
Informatics 3.
Lecture 3: Dynamic memory handling

Kristóf Kovács

Budapest University of Technology and Economics

2024-03-05

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Previously

We can directly reference parts of the memory with pointers:
memory

a = *p b c

&a = p &b &c

int a, b, c;
int *p = &a;
*p = 5

Every pointer is an array and every array is a pointer:
memory

1 5 2 15

t = &t[0]
(t+1) = p

(t+2)
(t+3)

int t[] = {1, 5, 2, 15};
int *p = t + 1;
int x = *(t + 1); // 5

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Previously

We can directly reference parts of the memory with pointers:
memory

a = *p b c

&a = p &b &c

int a, b, c;
int *p = &a;
*p = 5
Every pointer is an array and every array is a pointer:

memory

1 5 2 15

t = &t[0]
(t+1) = p

(t+2)
(t+3)

int t[] = {1, 5, 2, 15};
int *p = t + 1;
int x = *(t + 1); // 5

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamic memory allocation

From this point onward we’re writing C++ code.

We can manually allocate memory with the new keyword. This
returns a pointer that points to the newly allocated memory:
int *p = new int;
*p = 5;
cout << "pointer: " << p << " mem: " << *p << endl;
// pointer: 0xa000004d0 mem: 5

The above uses the C++ style output. We will no longer use
stdio.h, printf or scanf from now on.
There is dynamic memory handling in C as well. However it is
more complicated so we’ll stick to C++ from now on.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamic memory allocation

From this point onward we’re writing C++ code.
We can manually allocate memory with the new keyword. This
returns a pointer that points to the newly allocated memory:
int *p = new int;
*p = 5;
cout << "pointer: " << p << " mem: " << *p << endl;
// pointer: 0xa000004d0 mem: 5

The above uses the C++ style output. We will no longer use
stdio.h, printf or scanf from now on.
There is dynamic memory handling in C as well. However it is
more complicated so we’ll stick to C++ from now on.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamic memory allocation

From this point onward we’re writing C++ code.
We can manually allocate memory with the new keyword. This
returns a pointer that points to the newly allocated memory:
int *p = new int;
*p = 5;
cout << "pointer: " << p << " mem: " << *p << endl;
// pointer: 0xa000004d0 mem: 5

The above uses the C++ style output. We will no longer use
stdio.h, printf or scanf from now on.

There is dynamic memory handling in C as well. However it is
more complicated so we’ll stick to C++ from now on.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamic memory allocation

From this point onward we’re writing C++ code.
We can manually allocate memory with the new keyword. This
returns a pointer that points to the newly allocated memory:
int *p = new int;
*p = 5;
cout << "pointer: " << p << " mem: " << *p << endl;
// pointer: 0xa000004d0 mem: 5

The above uses the C++ style output. We will no longer use
stdio.h, printf or scanf from now on.
There is dynamic memory handling in C as well. However it is
more complicated so we’ll stick to C++ from now on.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

C++ compilation

Almost everything works the same way.

Those who work in editors/IDEs (Codeblocks, Visual Studio,
etc.) should use the .cpp file extension instead of .c from now
on.
Those who work in a command line should use g++ instead
of gcc.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

C++ compilation

Almost everything works the same way.
Those who work in editors/IDEs (Codeblocks, Visual Studio,
etc.) should use the .cpp file extension instead of .c from now
on.

Those who work in a command line should use g++ instead
of gcc.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

C++ compilation

Almost everything works the same way.
Those who work in editors/IDEs (Codeblocks, Visual Studio,
etc.) should use the .cpp file extension instead of .c from now
on.
Those who work in a command line should use g++ instead
of gcc.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.

Two easy to remember keywords: cin és cout.
We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.
The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.
Two easy to remember keywords: cin és cout.

We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.
The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.
Two easy to remember keywords: cin és cout.
We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.
The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.
Two easy to remember keywords: cin és cout.
We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.

