochastic descriptions in terms of macrovariables (see for instance Ref. [1]).
Furthermore, if (1) admits a stationary solution p0

i , we suppose that the coarse-grained
Master Equation (25) has the stationary solution p0(x)

p0(x) =
∑
Xi=x

p0i : (26)

Let us 4rst consider the case when pi(x; t) tends to the equilibrium solution (12). Then
p(x) tends to

pe(x) =
�(x)
Ze exp

(
−
∑
�

�R� x�

)
(27)

�(x) being the number of microstates corresponding to the same value of x.
Using the microcanonical entropy S(x) = ln�(x), de4ned for any value of x,

and the equilibrium entropy Se obtained by applying expression (2) to the equilib-
rium distribution (12), we can de4ne the microcanonical extropy �(x) in analogy
with (10)

�(x) = Se − S(x) +
∑
�

�R� (x� − 〈x�〉e) : (28)
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Then the equilibrium solution (27) can easily be written under the Einstein form

pe(x) = exp (−�(x)) (29)

with �(〈x〉e) ∼= 0. If energy exists, the microcanonical free energy F(x) is de4ned in
analogy with (7) and satis4es the relation

TR�(x) = F(x)− Fe :

This is the maximum work that the system can deliver when it returns to equilibrium,
starting from an initial state characterized by the values x = {x�} of the extensive
variables.
Further on, however, we shall consider systems which are maintained out of equi-

librium by external constraints, assuming that Eq. (25) holds (at least approximately)
and has a non-equilibrium stationary solution {p0(x)}.

3.4. Quasi-stationary hypothesis, coarse-grained extropy

(i) Conditional entropy. We introduce the conditional probability

pi=x = pi=p(x) for Xi = x (30)

and the conditional entropy

S({pi=x}) =−
∑
i; Xi=x

pi=x lnpi=x : (31)

It is easily veri4ed [2] that

S({pi}) =−
∑
x

p(x) lnp(x) +
∑
x

p(x)S({pi=x}) : (32)

It will now be shown that under the quasi-stationary hypothesis, which is discussed
below and holds in most practical cases, the entropy S({pi}) of the actual system is
much larger than the similar coarse-grained quantity −∑x p(x) lnp(x), so that the
second term in the right-hand side of Eq. (32) is predominating.
(ii) Quasi-stationary hypothesis. At equilibrium the conditional probability is

by (27)

pe
i=x = 1=�(x) :

We will now assume that, even if the system is maintained out of equilibrium by
external constraints, its conditional probability pi=x tends to the same stationary value.
Furthermore, we suppose that this relaxation is much faster than the relaxation of
p(x; t) to p0(x; t). We call these assumptions the quasi-stationary hypothesis.
The quasi-stationary hypothesis means that the external constraints can only tem-

porarily aGect the equiprobability of the microstates corresponding to a given x, which
holds at equilibrium. Clearly, it should be justi4ed for each particular system using
its speci4c description. However, it is reasonable if the system allows of a signi4cant
macroscopic, stochastic description. As a matter of fact, the macrovariables can be
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considered as the slow variables of the system: once all the macrovariables are deter-
mined, the de4nition of the microstate i is achieved by giving the values of internal
microscopic variables whose evolution is much faster than the evolution of the macro-
scopic quantities. Then the uniform conditional distribution maximizes the conditional
entropy for the given values of the macrovariables. Similar hypotheses are generally
adopted in the thermodynamics of macroscopic systems, and they seem necessary for
obtaining general conclusions from a stochastic description in term of macrovariables.
If p (x; t) is a solution of the coarse-grained Master Equation (25), we can de4ne

another probability distribution {qi} on the microstates i by

qi(t) = p (Xi; t)=�(Xi) : (33)

This quasi-stationary hypothesis implies that, at large times, {qi(t)} is an approximate
solution of the microscopic Master Equation. In particular, there is a non-equilibrium
stationary distribution

p0
i = p0(Xi)=�(Xi) : (34)

