
Informatics 3.
Lecture 2: Basics of C

Kristóf Kovács

Budapest University of Technology and Economics

2024-02-20

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Variables

Declaration
int x;

Definition
int x = 5;

Changing the value
x = 5;

We need to declare or define a variable before we can use it.
After a declaration the value of the variable will be undefined:
int x;
printf("%d", x);
...
1147283347

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Variables

Declaration
int x;

Definition
int x = 5;

Changing the value
x = 5;

We need to declare or define a variable before we can use it.
After a declaration the value of the variable will be undefined:
int x;
printf("%d", x);
...
1147283347

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Variables

Declaration
int x;

Definition
int x = 5;

Changing the value
x = 5;

We need to declare or define a variable before we can use it.
After a declaration the value of the variable will be undefined:
int x;
printf("%d", x);
...
1147283347

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Variables

Declaration
int x;

Definition
int x = 5;

Changing the value
x = 5;

We need to declare or define a variable before we can use it.

After a declaration the value of the variable will be undefined:
int x;
printf("%d", x);
...
1147283347

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Variables

Declaration
int x;

Definition
int x = 5;

Changing the value
x = 5;

We need to declare or define a variable before we can use it.
After a declaration the value of the variable will be undefined:
int x;
printf("%d", x);
...
1147283347

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Functions

Function declaration
float rectangle(float a, float b);

Function definition
float rectangle(float a, float b) {

return a * b;
}
A function can be used if it has at least been declared before:
float rectangle(float a, float b);

int main(void) {
printf("%f", rectangle(5, 7));
return 0;

}
float rectangle(float a, float b) {

return a * b;
}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Functions

Function declaration
float rectangle(float a, float b);
Function definition
float rectangle(float a, float b) {

return a * b;
}

A function can be used if it has at least been declared before:
float rectangle(float a, float b);

int main(void) {
printf("%f", rectangle(5, 7));
return 0;

}
float rectangle(float a, float b) {

return a * b;
}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Functions

Function declaration
float rectangle(float a, float b);
Function definition
float rectangle(float a, float b) {

return a * b;
}
A function can be used if it has at least been declared before:
float rectangle(float a, float b);

int main(void) {
printf("%f", rectangle(5, 7));
return 0;

}
float rectangle(float a, float b) {

return a * b;
}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Function parameters

The arguments of a function are only copies:
void wrong(float x, float y, float sum) {

sum = x + y;
}

int main(void) {
float a = 0.0;
wrong(5.0, 2.0, a);
printf("%f", a);
return 0;

}
...
0.0

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Input function

Write a function that reads a variable from the user and
returns it

:
int input() {

int n;
printf("Please input an integer number: ");
scanf("%d", &n);
return n;

}

int main(void) {
int a = input();
printf("The square of %d is %d", a, a * a);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Input function

Write a function that reads a variable from the user and
returns it:
int input() {

int n;
printf("Please input an integer number: ");
scanf("%d", &n);
return n;

}

int main(void) {
int a = input();
printf("The square of %d is %d", a, a * a);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

struct

Write a function that reads two numbers from the user

:
struct two {

int a;
int b;

};
struct two input() {

int a,b;
scanf("%d", &a);
scanf("%d", &b);
struct two k;
k.a = a;
k.b = b;
return k;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

struct

Write a function that reads two numbers from the user:
struct two {

int a;
int b;

};
struct two input() {

int a,b;
scanf("%d", &a);
scanf("%d", &b);
struct two k;
k.a = a;
k.b = b;
return k;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

struct

Write a function that reads two numbers from the user:
struct two {

int a;
int b;

};
struct two input() {

struct two k;
scanf("%d", &(k.a));
scanf("%d", &(k.b));
return k;

}
int main() {

struct two s = input();
printf("%d, %d", s.a, s.b);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

typedef

You can rename a type with the typedef keyword:
struct two {

int a, b;
};
typedef struct two rec;
rec input() {

rec k;
scanf("%d", &(k.a));
scanf("%d", &(k.b));
return k;

}
int main() {

rec s = input();
printf("%d, %d", s.a, s.b);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

typedef

You can rename a type with the typedef keyword:
typedef struct two {

int a, b;
} rec;
rec input() {

rec k;
scanf("%d", &(k.a));
scanf("%d", &(k.b));
return k;

}
int main() {

rec s = input();
printf("%d, %d", s.a, s.b);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Define a data structure that can be used to identify a person.
Let’s suppose we have a string type.

Name
Mother’s name
Date of birth
City of birth

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Define a data structure that can be used to identify a person.
Let’s suppose we have a string type.

Name
Mother’s name
Date of birth
City of birth

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers

Why is there a random value in a variable if we only declared
it?

Every variable is stored in your computer’s memory
The random value was the slice of a previously stored variable.
You can get the address of a variable in memory, this is called
its pointer.
int main() {
int x = 25;
int *x_p = &x;
printf("The variable stored at the address %p is %d.",

x_p, *x_p);
return 0;

}
...
The variable stored at the address 0x7ffd97aeb0fc is 25.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers

Why is there a random value in a variable if we only declared
it?
Every variable is stored in your computer’s memory

The random value was the slice of a previously stored variable.
You can get the address of a variable in memory, this is called
its pointer.
int main() {
int x = 25;
int *x_p = &x;
printf("The variable stored at the address %p is %d.",

x_p, *x_p);
return 0;

}
...
The variable stored at the address 0x7ffd97aeb0fc is 25.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers

Why is there a random value in a variable if we only declared
it?
Every variable is stored in your computer’s memory
The random value was the slice of a previously stored variable.

