
Informatics 3.
Lecture X: Bonus

Kristóf Kovács
Based on Ferenc Wettl’s presentations

Budapest University of Technology and Economics

2024-02-29

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where

Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",

Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",

b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),

Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",

q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"

F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),

δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

A Turing machine can be defined by
M = 〈Q, Γ, b,Σ, δ, q0,F 〉, where
Q is the non-empty set of "states",
Γ the finite, non-empty "tape alphabet",
b ∈ Γ the "blank symbol" (the only
symbol allowed to occur on the tape
infinitely often),
Σ ⊆ Γ \ {b} the set of "input symbols",
q0 ∈ Q the "initial state"
F ⊆ Q the set of "final states" (this is when the machine
stops),
δ : (Q \ F)× Γ ↪→ Q × Γ× {L,R} is a partial function called
the "transition function", where L is left shift, R is right shift
(moves the tape)

H Church–Turing thesis: Every formalizable problem, that can be
solved with an algorithm can be solved with a Turing-machine.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}

Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}

b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)

Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}

q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)

F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}

δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

Turing machine

Busy beaver (Tibor Radó, 1962) The Turing machine that
writes the most non-empty symbols on an empty tape, and
halts in finite steps.

Q = {A,B,C,HALT}
Γ = {0, 1}
b = 0 (empty symbol)
Σ = {1}
q0 = A (initial state)
F = {HALT}
δ table:

A B C

0 1RB 1LA 1LB

1 1LC 1RB 1RH

1 A 0 0 0 0 0 |0| 0 0 0 0 0 0
2 B 0 0 0 0 0 |0| 1 0 0 0 0 0
3 A 0 0 0 0 1 |1| 0 0 0 0 0 0
4 C 0 0 0 1 1 |0| 0 0 0 0 0 0
5 B 0 0 1 1 1 |0| 0 0 0 0 0 0
6 A 0 1 1 1 1 |0| 0 0 0 0 0 0
7 B 0 0 1 1 1 |1| 1 0 0 0 0 0
8 B 0 0 0 1 1 |1| 1 1 0 0 0 0
9 B 0 0 0 0 1 |1| 1 1 1 0 0 0

10 B 0 0 0 0 0 |1| 1 1 1 1 0 0
11 B 0 0 0 0 0 |0| 1 1 1 1 1 0
12 A 0 0 0 0 1 |1| 1 1 1 1 0 0
13 C 0 0 0 1 1 |1| 1 1 1 0 0 0
14 H 0 0 0 1 1 |1| 1 1 1 0 0 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

BIOS (Basic Input/Output System)

What comes before the operating system? How does a
computer know from where to load the operating system?
How does a computer without an operating system know how
to use a monitor or a keyboard?

The first thing that comes online once a computer starts is the
BIOS.
This is a minimal system integrated into the motherboard, its
main task is to initialize the computer.
There are drivers stored inside the BIOS for the use of basic
input / output devices (drivers are software that describes to
the machine how a component works).
The BIOS finds the highest priority storage device and starts
to load the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

BIOS (Basic Input/Output System)

What comes before the operating system? How does a
computer know from where to load the operating system?
How does a computer without an operating system know how
to use a monitor or a keyboard?
The first thing that comes online once a computer starts is the
BIOS.

This is a minimal system integrated into the motherboard, its
main task is to initialize the computer.
There are drivers stored inside the BIOS for the use of basic
input / output devices (drivers are software that describes to
the machine how a component works).
The BIOS finds the highest priority storage device and starts
to load the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

BIOS (Basic Input/Output System)

What comes before the operating system? How does a
computer know from where to load the operating system?
How does a computer without an operating system know how
to use a monitor or a keyboard?
The first thing that comes online once a computer starts is the
BIOS.
This is a minimal system integrated into the motherboard, its
main task is to initialize the computer.

There are drivers stored inside the BIOS for the use of basic
input / output devices (drivers are software that describes to
the machine how a component works).
The BIOS finds the highest priority storage device and starts
to load the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

BIOS (Basic Input/Output System)

What comes before the operating system? How does a
computer know from where to load the operating system?
How does a computer without an operating system know how
to use a monitor or a keyboard?
The first thing that comes online once a computer starts is the
BIOS.
This is a minimal system integrated into the motherboard, its
main task is to initialize the computer.
There are drivers stored inside the BIOS for the use of basic
input / output devices (drivers are software that describes to
the machine how a component works).

