Informatics 3. Lecture X: Bonus

Kristóf Kovács Based on Ferenc Wettl's presentations

Budapest University of Technology and Economics

2024-02-29

Kristóf Kovács Informatics 3. Lecture X: Bonus

• A Turing machine can be defined by $M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle$, where

∃ → < ∃</p>

- A Turing machine can be defined by $M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle$, where
- Q is the non-empty set of "states",

- A Turing machine can be defined by $M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle$, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",

- A Turing machine can be defined by
 M = ⟨Q, Γ, b, Σ, δ, q₀, F⟩, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),

- A Turing machine can be defined by
 M = ⟨Q, Γ, b, Σ, δ, q₀, F⟩, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),
- $\Sigma \subseteq \Gamma \setminus \{b\}$ the set of "input symbols",

- A Turing machine can be defined by
 M = ⟨Q, Γ, b, Σ, δ, q₀, F⟩, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),
- $\Sigma \subseteq \Gamma \setminus \{b\}$ the set of "input symbols",
- $q_0 \in Q$ the "initial state"

- A Turing machine can be defined by
 M = ⟨Q, Γ, b, Σ, δ, q₀, F⟩, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),

- $\Sigma \subseteq \Gamma \setminus \{b\}$ the set of "input symbols",
- $q_0 \in Q$ the "initial state"
- $F \subseteq Q$ the set of "final states" (this is when the machine stops),

- A Turing machine can be defined by
 M = ⟨Q, Γ, b, Σ, δ, q₀, F⟩, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),

- $\Sigma \subseteq \Gamma \setminus \{b\}$ the set of "input symbols",
- $q_0 \in Q$ the "initial state"
- F ⊆ Q the set of "final states" (this is when the machine stops),
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function called the "transition function", where L is left shift, R is right shift (moves the tape)

- A Turing machine can be defined by $M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle$, where
- Q is the non-empty set of "states",
- Γ the finite, non-empty "tape alphabet",
- b ∈ Γ the "blank symbol" (the only symbol allowed to occur on the tape infinitely often),

- $\Sigma \subseteq \Gamma \setminus \{b\}$ the set of "input symbols",
- $q_0 \in Q$ the "initial state"
- F ⊆ Q the set of "final states" (this is when the machine stops),
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function called the "transition function", where L is left shift, R is right shift (moves the tape)
- H *Church–Turing thesis*: Every formalizable problem, that can be solved with an algorithm can be solved with a Turing-machine.

• Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.

• Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.

•
$$Q = \{A, B, C, HALT\}$$

- Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.
- $Q = \{A, B, C, HALT\}$
- $\Gamma=\{0,1\}$

- Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.
- $Q = \{A, B, C, HALT\}$
- $\Gamma = \{0, 1\}$
- b = 0 (empty symbol)

- Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.
- $Q = \{A, B, C, HALT\}$
- $\Gamma=\{0,1\}$
- b = 0 (empty symbol)

•
$$\Sigma = \{1\}$$

• Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.

•
$$Q = \{A, B, C, HALT\}$$

- $\Gamma=\{0,1\}$
- b = 0 (empty symbol)
- $\Sigma = \{1\}$
- $q_0 = A$ (initial state)

- Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.
- $Q = \{A, B, C, HALT\}$
- $\Gamma=\{0,1\}$
- b = 0 (empty symbol)
- $\Sigma = \{1\}$
- $q_0 = A$ (initial state)
- $F = \{HALT\}$

• Busy beaver (Tibor Radó, 1962) The Turing machine that writes the most non-empty symbols on an empty tape, and halts in finite steps.

•
$$Q = \{A, B, C, HALT\}$$

- $\Gamma=\{0,1\}$
- b = 0 (empty symbol)
- $\Sigma = \{1\}$
- $q_0 = A$ (initial state)
- $F = \{HALT\}$
- δ table:

	А	В	С
0	1RB	1LA	1LB
1	1LC	1RB	1RH

 What comes before the operating system? How does a computer know from where to load the operating system? How does a computer without an operating system know how to use a monitor or a keyboard?

- What comes before the operating system? How does a computer know from where to load the operating system? How does a computer without an operating system know how to use a monitor or a keyboard?
- The first thing that comes online once a computer starts is the BIOS.

- What comes before the operating system? How does a computer know from where to load the operating system? How does a computer without an operating system know how to use a monitor or a keyboard?
- The first thing that comes online once a computer starts is the BIOS.
- This is a minimal system integrated into the motherboard, its main task is to initialize the computer.

- What comes before the operating system? How does a computer know from where to load the operating system? How does a computer without an operating system know how to use a monitor or a keyboard?
- The first thing that comes online once a computer starts is the BIOS.
- This is a minimal system integrated into the motherboard, its main task is to initialize the computer.
- There are drivers stored inside the BIOS for the use of basic input / output devices (drivers are software that describes to the machine how a component works).

- What comes before the operating system? How does a computer know from where to load the operating system? How does a computer without an operating system know how to use a monitor or a keyboard?
- The first thing that comes online once a computer starts is the BIOS.
- This is a minimal system integrated into the motherboard, its main task is to initialize the computer.
- There are drivers stored inside the BIOS for the use of basic input / output devices (drivers are software that describes to the machine how a component works).
- The BIOS finds the highest priority storage device and starts to load the operating system.

• The first step in loading the operating system is when the BIOS reads the first 512 bytes of the chosen device, this is called the MBR.

- The first step in loading the operating system is when the BIOS reads the first 512 bytes of the chosen device, this is called the MBR.
- The first part of the MBR is a short code (bootstrap code), which describes the steps of starting the operating system.

- The first step in loading the operating system is when the BIOS reads the first 512 bytes of the chosen device, this is called the MBR.
- The first part of the MBR is a short code (bootstrap code), which describes the steps of starting the operating system.
- The next part is the partition table

- The first step in loading the operating system is when the BIOS reads the first 512 bytes of the chosen device, this is called the MBR.
- The first part of the MBR is a short code (bootstrap code), which describes the steps of starting the operating system.
- The next part is the partition table
- The third and last part of the MBR is the magical number, which is the same for all computers (0xAA55 = 0b1010101001010101, this is a failsafe, a way to check if the MBR is valid.

- The first step in loading the operating system is when the BIOS reads the first 512 bytes of the chosen device, this is called the MBR.
- The first part of the MBR is a short code (bootstrap code), which describes the steps of starting the operating system.
- The next part is the partition table
- The third and last part of the MBR is the magical number, which is the same for all computers (0xAA55 = 0b1010101001010101, this is a failsafe, a way to check if the MBR is valid.
- Until this point the starting procedure of the machine is independent of the operating system.