The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.
Two easy to remember keywords: cin és cout.
We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.
The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

Let’s sidetrack a bit to check out the new input/output.
Two easy to remember keywords: cin és cout.
We’ll replace scanf with cin:
int a;
float f;
cin >> a;
cin >> f;

We don’t have to specify the type of the variable with this.
The output, cout doesn’t require output types either and it
can be "chained":
int a = 5;
float f = 6.4;
cout << "a: " << a << endl << "f: " << f << endl;

endl is a new line (end line).

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

cin and cout are defined in the iostream library. From here
on we’ll use that instead of the stdio.h library.

The C++ libraries have no file extensions. This is how they’re
differentiated from C libraries (where .h is common).
A complete program showing cin and cout:

1 #include <iostream>
2 using namespace std;
3 int main(void) {
4 float x;
5 cin >> x;
6 cout << "value of x: " << x << endl;
7 return 0;
8 }

The using namespace std line will come up later. For now
let’s just copy and paste it after iostream always.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

cin and cout are defined in the iostream library. From here
on we’ll use that instead of the stdio.h library.
The C++ libraries have no file extensions. This is how they’re
differentiated from C libraries (where .h is common).

A complete program showing cin and cout:
1 #include <iostream>
2 using namespace std;
3 int main(void) {
4 float x;
5 cin >> x;
6 cout << "value of x: " << x << endl;
7 return 0;
8 }

The using namespace std line will come up later. For now
let’s just copy and paste it after iostream always.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

cin and cout are defined in the iostream library. From here
on we’ll use that instead of the stdio.h library.
The C++ libraries have no file extensions. This is how they’re
differentiated from C libraries (where .h is common).
A complete program showing cin and cout:

1 #include <iostream>
2 using namespace std;
3 int main(void) {
4 float x;
5 cin >> x;
6 cout << "value of x: " << x << endl;
7 return 0;
8 }

The using namespace std line will come up later. For now
let’s just copy and paste it after iostream always.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

iostream

cin and cout are defined in the iostream library. From here
on we’ll use that instead of the stdio.h library.
The C++ libraries have no file extensions. This is how they’re
differentiated from C libraries (where .h is common).
A complete program showing cin and cout:

1 #include <iostream>
2 using namespace std;
3 int main(void) {
4 float x;
5 cin >> x;
6 cout << "value of x: " << x << endl;
7 return 0;
8 }

The using namespace std line will come up later. For now
let’s just copy and paste it after iostream always.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamically allocated array

We can manually allocate an array as well:
int *t;
t = new int[3];
t[0] = 5; t[1] = 6; t[2] = 7;

The elements of a dynamically allocated array are still next to
each other in the memory.
Now we can create an array with the length specified by the
user:

1 int *t;
2 int n;
3 cin >> n;
4 t = new int[n];
5 for(int i = 0; i < n; i++) {
6 t[i] = i * i;
7 }

New feature: we can define the cycle variable in for.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamically allocated array

We can manually allocate an array as well:
int *t;
t = new int[3];
t[0] = 5; t[1] = 6; t[2] = 7;
The elements of a dynamically allocated array are still next to
each other in the memory.

Now we can create an array with the length specified by the
user:

1 int *t;
2 int n;
3 cin >> n;
4 t = new int[n];
5 for(int i = 0; i < n; i++) {
6 t[i] = i * i;
7 }

New feature: we can define the cycle variable in for.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamically allocated array

We can manually allocate an array as well:
int *t;
t = new int[3];
t[0] = 5; t[1] = 6; t[2] = 7;
The elements of a dynamically allocated array are still next to
each other in the memory.
Now we can create an array with the length specified by the
user:

1 int *t;
2 int n;
3 cin >> n;
4 t = new int[n];
5 for(int i = 0; i < n; i++) {
6 t[i] = i * i;
7 }

New feature: we can define the cycle variable in for.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Dynamically allocated array

We can manually allocate an array as well:
int *t;
t = new int[3];
t[0] = 5; t[1] = 6; t[2] = 7;
The elements of a dynamically allocated array are still next to
each other in the memory.
Now we can create an array with the length specified by the
user:

1 int *t;
2 int n;
3 cin >> n;
4 t = new int[n];
5 for(int i = 0; i < n; i++) {
6 t[i] = i * i;
7 }

New feature: we can define the cycle variable in for.
Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array

Let’s try to return an array in a function.