The BIOS finds the highest priority storage device and starts
to load the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

BIOS (Basic Input/Output System)

What comes before the operating system? How does a
computer know from where to load the operating system?
How does a computer without an operating system know how
to use a monitor or a keyboard?
The first thing that comes online once a computer starts is the
BIOS.
This is a minimal system integrated into the motherboard, its
main task is to initialize the computer.
There are drivers stored inside the BIOS for the use of basic
input / output devices (drivers are software that describes to
the machine how a component works).
The BIOS finds the highest priority storage device and starts
to load the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

MBR (Master Boot Record)

The first step in loading the operating system is when the
BIOS reads the first 512 bytes of the chosen device, this is
called the MBR.

The first part of the MBR is a short code (bootstrap code),
which describes the steps of starting the operating system.
The next part is the partition table
The third and last part of the MBR is the magical number,
which is the same for all computers (0xAA55 =
0b1010101001010101, this is a failsafe, a way to check if the
MBR is valid.
Until this point the starting procedure of the machine is
independent of the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

MBR (Master Boot Record)

The first step in loading the operating system is when the
BIOS reads the first 512 bytes of the chosen device, this is
called the MBR.
The first part of the MBR is a short code (bootstrap code),
which describes the steps of starting the operating system.

The next part is the partition table
The third and last part of the MBR is the magical number,
which is the same for all computers (0xAA55 =
0b1010101001010101, this is a failsafe, a way to check if the
MBR is valid.
Until this point the starting procedure of the machine is
independent of the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

MBR (Master Boot Record)

The first step in loading the operating system is when the
BIOS reads the first 512 bytes of the chosen device, this is
called the MBR.
The first part of the MBR is a short code (bootstrap code),
which describes the steps of starting the operating system.
The next part is the partition table

The third and last part of the MBR is the magical number,
which is the same for all computers (0xAA55 =
0b1010101001010101, this is a failsafe, a way to check if the
MBR is valid.
Until this point the starting procedure of the machine is
independent of the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

MBR (Master Boot Record)

The first step in loading the operating system is when the
BIOS reads the first 512 bytes of the chosen device, this is
called the MBR.
The first part of the MBR is a short code (bootstrap code),
which describes the steps of starting the operating system.
The next part is the partition table
The third and last part of the MBR is the magical number,
which is the same for all computers (0xAA55 =
0b1010101001010101, this is a failsafe, a way to check if the
MBR is valid.

Until this point the starting procedure of the machine is
independent of the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

MBR (Master Boot Record)

The first step in loading the operating system is when the
BIOS reads the first 512 bytes of the chosen device, this is
called the MBR.
The first part of the MBR is a short code (bootstrap code),
which describes the steps of starting the operating system.
The next part is the partition table
The third and last part of the MBR is the magical number,
which is the same for all computers (0xAA55 =
0b1010101001010101, this is a failsafe, a way to check if the
MBR is valid.
Until this point the starting procedure of the machine is
independent of the operating system.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Storage

After the MBR there can be one or more partitions

There can be at most 4 primary partitions.
It is recommended to install your operating system on a
primary partition (Windows can only be installed there).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Storage

After the MBR there can be one or more partitions
There can be at most 4 primary partitions.

It is recommended to install your operating system on a
primary partition (Windows can only be installed there).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Storage

After the MBR there can be one or more partitions
There can be at most 4 primary partitions.
It is recommended to install your operating system on a
primary partition (Windows can only be installed there).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Extended partition

The extended partition counts as a primary partition, so there
can be at most 3 primary and 1 extended partition on a
storage device.

It can contain however many logical partition this is a possible
way to have more than 4 partitions.
It can only be located at the end of the storage device, no
primary partition can follow it.
Windows usually creates a recovery partition on install, which
comes before the partition of the operating system, should the
operating system fail, it will try to recover itself using this
partition.
Linux uses multiple partitions (usually 4), one of them is the
previously mentioned virtual memory. This is where the
unused part of the memory can be stored (swapping, paging).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Extended partition

The extended partition counts as a primary partition, so there
can be at most 3 primary and 1 extended partition on a
storage device.
It can contain however many logical partition this is a possible
way to have more than 4 partitions.

