
Informatics 3.
Lecture 1: Introduction

Kristóf Kovács

Budapest University of Technology and Economics

2024-02-13

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Requirements to pass

2 written exams
April 12, May 24
each worth 50 points
individually need 40% to pass
grade boundaries: 40,55,70,85

homework each week
2 points each
40% required to pass (8 points)
points above the requirement are added to the points of the
written exam (12 points max)

"pop quizzes"
at the beginning of the practicals starting from next week
1 point each
40% required to pass (4 points)
points above the requirement are added to the points of the
written exam (6 points max)

W1+W2+max(0,min(H, 20)−8)+max(0,min(Q, 10)−4)+??

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Requirements to pass

2 written exams
April 12, May 24
each worth 50 points
individually need 40% to pass
grade boundaries: 40,55,70,85

homework each week
2 points each
40% required to pass (8 points)
points above the requirement are added to the points of the
written exam (12 points max)

"pop quizzes"
at the beginning of the practicals starting from next week
1 point each
40% required to pass (4 points)
points above the requirement are added to the points of the
written exam (6 points max)

W1+W2+max(0,min(H, 20)−8)+max(0,min(Q, 10)−4)+??

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Requirements to pass

2 written exams
April 12, May 24
each worth 50 points
individually need 40% to pass
grade boundaries: 40,55,70,85

homework each week
2 points each
40% required to pass (8 points)
points above the requirement are added to the points of the
written exam (12 points max)

"pop quizzes"
at the beginning of the practicals starting from next week
1 point each
40% required to pass (4 points)
points above the requirement are added to the points of the
written exam (6 points max)

W1+W2+max(0,min(H, 20)−8)+max(0,min(Q, 10)−4)+??

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Requirements to pass

2 written exams
April 12, May 24
each worth 50 points
individually need 40% to pass
grade boundaries: 40,55,70,85

homework each week
2 points each
40% required to pass (8 points)
points above the requirement are added to the points of the
written exam (12 points max)

"pop quizzes"
at the beginning of the practicals starting from next week
1 point each
40% required to pass (4 points)
points above the requirement are added to the points of the
written exam (6 points max)

W1+W2+max(0,min(H, 20)−8)+max(0,min(Q, 10)−4)+??

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.

2 Construct a data structure that stores complex numbers.
Exercises

1 Give an algorithm that returns all numbers divisible by 7 that
are smaller than 100 (and non-negative).

2 Give an algorithm that returns all prime numbers smaller than
100.

3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.
5 Give an algorithm that collects all prime numbers from an

input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises

1 Give an algorithm that returns all numbers divisible by 7 that
are smaller than 100 (and non-negative).

2 Give an algorithm that returns all prime numbers smaller than
100.

3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.
5 Give an algorithm that collects all prime numbers from an

input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises
1 Give an algorithm that returns all numbers divisible by 7 that

are smaller than 100 (and non-negative).

2 Give an algorithm that returns all prime numbers smaller than
100.

3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.
5 Give an algorithm that collects all prime numbers from an

input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises
1 Give an algorithm that returns all numbers divisible by 7 that

are smaller than 100 (and non-negative).
2 Give an algorithm that returns all prime numbers smaller than

100.

3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.
5 Give an algorithm that collects all prime numbers from an

input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises
1 Give an algorithm that returns all numbers divisible by 7 that

are smaller than 100 (and non-negative).
2 Give an algorithm that returns all prime numbers smaller than

100.
3 Give an algorithm that returns the first 100 prime numbers.

4 Give an algorithm that collects all numbers divisible by 7 from
an input list.

5 Give an algorithm that collects all prime numbers from an
input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises
1 Give an algorithm that returns all numbers divisible by 7 that

are smaller than 100 (and non-negative).
2 Give an algorithm that returns all prime numbers smaller than

100.
3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.

5 Give an algorithm that collects all prime numbers from an
input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Example
1 Give an algorithm that collects all even numbers from an input

list of numbers.
2 Construct a data structure that stores complex numbers.

