
Informatics 3.
Lecture 4: Classes

Kristóf Kovács

Budapest University of Technology and Economics

2024-03-21

Kristóf Kovács Informatics 3. Lecture 4: Classes



Story

Some programming method:
Programming at the beginning of time
Structured
Modular
Functional
Object-oriented
...

At the beginning of time:
No visible structure
Only the author understands it
Makes the author irreplaceable

Kristóf Kovács Informatics 3. Lecture 4: Classes



Story

Some programming method:
Programming at the beginning of time
Structured
Modular
Functional
Object-oriented
...

At the beginning of time:
No visible structure
Only the author understands it
Makes the author irreplaceable

Kristóf Kovács Informatics 3. Lecture 4: Classes



Structured programming

Structured data, operations
Readable, portable
Not efficient enough, hard to
extend

AsteroidVector asteroidDestroyed(Asteroid ast) {
int n = ast.size; // better name: numberOfNewAsteroids
AsteroidVector newAsteroids = createAsteroidVector(n);
int i;
for(i = 0; i < n; i++) {

newAsteroids.push(instantiateFragmentAsteroid(ast.pos, n));
...

}
return newAsteroids;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Structured programming

Structured data, operations
Readable, portable
Not efficient enough, hard to
extend

AsteroidVector asteroidDestroyed(Asteroid ast) {
int n = ast.size; // better name: numberOfNewAsteroids
AsteroidVector newAsteroids = createAsteroidVector(n);
int i;
for(i = 0; i < n; i++) {

newAsteroids.push(instantiateFragmentAsteroid(ast.pos, n));
...

}
return newAsteroids;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Modular programming

Independent modules
Modules connected through interfaces
Independently compilable, testable
The modules directly don’t know about each other
The data types show up on the interfaces
Hard to replace a data type

AsteroidHandler.c
GameHandler.c
PlayerController.c
Physics.c
Renderer.c
...

Kristóf Kovács Informatics 3. Lecture 4: Classes



Modular programming

Independent modules
Modules connected through interfaces
Independently compilable, testable
The modules directly don’t know about each other
The data types show up on the interfaces
Hard to replace a data type

AsteroidHandler.c
GameHandler.c
PlayerController.c
Physics.c
Renderer.c
...

Kristóf Kovács Informatics 3. Lecture 4: Classes



Object-oriented solution

class Asteroid: public Renderable, public Destroyable... {
private:

int size;
Position pos;
...

public:
AsteroidContainer destroy() {

AsteroidContainer newAsteroids = new AsteroidVector(size);
for(int i = 0; i < size; i++) {

Asteroid a = AsteroidFactory.createFragmentAsteroid(
pos, size);

...
}
return newAsteroids;

}
void render(Renderer rend) {

...
}

};

Kristóf Kovács Informatics 3. Lecture 4: Classes



Object-oriented programming

Independence is part of the language
Breakdown into simpler tasks
The program can be designed without deeply going into the
algorithms that will need to be used
Abstract parts connected through interfaces
Object:

Easily modifiable
Genaralizable
Stores its own state
Hides its own data structure and its algorithms
The more abstract the better, using it shouldn’t require
knowledge of its workings
Pl: Complex number, Linked list, Binary tree

Kristóf Kovács Informatics 3. Lecture 4: Classes



Object-oriented programming

Independence is part of the language
Breakdown into simpler tasks
The program can be designed without deeply going into the
algorithms that will need to be used
Abstract parts connected through interfaces
Object:

Easily modifiable
Genaralizable
Stores its own state
Hides its own data structure and its algorithms
The more abstract the better, using it shouldn’t require
knowledge of its workings
Pl: Complex number, Linked list, Binary tree

Kristóf Kovács Informatics 3. Lecture 4: Classes



Reference

Swap function with our current knowledge

With reference

void csere(int* a, int* b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(void) {
int x = 2;
int y = 10;

csere(&x, &y);
cout << "x: " << x << endl;
cout << "y: " << y << endl;

return 0;
}

void csere(int& a, int& b) {
int temp = a;
a = b;
b = temp;

}

int main(void) {
int x = 2;
int y = 10;

csere(x, y);
cout << "x: " << x << endl;
cout << "y: " << y << endl;

return 0;
}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Reference

Swap function with our current knowledge

With reference

void csere(int* a, int* b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(void) {
int x = 2;
int y = 10;

csere(&x, &y);
cout << "x: " << x << endl;
cout << "y: " << y << endl;

return 0;
}

void csere(int& a, int& b) {
int temp = a;
a = b;
b = temp;

}

int main(void) {
int x = 2;
int y = 10;

csere(x, y);
cout << "x: " << x << endl;
cout << "y: " << y << endl;

return 0;
}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Referencia

Using a reference to transfer values to a function uses the
actual variable, as if we used a pointer.

