
Informatics 3

Kristóf Kovács

2024-05-20

1. Operator overload 2

1.1. Reference reminder

int a = 5;
int& b = a; // must specify what is referenced when creating a
b = 3;
cout << a; // print 3

In addition, we only used a reference to trick the copy constructor (beca-
use copying here would cause infinite recursion):

Complex(Complex& other);

But this is not all uses of references. With references, we can use a
function as a left value:

int main(void) {
int a[] = {1, 2, 5};
f(a, 3) = 7; // this will change one of the elements of the array
for(int i = 0; i < 3; i++) {

cout << a[i] << endl;
}
return 0;

}

Sounds strange at first, but if you look at the definition of the f function
it makes sense:

1



int& f(int* a, int n) {
int min = 0;
for(int i = 1; i < n; i++) {

if(a[min] > a[i]) {
min = i;

}
}
return a[min];

}

This function finds the smallest number in the given array and returns its
reference. This way, if it is used as a left value, we can modify the element
found. So the function main above prints 725.

1.2. operator[]

Let’s go back to the operator overload topic. Write a simple class Vector
representing a 3-dimensional vector:

#include <iostream>

using namespace std;

class Vector {
private:

float v[3];
public:

Vector();
Vector(float x, float y, float z);
Vector(Vector& other);
Vector operator+(Vector other);
friend ostream& operator<<(ostream& os, Vector v);
float& operator[](int index);
~Vector();

};

Vector::Vector() {
v[0] = 0; v[1] = 0; v[2] = 0;

}

2



Vector::Vector(float x, float y, float z) {
v[0] = x; v[1] = y; v[2] = z;

}

Vector::Vector(Vector& other) {
v[0] = other.v[0];
v[1] = other.v[1];
v[2] = other.v[2];

}

Vector Vector::operator+(Vector other) {
float x = this->v[0] + other.v[0];
float y = this->v[1] + other.v[1];
float z = this->v[2] + other.v[2];
return Vector(x, y, z);

}

ostream& operator<<(ostream& os, Vector v) {
os << "(" << v[0] << ", ";
os << v[1] << ", ";
os << v[2] << ")";
return os;

}

float& Vector::operator[](int index) {
return v[index];

}

Vector::~Vector() {
}

int main(void) {
Vector v1;
Vector v2(1,1,1);
Vector v3(5, -1, 2);
Vector v4 = v2 + v3;
cout << v4 << endl; // (6, 0, 3)

3



cout << v4[0] << endl; // 6
v4[0] = 10;
cout << v4 << endl; // (10, 0, 3)
return 0;

}

Recall that you can actually think of operator overload as a function call.
These 2 lines are equivalent (from the previous chapter):

Complex e = c + d;
Complex e = c.operator+(d);

The same is true then for operator[], they are equivalent:

v4[0] = 10;
v4.operator[](0) = 10;

This is exactly the same use of function as a left value as at the beginning
of this chapter. So that’s why you need to return a reference in operator[]
if you want to have an indexed element as a left value.

1.3. operator=

The operator= is the value assignment operator in case the object we are
trying to assign a value to already exists. In other words, it is the value
assignment that does not occur at the definition of the variable (because
then the copy constructor is called):

Vector v1;
Vector v2 = v1; // copy constructor
Vector v3;
v3 = v1; // operator=

In the above example, all that really happens is that v2 is created when we
equate it with v1, so then we need a constructor call (construct a new object
from an existing one). Whereas for v3, the object already exists (created
with a default constructor) when we equate it with v1, so operator= is
called.

The implementation of operator= is very similar to the copy construc-
tor, but there are two new things to note. What if there are dynamically

4



contained values in the object? Since the object already exists, we poten-
tially need to free them up if we need to include new values in their place.
Let’s look at the implementation of the Vector class a little differently if we
need to specify the dimension at creation time:

#include <iostream>

using namespace std;

class Vector {
private:

float* v;
int dim;

public:
Vector(int d);
Vector(Vector& other);
Vector operator=(Vector other);
Vector operator+(Vector other);
friend ostream& operator<<(ostream& os, Vector v);
float& operator[](int index);
~Vector();

};

Vector::Vector(int d) {
v = new float[d];
dim = d;
for(int i = 0; i < dim; i++) {

v[i] = 0;
}

}

Vector::Vector(Vector& other) {
this->dim = other.dim;
this->v = new float[this->dim];
for(int i = 0; i < this->dim; i++) {

this->v[i] = other.v[i];
}

}

5



Vector Vector::operator=(Vector other) {
if(this == &other) {

return *this;
}
delete[] this->v;
this->dim = other.dim;
this->v = new float[this->dim];
for(int i = 0; i < this->dim; i++) {

this->v[i] = other.v[i];
}
return *this;