Furthermore, in this hypothesis the conditional entropy S({pi=x}) is approximately equal
to the microcanonical entropy used in Section 3.3

S({pi=x}) ∼= ln�(x)

and the entropy of the microscopic system is

S({pi}) ∼= −
∑
x

p(x) lnp(x) +
∑
x

p(x) ln�(x) ∼=
∑
x

p(x) ln�(x) : (35)

In fact, for a system of volume V with d variables x�, the number of possible values of
x is of order Vd and −∑x p(x) lnp(x)6 ln Vd, whereas ln�(x) is generally of order
V , so that the approximation (35) certainly holds for large volumes V . In case, the
probability distribution p is sharply peaked on state x, the entropy S({pi}) coincides
with the microcanonical entropy S(x), as it should be.
(iii) Coarse-grained extropy. We now introduce the “coarse-grained extropy”, or

“coarse-gained relative information”

�({p(x)}={p0(x)}) = S({p(x)}={p0(x)}) ≡
∑
x

p(x) ln
p(x)
p0(x)

: (36)

As for Eq. (32), we can write

S({pi}={p0
i }) = S({p(x)}={p0(x)}) +

∑
xp(x)

∑
i; Xi=x

pi=x ln
pi=x

p0
i=x

(37)

which shows that the microscopic extropy is larger than or equal to the coarse-grained
extropy

S({pi}={p0
i })¿ S({p(x)}={p0(x)}) : (38)

Furthermore, it is shown in Appendix B.1 that the entropy production is larger in the
microscopic description than in the coarse-grained description

− d
dt
S({pi}={p0

i })¿− d
dt
S({p(x)}={p0

i (x)}) : (39)
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If the quasi-equilibrium approximation holds, however, it is clear from (37) that both
extropies are practically equal at large times. Thus, the coarse-grained extropy of the
system is essentially the extropy of the microscopic system, whereas the “proper”
entropy of the coarse-grained system −∑x p(x) lnp(x), being much smaller than the
entropy of the actual, microscopic system, has no special interest in general.
These points are further discussed in Appendix B.

3.5. Large systems: thermodynamic approximation

We now consider that the size of the system is characterized by a parameter V ,
usually the volume (or the volume of each cell, in the multivariate formalism [1]
de4ned in Section 2.5). Furthermore, we assume that the possible jumps result from
local phenomena: the probability transitions are the sums of local probability transitions,
each one concerning one geometrical point of the system and its neighborhood. These
local transitions allow small jumps only, and depend on the local values of x. Then it
can be assumed [1,9,22,23] that the transition rates have the form

w(x=x′) ∼= V
a
w(x′ − x; x=V ) (40)

ŵ being some 4nite function of the jump x′ − x and of x̂ = x=V . This is clear if,
for instance, ŵ is the reaction rate in a chemical system described by the numbers of
molecules x1; x2; : : : ; xn of the diGerent reactive species [1]. Then, x�=V is the concen-
tration of species �.
Following Kubo and other authors [22,23,9], we look for a probability distribution

in the form

p(x; t)˙ exp(−V�(
a
x; t)) ; (41)

where � is some 4nite function of
a
x; t, so that for large V , the distribution is strongly

peaked on the value
a
x for which � vanishes, which should be the average 〈ax〉=〈x〉=V .