1 int* fv() {
2 int t[] = {1, 2, 5};
3 return t;
4 }
5 int main(void) {
6 int *a = fv();
7 for(int i = 0; i < 3; i++) {
8 cout << a[i] << endl;
9 }

10 return 0;
11 }

This leads to the Segmentation Fault error.
The array t is destroyed once the fv function ends, like all
other local variables.
The true return value of the function is a copy of t as a
pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array

Let’s try to return an array in a function.
1 int* fv() {
2 int t[] = {1, 2, 5};
3 return t;
4 }
5 int main(void) {
6 int *a = fv();
7 for(int i = 0; i < 3; i++) {
8 cout << a[i] << endl;
9 }

10 return 0;
11 }

This leads to the Segmentation Fault error.
The array t is destroyed once the fv function ends, like all
other local variables.
The true return value of the function is a copy of t as a
pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array

Let’s try to return an array in a function.
1 int* fv() {
2 int t[] = {1, 2, 5};
3 return t;
4 }
5 int main(void) {
6 int *a = fv();
7 for(int i = 0; i < 3; i++) {
8 cout << a[i] << endl;
9 }

10 return 0;
11 }

This leads to the Segmentation Fault error.

The array t is destroyed once the fv function ends, like all
other local variables.
The true return value of the function is a copy of t as a
pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array

Let’s try to return an array in a function.
1 int* fv() {
2 int t[] = {1, 2, 5};
3 return t;
4 }
5 int main(void) {
6 int *a = fv();
7 for(int i = 0; i < 3; i++) {
8 cout << a[i] << endl;
9 }

10 return 0;
11 }

This leads to the Segmentation Fault error.
The array t is destroyed once the fv function ends, like all
other local variables.

The true return value of the function is a copy of t as a
pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array

Let’s try to return an array in a function.
1 int* fv() {
2 int t[] = {1, 2, 5};
3 return t;
4 }
5 int main(void) {
6 int *a = fv();
7 for(int i = 0; i < 3; i++) {
8 cout << a[i] << endl;
9 }

10 return 0;
11 }

This leads to the Segmentation Fault error.
The array t is destroyed once the fv function ends, like all
other local variables.
The true return value of the function is a copy of t as a
pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 2

Everything dynamically allocated will still exist even outside its
scope.

This means the following works:
1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 return t;
5 }
6 int main(void) {
7 int *a;
8 a = fv();
9 for(int i = 0; i < 3; i++) {

10 cout << a[i] << endl;
11 }
12 return 0;
13 }

In truth, if something is dynamically allocated it can exist for as
long as the program runs.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 2

Everything dynamically allocated will still exist even outside its
scope.
This means the following works:

1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 return t;
5 }
6 int main(void) {
7 int *a;
8 a = fv();
9 for(int i = 0; i < 3; i++) {

10 cout << a[i] << endl;
11 }
12 return 0;
13 }

In truth, if something is dynamically allocated it can exist for as
long as the program runs.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 2

Everything dynamically allocated will still exist even outside its
scope.
This means the following works:

1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 return t;
5 }
6 int main(void) {
7 int *a;
8 a = fv();
9 for(int i = 0; i < 3; i++) {

10 cout << a[i] << endl;
11 }
12 return 0;
13 }

In truth, if something is dynamically allocated it can exist for as
long as the program runs.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 3

What’s the issue here?
1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 return t_sqr;
9 }

The dynamically allocated t array stays in the memory after the
function ends. But we won’t have any way to access it.
If we execute the function 100 times, then it will be present in the
memory 100 separate times uselessly.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 3

What’s the issue here?
1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 return t_sqr;
9 }

The dynamically allocated t array stays in the memory after the
function ends. But we won’t have any way to access it.