Storage

• After the MBR there can be one or more partitions

æ

Storage

- After the MBR there can be one or more partitions
- There can be at most 4 primary partitions.

Storage

- After the MBR there can be one or more partitions
- There can be at most 4 primary partitions.
- It is recommended to install your operating system on a primary partition (Windows can only be installed there).

MBR Partition Scheme

• The extended partition counts as a primary partition, so there can be at most 3 primary and 1 extended partition on a storage device.

- The extended partition counts as a primary partition, so there can be at most 3 primary and 1 extended partition on a storage device.
- It can contain however many logical partition this is a possible way to have more than 4 partitions.

- The extended partition counts as a primary partition, so there can be at most 3 primary and 1 extended partition on a storage device.
- It can contain however many logical partition this is a possible way to have more than 4 partitions.
- It can only be located at the end of the storage device, no primary partition can follow it.

- The extended partition counts as a primary partition, so there can be at most 3 primary and 1 extended partition on a storage device.
- It can contain however many logical partition this is a possible way to have more than 4 partitions.
- It can only be located at the end of the storage device, no primary partition can follow it.
- Windows usually creates a recovery partition on install, which comes before the partition of the operating system, should the operating system fail, it will try to recover itself using this partition.

- The extended partition counts as a primary partition, so there can be at most 3 primary and 1 extended partition on a storage device.
- It can contain however many logical partition this is a possible way to have more than 4 partitions.
- It can only be located at the end of the storage device, no primary partition can follow it.
- Windows usually creates a recovery partition on install, which comes before the partition of the operating system, should the operating system fail, it will try to recover itself using this partition.
- Linux uses multiple partitions (usually 4), one of them is the previously mentioned virtual memory. This is where the unused part of the memory can be stored (swapping, paging).

Example for a graphical partition manager

			/dev/sdb -	GParted			- + ×
<u>G</u> Parted <u>E</u> dit	<u>V</u> iew	<u>D</u> evice <u>P</u> ar	tition <u>H</u> elp				
						🔎 /dev/s	db (465.76 GiB) 🗸
/dev/sdb 47.49 Git		/dev/sdb8 293.65 GiB					/dev/sdb6 68.35 GiB
Partition		File System	Mount Point	Label	Size	Used	Unused Flags
/dev/sdb1	9.	ext4	1		18.86 GiB	3.04 GiB	15.82 GiB boot
✓ /dev/sdb2	0	extended			446.90 GiB		
/dev/sdb7	⚠ 🔍	ntfs		Back Up Data	47.49 GiB		
/dev/sdb8	9	ext4	/media/Big_L	Big L	293.65 GiB	124.88 GiB	168.77 GiB
/dev/sdb9	0	ntfs	/media/Documents	Documents	34.18 GiB	5.10 GiB	29.08 GiB
/dev/sdb6	9	ext4	/home		68.35 GiB	1.57 GiB	66.79 GiB
/dev/sdb5		linux-swap			3.22 GiB		
			\$				
0 operations pending							

Kristóf Kovács Informatics 3. Lecture X: Bonus

• At the beginning of every primary partition is a Boot Sector, the MBR stores the location of this sector and this is what starts to load the operating system.

- At the beginning of every primary partition is a Boot Sector, the MBR stores the location of this sector and this is what starts to load the operating system.
- Similarly to the MBR this is a 512 byte sector as well, which provides the necessary instructions to start the operating system, this stores a magical number as well.

- At the beginning of every primary partition is a Boot Sector, the MBR stores the location of this sector and this is what starts to load the operating system.
- Similarly to the MBR this is a 512 byte sector as well, which provides the necessary instructions to start the operating system, this stores a magical number as well.
- On linux systems the Boot Sector is actually empty and the operating system is loaded in another way, this is why it is possible to install linux onto a logical partition.

- At the beginning of every primary partition is a Boot Sector, the MBR stores the location of this sector and this is what starts to load the operating system.
- Similarly to the MBR this is a 512 byte sector as well, which provides the necessary instructions to start the operating system, this stores a magical number as well.
- On linux systems the Boot Sector is actually empty and the operating system is loaded in another way, this is why it is possible to install linux onto a logical partition.
- If the machine's storage device contains more than one operating system and the MBR contains the necessary instructions, then it is possilbe to choose which one to load at every start.

▶ < Ξ ▶</p>

Operating system	WINDOWS	LINUX	MAC	Mobile storage
File system	NTFS	ext4	APFS	FAT32 or NTFS

◆□ > ◆□ > ◆臣 > ◆臣 >

æ

• Operating system (OS): core program, which

- \bullet Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),

- \bullet Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,

- \bullet Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,
 - handles files,

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,
 - handles files,
 - provides basic protection to the machine,

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,
 - handles files,
 - provides basic protection to the machine,
 - logs important operation events...

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,
 - handles files,
 - provides basic protection to the machine,
 - logs important operation events...
- The OS is part of the system programs

- Operating system (OS): core program, which
 - directly controls the hardware (memory, peripheries,...),
 - provides a unified environment for applications,
 - organizes the execution of these applications,
 - handles possible program failures,
 - handles files,
 - provides basic protection to the machine,
 - logs important operation events...
- The OS is part of the system programs
- Other system programs for example are anti-viruses, file compressors, file encrypters, file explorers, network programs, task manager...

• single-, multi-user

- single-, multi-user
- single-, multi-tasking

- single-, multi-user
- single-, multi-tasking
- distributed (cloud),

- single-, multi-user
- single-, multi-tasking
- distributed (cloud),
- embedded (for small machines, with limited resources)

- single-, multi-user
- single-, multi-tasking
- distributed (cloud),
- embedded (for small machines, with limited resources)
- by its role: personal, server,...

- single-, multi-user
- single-, multi-tasking
- distributed (cloud),
- embedded (for small machines, with limited resources)
- by its role: personal, server,...
- by the step of memory addressing 32- or 64 bits (processors themselves use 32 or 64 bits, in essence they either use numbers stored on 32 bits or 64 bits)

Two important part of operating systems

• Kernel: provides basic control over the hardware, organizes the resources required by the running programs.

イロト イポト イヨト イヨト

Kristóf Kovács

Informatics 3. Lecture X: Bonus

Two important part of operating systems

- Kernel: provides basic control over the hardware, organizes the resources required by the running programs.
- Shell: the user interface to the system. It can be graphical or command bases.