With this hypothesis, which is reasonable for most macroscopic systems and in
particular for reaction–diGusion systems [1], it can easily be shown [23,9] that, in the
large volume limit, � approximately satis4es the following Hamilton–Jacobi equation:

@
@t
�=

∑
h

a
w(h;

a
x)
(
exp
(
h · @�

@
a
x

)
− 1
)

(42)

the neglected terms being of order 1=V . Here, the x�=V are considered as continuous
variables. The summation is on all possible transition h= x′ − x allowed in Eq. (40),
and we use the vector notation

h · @�
@
a
x
=
∑
�

h�
@�

@
a
x�

:

Eq. (42), in the multidimensional case, can be solved explicitly in a few exceptional
examples only [13]. Nevertheless, it is very useful for studying the non-equilibrium
thermodynamic properties of the system, as it will be seen below.
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3.6. Information potential

Let us consider some possible value a of x, and suppose that at some time t, the
system is exactly in state a:

p(x; t) = !x;a

! being the Kronecker symbol. Then its statistical extropy is

S({!x;a}={p0(x)}) = lnp0(a) (43)

and we de4ne the information potential of the system �◦(
a
a) as [9]

�
◦
(
a
a) = lim

V→∞
− (lnp0(a))=V ; (44)

where
a
a=a=V . Then �◦ is the asymptotic value, for t→∞, of the function � de4ned in

Section 3.5. Formula (44) shows that �◦ is, in the thermodynamic limit, the amount of
information per unit volume lost when the system evolves from state

a
a to its stationary

distribution.
�◦ has the properties of a thermodynamic potential. In fact, �◦ is clearly non-negative.

Furthermore, the information potential of a macroscopic system, computed at its time-
dependent average state 〈ax〉(t), decreases with time

d
dt
�

◦
(〈ax〉(t))6 0 : (45)

This inequality is derived in Appendix B.2. However, it can be understood by remarking
that for large V , the probability distribution of a macroscopic variable should be sharply
peaked on the average state 〈x〉(t), so that p(〈x〉(t)) is of the order of 1, and

S({p(x; t)}={p0(x)}) ∼= −lnp0(〈x〉(t)) ≡ V�
◦
(〈ax〉(t)) : (46)

Thus, the information potential is just the coarse-grained extropy, per unit volume, in
the large volume approximation. Since p(x; t) is a solution of the Master Equation,
the relative information decreases with t, as well as the information potential.
Because of inequality (45), the information potential can be considered as a new

thermodynamic potential. As usual, it depends not only on the system, but also on its
environment, this dependence being expressed by the parameters implicitly contained
in the transition rates w.

3.7. System with constrained variables

We now consider the case of a system maintained out of equilibrium by external
constraints on the macroscopic variables. More precisely, we assume that, apart from
the free variables x, the system depends on some variables {a"}"=1; :::;m = a which
are maintained at constant values by a convenient external action. Although such a
compensation of the natural evolution of a system is not easily realized exactly, it can
be achieved approximately: for instance, in a chemical system the concentrations of
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some species can be kept constant by the reservoirs, as it was assumed by most authors
for studying non-equilibrium reactive systems [1].
We also suppose that if the constraints are relaxed, the natural evolution of the

system asymptotically reaches an equilibrium distribution pe(x; a). The reaction rates
now depend not only on x, but also on a and, according to the dynamic de4nition of
equilibrium considered in Section 3.1, they satisfy the detailed balance relation

w(x′; a′=x; a)pe(x; a) = w(x; a=x′; a′)pe(x′; a′) : (47)

(Here, we consider that variables x and a are time reversal invariant. Eq. (47) would
not hold if we would include Ouxes among the variables, as is done in extended
thermodynamics. In the quasi-stationary approximation we assume that this is not the
necessary.)
In Kubo approximation, (47) becomes, with the notation of Section 3.5

a
w(h; k;

a
x;
a
a) exp (−V�e(

a
x;
a
a))

=
a
w(−h;−k;ax + h=V; aa + k=V ) exp(−V�e(

a
x + h=V;

a
a + k=V )) ; (48)

where we expressed pe(x; a) in terms of �e, the information potential of the uncon-
strained system

pe(x; a)˙ exp[− V�e(x=V; a=V )] : (49)

If we now submit the system to constraints which maintain the variables a constant,
its non-equilibrium information potential �0 can be de4ned according to the method
of Section 3.6.