If we execute the function 100 times, then it will be present in the
memory 100 separate times uselessly.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Returning an array 3

What’s the issue here?
1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 return t_sqr;
9 }

The dynamically allocated t array stays in the memory after the
function ends. But we won’t have any way to access it.
If we execute the function 100 times, then it will be present in the
memory 100 separate times uselessly.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Freeing memory

Dynamically allocated things have to be manually freed (removed
from the memory).

That’s what the delete keyword is for:

int p* = new int;
*p = 5;
delete p;

And for dynamically allocated arrays the delete[] keyword:

1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 delete[] t;
9 return t_sqr;

10 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Freeing memory

Dynamically allocated things have to be manually freed (removed
from the memory).

That’s what the delete keyword is for:

int p* = new int;
*p = 5;
delete p;

And for dynamically allocated arrays the delete[] keyword:

1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 delete[] t;
9 return t_sqr;

10 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Freeing memory

Dynamically allocated things have to be manually freed (removed
from the memory).

That’s what the delete keyword is for:

int p* = new int;
*p = 5;
delete p;

And for dynamically allocated arrays the delete[] keyword:

1 int* fv() {
2 int *t = new int[3];
3 t[0] = 1; t[1] = 2; t[2] = 5;
4 int *t_sqr = new int[3];
5 for(int i = 0; i < 3; i++) {
6 t_sqr[i] = t[i] * t[i];
7 }
8 delete[] t;
9 return t_sqr;

10 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Freeing memory 2

Since the function fv returns with a dynamically allocated array, it is
the responsibility of the caller to free this array (the caller is the
main fucntion here):

1 int main(void) {
2 int *a;
3 a = fv();
4 for(int i = 0; i < 3; i++) {
5 cout << a[i] << endl;
6 }
7 delete[] a;
8 return 0;
9 }

The way we should think about this is that every dynamical
allocation has to have its freeing pair.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Freeing memory 2

Since the function fv returns with a dynamically allocated array, it is
the responsibility of the caller to free this array (the caller is the
main fucntion here):

1 int main(void) {
2 int *a;
3 a = fv();
4 for(int i = 0; i < 3; i++) {
5 cout << a[i] << endl;
6 }
7 delete[] a;
8 return 0;
9 }

The way we should think about this is that every dynamical
allocation has to have its freeing pair.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?

What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.

We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).

We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.

We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Advantages of dynamic allocation

Why are we putting so much effort into understanding the
inner workings of the memory, pointers and such?
What we did so far:

Using pointers we returned more than 1 value with a function.
We could handle arrays as pointers (though it’s not that
useful).
We can use pointers to store the pointer of the dynamically
allocated memory.
We can directly return an array with a function.

Now we’ll use pointers to create a new data structure.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

The problem

Develop a data structure the can hold as many elements as we
want (or as much as our computer’s memory permits).

What we want is a similar data structure as the list in python.
The following or something similar should work:

1 int x; // auxiliary variable
2 list l; // our new data type
3 append(l, 5) // we append 5 at the end of ;
4 append(l, 4) // now 4
5 cin >> x;
6 while(x != 0) { // while we do not get a 0
7 append(l, x) // add elements to l
8 cin >> x; // read the next element
9 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

The problem

Develop a data structure the can hold as many elements as we
want (or as much as our computer’s memory permits).
What we want is a similar data structure as the list in python.
The following or something similar should work:

1 int x; // auxiliary variable
2 list l; // our new data type
3 append(l, 5) // we append 5 at the end of ;
4 append(l, 4) // now 4
5 cin >> x;
6 while(x != 0) { // while we do not get a 0
7 append(l, x) // add elements to l
8 cin >> x; // read the next element
9 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

The problem

Develop a data structure the can hold as many elements as we
want (or as much as our computer’s memory permits).
What we want is a similar data structure as the list in python.
The following or something similar should work:

1 int x; // auxiliary variable
2 list l; // our new data type
3 append(l, 5) // we append 5 at the end of ;
4 append(l, 4) // now 4
5 cin >> x;
6 while(x != 0) { // while we do not get a 0
7 append(l, x) // add elements to l
8 cin >> x; // read the next element
9 }

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Array expansion idea

First idea:
Let’s use a dynamically allocated array.
Store the current length of it in a variable
Should we need more space we can just create a bigger array
and copy all elements to this new and larger array. Then we
can free the original array.