You can use references outside of parameters too:
int a = 5;
int& b = a;

The "pointer" of a reference cannot be modified. When
created it has to be set to a variable and this can no longer be
changed.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Referencia

Using a reference to transfer values to a function uses the
actual variable, as if we used a pointer.
You can use references outside of parameters too:
int a = 5;
int& b = a;

The "pointer" of a reference cannot be modified. When
created it has to be set to a variable and this can no longer be
changed.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Referencia

Using a reference to transfer values to a function uses the
actual variable, as if we used a pointer.
You can use references outside of parameters too:
int a = 5;
int& b = a;

The "pointer" of a reference cannot be modified. When
created it has to be set to a variable and this can no longer be
changed.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures

Let’s try to write a complex number data type with our current
knowledge.

typedef struct comp {
float re;
float im;

} Complex;

Complex add(Complex first, Complex other) {
Complex ret;
ret.re = first.re + other.re;
ret.im = first.im + other.im;
return ret;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures

Let’s try to write a complex number data type with our current
knowledge.

typedef struct comp {
float re;
float im;

} Complex;

Complex add(Complex first, Complex other) {
Complex ret;
ret.re = first.re + other.re;
ret.im = first.im + other.im;
return ret;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures

Not too bad yet. Let’s try to implement multiplication, absolute
value and printing as well.

Complex times(Complex first, Complex other) {
Complex ret;
ret.re = first.re * other.re - first.im * other.im;
ret.im = first.re * other.im + first.im * other.re;
return ret;

}

float abs(Complex first) {
return sqrt(first.re * first.re + first.im * first.im);

}

void print(Complex first) {
cout << first.re << " + " << first.im << "i" << endl;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures

Not too bad yet. Let’s try to implement multiplication, absolute
value and printing as well.

Complex times(Complex first, Complex other) {
Complex ret;
ret.re = first.re * other.re - first.im * other.im;
ret.im = first.re * other.im + first.im * other.re;
return ret;

}

float abs(Complex first) {
return sqrt(first.re * first.re + first.im * first.im);

}

void print(Complex first) {
cout << first.re << " + " << first.im << "i" << endl;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures, main

int main(void) {
Complex a;
a.re = 0; a.im = 0;
Complex b;
b.re = 1; b.im = 2;
Complex c = times(a, b);

print(a);
print(b);
print(c);

Complex d = add(b, c);
print(d);

cout << abs(b) << endl;

return 0;
}

The problem is with the
readability.

Can’t be understood at a glance.

We want to make complex
numbers work as if they were for
example floats.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures, main

int main(void) {
Complex a;
a.re = 0; a.im = 0;
Complex b;
b.re = 1; b.im = 2;
Complex c = times(a, b);

print(a);
print(b);
print(c);

Complex d = add(b, c);
print(d);

cout << abs(b) << endl;

return 0;
}

The problem is with the
readability.

Can’t be understood at a glance.

We want to make complex
numbers work as if they were for
example floats.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with structures, main

int main(void) {
Complex a;
a.re = 0; a.im = 0;
Complex b;
b.re = 1; b.im = 2;
Complex c = times(a, b);

print(a);
print(b);
print(c);

Complex d = add(b, c);
print(d);

cout << abs(b) << endl;

return 0;
}

The problem is with the
readability.

Can’t be understood at a glance.

We want to make complex
numbers work as if they were for
example floats.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes

class Complex {
private:

float re;
float im;

public:
Complex();
Complex(const Complex& other);
Complex(float r);
Complex(float r, float i);

Complex add(Complex& other);
Complex times(Complex& other);
float abs();

void print();

~Complex();
};

Kristóf Kovács Informatics 3. Lecture 4: Classes



New keywords

New keywords:
class is used to create a new class.
private data members/methods set to private can only be
accessed by their own class (hidden data types/algorithms)
public data members/methods set to public can be accessed
from outside

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, main

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a.times(b);

a.print();
b.print();
c.print();

(b.add(c)).print();

cout << b.abs() << endl;

return 0;
}

A bit more readable than the
solution with structs.

Not perfect yet.

Later we will be able to redefine
operators like + and *. We’ll also
be able to "teach" cout how to
print a given object.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, main

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a.times(b);

a.print();
b.print();
c.print();

(b.add(c)).print();

cout << b.abs() << endl;

return 0;
}

A bit more readable than the
solution with structs.

Not perfect yet.

Later we will be able to redefine
operators like + and *. We’ll also
be able to "teach" cout how to
print a given object.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, main

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a.times(b);

a.print();
b.print();
c.print();

(b.add(c)).print();

cout << b.abs() << endl;

return 0;
}

A bit more readable than the
solution with structs.

Not perfect yet.

Later we will be able to redefine
operators like + and *. We’ll also
be able to "teach" cout how to
print a given object.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, main

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a.times(b);

a.print();
b.print();
c.print();

(b.add(c)).print();

cout << b.abs() << endl;

return 0;
}

A bit more readable than the
solution with structs.

Not perfect yet.

Later we will be able to redefine
operators like + and *. We’ll also
be able to "teach" cout how to
print a given object.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.

When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.

When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.

