Informatics 3.

Lecture 5: Operator overload, friends

Krist6f Kovacs

Budapest University of Technology and Economics

2024-04-16

Kristé6f Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex ¢ = a * b;
Complex d = b + b;

cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << ¢ << endl;
cout << "d: " << d << endl;

cout << b + ¢ << endl;
cout << b.abs() << endl;

return 0;

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex ¢ = a * b;
Complex d = b + b;

cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << ¢ << endl;
cout << "d: " << d << endl;

cout << b + ¢ << endl;
cout << b.abs() << endl;

return 0;

}

We would like to extend our operators, like addition and multiplication.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}
Solution with operator overloading:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}
Solution with operator overloading:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The operator is a keyword and also part of the function/method name.
Whichever operator is after the keyword is the one we're extending. A
few examples:

@ operator+ @ operator” @ operator<<
@ operator- @ operator= @ operator()
@ operator* @ operator== @ operator([]

@ operator/ @ operator< @ operator++

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ Most operators operate on left and right values and return a value
based on those.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ Most operators operate on left and right values and return a value
based on those.

@ When an operator overload is inside a class the left value is always
the type of the given class. In our example it was a Complex object:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ Most operators operate on left and right values and return a value
based on those.

@ When an operator overload is inside a class the left value is always
the type of the given class. In our example it was a Complex object:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

@ The following two commands are equivalent if we suppose ¢ and d
are Complex objects:

Complex e = c + d;
Complex e = c.operator+(d);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ We can also use existing types as well. For example the sum of a
Complex and a float:

Complex Complex::operator+(float other) {
return Complex(this->re + other, this->im);

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ We can also use existing types as well. For example the sum of a
Complex and a float:

Complex Complex::operator+(float other) {
return Complex(this->re + other, this->im);
}
@ The above makes this work:
Complex f = ¢ + 5.3;

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ We can also use existing types as well. For example the sum of a
Complex and a float:

Complex Complex::operator+(float other) {
return Complex(this->re + other, this->im);

}

@ The above makes this work:
Complex f = ¢ + 5.3;

@ This doesn’t work yet however:
Complex g = 5.3 + c;

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

@ We can also use existing types as well. For example the sum of a
Complex and a float:

Complex Complex::operator+(float other) {
return Complex(this->re + other, this->im);
}
@ The above makes this work:
Complex f = ¢ + 5.3;
@ This doesn’t work yet however:
Complex g = 5.3 + c;
@ The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3) .operator+(c)

doesn’t make any sense. 5.3 isn't an object, it doesn't have any
methods.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:

Complex Complex::operator+(float other) {
return Complex(this->re + other, this->im);
}
The above makes this work:
Complex f = ¢ + 5.3;
This doesn’t work yet however:
Complex g = 5.3 + c;
The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3) .operator+(c)
doesn’t make any sense. 5.3 isn't an object, it doesn't have any
methods.
The solution to this is another way to do operator overloading::

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);
}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

@ We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

@ We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);
}

@ Just like before these two commands are equivalent:

Complex g = 5.3 + d;
Complex g = operator+(5.3, d);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

@ We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);

}

@ Just like before these two commands are equivalent:
Complex g = 5.3 + d;
Complex g = operator+(5.3, d);

@ Only one problem remains. Since this operator overload function is
outside of the Complex class, it cannot access the private data
members.

@ To solve this we have the friend keyword. If we put this function
declaration in the Complex class, then even though it isn't a part of
the class it can still access the private data members:

friend Complex operator+(float left, Complex right);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Updated Complex class

class Complex {

private:
float re;
float im;

public:
Complex();
Complex(const Complex& other) ;
Complex(float r);
Complex(float r, float i);

Complex operator+(Complex other);

Complex operator+(float other);

friend Complex operator+(float left, Complex right);
Complex operator*(Complex other);

float abs();

void print();

“Complex();

Kristé6f Kovacs Informatics 3. Lecture 5: Operator overload, friends



cout overload

@ We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



cout overload

@ We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

@ For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



cout overload

@ We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

@ For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

@ ostream is the type of cout (it is defined in jostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



cout overload

@ We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

@ For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

@ ostream is the type of cout (it is defined in jostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

@ Let us consider now why we need to return the left value (the
ostream/ cout).

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

@ Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

@ Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;
@ Substituting the method/function calls

Complex d = (a.operator+(b)).operator+(c);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

@ Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;
@ Substituting the method/function calls:
Complex d = (a.operator+(b)).operator+(c);

@ For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

@ Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;
@ Substituting the method/function calls:
Complex d = (a.operator+(b)).operator+(c);

@ For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

@ Let’s do the same thing for cout:

cout << "a: " << aj

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;
Substituting the method/function calls:
Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let's do the same thing for cout:
cout << "a: " << aj

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let's check out what's happening in the background. Let's suppose
a, b, c are Complex objects:

Complex d = a + b + c;
Substituting the method/function calls:
Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let's do the same thing for cout:
cout << "a: " << aj

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout,

a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

@ The choice of which operator overload is used for a given operator is
decided during compilation.

@ This also means that in case there's no appropriate overload for a
given operator then the program won't compile.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

@ The choice of which operator overload is used for a given operator is
decided during compilation.

@ This also means that in case there's no appropriate overload for a
given operator then the program won't compile.

@ If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

@ The choice of which operator overload is used for a given operator is
decided during compilation.

@ This also means that in case there's no appropriate overload for a
given operator then the program won't compile.

@ If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

@ If the above doesn't exist or the left value isn't a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

@ The choice of which operator overload is used for a given operator is
decided during compilation.

@ This also means that in case there's no appropriate overload for a
given operator then the program won't compile.

@ If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

@ If the above doesn't exist or the left value isn't a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

@ Next time we'll look into overloading the indexing operator[].
We'll also check out what happens if we return a reference.

Kristéf Kovacs Informatics 3. Lecture 5: Operator overload, friends



Pop quiz questions

@ What's the friend keyword for?
@ Show an example of an operator overload!

@ Why can't the 5.3 + Complex(1,2) operation’s operator
overload be handled inside the Complex class?

o What is ostream?

Kristé6f Kovacs Informatics 3. Lecture 5: Operator overload, friends