Issues:
It’s still limited in size. That’s because int has a limit, a so
called "int max". There would be no way to index the array
past this number.
During every expansion we’ll need to do a lot of copying. At
one point this will simply take too long.
At this point we could just as well create an int array the size
of "int max" and we would be in the same boat.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Array expansion idea

First idea:
Let’s use a dynamically allocated array.
Store the current length of it in a variable
Should we need more space we can just create a bigger array
and copy all elements to this new and larger array. Then we
can free the original array.

Issues:
It’s still limited in size. That’s because int has a limit, a so
called "int max". There would be no way to index the array
past this number.
During every expansion we’ll need to do a lot of copying. At
one point this will simply take too long.
At this point we could just as well create an int array the size
of "int max" and we would be in the same boat.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Minimalist array expansion implementation (just for show)
(The x->y command is equivalent to
(*x).y. We’ll talk about it later.)

struct list {
int *a;
int n;
int max;

};

void append(struct list *l, int e) {
if(l->n >= l->max) {

int *t = new int[l->max + 100];
for(int i = 0; i < l->n; i++) {

t[i] = l->a[i];
}
delete[] l->a;
l->a = t;
l->max = l->max + 100;

}
l->a[l->n] = e;
l->n++;

}

int main(void) {
struct list l;
l.a = new int[1];
l.n = 0;
l.max = 1;
append(&l, 1);
append(&l, 5);
append(&l, -2);
for(int i = 0; i < l.n; i++) {

cout << l.a[i] << endl;
}
delete[] l.a;
return 0;

}

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Linked list idea

What if every element of our list structure would store the
next element’s pointer?

Something like this:
memory

next

1

next

5

next

-2

next

15

This would store the 1, 5, -2, 15 elements. We would only
need to store the pointer to the first element and we could
access them all.
This is how the elements would look like:
struct list_e {

int num;
struct list_e *next;

};
It stores a value num and the pointer to the next element in
next.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Linked list idea

What if every element of our list structure would store the
next element’s pointer?
Something like this:

memory

next

1

next

5

next

-2

next

15

This would store the 1, 5, -2, 15 elements. We would only
need to store the pointer to the first element and we could
access them all.
This is how the elements would look like:
struct list_e {

int num;
struct list_e *next;

};
It stores a value num and the pointer to the next element in
next.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Linked list idea

What if every element of our list structure would store the
next element’s pointer?
Something like this:

memory

next

1

next

5

next

-2

next

15

This would store the 1, 5, -2, 15 elements. We would only
need to store the pointer to the first element and we could
access them all.

This is how the elements would look like:
struct list_e {

int num;
struct list_e *next;

};
It stores a value num and the pointer to the next element in
next.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Linked list idea

What if every element of our list structure would store the
next element’s pointer?
Something like this:

memory

next

1

next

5

next

-2

next

15

This would store the 1, 5, -2, 15 elements. We would only
need to store the pointer to the first element and we could
access them all.
This is how the elements would look like:
struct list_e {

int num;
struct list_e *next;

};

It stores a value num and the pointer to the next element in
next.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Linked list idea

What if every element of our list structure would store the
next element’s pointer?
Something like this:

memory

next

1

next

5

next

-2

next

15

This would store the 1, 5, -2, 15 elements. We would only
need to store the pointer to the first element and we could
access them all.
This is how the elements would look like:
struct list_e {

int num;
struct list_e *next;

};
It stores a value num and the pointer to the next element in
next.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this. But we’re instantly faced with a problem.
What should the last element’s next point to?