Kristóf Kovács

Informatics 3. Lecture X: Bonus

・ コ ト ・ 一型 ト ・ 日 ト ・

ヨート

• File system: NTFS

周▶ ∢ 国▶

문 ▶ 문

- File system: NTFS
- Source code: closed

- File system: NTFS
- Source code: closed
- Used on most public computers

- File system: NTFS
- Source code: closed
- Used on most public computers
- Developed in batches, there is always an actively developed branch (Windows 11), while the older verions only get smaller fixes and security updates (Windows 8.1, 10), or nothing at all (Windows XP)

• File system: ext4

▲御 ▶ ▲ 副 ▶

물 > 물

- File system: ext4
- Source code: open

▶ < Ξ</p>

- File system: ext4
- Source code: open
- Most widespread on servers, but also used on personal computers

590

- File system: ext4
- Source code: open
- Most widespread on servers, but also used on personal computers
- Development is on multiple branches, there are a number of different distributions, there are branches specialized for research or programming (SUSE) and there are those for simple users (Linux Mint, Ubuntu).

Android summary

• File system: varies, optimized for flash memory: yaffs2, vfat (SD-card), (Samsung: Flash-Friendly File System f2fs),...

イロト 不得下 イヨト イヨト

э

Android summary

- File system: varies, optimized for flash memory: yaffs2, vfat (SD-card), (Samsung: Flash-Friendly File System f2fs),...
- Source code: open

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Android summary

- File system: varies, optimized for flash memory: yaffs2, vfat (SD-card), (Samsung: Flash-Friendly File System f2fs),...
- Source code: open
- Mostly used on mobile phones, tablets, smart watches, TVs, cars,...

イロト イポト イヨト イヨト

Network – IP address

• Machines connected to the internet are addressed by a unique IP address

Network – IP address

- Machines connected to the internet are addressed by a unique IP address
 - IPv4 standard: format: nnn.nnn.nnn (32 bits, 4 number of 8-bit numbers in decimal format) it already ran out

Network – IP address

- Machines connected to the internet are addressed by a unique IP address
 - IPv4 standard: format: nnn.nnn.nnn (32 bits, 4 number of 8-bit numbers in decimal format) it already ran out
 - IPv6 standard: format:

```
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number of 16 bits in hexadecimal format)
```

- Machines connected to the internet are addressed by a unique IP address
 - IPv4 standard: format: nnn.nnn.nnn (32 bits, 4 number of 8-bit numbers in decimal format) it already ran out
 - IPv6 standard: format:

xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number of 16 bits in hexadecimal format)

machine	IP address	how to find out?
local network	172.17.148.238	ifconfig (WIN ipconfig)
	192.168.xxx.xxx	Reserved IP addresses
outside IPv4:	152.66.83.241	https://www.whatismyip.com/
	http://	/www.howtofindmyipaddress.com/
IPv6:	2001:738:2001:20	10:891b:efb:2b36:5447
		http://whatismyipaddress.com/
server	152.66.83.17	ping leibniz.math.bme.hu
	Kristóf Kovács	Informatics 3 Lecture X: Bonus

• ping is a system utility, it provides a means to check if a data package reaches its destination.

```
C:\Users\Tofi>ping bme.hu
Pinging bme.hu [152.66.115.203] with 32 bytes of data:
Reply from 152.66.115.203: bytes=32 time=60ms TTL=52
Reply from 152.66.115.203: bytes=32 time=60ms TTL=52
Reply from 152.66.115.203: bytes=32 time=62ms TTL=52
Ping statistics for 152.66.115.203:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 62ms, Maximum = 73ms, Average = 67ms
C:\Users\Tofi>_
```

イロト イポト イヨト イヨト

3

- ping is a system utility, it provides a means to check if a data package reaches its destination.
- If the ping command is followed by something other than an IP address it will find the IP address paired with that host name using the DNS (Domain Name System)

```
C:\Users\Tofi>ping bme.hu

Pinging bme.hu [152.66.115.203] with 32 bytes of data:

Reply from 152.66.115.203: bytes=32 time=66ms TTL=52

Reply from 152.66.115.203: bytes=32 time=73ms TTL=52

Reply from 152.66.115.203: bytes=32 time=62ms TTL=52

Ping statistics for 152.66.115.203:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 62ms, Maximum = 73ms, Average = 67ms

C:\Users\Tofi>_
```

イロト イポト イヨト イヨト

- ping is a system utility, it provides a means to check if a data package reaches its destination.
- If the ping command is followed by something other than an IP address it will find the IP address paired with that host name using the DNS (Domain Name System)
- PING means "Send a packet to a computer and wait for its return (Packet INternet Groper)"

```
C:\Users\Tofi>ping bme.hu
Pinging bme.hu [152.66.115.203] with 32 bytes of data:
Reply from 152.66.115.203: bytes=32 time=60ms TTL=52
Reply from 152.66.115.203: bytes=32 time=73ms TTL=52
Reply from 152.66.115.203: bytes=32 time=62ms TTL=52
Ping statistics for 152.66.115.203:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 62ms, Maximum = 73ms, Average = 67ms
C:\Users\Tofi>_
```

イロト イポト イヨト イヨト

Conversion from base 2 to base 10:

$$b_n b_{n-1} \dots b_1 b_0 \dots b_{-1} \dots b_{-m} = \sum_{i=-m}^n b_i 2^i$$
.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 =$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

• for integers repeated division by 2,

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2: $106 = 2 \cdot 53 + 0$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2: $106 = 2 \cdot 53 + 0 \rightarrow 0$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

```
For example 106 in base 2:
```

$$106=2\cdot 53+0 \rightarrow 0$$

 $53 = 2 \cdot 26 + 1$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

$$106=2\cdot 53+0 \rightarrow 0$$

 $53=2\cdot 26+1 \rightarrow 1$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26=2\cdot 13+0\to 0$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \to 0$$

$$53 = 2 \cdot 26 + 1 \to 1$$

$$26 = 2 \cdot 13 + 0 \to 0$$

$$13 = 2 \cdot 6 + 1 \to 1$$

$$6=2\cdot 3+0$$

Conversion from base 2 to base 10:

$$b_n b_{n-1} \dots b_1 b_0 \dots b_{-1} \dots b_{-m} = \sum_{i=-m}^n b_i 2^i$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