}

Vector Vector::operator+(Vector other) {
Vector retval = Vector(this->dim);
for(int i = 0; i < this->dim; i++) {

retval[i] = this->v[i] + other.v[i];
}
return retval;

}

ostream& operator<<(ostream& os, Vector v) {
os << "(";
for(int i = 0; i < v.dim - 1; i++) {

os << v[i] << ", ";
}
os << v[v.dim - 1] << ")";
return os;

}

float& Vector::operator[](int index) {
return v[index];

}

Vector::~Vector() {
delete[] v;

}

6



int main(void) {
Vector v1(3);
Vector v2(3);
Vector v3(3);
v3[0] = 5; v3[1] = -1; v3[2] = 3;
Vector v4 = v2 + v3;
cout << v4 << endl; // (5, -1, 3)
cout << v4[0] << endl; // 5
v4[0] = 10;
cout << v4 << endl; // (10, -1, 3)
v2 = v4;
cout << v2 << endl; // (10, -1, 3)
return 0;

}

Let’s take a closer look at operator=:

Vector Vector::operator=(Vector other) {
if(this == &other) {

return *this;
}
delete[] this->v;
this->dim = other.dim;
this->v = new float[this->dim];
for(int i = 0; i < this->dim; i++) {

this->v[i] = other.v[i];
}
return *this;

}

At the beginning, the condition protects the case where we write v1 = v1
in which case we don’t want to delete anything, since we don’t really have
anything to do.

The other interesting thing is that we return *this. It might even be
strange that there is a return value. That’s because in C you can use the =
operator in a chain:

v2 = v4 = v3;

7



This command happens in this order:

v2 = (v4 = v3);

So the first call to operator= must have a return value, otherwise the
second one would not be able to work from what.

2. Inheritence
Suppose we need to define many general 2-dimensional shapes. Our current
solution is:

class Circle {
private:

float x, y;
float r;

public:
Circle();
Circle(float x, float y, float r);
float area();

};

class Rectangle {
private:

float x, y;
float a, b;

public:
Rectangle();
Rectangle(float x, float y, float a, float b);
float area();

};

class Square {
private:

float x, y;
float a;

public:
Square();

8



Square(float x, float y, float a);
float area();

};

You can feel that there is a lot of repetition here. Less between Circle
and Rectangle, but Square and Rectangle are almost identical. Their area
method, if implemented, would be very similar.

This and similar problems can be solved with inheritance.

2.1. Simple inheritence

Let’s first solve for Square to be a special Rectangle (with the two side lengths
equal).

class Rectangle {
private:

float x, y;
float a, b;

public:
Rectangle();
Rectangle(float x, float y, float a, float b);
float area();

};

class Square : public Rectangle {
public:

Square();
Square(float x, float y, float a);

};

So for the inheritance, we need to specify which class we are inheriting
from and what level of accessibility. By far the most common is public
inheritance, in which case all permissions on data members and methods will
be the same in the descendant class as in the ancestor class.

However, this does not mean that x, y in Square will be private. The
x, y will belong to the Rectangle part of the Square class and will be private
within it. You cannot access the private data members of the ancestor class
through Square, even if you inherited public.

9



2.2. Initializer list

One way to solve the above problem is to use an initialization list. An
example of this without inheritance:

class Circle {
private:

float x, y;
float r;

public:
Circle();
Circle(float x_0, float y_0, float rad) : x(x_0), y(y_0), r(rad) {}
float area();

};

So in constructors, we can pre-populate our data members with values.
This can only be done in the constructor definition, not in the declaration.
As we can see, our constructor block is empty because we have already given
values to the data members, so we have nothing left to do.

It’s worth noting here that the initialization list uses the copy constructor
of objects by default, so if one of the data members in the example above
was a std::string or the String class we wrote in practice, the initialization
list would copy it using the copy constructor. Whereas if we copied it inside
the block of the constructor, it would use operator= there, because by then
the objects must already exist. (In this case, the objects are created with
their default constructors.)

Now let’s look at how this helps with inheritance:

class Rectangle {
private:

float x, y;
float a, b;

public:
Rectangle();
Rectangle(float x, float y, float a, float b);
float area();

};

class Square : public Rectangle {

10



public:
Square();
Square(float x, float y, float a) : Rectangle(x, y, a, a) {}

};

So, in the initialization list of the descendant classes, we can call the
constructor of the ancestor class, which can set the data members associated
with it. This works because the constructor of Rectangle is public, so the
x, y values are not set by Square, but by Rectangle, which has access.