Let’s use the trick from C strings where we had the terminal zero
character ’\0’.
NULL is a special pointer value. We can use this to express if
something doesn’t actually point anywhere:

memory

next

1

next

5

next

-2

next

15

NULL

Now we just need to store the first element’s pointer in a variable
and we’re basically done:

memory

next

1

next

5

next

-2

next

15

NULLstart

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this. But we’re instantly faced with a problem.
What should the last element’s next point to?
Let’s use the trick from C strings where we had the terminal zero
character ’\0’.

NULL is a special pointer value. We can use this to express if
something doesn’t actually point anywhere:

memory

next

1

next

5

next

-2

next

15

NULL

Now we just need to store the first element’s pointer in a variable
and we’re basically done:

memory

next

1

next

5

next

-2

next

15

NULLstart

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this. But we’re instantly faced with a problem.
What should the last element’s next point to?
Let’s use the trick from C strings where we had the terminal zero
character ’\0’.
NULL is a special pointer value. We can use this to express if
something doesn’t actually point anywhere:

memory

next

1

next

5

next

-2

next

15

NULL

Now we just need to store the first element’s pointer in a variable
and we’re basically done:

memory

next

1

next

5

next

-2

next

15

NULLstart

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this. But we’re instantly faced with a problem.
What should the last element’s next point to?
Let’s use the trick from C strings where we had the terminal zero
character ’\0’.
NULL is a special pointer value. We can use this to express if
something doesn’t actually point anywhere:

memory

next

1

next

5

next

-2

next

15

NULL

Now we just need to store the first element’s pointer in a variable
and we’re basically done:

memory

next

1

next

5

next

-2

next

15

NULLstart
Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this in C++. We want to make this main function
work:

1 int main(void) {
2 struct list_e *start = NULL; // pointer of the first element
3 append(start, 1); // add the first element
4 append(start, 5); // then the second
5 append(start, -2); // and a third
6 for(;;) { // we'll have to iterate over this list somehow
7 // print the elements of the list here
8 }
9 return 0;

10 }

Let’s start writing the append function in small steps.
Since we’ll be going step by step there wll be moments when the
code contains errors. I’ll let you know each time.
Let’s use the previously defined struct list_e type.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this in C++. We want to make this main function
work:

1 int main(void) {
2 struct list_e *start = NULL; // pointer of the first element
3 append(start, 1); // add the first element
4 append(start, 5); // then the second
5 append(start, -2); // and a third
6 for(;;) { // we'll have to iterate over this list somehow
7 // print the elements of the list here
8 }
9 return 0;

10 }

Let’s start writing the append function in small steps.

Since we’ll be going step by step there wll be moments when the
code contains errors. I’ll let you know each time.
Let’s use the previously defined struct list_e type.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this in C++. We want to make this main function
work:

1 int main(void) {
2 struct list_e *start = NULL; // pointer of the first element
3 append(start, 1); // add the first element
4 append(start, 5); // then the second
5 append(start, -2); // and a third
6 for(;;) { // we'll have to iterate over this list somehow
7 // print the elements of the list here
8 }
9 return 0;

10 }

Let’s start writing the append function in small steps.
Since we’ll be going step by step there wll be moments when the
code contains errors. I’ll let you know each time.

Let’s use the previously defined struct list_e type.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s implement this in C++. We want to make this main function
work:

1 int main(void) {
2 struct list_e *start = NULL; // pointer of the first element
3 append(start, 1); // add the first element
4 append(start, 5); // then the second
5 append(start, -2); // and a third
6 for(;;) { // we'll have to iterate over this list somehow
7 // print the elements of the list here
8 }
9 return 0;

10 }

Let’s start writing the append function in small steps.
Since we’ll be going step by step there wll be moments when the
code contains errors. I’ll let you know each time.
Let’s use the previously defined struct list_e type.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

The very first thing we need to do is to add the first element. At
this point start is still NULL, since we’re not storing anything yet.

1 void append(struct list_e *start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 start = e;
6 }

Dynamically create the element, so that it remains after the
function returns.
If you try this with only 1 append call it will still not be okay
Since we’re trying to change the start pointer, not its stored stuff in
the memory. So we’ll have to use a pointer pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

The very first thing we need to do is to add the first element. At
this point start is still NULL, since we’re not storing anything yet.