Conversion from base 2 to base 10:

$$b_n b_{n-1} \dots b_1 b_0 \dots b_{-1} \dots b_{-m} = \sum_{i=-m}^n b_i 2^i$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106=2\cdot 53+0\rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot 1+1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53=2\cdot 26+1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot \ 1+1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3 = 2 \cdot 1 + 1 \rightarrow 1$$

$$1=2\cdot \ 0+1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13=2\cdot \ 6+1\rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot \ 1+1 \rightarrow 1$$

$$1=2\cdot \ 0+1 \rightarrow 1$$

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

```
For example 106 in base 2:
```

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53=2\cdot 26+1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3=2\cdot \ 1+1 \rightarrow 1$$

$$1=2\cdot \ 0+1 \rightarrow 1$$

so the binary form is 1101010.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

Kristóf Kovács

$$106 = 2 \cdot 53 + 0 \rightarrow 0$$

$$53 = 2 \cdot 26 + 1 \rightarrow 1$$

$$26 = 2 \cdot 13 + 0 \rightarrow 0$$

$$13 = 2 \cdot 6 + 1 \rightarrow 1$$

$$6 = 2 \cdot 3 + 0 \rightarrow 0$$

$$3 = 2 \cdot 1 + 1 \rightarrow 1$$

$$1 = 2 \cdot 0 + 1 \rightarrow 1$$

so the binary form is 1101010.

106	2
53	0

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \to 0$	26	1
$13=2\cdot \ 6+1 \rightarrow 1$		
$6 = 2 \cdot 3 + 0 \rightarrow 0$		
$3=2\cdot \ 1+1 ightarrow 1$		
$1=2\cdot \ 0+1 \rightarrow 1$		
so the binary form is 1101010.		

Informatics 3. Lecture X: Bonus

Kristóf Kovács

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$		
$3=2\cdot 1+1 ightarrow 1$		
$1=2\cdot \ 0+1 \rightarrow 1$		
so the binary form is 1101010.	${}^{\bullet} \Box \rightarrow {}^{\bullet}$	
Kristóf Kovács	Informatics 3. Lecture	e X: Bonus

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3=2\cdot 1+1 ightarrow 1$		
$1=2\cdot \ 0+1 \rightarrow 1$		

so the binary form is 1101010.

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

For example $110.101_2 = 6.625$ Conversion from base 10 to base 2

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3=2\cdot 1+1 ightarrow 1$	3	0
$1=2\cdot 0+1 ightarrow 1$		
so the binary form is 1101010.		

Kristóf Kovács

Informatics 3. Lecture X: Bonus

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$33 = 2 \cdot 23 + 1 \cdot 71$ $26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0
$\begin{array}{c} 3 = 2 \\ 1 = 2 \\ \end{array} \begin{array}{c} 1 + 1 \\ 1 \\ \end{array} \begin{array}{c} 7 \\ 1 \\ \end{array} \begin{array}{c} 1 \\ 1 \end{array}$	1	1
so the binary form is 1101010.		
Kristóf Kovács	Informatics 3 Lecture	X Bonus

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

		1
$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0
$3 = 2 \cdot 1 + 1 \rightarrow 1$ $1 = 2 \cdot 0 + 1 \rightarrow 1$	1	1
so the binary form is 1101010.	a 🗆 0 .	
Kristóf Kovács	Informatics 3. Lecture	e X: Bonus

Conversion from base 2 to base 10:

$$b_nb_{n-1}\ldots b_1b_0.b_{-1}\ldots b_{-m}=\sum_{i=-m}^n b_i2^i.$$

- for integers repeated division by 2,
- for the fractional parts repeated multiplication by 2.

For	example	106	in	base	2:
-----	---------	-----	----	------	----

		1	
$106 = 2 \cdot 53 + 0 \rightarrow 0$	106	2	
$53 = 2 \cdot 26 + 1 \rightarrow 1$	53	0	
$26 = 2 \cdot 13 + 0 \rightarrow 0$	26	1	
$13 = 2 \cdot 6 + 1 \rightarrow 1$	13	0	
$6 = 2 \cdot 3 + 0 \rightarrow 0$	6	1	
$3 = 2 \cdot 1 + 1 \rightarrow 1$	3	0	
$3 = 2 \cdot 1 + 1 \rightarrow 1$ $1 = 2 \cdot 0 + 1 \rightarrow 1$	1	1	
so the binary form is 1101010.	a 🗆 0 .		
Kristóf Kovács Informatics 3. Lecture X: Bonus			

How to convert a fractional number into binary?

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, 1/4,..., $1/2^n$,.... For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, 1/4,..., $1/2^n$,.... For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, 1/4,..., 1/2ⁿ,.... For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$

 $0.2 \cdot 2 = 0.4$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, 1/4,..., $1/2^n$,.... For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$

$$0.6\cdot 2=1.2\rightarrow 1$$

 $0.2\cdot 2=0.4\rightarrow 0$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, 1/4,..., $1/2^n$,.... For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$

$$0.6 \cdot 2 = 1.2 \rightarrow 1$$

$$0.2 \cdot 2 = 0.4 \rightarrow 0$$

$$0.4 \cdot 2 = 0.8$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$$0.6\cdot 2=1.2
ightarrow 1$$

$$0.2 \cdot 2 = 0.4 \rightarrow 0$$

$$0.4\cdot 2=0.8\rightarrow 0$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$$0.6 \cdot 2 = 1.2 \rightarrow 2$$

$$0.2 \cdot 2 = 0.4 \rightarrow 0$$

$$0.4\cdot 2=0.8\rightarrow 0$$

$$0.8 \cdot 2 = 1.6$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$$0.3 \cdot 2 = 0.6 \to 0$$

$$0.6 \cdot 2 = 1.2 \to 1$$

$$0.2 \cdot 2 = 0.4 \to 0$$

$$0.4 \cdot 2 = 0.8 \to 0$$

$$0.8 \cdot 2 = 1.6 \to 1$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$$\begin{array}{l} 0.3 \cdot 2 = 0.6 \to 0 \\ 0.6 \cdot 2 = 1.2 \to 1 \\ 0.2 \cdot 2 = 0.4 \to 0 \\ 0.4 \cdot 2 = 0.8 \to 0 \\ 0.8 \cdot 2 = 1.6 \to 1 \\ 0.6 \cdot 2 = 1.2 \end{array}$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$$0.3 \cdot 2 = 0.6 \to 0$$

$$0.6 \cdot 2 = 1.2 \to 1$$

$$0.2 \cdot 2 = 0.4 \to 0$$

$$0.4 \cdot 2 = 0.8 \to 0$$

$$0.8 \cdot 2 = 1.6 \to 1$$

$$0.6 \cdot 2 = 1.2 \to 1$$

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method: $0.3 \cdot 2 = 0.6 \rightarrow 0$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ $0.2 \cdot 2 = 0.4 \rightarrow 0$ $0.4 \cdot 2 = 0.8 \rightarrow 0$ $0.8 \cdot 2 = 1.6 \rightarrow 1$ $0.6 \cdot 2 = 1.2 \rightarrow 1$ So the binary form of 0.3 is 0.010011. we can even see that its infinite binary form is: 0.01001