It can only be located at the end of the storage device, no
primary partition can follow it.
Windows usually creates a recovery partition on install, which
comes before the partition of the operating system, should the
operating system fail, it will try to recover itself using this
partition.
Linux uses multiple partitions (usually 4), one of them is the
previously mentioned virtual memory. This is where the
unused part of the memory can be stored (swapping, paging).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Extended partition

The extended partition counts as a primary partition, so there
can be at most 3 primary and 1 extended partition on a
storage device.
It can contain however many logical partition this is a possible
way to have more than 4 partitions.
It can only be located at the end of the storage device, no
primary partition can follow it.

Windows usually creates a recovery partition on install, which
comes before the partition of the operating system, should the
operating system fail, it will try to recover itself using this
partition.
Linux uses multiple partitions (usually 4), one of them is the
previously mentioned virtual memory. This is where the
unused part of the memory can be stored (swapping, paging).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Extended partition

The extended partition counts as a primary partition, so there
can be at most 3 primary and 1 extended partition on a
storage device.
It can contain however many logical partition this is a possible
way to have more than 4 partitions.
It can only be located at the end of the storage device, no
primary partition can follow it.
Windows usually creates a recovery partition on install, which
comes before the partition of the operating system, should the
operating system fail, it will try to recover itself using this
partition.

Linux uses multiple partitions (usually 4), one of them is the
previously mentioned virtual memory. This is where the
unused part of the memory can be stored (swapping, paging).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Extended partition

The extended partition counts as a primary partition, so there
can be at most 3 primary and 1 extended partition on a
storage device.
It can contain however many logical partition this is a possible
way to have more than 4 partitions.
It can only be located at the end of the storage device, no
primary partition can follow it.
Windows usually creates a recovery partition on install, which
comes before the partition of the operating system, should the
operating system fail, it will try to recover itself using this
partition.
Linux uses multiple partitions (usually 4), one of them is the
previously mentioned virtual memory. This is where the
unused part of the memory can be stored (swapping, paging).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Example for a graphical partition manager

Kristóf Kovács Informatics 3. Lecture X: Bonus

Boot Sector

At the beginning of every primary partition is a Boot
Sector, the MBR stores the location of this sector and
this is what starts to load the operating system.

Similarly to the MBR this is a 512 byte sector as well,
which provides the necessary instructions to start the
operating system, this stores a magical number as well.
On linux systems the Boot Sector is actually empty and
the operating system is loaded in another way, this is
why it is possible to install linux onto a logical partition.
If the machine’s storage device contains more than one
operating system and the MBR contains the necessary
instructions, then it is possilbe to choose which one to
load at every start.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Boot Sector

At the beginning of every primary partition is a Boot
Sector, the MBR stores the location of this sector and
this is what starts to load the operating system.
Similarly to the MBR this is a 512 byte sector as well,
which provides the necessary instructions to start the
operating system, this stores a magical number as well.

On linux systems the Boot Sector is actually empty and
the operating system is loaded in another way, this is
why it is possible to install linux onto a logical partition.
If the machine’s storage device contains more than one
operating system and the MBR contains the necessary
instructions, then it is possilbe to choose which one to
load at every start.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Boot Sector

At the beginning of every primary partition is a Boot
Sector, the MBR stores the location of this sector and
this is what starts to load the operating system.
Similarly to the MBR this is a 512 byte sector as well,
which provides the necessary instructions to start the
operating system, this stores a magical number as well.
On linux systems the Boot Sector is actually empty and
the operating system is loaded in another way, this is
why it is possible to install linux onto a logical partition.

If the machine’s storage device contains more than one
operating system and the MBR contains the necessary
instructions, then it is possilbe to choose which one to
load at every start.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Boot Sector

At the beginning of every primary partition is a Boot
Sector, the MBR stores the location of this sector and
this is what starts to load the operating system.
Similarly to the MBR this is a 512 byte sector as well,
which provides the necessary instructions to start the
operating system, this stores a magical number as well.
On linux systems the Boot Sector is actually empty and
the operating system is loaded in another way, this is
why it is possible to install linux onto a logical partition.
If the machine’s storage device contains more than one
operating system and the MBR contains the necessary
instructions, then it is possilbe to choose which one to
load at every start.