Another observation is that we did not write the area method for Square.
This is also inherited from Rectangle. All data members and methods are
inherited automatically. Since area was public and we inherited it as public,
it remains public in Square. If the implementation of area in Rectangle is
similar to the following, then it will be a good algorithm in Square, since the
only difference is that we give the same value to both side lengths:

float Rectangle::area() {
return a * b;

}

2.3. protected access level

Although the above solution solved the basic problem, it can still be felt that
there would be problems when we want to access the ancestor class’ data
members from the descendant, but we don’t want to make them public.

The solution to this is the protected keyword. This is a similar access
level to private, except that it makes them accessible to descendants.

A korábbi kód protected-el:

class Rectangle {
protected:

float x, y;
float a, b;

public:
Rectangle();
Rectangle(float x, float y, float a, float b);
float area();

};

11



class Square : public Rectangle {
public:

Square();
Square(float x, float y, float a) {

this->x = x;
this->y = y;
this->a = a;
this->b = a;

}
};

Of course, you can use an initialization list in this case too, I just didn’t
use it for the sake of example.

What we did here with the Rectangle -> Square inheritance was what is
called a restrictive inheritance. Because we didn’t add new features to the
ancestor class, we restricted its existing properties.

Let’s look at an example of inheritance where we add features to our
class. For example, we could make our Circle, Rectangle, Square classes all
inherit from a Shape ancestor that only stores one point:

#include <iostream>

using namespace std;

class Shape {
protected:

float x, y;
public:

Shape(float x, float y) : x(x), y(y) {}
};

class Circle : public Shape {
protected:

float r;
public:

Circle() : Shape(0, 0), r(0) {}
Circle(float x, float y, float r) : Shape(x, y), r(r) {}
float area();

};

12



float Circle::area() {
return r * r * 3.14;

}

class Rectangle : public Shape {
protected:

float a, b;
public:

Rectangle() : Shape(0, 0), a(0), b(0) {}
Rectangle(float x, float y, float a, float b) : Shape(x, y), a(a), b(b) {}
float area();

};

float Rectangle::area() {
return a * b;

}

class Square : public Rectangle {
public:

Square() : Rectangle() {}
Square(float x, float y, float a) : Rectangle(x, y, a, a) {}

};

int main(void) {
Square s = Square(1, 1, 2);
cout << s.area() << endl;
return 0;

}

Thus x, y is part of Shape and all shapes are derived from it. The signi-
ficance of this will be given in the next topic.

3. Heterogen collection
You can refer to a descendant class with the pointer of the ancestor class:

13



int main(void) {
Shape* s = new Circle(0, 0, 1);
Rectangle* r = new Square(1, 1, 2);
Shape* s2 = new Square(-1, -1, 2);
return 0;

}

When used in an array or some kind of container, this is called a hetero-
geneous collection:

int main(void) {
Shape* s[5];
s[0] = new Shape(0, 0);
s[1] = new Circle(0, 0, 1);
s[2] = new Rectangle(0, 0, 1, 2);
s[3] = new Square(0, 0, 2);
s[4] = new Rectangle(0, 0, 2, 3);
for(int i = 0; i < 5; i++) {

delete s[i];
}
return 0;

}

The strength of this is not just that you can store different types of things
in one container. It is also that everything that is available in the parent class
whose pointer is used to refer to objects is available through the pointer. For
example, if you write area in the Shape class, you can use it through the
Shape pointer:

class Shape {
protected:

float x, y;
public:

Shape(float x, float y) : x(x), y(y) {}
float area();

};

float Shape::area() {
return 0;

14



}
...
int main(void) {

Shape* s[5];
s[0] = new Shape(0, 0);
s[1] = new Circle(0, 0, 1);
s[2] = new Rectangle(0, 0, 1, 2);
s[3] = new Square(0, 0, 2);
s[4] = new Rectangle(0, 0, 2, 3);
for(int i = 0; i < 5; i++) {

cout << s[i]->area() << endl;
}
for(int i = 0; i < 5; i++) {

delete s[i];
}
return 0;

}

However, if you run this, you will see that it only prints 0s. Because it
used the Shape area method everywhere. That’s not good.

3.1. virtual

The keyword virtual helps to solve the previous problem:

class Shape {
protected:

float x, y;
public:

Shape(float x, float y) : x(x), y(y) {}
virtual float area();

};

float Shape::area() {
return 0;

}

If we run our previous main function this way, we now execute the cor-
responding area methods on each object. So the virtual keyword means

15



that when we access such an object via pointer, we run the corresponding
descendant’s method.