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

$0.3\cdot 2=0.6\rightarrow 0$
$0.6\cdot 2=1.2 ightarrow 1$
$0.2\cdot 2=0.4\rightarrow 0$
$0.4\cdot 2=0.8\rightarrow 0$
$0.8\cdot 2=1.6 ightarrow 1$
$0.6\cdot 2=1.2 ightarrow 1$
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01001.
Kristóf Kovács

0.3	2
0.6	0

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

$0.3\cdot 2=0.6 ightarrow 0$
$0.6\cdot 2=1.2 ightarrow 1$
$0.2\cdot 2=0.4\to 0$
$0.4\cdot 2=0.8\rightarrow 0$
$0.8\cdot 2=1.6\rightarrow 1$
$0.6\cdot 2=1.2 ightarrow 1$
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01001.

0.3	2
0.6	0
1.2	1

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

$0.3\cdot 2=0.6\to 0$
$0.6\cdot 2=1.2 ightarrow 1$
$0.2\cdot 2 = 0.4 ightarrow 0$
$0.4\cdot 2=0.8\rightarrow 0$
$0.8\cdot 2=1.6 ightarrow 1$
$0.6\cdot 2=1.2 ightarrow 1$
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01001.
Kristóf Kováss

0.3	2
0.6	0
1.2	1
0.4	0

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

nus

$0.3 \cdot 2 = 0.6 \rightarrow 0$		
$0.6\cdot 2=1.2 ightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is		I
0.010011, we can even see that its		
infinite binary form is: 0.01001.	• • • •	₫ ▶ ∢
Kristóf Kovács	Informatics 3. Lecture	X: Bor

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2, $1/4, \ldots, 1/2^n, \ldots$ For example multiplying the binary number 0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1, 0, 0, 1. Using this method:

onus

$0.3 \cdot 2 = 0.6 \rightarrow 0$		
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 \rightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its		
infinite binary form is: 0.01001.	• • • •	a • •
Kristóf Kovács	Informatics 3. Lecture	X: Bo

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3\cdot 2=0.6 ightarrow 0$		
$0.6 \cdot 2 = 1.2 ightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 ightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its	1.2	1
infinite binary form is: 0.01001.		
Kristóf Kovács	Informatics 3. Lecture	X: Bonus

How to convert a fractional number into binary? For example let us write the first 6 digits of 0.3 in binary!

$0.3\cdot 2=0.6 ightarrow 0$		
$0.6 \cdot 2 = 1.2 ightarrow 1$	0.3	2
$0.2 \cdot 2 = 0.4 \rightarrow 0$	0.6	0
$0.4 \cdot 2 = 0.8 \rightarrow 0$	1.2	1
$0.8 \cdot 2 = 1.6 ightarrow 1$	0.4	0
$0.6 \cdot 2 = 1.2 \rightarrow 1$	0.8	0
So the binary form of 0.3 is	1.6	1
0.010011, we can even see that its	1.2	1
infinite binary form is: 0.01001.		
Kristóf Kovács	Informatics 3. Lecture	X: Bonus

Hexadecimal numbers

Hexadecimal (base 16) numbers:

bin	hex	bin	hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

Hexadecimal numbers

Hexadecimal (base 16) numbers:

hex	bin	hex
0	1000	8
1	1001	9
2	1010	А
3	1011	В
4	1100	С
5	1101	D
6	1110	Е
7	1111	F
	0 1 2 3 4 5 6	0 1000 1 1001 2 1010 3 1011 4 1100 5 1101 6 1110

For example 0011110011111010 = 0x3CFA.

1's complement on *n*-bits: the first bit is the sign.

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$.

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$. For example on 4 bits: -7 to 7. $1001 \rightarrow -1$ $1100 \rightarrow -4$ $1111 \rightarrow -7$ $1000 \rightarrow -0$ $0000 \rightarrow +0$

1's complement on *n*-bits: the first bit is the sign. The range of representable numbers: $-2^{n-1} + 1$ to $2^{n-1} - 1$. For example on 4 bits: -7 to 7. $1001 \rightarrow -1$ $1100 \rightarrow -4$ $1111 \rightarrow -7$ $1000 \rightarrow -0$ $0000 \rightarrow +0$

Disadvantage: There's +0 and -0.

2's complement representation on *n*-bits: we want a signed representation of numbers where there aren't +0 and -0.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| =complement of $\bar{x} + 1$.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then $|x| = \text{complement of } \bar{x} + 1$. the form of -1 is

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then $|x| = \text{complement of } \bar{x} + 1$. the form of -1 is $11 \dots 11_2$,

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$,

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let n = 4, x = -5: $-5 \rightarrow \bar{x} = 16 - 5$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let n = 4, x = -5: $-5 \rightarrow \bar{x} = 16 - 5 = 11$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of $\bar{x} + 1$. the form of -1 is $11 \dots 11_2$, of -2 is $11 \dots 10_2$, of -3 is $11 \dots 01_2$.

Example

let n = 4, x = -5: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$
with bit operations:
 $x = -5 \rightarrow |x| = 5$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

the reverse: $\bar{x} = 1011_2$

$$\bar{x} = \begin{cases} x & \text{if } x \text{ is non-negative,} \\ 2^n - |x| & \text{if } x \text{ is negative.} \end{cases}$$

To calculate $2^n - |x|$ you can take the complement of |x| and add 1: $2^n - |x| = (2^n - 1) - |x| + 1 = 11 \dots 1_2 - |x| + 1$. Since $|x| = 2^n - (2^n - |x|)$, calculating x from \bar{x} can be done the same way, so if the first bit is 1, then |x| = complement of \bar{x} + 1. the form of -1 is 11...11₂, of -2 is 11...10₂, of -3 is 11...01₂.

Example

let
$$n = 4$$
, $x = -5$: $-5 \rightarrow \bar{x} = 16 - 5 = 11 = 1011_2$

with bit operations:

 $x = -5 \rightarrow |x| = 5 \rightarrow 0101_2 \rightarrow \bar{x} = 1010_2 + 1_2 = 1011_2$

the reverse: $\bar{x} = 1011_2 \rightarrow x = 0100_2 + 1_2 = 0101_2 = 5$.