Kristóf Kovács Informatics 3. Lecture X: Bonus

File system

Operating system WINDOWS LINUX MAC Mobile storage

File system NTFS ext4 APFS FAT32 or NTFS

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which

directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),

provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,

organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,

handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,

handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,

provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,

logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs

Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Files of the operating system

Operating system (OS): core program, which
directly controls the hardware (memory, peripheries,...),
provides a unified environment for applications,
organizes the execution of these applications,
handles possible program failures,
handles files,
provides basic protection to the machine,
logs important operation events. . .

The OS is part of the system programs
Other system programs for example are anti-viruses, file
compressors, file encrypters, file explorers, network programs,
task manager...

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user

single-, multi-tasking
distributed (cloud),
embedded (for small machines, with limited resources)
by its role: personal, server,. . .
by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user
single-, multi-tasking

distributed (cloud),
embedded (for small machines, with limited resources)
by its role: personal, server,. . .
by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user
single-, multi-tasking
distributed (cloud),

embedded (for small machines, with limited resources)
by its role: personal, server,. . .
by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user
single-, multi-tasking
distributed (cloud),
embedded (for small machines, with limited resources)

by its role: personal, server,. . .
by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user
single-, multi-tasking
distributed (cloud),
embedded (for small machines, with limited resources)
by its role: personal, server,. . .

by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Types of operating systems

single-, multi-user
single-, multi-tasking
distributed (cloud),
embedded (for small machines, with limited resources)
by its role: personal, server,. . .
by the step of memory addressing 32- or 64 bits (processors
themselves use 32 or 64 bits, in essence they either use
numbers stored on 32 bits or 64 bits)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Two important part of operating systems

Kernel: provides basic control over the hardware, organizes the
resources required by the running programs.

Shell: the user interface to the system. It can be graphical or
command bases.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Two important part of operating systems

Kernel: provides basic control over the hardware, organizes the
resources required by the running programs.
Shell: the user interface to the system. It can be graphical or
command bases.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Windows summary

File system: NTFS

Source code: closed
Used on most public computers
Developed in batches, there is always an actively developed
branch (Windows 11), while the older verions only get smaller
fixes and security updates (Windows 8.1, 10), or nothing at all
(Windows XP)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Windows summary

File system: NTFS
Source code: closed

Used on most public computers
Developed in batches, there is always an actively developed
branch (Windows 11), while the older verions only get smaller
fixes and security updates (Windows 8.1, 10), or nothing at all
(Windows XP)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Windows summary

File system: NTFS
Source code: closed
Used on most public computers

Developed in batches, there is always an actively developed
branch (Windows 11), while the older verions only get smaller
fixes and security updates (Windows 8.1, 10), or nothing at all
(Windows XP)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Windows summary

File system: NTFS
Source code: closed
Used on most public computers
Developed in batches, there is always an actively developed
branch (Windows 11), while the older verions only get smaller
fixes and security updates (Windows 8.1, 10), or nothing at all
(Windows XP)

Kristóf Kovács Informatics 3. Lecture X: Bonus

Linux summary

File system: ext4

Source code: open
Most widespread on servers, but also used on personal
computers
Development is on multiple branches, there are a number of
different distributions, there are branches specialized for
research or programming (SUSE) and there are those for
simple users (Linux Mint, Ubuntu).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Linux summary

File system: ext4
Source code: open

Most widespread on servers, but also used on personal
computers
Development is on multiple branches, there are a number of
different distributions, there are branches specialized for
research or programming (SUSE) and there are those for
simple users (Linux Mint, Ubuntu).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Linux summary

File system: ext4
Source code: open
Most widespread on servers, but also used on personal
computers

Development is on multiple branches, there are a number of
different distributions, there are branches specialized for
research or programming (SUSE) and there are those for
simple users (Linux Mint, Ubuntu).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Linux summary

File system: ext4
Source code: open
Most widespread on servers, but also used on personal
computers
Development is on multiple branches, there are a number of
different distributions, there are branches specialized for
research or programming (SUSE) and there are those for
simple users (Linux Mint, Ubuntu).