You can get the address of a variable in memory, this is called
its pointer.
int main() {
int x = 25;
int *x_p = &x;
printf("The variable stored at the address %p is %d.",

x_p, *x_p);
return 0;

}
...
The variable stored at the address 0x7ffd97aeb0fc is 25.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers

Why is there a random value in a variable if we only declared
it?
Every variable is stored in your computer’s memory
The random value was the slice of a previously stored variable.
You can get the address of a variable in memory, this is called
its pointer.

int main() {
int x = 25;
int *x_p = &x;
printf("The variable stored at the address %p is %d.",

x_p, *x_p);
return 0;

}
...
The variable stored at the address 0x7ffd97aeb0fc is 25.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers

Why is there a random value in a variable if we only declared
it?
Every variable is stored in your computer’s memory
The random value was the slice of a previously stored variable.
You can get the address of a variable in memory, this is called
its pointer.
int main() {
int x = 25;
int *x_p = &x;
printf("The variable stored at the address %p is %d.",

x_p, *x_p);
return 0;

}
...
The variable stored at the address 0x7ffd97aeb0fc is 25.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers 2

The two main pointer operators:
&
int x = 25;
int *x_p = &x;
*
int x = 25;
int *x_p = &x;
int y = *x_p;

You can also get the pointer of a pointer (and so on):
int x = 25;
int *x_p = &x;
int **x_pp = &x_p;
int y = **x_pp;

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pointers 2

The two main pointer operators:
&
int x = 25;
int *x_p = &x;
*
int x = 25;
int *x_p = &x;
int y = *x_p;

You can also get the pointer of a pointer (and so on):
int x = 25;
int *x_p = &x;
int **x_pp = &x_p;
int y = **x_pp;

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Input with pointers

void input(int *a, int *b) {
scanf("%d", a);
scanf("%d", b);

}

int main() {
int a, b;
input(&a, &b);
printf("%d, %d", a, b);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Write a function that calculates the area and the perimeter of
a rectangle given the length of its sides. You have to use a
function with a void return type.

Write a function that calculates the square of an integer
number in place. The parameter is the pointer of the integer
number.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Write a function that calculates the area and the perimeter of
a rectangle given the length of its sides. You have to use a
function with a void return type.
Write a function that calculates the square of an integer
number in place. The parameter is the pointer of the integer
number.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Arrays

You can think of an array as a python list with limitations

:
int t[3];
t[0] = 1;
t[1] = 2;
t[2] = 5;

You can also do this, but only during definition:
int t[] = {1, 2, 5};

Arrays have fixed length that has to be declared upon its
creation.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Arrays

You can think of an array as a python list with limitations:
int t[3];
t[0] = 1;
t[1] = 2;
t[2] = 5;

You can also do this, but only during definition:
int t[] = {1, 2, 5};

Arrays have fixed length that has to be declared upon its
creation.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Arrays

You can think of an array as a python list with limitations:
int t[3];
t[0] = 1;
t[1] = 2;
t[2] = 5;

You can also do this, but only during definition:
int t[] = {1, 2, 5};

Arrays have fixed length that has to be declared upon its
creation.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Arrays

You can think of an array as a python list with limitations:
int t[3];
t[0] = 1;
t[1] = 2;
t[2] = 5;

You can also do this, but only during definition:
int t[] = {1, 2, 5};

Arrays have fixed length that has to be declared upon its
creation.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Input with arrays

Why does this work?
void input(int t[]) {

scanf("%d", &t[0]);
scanf("%d", &t[1]);
scanf("%d", &t[2]);

}

int main() {
int t[3];
input(t);
printf("%d, %d, %d", t[0], t[1], t[2]);
return 0;

}

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Array as pointer

Arrays are pointers, pointers are arrays

:
int main() {

int t[] = {1, 2, 5};
int x = 3;
int *x_p = &x;
printf("First element of the array: %d.\n", t[0]);
printf("Array as pointer: %d.\n", *t);
printf("Pointer as array: %d.\n", x_p[0]);
return 0;

}
...
First element of the array: 1.
Array as pointer: 1.
Pointer as array: 3.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Array as pointer

Arrays are pointers, pointers are arrays:
int main() {

int t[] = {1, 2, 5};
int x = 3;
int *x_p = &x;
printf("First element of the array: %d.\n", t[0]);
printf("Array as pointer: %d.\n", *t);
printf("Pointer as array: %d.\n", x_p[0]);
return 0;

}
...
First element of the array: 1.
Array as pointer: 1.
Pointer as array: 3.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Array as pointer 2

You can add integer numbers to pointers. This is similar to
array indices:
int t[] = {1, 5, 2, 15};
int *p = t + 1;
int x = *(t + 1); // 5

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Array as pointer 2

You can add integer numbers to pointers. This is similar to
array indices:
int t[] = {1, 5, 2, 15};
int *p = t + 1;
int x = *(t + 1); // 5

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Write a function that reverses a given array.

Write a program that reads an integer between 1 and 12 from
the user. The program outputs the given month of the year (1
= January...).
Write a function that applies the previously written square
function to all elements of a given array.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Write a function that reverses a given array.
Write a program that reads an integer between 1 and 12 from
the user. The program outputs the given month of the year (1
= January...).

Write a function that applies the previously written square
function to all elements of a given array.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Practice

Write a function that reverses a given array.
Write a program that reads an integer between 1 and 12 from
the user. The program outputs the given month of the year (1
= January...).
Write a function that applies the previously written square
function to all elements of a given array.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

Pop quiz questions

Define a float array with 2.2, 5.4, 1.4 elements.
Write a function that outputs the square of the number given
through a parameter.
Define an integer variable and its pointer.
Define a struct type that stores 3 float types.
Give an example of a variable definition and a declaration.

Kristóf Kovács Informatics 3. Lecture 2: Basics of C