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

Kristóf Kovács Informatics 3. Lecture X: Bonus

-

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

< 17 ▶

• E • • E •

æ

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

< A

< ∃ >

< ∃ >

э

I ≡ ▶

• • = • • = •

sign	exponent ,	fraction					
<u> </u>							
• e+f		• f			•		
	<i>s</i> =sign	<i>e</i> =exponent	fraction	all	bias		
simple	1	8	23	32	127 (01111111)		
double	1	11	52	64	1023 (0111111111)		
simple: $(-1)^{s}(1.b_{22}b_{21}\dots b_{0})_{2} \cdot 2^{e-127} = \left(1 + \sum_{i=1}^{23} b_{23-i}2^{-i}\right) \cdot 2^{e-127}$							
double: $(-1)^{s}(1.b_{51}b_{50}\dots b_{0})_{2} \cdot 2^{e-1023} = \left(1 + \sum_{i=1}^{52} b_{52-i}2^{-i}\right) \cdot 2^{e-1023}$							
For example using double precision, between $2^{52} = 4503599627370496$ and							
$2^{53}=9007199254740992$ only integers are represented. between 2^{53} and 2^{54}							
only even integers							

э

・ 同 ト ・ ヨ ト ・ ヨ ト

990

• = • • = •

< 3 > <

3.5

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew
- ISO-8859-9 Latin5 (Turkish)

- ISO-8859-1 Latin1 (West European)
- ISO-8859-2 Latin2 (East European)
- ISO-8859-3 Latin3 (South European)
- ISO-8859-4 Latin4 (North European)
- ISO-8859-5 Cyrillic
- ISO-8859-6 Arabic
- ISO-8859-7 Greek
- ISO-8859-8 Hebrew
- ISO-8859-9 Latin5 (Turkish)
- ISO-8859-10 Latin6 (Nordic)

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

글 > - < 글 >

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	E1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	E1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2	D5	Ő	U+0150	LATIN CAPITAL LETTER O WITH DOUBLE ACU
ISO-8859-2	DB	Ű	U+0170	LATIN CAPITAL LETTER U WITH DOUBLE ACU
ISO-8859-2	F5	ő	U+0151	LATIN SMALL LETTER O WITH DOUBLE ACUTI
ISO-8859-2	FB	ű	U+0171	LATIN SMALL LETTER U WITH DOUBLE ACUT

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852 (DOSLatin2)

ISO-8859-1	C1	Á	U+00C1	LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1	E1	á	U+00E1	LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1	D5	Õ	U+00D5	LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1	DB	Û	U+00DB	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1	F5	õ	U+00F5	LATIN SMALL LETTER O WITH TILDE
ISO-8859-1	FB	û	U+00FB	LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2	D5	Ő	U+0150	LATIN CAPITAL LETTER O WITH DOUBLE ACU
ISO-8859-2	DB	Ű	U+0170	LATIN CAPITAL LETTER U WITH DOUBLE ACU
ISO-8859-2	F5	ő	U+0151	LATIN SMALL LETTER O WITH DOUBLE ACUTI
ISO-8859-2	FB	ű	U+0171	LATIN SMALL LETTER U WITH DOUBLE ACUT
CP1250	82	,	U+201A	SINGLE LOW-9 QUOTATION MARK
CP1250	84	,,	U+201E	DOUBLE LOW-9 QUOTATION MARK
CP1250	85		U+2026	HORIZONTAL ELLIPSIS
CP1250	91	"	U+2018	LEFT SINGLE QUOTATION MARK
CP1250	92	,	U+2019	RIGHT SINGLE QUOTATION MARK
CP1250	93	"	U+201C	LEFT DOUBLE QUOTATION MARK
CP1250	94	"	U+201D	RIGHT DOUBLE QUOTATION MARK
CP1250	96	-	U+2013	EN DASH
CP1250	97	—	U+2014	EM DASH

• U+0000 - U+007F ASCII

æ

э

Latin encoding

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)

Latin encoding

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)
- U+0180 U+024F Latin Extended-B

Latin encoding

- U+0000 U+007F ASCII
- U+0080 U+00FF Latin-1
- U+0100 U+017F Latin Extended-A (latin1, hungarian ő, ű)
- U+0180 U+024F Latin Extended-B
- U+1E00 U+1EFF Latin Extended Additional

UTF – Unicode Transformation Format

• UTF-8 every character is represented on 8, 16, 24 or 32-bits.

UTF – Unicode Transformation Format

- UTF-8 every character is represented on 8, 16, 24 or 32-bits.
- UTF-16 every character is represented on 16 or 32-bits.

UTF – Unicode Transformation Format

- UTF-8 every character is represented on 8, 16, 24 or 32-bits.
- UTF-16 every character is represented on 16 or 32-bits.
- UTF-32 every character is represented on 32-bits.

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	Α	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	Α	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS
U+0150	Ő	c5 90	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151	ő	c5 91	LATIN SMALL LETTER O WITH DOUBLE ACUTE

(日) (四) (三) (三) (三)

Unicode		UTF-8	a official name of the character
U+0020		20	SPACE
U+0030	0	30	DIGIT ZERO
U+0040	0	40	COMMERCIAL AT
U+0041	А	41	LATIN CAPITAL LETTER A
U+0061	а	61	LATIN SMALL LETTER A
U+00C1	Á	c3 81	LATIN CAPITAL LETTER A WITH ACUTE
U+00C9	É	c3 89	LATIN CAPITAL LETTER E WITH ACUTE
U+00CD	Í	c3 8d	LATIN CAPITAL LETTER I WITH ACUTE
U+00D3	Ó	c3 93	LATIN CAPITAL LETTER O WITH ACUTE
U+00D6	Ö	c3 96	LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA	Ú	c3 9a	LATIN CAPITAL LETTER U WITH ACUTE
U+00DC	Ü	c3 9c	LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1	á	c3 a1	LATIN SMALL LETTER A WITH ACUTE
U+00E9	é	c3 a9	LATIN SMALL LETTER E WITH ACUTE
U+00ED	í	c3 ad	LATIN SMALL LETTER I WITH ACUTE
U+00F3	ó	c3 b3	LATIN SMALL LETTER O WITH ACUTE
U+00F6	ö	c3 b6	LATIN SMALL LETTER O WITH DIAERESIS
U+00FA	ú	c3 ba	LATIN SMALL LETTER U WITH ACUTE
U+00FC	ü	c3 bc	LATIN SMALL LETTER U WITH DIAERESIS
U+0150	Ő	c5 90	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151	ő	c5 91	LATIN SMALL LETTER O WITH DOUBLE ACUTE
U+0170	Ű	c5 b0	LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171	ű	c5 b1	LATIN SMALL LETTER U WITH DOUBLE ACUTE E
			Kita (f.K., far L. I.f., starting 2. Leature X. David