This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members, constructors

Data members and methods are accessed through the . (dot)
operator.
When a method has no parameters the parentheses still need
to be used.
When creating a new object, we do it with constructors.
This constructor takes two floats.
Complex(float r, float i);

This is the default constructor. This is called when we
create an object without inicializing it.
Complex();

This is the copy constructor. It’s called when we copy an
object of this type (for example when passed to a function).
Complex(const Complex& other);

Constructors have no return values.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, methods

Complex::Complex() {
re = 0;
im = 0;

}

Complex::Complex(const Complex& other) {
this->re = other.re;
this->im = other.im;

}

Complex::Complex(float r) {
re = r;
im = 0;

}

Complex::Complex(float r, float i) {
re = r;
im = i;

}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members and constructors

Data members can be accessed through their name.

But we can also refer to the given object with the keyword
this, it is a pointer to the given object (the object on which
the method was called, or the object that’s being constructed).
The const keyword will be discussed later.
It’s important to notice that the copy constructor uses a
reference to the other object:
Complex(const Complex& other);

If it wasn’t a reference then it would lead to an infinite
recursion. Copying an object would call the copy constructor
which would need to copy the given object calling another
copy constructor and so on.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members and constructors

Data members can be accessed through their name.
But we can also refer to the given object with the keyword
this, it is a pointer to the given object (the object on which
the method was called, or the object that’s being constructed).

The const keyword will be discussed later.
It’s important to notice that the copy constructor uses a
reference to the other object:
Complex(const Complex& other);

If it wasn’t a reference then it would lead to an infinite
recursion. Copying an object would call the copy constructor
which would need to copy the given object calling another
copy constructor and so on.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members and constructors

Data members can be accessed through their name.
But we can also refer to the given object with the keyword
this, it is a pointer to the given object (the object on which
the method was called, or the object that’s being constructed).
The const keyword will be discussed later.

It’s important to notice that the copy constructor uses a
reference to the other object:
Complex(const Complex& other);

If it wasn’t a reference then it would lead to an infinite
recursion. Copying an object would call the copy constructor
which would need to copy the given object calling another
copy constructor and so on.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members and constructors

Data members can be accessed through their name.
But we can also refer to the given object with the keyword
this, it is a pointer to the given object (the object on which
the method was called, or the object that’s being constructed).
The const keyword will be discussed later.
It’s important to notice that the copy constructor uses a
reference to the other object:
Complex(const Complex& other);

If it wasn’t a reference then it would lead to an infinite
recursion. Copying an object would call the copy constructor
which would need to copy the given object calling another
copy constructor and so on.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Data members and constructors

Data members can be accessed through their name.
But we can also refer to the given object with the keyword
this, it is a pointer to the given object (the object on which
the method was called, or the object that’s being constructed).
The const keyword will be discussed later.
It’s important to notice that the copy constructor uses a
reference to the other object:
Complex(const Complex& other);

If it wasn’t a reference then it would lead to an infinite
recursion. Copying an object would call the copy constructor
which would need to copy the given object calling another
copy constructor and so on.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Complex number with classes, methods

Complex Complex::add(Complex& other) {
return Complex(this->re + other.re, this->im + other.im);

}

Complex Complex::times(Complex& other) {
float real = this->re * other.re - this->im * other.im;
float imag = this->re * other.im + this->im * other.re;
return Complex(real, imag);

}

float Complex::abs() {
return sqrt(this->re * this->re + this->im * this->im);

}

void Complex::print() {
cout << re << " + " << im << "i" << endl;

}
Complex::~Complex() {
}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Namespaces, destructor

The :: operator lets us enter a class’ namespace. This is why
we wrote Complex::add, because the add function doesn’t
exist. The add function we’re thinking of is actually a method
of the Complex class.

The ˜Complex() is a destructor. This is called when the
object is deleted. This can be automatic, when the block
where the object was created is at its end or manual with the
delete keyword when we created the object dynamically.
The destructor is important when the class handles
dynamically allocated data. For example a linked list.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Namespaces, destructor

The :: operator lets us enter a class’ namespace. This is why
we wrote Complex::add, because the add function doesn’t
exist. The add function we’re thinking of is actually a method
of the Complex class.
The ˜Complex() is a destructor. This is called when the
object is deleted. This can be automatic, when the block
where the object was created is at its end or manual with the
delete keyword when we created the object dynamically.

The destructor is important when the class handles
dynamically allocated data. For example a linked list.

Kristóf Kovács Informatics 3. Lecture 4: Classes



Namespaces, destructor

The :: operator lets us enter a class’ namespace. This is why
we wrote Complex::add, because the add function doesn’t
exist. The add function we’re thinking of is actually a method
of the Complex class.
The ˜Complex() is a destructor. This is called when the
object is deleted. This can be automatic, when the block
where the object was created is at its end or manual with the
delete keyword when we created the object dynamically.
The destructor is important when the class handles
dynamically allocated data. For example a linked list.

Kristóf Kovács Informatics 3. Lecture 4: Classes



What’s next

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a * b;

cout << a << endl;
cout << b << endl;
cout << c << endl;

cout << b + c << endl;

cout << b.abs() << endl;

return 0;
}

Kristóf Kovács Informatics 3. Lecture 4: Classes



Pop quiz questions

Show an example of a reference
What is the this keyword?
What is the default constructor?
What is the copy constructor?
What is the destructor?

Kristóf Kovács Informatics 3. Lecture 4: Classes