Exercises
1 Give an algorithm that returns all numbers divisible by 7 that

are smaller than 100 (and non-negative).
2 Give an algorithm that returns all prime numbers smaller than

100.
3 Give an algorithm that returns the first 100 prime numbers.
4 Give an algorithm that collects all numbers divisible by 7 from

an input list.
5 Give an algorithm that collects all prime numbers from an

input list.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.

2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.
4 finds the index of the letter c for each string in a given list,

returns them as a list of (string, index) pairs.
5 computes the product of two complex numbers (with re and

im members).
6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.

3 counts how many words contain the letter c (at least once)
from a list of strings.

4 finds the index of the letter c for each string in a given list,
returns them as a list of (string, index) pairs.

5 computes the product of two complex numbers (with re and
im members).

6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.

4 finds the index of the letter c for each string in a given list,
returns them as a list of (string, index) pairs.

5 computes the product of two complex numbers (with re and
im members).

6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.
4 finds the index of the letter c for each string in a given list,

returns them as a list of (string, index) pairs.

5 computes the product of two complex numbers (with re and
im members).

6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.
4 finds the index of the letter c for each string in a given list,

returns them as a list of (string, index) pairs.
5 computes the product of two complex numbers (with re and

im members).

6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.
4 finds the index of the letter c for each string in a given list,

returns them as a list of (string, index) pairs.
5 computes the product of two complex numbers (with re and

im members).
6 computes the ∗ product of the input objects.

7 receives a list of object pairs and computes the / quotient of
each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Give an algorithm that...
1 receives an arbitrary number of real numbers and after each

prints their average.
2 selects those that are relative prime from a list of (n, m) pairs.
3 counts how many words contain the letter c (at least once)

from a list of strings.
4 finds the index of the letter c for each string in a given list,

returns them as a list of (string, index) pairs.
5 computes the product of two complex numbers (with re and

im members).
6 computes the ∗ product of the input objects.
7 receives a list of object pairs and computes the / quotient of

each, while making sure to substitute the string err in case of
an error.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Construct (a) data structure(s) that...
1 can represent a square in a 2 dimensional space.

2 can represent an arbitrary polygon in a 2 dimensional space.
3 is a simple list, but it counts how many times a new element is

inserted or an element is read.
4 can represent a circle, triangle, rectangle.
5 can represent a circle, triangle, rectangle, each of which have

their circumference/perimenter and their area methods and
these can be called without knowing which object is stored in
a given variable.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Construct (a) data structure(s) that...
1 can represent a square in a 2 dimensional space.
2 can represent an arbitrary polygon in a 2 dimensional space.

3 is a simple list, but it counts how many times a new element is
inserted or an element is read.

4 can represent a circle, triangle, rectangle.
5 can represent a circle, triangle, rectangle, each of which have

their circumference/perimenter and their area methods and
these can be called without knowing which object is stored in
a given variable.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Construct (a) data structure(s) that...
1 can represent a square in a 2 dimensional space.
2 can represent an arbitrary polygon in a 2 dimensional space.
3 is a simple list, but it counts how many times a new element is

inserted or an element is read.

4 can represent a circle, triangle, rectangle.
5 can represent a circle, triangle, rectangle, each of which have

their circumference/perimenter and their area methods and
these can be called without knowing which object is stored in
a given variable.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Construct (a) data structure(s) that...
1 can represent a square in a 2 dimensional space.
2 can represent an arbitrary polygon in a 2 dimensional space.
3 is a simple list, but it counts how many times a new element is

inserted or an element is read.
4 can represent a circle, triangle, rectangle.

5 can represent a circle, triangle, rectangle, each of which have
their circumference/perimenter and their area methods and
these can be called without knowing which object is stored in
a given variable.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

Questionnaire

Construct (a) data structure(s) that...
1 can represent a square in a 2 dimensional space.
2 can represent an arbitrary polygon in a 2 dimensional space.
3 is a simple list, but it counts how many times a new element is

inserted or an element is read.
4 can represent a circle, triangle, rectangle.
5 can represent a circle, triangle, rectangle, each of which have

their circumference/perimenter and their area methods and
these can be called without knowing which object is stored in
a given variable.