UTF-8			
Range (number)	binary form	UTF-8	

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	Ozzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	2 11110www 10xxxxx 10yyyyyy 10zzz

《曰》《圖》《圖》《圖》

2

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	Ozzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxyyyy yyzzzzz	z 11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1

イロト イヨト イヨト イヨト

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
		1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	z 11110www 10xxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001

æ

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
		1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	z 11110www 10xxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001

æ

《曰》 《聞》 《臣》 《臣》

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	z 11110www 10xxxxxx 10yyyyyy 10zzz

 $\acute{\mathsf{A}} \text{ 00C1}{\rightarrow}1100 \text{ 0001}{\rightarrow}00011 \text{ 000001}{\rightarrow}11000011 \text{ 10000001}$

æ

イロト イポト イヨト イヨト

Range (number)	binary form	UTF-8
000000-00007F (128)	Ozzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001 \rightarrow 11000011 1000001 \rightarrow C3 81

2

イロト イポト イヨト イヨト

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
		1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

 $\begin{array}{c} \acute{A} \ 00C1 {\rightarrow} 1100 \ 0001 {\rightarrow} 00011 \ 000001 {\rightarrow} 11000011 \ 10000001 {\rightarrow} C3 \ 81 \\ \acute{O} \ 00D5 {\rightarrow} 1101 \ 0101 {\rightarrow} 00011 \ 010101 {\rightarrow} 11000011 \ 10010101 {\rightarrow} C3 \ 95 \end{array}$

• • = • • = •

3

Range (number)	binary form	UTF-8
000000-00007F (128)	Ozzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwxx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

 $\begin{array}{l} \acute{A} \ 00C1 \rightarrow 1100 \ 0001 \rightarrow 00011 \ 000001 \rightarrow 11000011 \ 10000001 \rightarrow C3 \ 81 \\ \acute{O} \ 00D5 \rightarrow 1101 \ 0101 \rightarrow 00011 \ 010101 \rightarrow 11000011 \ 10010101 \rightarrow C3 \ 95 \\ \acute{O} \ 0150 \rightarrow 0001 \ 0101 \ 0000 \rightarrow 00101 \ 010000 \rightarrow 11000101 \\ 10010000 \rightarrow C5 \ 90 \\ \end{array}$

A E + A E +

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
		1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1 \rightarrow 1100 0001 \rightarrow 00011 000001 \rightarrow 11000011 1000001 \rightarrow C3 81 Õ 00D5 \rightarrow 1101 0101 \rightarrow 00011 010101 \rightarrow 11000011 10010101 \rightarrow C3 95 Õ 0150 \rightarrow 0001 0101 0000 \rightarrow 00101 010000 \rightarrow 11000101 10010000 \rightarrow C5 90 Byte Order Mark FEFF

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

 $\begin{array}{l} \acute{A} \ 00C1 \rightarrow 1100 \ 0001 \rightarrow 00011 \ 000001 \rightarrow 11000001 \ 10000001 \rightarrow C3 \ 81 \\ \acute{O} \ 00D5 \rightarrow 1101 \ 0101 \rightarrow 00011 \ 010101 \rightarrow 11000011 \ 10010101 \rightarrow C3 \ 95 \\ \acute{O} \ 0150 \rightarrow 0001 \ 0101 \ 0000 \rightarrow 00101 \ 010000 \rightarrow 11000101 \\ 10010000 \rightarrow C5 \ 90 \\ \\ Byte \ Order \ Mark \ FEFF \rightarrow 1111110 \ 1111111 \rightarrow \\ 11101111 \ 10111011 \ 10111111 \\ \end{array}$

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81 Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95 Õ 0150→0001 0101 0000→00101 010000→11000101 10010000→C5 90 Byte Order Mark FEFF→1111110 1111111→ 11101111 10111011 10111111→EF BB BF (When viewing files written in UTF-8 formats on windows and reading with a latin-1 encoder)

Range (number)	binary form	UTF-8
000000-00007F (128)	0zzzzzz	0zzzzzz
000080-0007FF (1920)	00000yyy yyzzzzz	110yyyyy 10zzzzz
000800-00FFFF (63488)	xxxxyyyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz
010000-10FFFF (1048576)	000wwwx xxxxyyyy yyzzzzz	11110www 10xxxxxx 10yyyyyy 10zzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81 Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95 Õ 0150→0001 0101 0000→00101 010000→11000101 10010000→C5 90 Byte Order Mark FEFF→1111110 1111111→ 11101111 10111011 10111111→EF BB BF (When viewing files written in UTF-8 formats on windows and reading with a latin-1 encoder)

• The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell *p*₀ and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$:

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$: $r_i \leftarrow z$

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$:

 $r_i \leftarrow z$

$$r_i \leftarrow r_n, r_i \leftarrow r_{r_n}$$
 (same as $r_i \leftarrow r[r[n]])$,

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$: $r_i \leftarrow z$

$$\begin{array}{l} r_i \leftarrow r_n, \ r_i \leftarrow r_{r_n} \ (\text{same as } r_i \leftarrow r[r[n]]), \\ r_i \leftarrow r_i \pm r_n, \ (r_i \leftarrow r_i * r_n, \ r_i \leftarrow r_i/r_n), \end{array}$$

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$: $r_i \leftarrow z$

$$r_i \leftarrow r_n, r_i \leftarrow r_{r_n}$$
 (same as $r_i \leftarrow r[r[n]]$),
 $r_i \leftarrow r_i \pm r_n, (r_i \leftarrow r_i * r_n, r_i \leftarrow r_i/r_n)$,
 p_n : jump to the *n*th program line,