The following inequality is proved in Appendix B.
Let us call −q the (algebraic) amount of entropy, or equivalently +q the amount of

information, which has to be provided to the system per unit time in order to maintain
the variables a constant, against their “natural”, unconstrained evolution. Then it can
be shown that

− d
dt
�e(〈ax〉; aa) + q¿− d

dt
�0(〈ax〉) ; (50)

where 〈ax〉(t) corresponds to the deterministic evolution of the constrained system.
Moreover, in (50) the equality only holds if at the macroscopic stationary state 〈ax〉0

we have for all h, k

a
w(h; k; 〈ax〉0; aa) = a

w(−h;−k; 〈ax〉0; aa) (51)

which is the macroscopic detailed balance relation.
Inequality (50) is remarkable. We already knew that −d�0(〈ax〉)=dt, which is the rate

of information dissipation inside the system, is positive, as well as the left-hand side of
(50), which is the total rate of entropy creation due to the natural processes. Inequality
(50) asserts that the rate of entropy creation is larger than the rate of information
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dissipation that can be observed inside the system, except if detailed balance holds
at the stationary state: in this case only, both rates are equal. This can be related to
the fact that, in general, a non-equilibrium stationary state can only be maintained
by the action of appropriate “unnatural” mechanisms, which are not contained in the
phenomena observable in the system itself, and contribute to create entropy.
When energy is a relevant macroscopic variable, an interesting, energetic form of

inequality (50) can be given. As a matter of fact, if TR is the temperature of the
reservoirs, it is seen by comparing Eqs. (29) and (49) that TR�e(〈ax〉) ≡ $(〈ax〉) is the
maximum work that can be extracted from the system by unit volume when returning
to its equilibrium state if the constraints are relaxed. On the other hand −TRq is the
energetic equivalent of q, i.e., the energy which has to be provided to the system
per unit time and unit volume in order to maintain the variables a constant. Thus,
−d$e(〈ax〉)=dt + TRq is the rate of energy dissipation of the system, and (50) gives

− d$e(〈ax〉)=dt + TRq¿− TRd�0(〈ax〉)=dt¿ 0 (52)

which shows that the rate of energy dissipation is always larger than the rate of infor-
mation dissipation, times TR, except if the stationary state is an equilibrium state, in
which case both rates are equal. Finally, this inequality can be written

d$(〈ax〉)=dt6TRq+ TRd�0(〈ax〉)=dt : (53)

The second law of thermodynamics asserts that d$(〈ax〉)=dt6TRq. Inequality (53) is
stronger and implies that the maximum work d$(〈ax〉)=dt produced by the system per
unit time and unit volume is still smaller, since d�0(〈ax〉)=dt6 0:

The previous inequalities have been stated and discussed in detail [9,13] for the
particular example of reaction–diGusion systems. Inequality (50) expresses that entropy
production is smaller in the constrained system than in the complete system including
the environment which imposes the constraints. In other cases (see Section 3.4 and
Appendix B:2) we can conclude similarly that the entropy production of a system is
smaller in a reduced description than in a more detailed one. Although this conclusion
is not general and cannot be asserted without adequate hypotheses, it gives a reasonable
interpretation to inequality (50)

4. Conclusion

We wanted to de4ne the information potential and to study its properties in a general
way. On this purpose, we had to clarify the role and the physical meaning of relative
information, which plays a fundamental role in the asymptotic study of a stochastic
system, in particular when it tends to a non-equilibrium stationary state. We have shown
that relative information can be identi4ed with the total entropy production during the
process, which we called statistical extropy, in similarity with the de4nition of extropy
used in irreversible thermodynamics.
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In order to describe a system tending to a non-equilibrium stationary state due to
external constraints, we have introduced a reduced stochastic description, in terms of the
thermodynamic random variables. Under certain conditions, a reduced Master Equation
can be written, and we have presented a detailed discussion of the corresponding,
coarse-grained statistical extropy, which is smaller and decreases less rapidly than the
similar microscopic quantities. This seems natural for a simpli4ed description which
does not consider all possible sources of disorder. Nevertheless, although it can be
shown in a general way that the coarse-grained extropy is smaller than the microscopic
extropy [3], this is not generally true for the corresponding entropy productions.
The coarse-grained stochastic description allowed to de4ne the information potential.