Kristóf Kovács Informatics 3. Lecture 1: Introduction

History

C
created by Dennis Ritchie
old (1972), but still used today
strongly typed
compiled language (not interpreted like python)
efficient, very close to machine code
very easy to obfuscate (not necessarily intentionally)

C++
created by Bjarne Stroustrup
old (1985), still widely used today
you can think of it as an extension of C
still being developed, latest standard is C++20 (2020)

Kristóf Kovács Informatics 3. Lecture 1: Introduction

History

C
created by Dennis Ritchie
old (1972), but still used today
strongly typed
compiled language (not interpreted like python)
efficient, very close to machine code
very easy to obfuscate (not necessarily intentionally)

C++
created by Bjarne Stroustrup
old (1985), still widely used today
you can think of it as an extension of C
still being developed, latest standard is C++20 (2020)

Kristóf Kovács Informatics 3. Lecture 1: Introduction

C

We’ll start with C

#inc lude <s t d i o . h>
i n t main (void) {

p r i n t f (" He l l o , ␣World !\ n") ;
return 0 ;

}

Before we could execute this code we have to compile it.
Compilers:

Windows: mingw, visual studio
Linux: gcc/g++
Mac: Xcode -> gcc/g++, cc
search on stackoverflow: OS C compiler

Kristóf Kovács Informatics 3. Lecture 1: Introduction

C

We’ll start with C

#inc lude <s t d i o . h>
i n t main (void) {

p r i n t f (" He l l o , ␣World !\ n") ;
return 0 ;

}

Before we could execute this code we have to compile it.
Compilers:

Windows: mingw, visual studio
Linux: gcc/g++
Mac: Xcode -> gcc/g++, cc

search on stackoverflow: OS C compiler

Kristóf Kovács Informatics 3. Lecture 1: Introduction

C

We’ll start with C

#inc lude <s t d i o . h>
i n t main (void) {

p r i n t f (" He l l o , ␣World !\ n") ;
return 0 ;

}

Before we could execute this code we have to compile it.
Compilers:

Windows: mingw, visual studio
Linux: gcc/g++
Mac: Xcode -> gcc/g++, cc
search on stackoverflow: OS C compiler

Kristóf Kovács Informatics 3. Lecture 1: Introduction

From python to C

the type of variables have to be declared:

i n t i = 0 ;
f l o a t f = 0 . 0 ;

the entry point of a C program is the main function:

i n t main (void) {

the for cycle doesn’t iterate on a list:

i n t i ;
fo r (i = 0 ; i < 10 ; i++) {

there are no complex native data structures (lists, dictionaries):

i n t t [1 0] ;
t [0] = 1 ;

Kristóf Kovács Informatics 3. Lecture 1: Introduction

From python to C

the type of variables have to be declared:

i n t i = 0 ;
f l o a t f = 0 . 0 ;

the entry point of a C program is the main function:

i n t main (void) {

the for cycle doesn’t iterate on a list:

i n t i ;
fo r (i = 0 ; i < 10 ; i++) {

there are no complex native data structures (lists, dictionaries):

i n t t [1 0] ;
t [0] = 1 ;

Kristóf Kovács Informatics 3. Lecture 1: Introduction

From python to C

the type of variables have to be declared:

i n t i = 0 ;
f l o a t f = 0 . 0 ;

the entry point of a C program is the main function:

i n t main (void) {

the for cycle doesn’t iterate on a list:

i n t i ;
fo r (i = 0 ; i < 10 ; i++) {

there are no complex native data structures (lists, dictionaries):

i n t t [1 0] ;
t [0] = 1 ;

Kristóf Kovács Informatics 3. Lecture 1: Introduction

From python to C

the type of variables have to be declared:

i n t i = 0 ;
f l o a t f = 0 . 0 ;

the entry point of a C program is the main function:

i n t main (void) {

the for cycle doesn’t iterate on a list:

i n t i ;
fo r (i = 0 ; i < 10 ; i++) {

there are no complex native data structures (lists, dictionaries):

i n t t [1 0] ;
t [0] = 1 ;

Kristóf Kovács Informatics 3. Lecture 1: Introduction