3.2. Abstract class, purely virual function

Virtual is really a pretty powerful tool, but you can feel that the Shape class
is a bit out of line. After all, its area method doesn’t compute anything, it
doesn’t really make sense.

We can make a virtual method purely virtual and thus make its class
abstract:

class Shape {
protected:

float x, y;
public:

Shape(float x, float y) : x(x), y(y) {}
virtual float area() = 0;

};

This leads to two things. Firstly, because part of the class is missing (the
area method is never implemented in Shape), we cannot create Shape objects.
On a similar reasoning, all classes derived from Shape must implement the
area method, otherwise they would be abstract.

The final code:

#include <iostream>

using namespace std;

class Shape {
protected:

float x, y;
public:

Shape(float x, float y) : x(x), y(y) {}
virtual float area() = 0;

};

float Shape::area() {
return 0;

16



}

class Circle : public Shape {
protected:

float r;
public:

Circle() : Shape(0, 0), r(0) {}
Circle(float x, float y, float r) : Shape(x, y), r(r) {}
float area();

};

float Circle::area() {
return r * r * 3.14;

}

class Rectangle : public Shape {
protected:

float a, b;
public:

Rectangle() : Shape(0, 0), a(0), b(0) {}
Rectangle(float x, float y, float a, float b) : Shape(x, y), a(a), b(b) {}
float area();

};

float Rectangle::area() {
return a * b;

}

class Square : public Rectangle {
public:

Square() : Rectangle() {}
Square(float x, float y, float a) : Rectangle(x, y, a, a) {}

};

int main(void) {
Shape* s[5];
s[0] = new Circle(0, 0, 2);
s[1] = new Circle(0, 0, 1);

17



s[2] = new Rectangle(0, 0, 1, 2);
s[3] = new Square(0, 0, 2);
s[4] = new Rectangle(0, 0, 2, 3);
for(int i = 0; i < 5; i++) {

cout << s[i]->area() << endl;
}
for(int i = 0; i < 5; i++) {

delete s[i];
}
return 0;

}

3.3. virtual destructor

Not only methods can be virtual, for example destructors can be made virtual
and if inheritance is an option, it is always worth making the destructor
virtual. But why?

Let’s look at a simple game example:

#include <iostream>

using namespace std;

class A {
protected:

float x;
public:

A(float x) : x(x) {}
~A() {

cout << "A destructor" << endl;
}

};

class B : public A {
protected:

float y;
public:

B(float x, float y) : A(x), y(y) {}

18



~B() {
cout << "B destructor" << endl;

}
};

int main(void) {
A* a[2];
a[0] = new A(5);
a[1] = new B(3, 2);
delete a[0];
delete a[1];
return 0;

}

If we run this, we can see that it calls the destructor of class A twice,
even though it should actually be destructing an object B. But when can this
cause a problem?

Let’s modify the code a bit, give class B a dynamically created array:

class B : public A {
protected:

float* y;
public:

B(float x, int y) : A(x) {
this->y = new float[y];

}
~B() {

cout << "B destructor" << endl;
delete[] y;

}
};

Thus, if the destructor of class A is not virtual, we cannot free the dyna-
mically reserved array y in an object B if it is stored via pointer A. So you
should always make your destructor virtual, because it won’t cause problems,
but its absence can cause big problems.

The correct code:

#include <iostream>

19



using namespace std;

class A {
protected:

float x;
public:

A(float x) : x(x) {}
virtual ~A() {

cout << "A destructor" << endl;
}

};

class B : public A {
protected:

float* y;
public:

B(float x, int y) : A(x) {
this->y = new float[y];

}
~B() {

cout << "B destructor" << endl;
delete[] y;

}
};

int main(void) {
A* a[2];
a[0] = new A(5);
a[1] = new B(3, 2);
delete a[0];
delete a[1];
return 0;

}

If you run this, you can see that not only the destructor of B is executed
when object B is destroyed, but also the destructor of A. This is because
part of each object B is stored as object A (the ancestor part).

20



3.4. Multiple inheritance

I will only mention this subject, we didn’t have time to speak about it in
length. We can inherit from two classes. Then the descendant class gets the
data members and methods of both ancestors:

#include <iostream>

using namespace std;

class A {
protected:

float x;
public:

A(float x) : x(x) {}
};

class B {
protected:

float y;
public:

B(float y) : y(y) {}
};

class C : public A, public B {
protected:

float z;
public:

C(float x, float y, float z) : A(x), B(y), z(z) {}
};

int main(void) {
C c = C(1,2,3);
return 0;

}

This brings a lot of potential problems that we haven’t had time to go
into, but you can read about them.

