
Informatics 3.
Lecture 5: Operator overload, friends

Kristóf Kovács

Budapest University of Technology and Economics

2024-04-16

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a * b;
Complex d = b + b;

cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << c << endl;
cout << "d: " << d << endl;

cout << b + c << endl;

cout << b.abs() << endl;

return 0;
}

We would like to extend our operators, like addition and multiplication.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

int main(void) {
Complex a;
Complex b = Complex(1,2);
Complex c = a * b;
Complex d = b + b;

cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << c << endl;
cout << "d: " << d << endl;

cout << b + c << endl;

cout << b.abs() << endl;

return 0;
}

We would like to extend our operators, like addition and multiplication.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading
Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Solution with operator overloading:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The operator is a keyword and also part of the function/method name.
Whichever operator is after the keyword is the one we’re extending. A
few examples:

operator+

operator-

operator*

operator/

operatorˆ

operator=

operator==

operator<

operator<<

operator()

operator[]

operator++

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading
Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Solution with operator overloading:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The operator is a keyword and also part of the function/method name.
Whichever operator is after the keyword is the one we’re extending. A
few examples:

operator+

operator-

operator*

operator/

operatorˆ

operator=

operator==

operator<

operator<<

operator()

operator[]

operator++

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading
Our current solution to addition:

Complex Complex::add(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

Solution with operator overloading:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The operator is a keyword and also part of the function/method name.
Whichever operator is after the keyword is the one we’re extending. A
few examples:

operator+

operator-

operator*

operator/

operatorˆ

operator=

operator==

operator<

operator<<

operator()

operator[]

operator++

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Most operators operate on left and right values and return a value
based on those.

When an operator overload is inside a class the left value is always
the type of the given class. In our example it was a Complex object:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The following two commands are equivalent if we suppose c and d
are Complex objects:

Complex e = c + d;
Complex e = c.operator+(d);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Most operators operate on left and right values and return a value
based on those.

When an operator overload is inside a class the left value is always
the type of the given class. In our example it was a Complex object:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The following two commands are equivalent if we suppose c and d
are Complex objects:

Complex e = c + d;
Complex e = c.operator+(d);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

Most operators operate on left and right values and return a value
based on those.

When an operator overload is inside a class the left value is always
the type of the given class. In our example it was a Complex object:

Complex Complex::operator+(Complex other) {
return Complex(this->re + other.re, this->im + other.im);

}

The following two commands are equivalent if we suppose c and d
are Complex objects:

Complex e = c + d;
Complex e = c.operator+(d);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:
Complex Complex::operator+(float other) {

return Complex(this->re + other, this->im);
}

The above makes this work:
Complex f = c + 5.3;

This doesn’t work yet however:
Complex g = 5.3 + c;

The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3).operator+(c)
doesn’t make any sense. 5.3 isn’t an object, it doesn’t have any
methods.

The solution to this is another way to do operator overloading::
Complex operator+(float left, Complex right) {

return Complex(left + right.re, right.im);
}

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:
Complex Complex::operator+(float other) {

return Complex(this->re + other, this->im);
}

The above makes this work:
Complex f = c + 5.3;

This doesn’t work yet however:
Complex g = 5.3 + c;

The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3).operator+(c)
doesn’t make any sense. 5.3 isn’t an object, it doesn’t have any
methods.

The solution to this is another way to do operator overloading::
Complex operator+(float left, Complex right) {

return Complex(left + right.re, right.im);
}

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:
Complex Complex::operator+(float other) {

return Complex(this->re + other, this->im);
}

The above makes this work:
Complex f = c + 5.3;

This doesn’t work yet however:
Complex g = 5.3 + c;

The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3).operator+(c)
doesn’t make any sense. 5.3 isn’t an object, it doesn’t have any
methods.

The solution to this is another way to do operator overloading::
Complex operator+(float left, Complex right) {

return Complex(left + right.re, right.im);
}

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:
Complex Complex::operator+(float other) {

return Complex(this->re + other, this->im);
}

The above makes this work:
Complex f = c + 5.3;

This doesn’t work yet however:
Complex g = 5.3 + c;

The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3).operator+(c)
doesn’t make any sense. 5.3 isn’t an object, it doesn’t have any
methods.

The solution to this is another way to do operator overloading::
Complex operator+(float left, Complex right) {

return Complex(left + right.re, right.im);
}

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator overloading

We can also use existing types as well. For example the sum of a
Complex and a float:
Complex Complex::operator+(float other) {

return Complex(this->re + other, this->im);
}

The above makes this work:
Complex f = c + 5.3;

This doesn’t work yet however:
Complex g = 5.3 + c;

The issue is that the left value is a fundamental type (one defined
by the langue, not by us). The command (5.3).operator+(c)
doesn’t make any sense. 5.3 isn’t an object, it doesn’t have any
methods.