This new thermodynamic potential is time-decreasing and minimum at the macroscopic
non-equilibrium stationary state, whereas the usual thermodynamic generalized free
energy only has these properties if the system tends to an equilibrium stationary state.
Furthermore, we have proved a general inequality between the rate of information
dissipation in the system and the total rate of entropy creation. The same relation takes
a more striking form in case energy is de4ned: the dissipation of energy is smaller than
the dissipation of information (times temperature) in an open system maintained far
from equilibrium by external constraints. This inequality, already obtained in the case
of reaction–diGusion systems, turns out to be much more general. It is another example
showing that coarse-graining tends to decrease the value of entropy production. Once
more, however, such a conclusion does not hold for an any kind of reduced description,
and it should be analyzed more completely. Such a study is in progress.
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Appendix A. Interpretation of non-equilibrium relative information

The interpretation of the relative information ({pi}={p0
i }) as the total entropy change

of the system and of the reservoir during the evolution to the stationary state, i.e., the
statistical extropy �({pi}={p0

i }), is only clear if {p0
i } is the equilibrium distribution

{pe
i }. In fact, according to Eq. (11)

S({pi}={pe
i }) =

∑
i

pi lnpi=pe
i

=−
∑
i

pe
i lnp

e
i +

∑
i

pi lnpi −
∑
�

�R� (〈X e
� 〉 − 〈X�〉)

=�({pi}={pe
i }) (A.1)
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since, if all extensive quantities are conserved in the exchanges with the reservoirs,

−
∑
�

�R� (〈X e
� 〉 − 〈X�〉) =

∑
�

�R� (〈X Re
� 〉 − 〈X R

� 〉)

is the entropy variation of the reservoirs during the equilibration.
We now consider the relative information ({pi}={p0

i }) in the general case, when
{p0

i } is any stationary distribution. If the initial distribution is slightly modi4ed, the
corresponding change of the relative information is

!S({pi}={p0
i }) = !

∑
i

pi lnpi=p0
i =

∑
i

!pi lnpi=p0
i : (A.2)

On the other hand, let us assume that the system under study, S, interacts with
another, large system, which can be one or several reservoirs in a general sense, and
will be denoted by R. The large system R can exert constraints on S, or it can itself be
submitted to constraints, so that when t→∞, S and R asymptotically reach a stationary
state, which generally is not an equilibrium.
We shall denote i the microscopic state of S, j the microscopic state of R, and

pij(t) the probability to 4nd S in state i and R in state j at time t. The global entropy
of S and R is

SSR =−
∑
ij

pij lnpij =−
∑
i

pi lnpi +
∑
i

pi

(
−
∑
j

pj=i lnpj=i

)

= SS +
∑
i

piSR=i ; (A.3)

where, according to classical de4nitions, pi =
∑

j pij is the probability of state i and
SS is the entropy of system S, whereas pj=i = pij=pi is the conditional probability of
state j of R, and SR=i =−∑j pj=i lnpj=i is the conditional entropy of R, when S is in
state i.
We now suppose that when S is in a given state i, R reaches very rapidly its

stationary conditional distribution, so that its conditional entropy SR=i is practically
independent of the distribution {pi} of S. This assumption is generally justi4ed when
the interactions between S and R are not too strong, and it is necessary for permitting
the “thermodynamic” study of S: then, from the stochastic point of view, the role of
R is reduced to determining the stationary distribution {p0

i }.
With this hypothesis, it is seen from Eq. (B.3) that when the distribution {pi} is

changed by {!pi}, the total entropy SSR is changed by

!SSR =−
∑
i

!pi lnpi +
∑
i

!piSR=i : (A.4)