1 void append(struct list_e *start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 start = e;
6 }

Dynamically create the element, so that it remains after the
function returns.

If you try this with only 1 append call it will still not be okay
Since we’re trying to change the start pointer, not its stored stuff in
the memory. So we’ll have to use a pointer pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

The very first thing we need to do is to add the first element. At
this point start is still NULL, since we’re not storing anything yet.

1 void append(struct list_e *start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 start = e;
6 }

Dynamically create the element, so that it remains after the
function returns.
If you try this with only 1 append call it will still not be okay

Since we’re trying to change the start pointer, not its stored stuff in
the memory. So we’ll have to use a pointer pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

The very first thing we need to do is to add the first element. At
this point start is still NULL, since we’re not storing anything yet.

1 void append(struct list_e *start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 start = e;
6 }

Dynamically create the element, so that it remains after the
function returns.
If you try this with only 1 append call it will still not be okay
Since we’re trying to change the start pointer, not its stored stuff in
the memory. So we’ll have to use a pointer pointer.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

I only changed the pointer of a pointer part:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 *start = e; // now we need *start
6 }

This works. We can add 1 element to the list.
However the notation (*x).y would quickly become infuriating.
Thankfully there’s a solution. It means the same as the x->y
expression.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

I only changed the pointer of a pointer part:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 *start = e; // now we need *start
6 }

This works. We can add 1 element to the list.

However the notation (*x).y would quickly become infuriating.
Thankfully there’s a solution. It means the same as the x->y
expression.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

I only changed the pointer of a pointer part:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 (*e).num = n;
4 (*e).next = NULL;
5 *start = e; // now we need *start
6 }

This works. We can add 1 element to the list.
However the notation (*x).y would quickly become infuriating.
Thankfully there’s a solution. It means the same as the x->y
expression.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Only replaced with x->y
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 *start = e; // now we need *start
6 }

This is how the memory looks now:
memory

next

1

NULLstart

However if we were to call append again (to append an element)
then it wouldn’t work and it’s easy to see why. We would only
change the first element to this new element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Only replaced with x->y
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 *start = e; // now we need *start
6 }

This is how the memory looks now:
memory

next

1

NULLstart

However if we were to call append again (to append an element)
then it wouldn’t work and it’s easy to see why. We would only
change the first element to this new element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Only replaced with x->y
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 *start = e; // now we need *start
6 }

This is how the memory looks now:
memory

next

1

NULLstart

However if we were to call append again (to append an element)
then it wouldn’t work and it’s easy to see why. We would only
change the first element to this new element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s do a condition based on whether we’re appending the first element or not:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e;
7 } else {
8 (*start)->next = e;
9 }

10 }

Now the memory looks like this:
memory

next

1

next

5

start NULL

It’s easy to see again that this still isn’t right. When we use append-et, we
always change the next of the start element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s do a condition based on whether we’re appending the first element or not:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e;
7 } else {
8 (*start)->next = e;
9 }

10 }

Now the memory looks like this:
memory

next

1

next

5

start NULL

It’s easy to see again that this still isn’t right. When we use append-et, we
always change the next of the start element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s do a condition based on whether we’re appending the first element or not:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e;
7 } else {
8 (*start)->next = e;
9 }

10 }

Now the memory looks like this:
memory

next

1

next

5

start NULL

It’s easy to see again that this still isn’t right. When we use append-et, we
always change the next of the start element.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.

We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:

We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:

We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:

We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:
We initialize the cycle variable (e) with the first element.

Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:
We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.

We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:
We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list

Let’s stop for a moment and think about how we would
navigate to the last element. Since that’s the element whose
next we need to set.
We can borrow from C strings again. We parsed a string there
until we encountered the ’\0’ terminal zero. In a linked list the
equivalent would be the NULL pointer:
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}

If you think about it this is just a regular for loop:
We initialize the cycle variable (e) with the first element.
Stopping condition is almost the same as with C strings.
We step onto the next element.