The solution to this is another way to do operator overloading::
Complex operator+(float left, Complex right) {

return Complex(left + right.re, right.im);
}

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);

}

Just like before these two commands are equivalent:

Complex g = 5.3 + d;
Complex g = operator+(5.3, d);

Only one problem remains. Since this operator overload function is
outside of the Complex class, it cannot access the private data
members.

To solve this we have the friend keyword. If we put this function
declaration in the Complex class, then even though it isn’t a part of
the class it can still access the private data members:

friend Complex operator+(float left, Complex right);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);

}

Just like before these two commands are equivalent:

Complex g = 5.3 + d;
Complex g = operator+(5.3, d);

Only one problem remains. Since this operator overload function is
outside of the Complex class, it cannot access the private data
members.

To solve this we have the friend keyword. If we put this function
declaration in the Complex class, then even though it isn’t a part of
the class it can still access the private data members:

friend Complex operator+(float left, Complex right);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Two parameter operator overloading

We can do operator overloading outside of classes. When used this
way we have to supply 2 parameters, the left and right value:

Complex operator+(float left, Complex right) {
return Complex(left + right.re, right.im);

}

Just like before these two commands are equivalent:

Complex g = 5.3 + d;
Complex g = operator+(5.3, d);

Only one problem remains. Since this operator overload function is
outside of the Complex class, it cannot access the private data
members.

To solve this we have the friend keyword. If we put this function
declaration in the Complex class, then even though it isn’t a part of
the class it can still access the private data members:

friend Complex operator+(float left, Complex right);

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Updated Complex class

class Complex {
private:

float re;
float im;

public:
Complex();
Complex(const Complex& other);
Complex(float r);
Complex(float r, float i);

Complex operator+(Complex other);
Complex operator+(float other);
friend Complex operator+(float left, Complex right);
Complex operator*(Complex other);
float abs();

void print();

~Complex();
};

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



cout overload

We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

ostream is the type of cout (it is defined in iostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

Let us consider now why we need to return the left value (the
ostream/cout).

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



cout overload

We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

ostream is the type of cout (it is defined in iostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

Let us consider now why we need to return the left value (the
ostream/cout).

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



cout overload

We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

ostream is the type of cout (it is defined in iostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

Let us consider now why we need to return the left value (the
ostream/cout).

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



cout overload

We can also implement multiplication and all other operators as
well. But now let’s make it so we can print Complex objects using
cout:

Complex a;
cout << "a: " << a << endl;

For this to work we only need one operator overload again:

ostream& operator<<(ostream& os, Complex right) {
os << right.re << " + " << right.im << "i";
return os;

}

ostream is the type of cout (it is defined in iostream). The left
value should always be an ostream in this case since cout <<
something; is our usual command.

Let us consider now why we need to return the left value (the
ostream/cout).

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Operator chaining

Let’s check out what’s happening in the background. Let’s suppose
a, b, c are Complex objects:

Complex d = a + b + c;

Substituting the method/function calls:

Complex d = (a.operator+(b)).operator+(c);

For this to work a.operator+(b) must return a Complex or at
least something that can be added to a Complex.

Let’s do the same thing for cout:

cout << "a: " << a;

Here we have two parameter operator overloads, but similarly
embedded:

operator<<(operator<<(cout, "a: "), a);

For this to work the inner operator<<(cout, "a: ") must
return cout for the outer call to be able to use it in its own call.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

The choice of which operator overload is used for a given operator is
decided during compilation.

This also means that in case there’s no appropriate overload for a
given operator then the program won’t compile.

If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

If the above doesn’t exist or the left value isn’t a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

Next time we’ll look into overloading the indexing operator[].
We’ll also check out what happens if we return a reference.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

The choice of which operator overload is used for a given operator is
decided during compilation.

This also means that in case there’s no appropriate overload for a
given operator then the program won’t compile.

If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

If the above doesn’t exist or the left value isn’t a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

Next time we’ll look into overloading the indexing operator[].
We’ll also check out what happens if we return a reference.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

The choice of which operator overload is used for a given operator is
decided during compilation.

This also means that in case there’s no appropriate overload for a
given operator then the program won’t compile.

If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

If the above doesn’t exist or the left value isn’t a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

Next time we’ll look into overloading the indexing operator[].
We’ll also check out what happens if we return a reference.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Lookup order for operator overloads

The choice of which operator overload is used for a given operator is
decided during compilation.

This also means that in case there’s no appropriate overload for a
given operator then the program won’t compile.

If the operator’s left value is a class, then the function is first
searched inside the class in this format:

return_value_type operator+(right_value_type x);

If the above doesn’t exist or the left value isn’t a class then the
compiler looks for a global function with the appropriate types:

return_value_type operator+(left_value_type x,
right_value_type y);

Next time we’ll look into overloading the indexing operator[].
We’ll also check out what happens if we return a reference.

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends



Pop quiz questions

What’s the friend keyword for?
Show an example of an operator overload!
Why can’t the 5.3 + Complex(1,2) operation’s operator
overload be handled inside the Complex class?
What is ostream?

Kristóf Kovács Informatics 3. Lecture 5: Operator overload, friends