On the other hand, when the stationary distribution {p0
i } is realized, any change {!pi}

compatible with the constraints exerted on the system should leave the total entropy
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SSR unchanged, so that

0 =−
∑
i

!pi lnp0
i +

∑
i

!piSR=i : (A.5)

Using Eq. (A.5), it is seen from (A.4) that when the distribution {pi} is changed by
{!pi}, the entropy SSR is changed by

!SSR =−
∑
i

!pi lnpi=p0
i =−!S({pi}={p0

i }) : (A.6)

Thus, the variation of the system relative information is just the opposite of the total
entropy variation, and the relative information S({pi}={p0

i }) is the total entropy created
during the evolution of the system S from its initial distribution {pi} to the stationary
distribution {p0

i }, i.e., it is the microscopic extropy of the system

S({pi}={p0
i }) =�({pi}={p0

i }) : (A.7)

This conclusion agrees with Eq. (A.1) in the case of an equilibrium stationary state,
and it generalizes it. It should be pointed out that this proof does not assume that
extensive variables are conserved during the evolution, contrarily to the simple calcu-
lation leading to (A.1).

Appendix B. Stochastic description in macroscopic variables

B.1. Quasi-stationary hypothesis and comparison of microscopic and coarse-grained
extropies

With the notations of Section 3, let us consider the relative information of the actual
microscopic distribution {pi} with respect to the distribution {qi} de4ned by (33). It
may be observed that

S({pi}={p(Xi)=�(Xi)})¿ 0 ;

d
dt
S({pi}={p(Xi)=�(Xi)})6 0 :

In fact, according to the quasi-equilibrium approximation the distribution {qi} =
{p(Xi)=�(Xi)} is a solution of the complete Master Equation (1), as well as {pi}. Then,
according to the general properties of the relative entropy, inequalities (4) hold. Thus
S({pi}={p(Xi)=�(Xi)}) continuously decreases to 0.
Moreover, it can be noticed that

S({pi}={p0(Xi)=�(Xi)})− S({p(x)}={p0(x)}) = S({pi}={p(Xi)=�(Xi)})
which, together with (4), shows that the microscopic extropy is larger and decreases
more rapidly than the coarse-grained extropy. However, both extropies are practically
equal if the quasi-stationary hypothesis discussed in Section 3.4 is satis4ed.
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B.2. The information potential decreases with time

The information potential �0, de4ned by Eq. (44), is a stationary solution of the
Hamilton–Jacobi equation (42), and because eu − u− 1¿ 0, we have

0 =
∑
h

a
w(h;

a
x)
(
exp
(
h · @�

0

@
a
x

)
− 1
)
¿
∑
h

a
w(h;

a
x)h · @�

0

@
a
x

and

0¿
∑
h;
a
x

a
w(h;

a
x)h · @�

0

@
a
x
p(x; t) ∼=

∑
h

h
a
w(h; 〈ax〉) · @�

0

@
a
x
(〈ax〉)

the last equality (at order 1=V ) being due to the sharp peak of p(x; t) at 〈ax〉(t).
But we also have

d
dt
〈ax〉=

∑
h;
a
x

a
w(h;

a
x)hp(x; t) ∼=

∑
h

h
a
w(h; 〈ax〉)

From the last two equations it follows that

0¿
@�0

@
a
x

· d
dt
〈ax〉= d

dt
�0(〈ax〉) :

B.3. The main inequality for systems maintained out of equilibrium

We consider a system described by two classes of macroscopic variables x and
a, according to the notations and hypopthesis of Section 3.7. In the large volume
approximation, the detailed balance equation (48) can straightforwardly be written

ln
a
w(−h;−k;ax; aa)
a
w(h; k;

a
x;
a
a)