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$: $r_i \leftarrow z$

$$r_i \leftarrow r_n, r_i \leftarrow r_{r_n} \text{ (same as } r_i \leftarrow r[r[n]]\text{)},$$

$$r_i \leftarrow r_i \pm r_n, (r_i \leftarrow r_i * r_n, r_i \leftarrow r_i/r_n),$$

$$p_n: \text{ jump to the } n\text{th program line,}$$

if $r_i = 0$ p_n : jump to the *n*th program line if $r_i = 0$,

- The RAM-machine consists of a *p* program register and an *r* data register, both of them indexed by natural numbers, the data register contains zeros initially.
- The execution of the program starts with executing the command in cell p_0 and ends with an empty command.
- The contents of the *i*th cell of the data register (*i* ∈ N₀) is denoted by *r*[*i*] or *r_i*, these can only contain integers.
- These are the possible commands, where $z \in \mathbb{Z}$, $i, n \in \mathbb{N}_0$: $r_i \leftarrow z$

$$r_i \leftarrow r_n, r_i \leftarrow r_{r_n}$$
 (same as $r_i \leftarrow r[r[n]]$),
 $r_i \leftarrow r_i \pm r_n, (r_i \leftarrow r_i * r_n, r_i \leftarrow r_i/r_n)$,
 p_n : jump to the *n*th program line,
if $r_i = 0$ p_n : jump to the *n*th program line if $r_i = 0$,
if $r_i > 0$ p_n : jump to the *n*th program line if $r_i > 0$,
 $r_i \rightarrow r_i \rightarrow$

For this lecture let us use this "computer like" RAM-machine:

• The program register and memory is finite,

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

ADD 12 means: $r_0 \leftarrow r_0 + r_{12}$

• every calculation is done with the 0th memory cell (and sometimes another one),

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

- every calculation is done with the 0th memory cell (and sometimes another one),
- we use mnemonics for the commands, there are three types:

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

- every calculation is done with the 0th memory cell (and sometimes another one),
- we use mnemonics for the commands, there are three types:
 - explicit: the operand *n* is a number (denoted by an = at the end of the expression)

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

- every calculation is done with the 0th memory cell (and sometimes another one),
- we use mnemonics for the commands, there are three types:
 - explicit: the operand *n* is a number (denoted by an = at the end of the expression)
 - direct: the operand n is a memory cell, the operation is done with the contents of r[n],

For this lecture let us use this "computer like" RAM-machine:

- The program register and memory is finite,
- every memory cell is 1 byte long, every program line is 2 bytes long, the first byte contains the command and the second byte contains the operand, i.e.

- every calculation is done with the 0th memory cell (and sometimes another one),
- we use mnemonics for the commands, there are three types:
 - explicit: the operand *n* is a number (denoted by an = at the end of the expression)
 - direct: the operand n is a memory cell, the operation is done with the contents of r[n],
 - indirect: the operand *n* is the index of a memory cell, the operation is done with r[r[n]] (denoted by a * at the end of the expression)

JUMP	n	jump to the <i>n</i> th command
JZERO	n	jump to the <i>n</i> th command if $r_0 = 0$
JGTZ	n	jump to the <i>n</i> th command if $r_0 > 0$
HALT		stop

Arithmetic commands							
direct		indirect		explicit op			
ADD	n	$r_0 \leftarrow r_0 + r_n$	ADD*	п	$r_0 \leftarrow r_0 + r_{r_n}$	ADD= n	$r_0 \leftarrow r_0 + n$
SUB	n	$r_0 \leftarrow r_0 - r_n$	SUB*	n	$r_0 \leftarrow r_0 - r_{r_n}$	SUB= n	$r_0 \leftarrow r_0 - n$
MULT	n	$r_0 \leftarrow r_0 * r_n$	MULT*	n	$r_0 \leftarrow r_0 * r_{r_n}$	MULT= n	$r_0 \leftarrow r_0 * n$
DIV	n	$r_0 \leftarrow r_0/r_n$	DIV*	n	$r_0 \leftarrow r_0/r_{r_n}$	DIV= n	$r_0 \leftarrow r_0/n$
Data manipulation, IO							
		direct		i	ndirect	exµ	olicit op
LOAD	п	$r_0 \leftarrow r_n$	LOAD*	п	$r_0 \leftarrow r_{r_n}$	LOAD= n	$r_0 \leftarrow n$
STORE	: n	$r_n \leftarrow r_0$	STORE*	× n	$r_{r_n} \leftarrow r_0$		
READ	AD <i>n</i> reads <i>n</i> numbers from the input into r_1, r_2, \ldots, r_n						
WRITE	: n	writes <i>n</i> numbe	ers to the	ε οι	tput from $r_1, r_2,$, r _n	
							■▶ ■ うくぐ

Write a program to calculate (a, b) (greatest common divisor), where $a, b \in \mathbb{N}_0$!

р	command	operand	notes
0	LOAD =	12	
1	STORE	1	r[1] <- a
2	LOAD =	16	
3	STORE	2	r[2] <- b
4	JZERO	17	
5	LOAD	1	r[0] <- r[1]
6	DIV	2	r[0] <- [a/b]
7	STORE	3	r[3] <- [a/b]
8	MULT	2	
9	STORE	4	r[4] <- b*[a/b]
10	LOAD	1	
11	SUB	4	$r[0] <-a - b*[a/b] = a \mod b$
12	STORE	5	
13	LOAD	2	
14	STORE	1	r[1] <- b
15	LOAD	5	b <- a mod b
16	JUMP	3	
17	LOAD	1	
18	STORE	6	this is (a,b) イロトイポトイミトイミト ミーのへの
19	HALT	0	
			Kristóf Kovács Informatics 3. Lecture X: Bonus

A program for the Collatz-problem: let $x \in \mathbb{N}^+$, if x is even, then $x \leftarrow x/2$, if x is odd, then $x \leftarrow 3x + 1$. Is it true that starting from any number we eventually reach 1?

р	Assembly	op.	Machine co	de	3x + 1 (COLLATZ PROBLEM)
0	LOAD =	33	10000011	00100001	load input value
1	STORE	2	10010000	0000010	store into cell 2
2	DIV =	2	01110011	0000010	divide by 2
3	STORE	1	10010000	0000001	store into cell 1
4	MULT =	2	01100011	0000010	multiply by 2
5	SUB	2	01010000	0000010	
6	JZERO	11	11100000	00001100	if it is even, jump
7	LOAD	2	1000000	0000010	
8	MULT =	3	01100011	00000011	multiply by 3
9	ADD =	1	01000011	0000001	plus 1
10	JUMP	1	11010000	0000010	jump to 1
11	LOAD	1	1000000	0000001	if it was even
12	STORE	2	10010000	00000010	
13	SUB =	1	01010011	0000001	is it equal 1?
14	JZERO	17	11100000	00010010	if so, then stop
15	LOAD	1	1000000	0000001	if not, continue
16	JUMP	2	11010000	0000010	jump to 2
17	HALT		11000000	00000000	

Kristóf Kovács Informatics 3. Lecture X: Bonus