We can use this in the main function to print the linked list’s
elements.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: before the loop

memory

next

1

next

5

next

-2

next

15

NULLstart

eeeee

Output:

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: initialization happened

memory

next

1

next

5

next

-2

next

15

NULLstart
e

eeee

Output:

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the first loop

memory

next

1

next

5

next

-2

next

15

NULLstart
e

eeee

Output:
1

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: beginning of the second loop

memory

next

1

next

5

next

-2

next

15

NULLstart

e

e

eee

Output:
1

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the second loop

memory

next

1

next

5

next

-2

next

15

NULLstart

e

e

eee

Output:
1
5

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the third loop

memory

next

1

next

5

next

-2

next

15

NULLstart

ee

e

ee

Output:
1
5
-2

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the forth loop

memory

next

1

next

5

next

-2

next

15

NULLstart

eee

e

e

Output:
1
5
-2

15

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the forth loop and the step also happened

memory

next

1

next

5

next

-2

next

15

NULLstart

eeee

e

Output:
1
5
-2

15

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Iterating over a linked list
Let’s see how this iteration over the linked list would work in our (theoretical)
complete implementation of a linked list.

for(struct list_e *e = start; e != NULL; e = e->next) {
cout << e->num << endl;

}

Where we are: end of the loop, the condition was false

memory

next

1

next

5

next

-2

next

15

NULLstart

eeeee

Output:
1
5
-2

15

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists

Let’s go back to the implementation and use what we learned:
1 void append(struct list_e **start, int n) {
2 struct list_e *e = new struct list_e;
3 e->num = n;
4 e->next = NULL;
5 if (*start == NULL) {
6 *start = e; // most már *start kell
7 } else {
8 struct list_e *p = NULL;
9 for(p = *start; p->next != NULL; p = p->next){}

10 p->next = e;
11 }
12 }

The loop that we used is a bit different to the one we discussed previously.

Here we want to stop when we’ve reached the last element.

We know we’re at the last element when the element’s next is NULL.

There is no command in the inner part of the loop. We only need to set the p
pointer to the last element.

This truly implements a dynamically expanding data structure that might even
fill the whole memory.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Implementation of linked lists (complete code)

#include <iostream>

using namespace std;

struct list_e {
int num;
struct list_e *next;

};

void append(struct list_e **start, int n) {
struct list_e *e = new struct list_e;
e->num = n;
e->next = NULL;
if (*start == NULL) {

*start = e;
} else {

struct list_e *p = NULL;
for(p = *start; p->next != NULL; p = p->next){}
p->next = e;

}
}

int main(void) {
struct list_e *start = NULL;
append(&start, 1);
append(&start, 5);
append(&start, -2);
append(&start, 15);
for(struct list_e *e = start; e != NULL; e = e->next) {

cout << e->num << endl;
}
return 0;

}

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?

We need a way to free the dynamically created linked list.
It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.
Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.
We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.
We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?
We need a way to free the dynamically created linked list.

It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.
Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.
We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.
We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?
We need a way to free the dynamically created linked list.
It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.

Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.
We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.
We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?
We need a way to free the dynamically created linked list.
It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.
Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.

We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.
We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?
We need a way to free the dynamically created linked list.
It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.
Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.
We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.

We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Where to now

Where to next?
We need a way to free the dynamically created linked list.
It would be confusing in the long run if we used append and
similarly named functions (we would need an append_list,
append_dictionary, append_set, etc.). The solution to this
will be classes.
Another issue is that the type of the stored element is set in
stone in this implementation (we only stored 1 int). The
solution to this will be templates.
We can’t store everything in one file. Once we start using
more structures like this we’ll need to start using more source
files and header files.
We can’t implement everything ourselves. We’ll start using
already implemented data structure from libraries at some
point.

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

Pop quiz questions

Draw a schematic representation of a linked list in memory.
What is the NULL pointer?
Show an example of dynamically creating an array.
What is delete and delete[] used for?

Kristóf Kovács Informatics 3. Lecture 3: Dynamic memory handling