21



3.5. Interface

Also only at the mention level, but there is a way to be 100% safe with
multiple inheritance. To do this, you need to create a class that on the one
hand has all its functions purely virtual, and on the other hand contains no
data members, only methods. Such a class is called an interface:

#include <iostream>

using namespace std;

class A {
public:

virtual void print() = 0;
};

class B {
protected:

float y;
public:

B(float y) : y(y) {}
};

class C : public A, public B {
protected:

float z;
public:

C(float y, float z) : B(y), z(z) {}
void print() {

cout << y << " " << z << endl;
}

};

int main(void) {
C c = C(2,3);
c.print();
return 0;

}

22



4. Template
Let’s return to the linked list subject for a moment. We have created a
container in which we could place any number of items. We could now even
implement this in a class and implement operator[], we could make it very
convenient to use.

But there would be one big problem. The type of object it can store
would be a part of the class. So if we needed a list to store integers and a list
to store floats, with our current knowledge, there would be a lot of repeated
code in the best solution.

To solve this, we can use template. The keyword template can be used
to generalize algorithms based on types. That is, to make a piece of code
type-independent.

4.1. Template function

A simple example of a template function that swaps the values of variables
of arbitrary type:

#include <iostream>

using namespace std;

template<class T>
void swap(T* x, T* y) {

T temp = *x;
*x = *y;
*y = temp;

}

int main(void) {
int a = 5;
int b = 23;
cout << "a: " << a << endl;
cout << "b: " << b << endl;
swap<int>(&a, &b);
cout << "a: " << a << endl;
cout << "b: " << b << endl;

23



return 0;
}

The syntax is simple, we prefix the function or class with the keyword
template and specify in relational characters what kind of templates we will
use. In this example we have generalized only one type.

When we call a template function we can specify which type to substitute
for our template. But when it is clear, we can leave it out:
int main(void) {

int a = 5;
int b = 23;
cout << "a: " << a << endl;
cout << "b: " << b << endl;
swap(&a, &b);
cout << "a: " << a << endl;
cout << "b: " << b << endl;
return 0;

}

And of course it works with multiple types within a program (that’s the
whole point):
int main(void) {

int a = 5;
int b = 23;
float x = 4.3;
float y = 10.9;
swap<int>(&a, &b);
swap<float>(&x, &y);
cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "x: " << x << endl;
cout << "y: " << y << endl;
return 0;

}

4.2. Template class

Template-ing also works with classes. This way we could create a generic
linked list to store any kind of data. Let’s look at a simpler container:

24



#include <iostream>

using namespace std;

template<class T>
class SmartArray {
private:

T* arr;
int s;

public:
SmartArray() {

arr = new T[100];
s = 100;
for(int i = 0; i < s; i++) {

arr[i] = 0;
}

}

SmartArray(int s) {
arr = new T[s];
this->s = s;
for(int i = 0; i < s; i++) {

arr[i] = 0;
}

}

int size() {
return s;

}

T& operator[](int index) {
return arr[index];

}

~SmartArray() {
delete[] arr;

}
};

25



int main(void) {
SmartArray<float> a = SmartArray<float>(5);
a[0] = 1.5;
a[1] = 6.4;
a[2] = 2.1;
for(int i = 0; i < a.size(); i++) {

cout << a[i] << endl;
}
return 0;

}

This class implements a slightly smarter array, which you can request the
size of and automatically fills the elements with 0.

4.3. Multiple templates

We can generalise several types in a template. For example:

#include <iostream>

using namespace std;

template<class T1, class T2, class T3>
struct triple {

T1 a;
T2 b;
T3 c;

};

int main(void) {
triple<int, float, int> p;
p.a = 5;
p.b = 5.5;
p.c = 4;
return 0;

}

Also, you can put not only types in the template:

26



#include <iostream>

using namespace std;

template<class T, int default_size = 100>
class SmartArray {
private:

T* arr;
int s;

public:
SmartArray() {

arr = new T[default_size];
s = default_size;
for(int i = 0; i < s; i++) {

arr[i] = 0;
}

}

SmartArray(int s) {
arr = new T[s];
this->s = s;
for(int i = 0; i < s; i++) {

arr[i] = 0;
}

}

int size() {
return s;

}

T& operator[](int index) {
return arr[index];

}

~SmartArray() {
delete[] arr;

}
};

27



int main(void) {
SmartArray a = SmartArray<float, 10>();
a[0] = 1.5;
a[1] = 6.4;
a[2] = 2.1;
for(int i = 0; i < a.size(); i++) {

cout << a[i] << endl;
}
return 0;

}

This is a version of the previous smart array where you can specify the
default size of the array in the template. So you can put variables in the
template and even give them a default value.

28