=
(
h · @

@
a
x
+ k · @

@
a
a

)
�e(

a
x;
a
a) : (B.1)

We now suppose that the system is maintained away from equilibrium by appropriate
devices which keep a constant, and that its probability distribution tends to a station-
ary distribution p0(x), corresponding to the information potential �0(

a
x) introduced in

Section 3.6. We have from Eq. (42)

0 =
∑
h;k

a
w(h; k;

a
x;
a
a)
(
exp
(
h · @�

0

@
a
x

)
− 1
)

=
1
2

∑
h;k

[
a
w(h; k;

a
x;
a
a)
(
exp
(
h · @�

0

@
a
x

)
− 1
)

+
a
w(−h;−k;ax; aa)

(
exp
(
−h · @�

0

@
a
x

)
− 1
)]

: (B.2)

Let us de4ne

u= h · @�
0

@
a
x

v= h · @�
e

@
a
x

+ k · @�
e

@
a
a

: (B.3)
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Then (B.2) can be rewritten, thanks to (B.1)

0 = 1
2

∑
h;k

[
a
w(h; k;

a
x;
a
a)(eu − ev) +

a
w(−h;−k;ax; aa)(e−u − e−v)] : (B.4)

Now, using the inequality eu − ev¿ (u− v)ev and (B.1) once more, we obtain

0¿ 1
2

∑
h;k

[
a
w(h; k;

a
x;
a
a)ev − a

w(−h;−k;ax; aa)e−v)](u− v)

= − 1
2

∑
h;k

[
a
w(h; k;

a
x;
a
a)− a

w(−h;−k;ax; aa)](u− v) : (B.5)

If, as usual the distribution p(
a
x; t) is sharply peaked around of

a
x, we may write

1
2

〈∑
h;k

[
a
w(h; k;

a
x;
a
a)− a

w(−h;−k;ax; aa)]h · @�
0

@
a
x

〉
∼= d

dt
�0(〈ax〉) ; (B.6.a)

1
2

〈∑
h;k

[
a
w(h; k;

a
x;
a
a)− a

w(−h;−k;ax; aa)]h · @�
e

@
a
x

〉
∼= d

dt
�e(〈ax〉; aa) ; (B.6.b)

1
2

〈∑
h;k

[
a
w(h; k;

a
x;
a
a)− a

w(−h;−k;ax; aa)]k · @�
e

@
a
a

〉
=−q : (B.6.c)

The 4rst two inequalities are similar to (48). Eq. (B.6.c) just de4nes the quantity q.
Since, by (49), �e is the extropy per unit volume, q represents the amount of entropy
that would be produced in the unconstrained system per unit volume and unit time,
due to the corresponding variation of the variables a. Thus q is the entropy extraction
rate in the constrained system: it has to be extracted from it by the devices which
maintain a constant. Equivalently, −q is the amount of entropy, and q is the amount
of information which should be provided to the system per unit volume and per unit
time. As a consequence, inequality (B.5) can be written

− d
dt
�e(〈ax〉) + q¿− d

dt
�0(〈ax〉) : (B.7)

Here, the equality only holds if it holds in Eq. (B.8), and thus, if u = v for all
a
x,

which, using (B.2), implies that

d
dt
�0(〈ax〉) = 1

2

〈∑
h;k

[
a
w(h; k;

a
x;
a
a)− a

w(−h;−k;ax; aa)] ln
a
w(−h;−k;ax; aa)
a
w(h; k;

a
x;
a
a)

〉
6 0

(B.8)

since each term in the sum of the right-hand side is negative.
In the stationary macroscopic state 〈ax〉0, the left-hand side of (B.8) should vanish,

so that we have for any h; k
a
w(h; k; 〈ax〉0; aa) = a

w(−h;−k; 〈ax〉0; aa) (B.9)

which is the macroscopic detailed balance.
Inequality (B.7) is just inequality (50), which is commented in Section 3.7.
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