Kristóf Kovács Informatics 3. Lecture X: Bonus

Android summary

File system: varies, optimized for flash memory: yaffs2, vfat
(SD-card), (Samsung: Flash-Friendly File System f2fs),. . .

Source code: open
Mostly used on mobile phones, tablets, smart watches, TVs,
cars,. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Android summary

File system: varies, optimized for flash memory: yaffs2, vfat
(SD-card), (Samsung: Flash-Friendly File System f2fs),. . .
Source code: open

Mostly used on mobile phones, tablets, smart watches, TVs,
cars,. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Android summary

File system: varies, optimized for flash memory: yaffs2, vfat
(SD-card), (Samsung: Flash-Friendly File System f2fs),. . .
Source code: open
Mostly used on mobile phones, tablets, smart watches, TVs,
cars,. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Network – IP address

Machines connected to the internet are addressed by a unique
IP address

IPv4 standard: format: nnn.nnn.nnn.nnn (32 bits, 4 number
of 8-bit numbers in decimal format) – it already ran out
IPv6 standard: format:
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number
of 16 bits in hexadecimal format)

machine IP address how to find out?

local network 172.17.148.238 ifconfig (WIN ipconfig)
192.168.xxx.xxx Reserved IP addresses

outside IPv4: 152.66.83.241 https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/

IPv6: 2001:738:2001:2010:891b:efb:2b36:5447
http://whatismyipaddress.com/

server 152.66.83.17 ping leibniz.math.bme.hu

Kristóf Kovács Informatics 3. Lecture X: Bonus

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/
http://whatismyipaddress.com/

Network – IP address

Machines connected to the internet are addressed by a unique
IP address

IPv4 standard: format: nnn.nnn.nnn.nnn (32 bits, 4 number
of 8-bit numbers in decimal format) – it already ran out

IPv6 standard: format:
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number
of 16 bits in hexadecimal format)

machine IP address how to find out?

local network 172.17.148.238 ifconfig (WIN ipconfig)
192.168.xxx.xxx Reserved IP addresses

outside IPv4: 152.66.83.241 https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/

IPv6: 2001:738:2001:2010:891b:efb:2b36:5447
http://whatismyipaddress.com/

server 152.66.83.17 ping leibniz.math.bme.hu

Kristóf Kovács Informatics 3. Lecture X: Bonus

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/
http://whatismyipaddress.com/

Network – IP address

Machines connected to the internet are addressed by a unique
IP address

IPv4 standard: format: nnn.nnn.nnn.nnn (32 bits, 4 number
of 8-bit numbers in decimal format) – it already ran out
IPv6 standard: format:
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number
of 16 bits in hexadecimal format)

machine IP address how to find out?

local network 172.17.148.238 ifconfig (WIN ipconfig)
192.168.xxx.xxx Reserved IP addresses

outside IPv4: 152.66.83.241 https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/

IPv6: 2001:738:2001:2010:891b:efb:2b36:5447
http://whatismyipaddress.com/

server 152.66.83.17 ping leibniz.math.bme.hu

Kristóf Kovács Informatics 3. Lecture X: Bonus

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/
http://whatismyipaddress.com/

Network – IP address

Machines connected to the internet are addressed by a unique
IP address

IPv4 standard: format: nnn.nnn.nnn.nnn (32 bits, 4 number
of 8-bit numbers in decimal format) – it already ran out
IPv6 standard: format:
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (128 bits, 8 number
of 16 bits in hexadecimal format)

machine IP address how to find out?

local network 172.17.148.238 ifconfig (WIN ipconfig)
192.168.xxx.xxx Reserved IP addresses

outside IPv4: 152.66.83.241 https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/

IPv6: 2001:738:2001:2010:891b:efb:2b36:5447
http://whatismyipaddress.com/

server 152.66.83.17 ping leibniz.math.bme.hu

Kristóf Kovács Informatics 3. Lecture X: Bonus

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://www.whatismyip.com/
http://www.howtofindmyipaddress.com/
http://whatismyipaddress.com/

Ping

ping is a system utility, it provides a means to check if a data
package reaches its destination.

If the ping command is followed by something other than an
IP address it will find the IP address paired with that host
name using the DNS (Domain Name System)
PING means "Send a packet to a computer and wait for its
return (Packet INternet Groper)"

Kristóf Kovács Informatics 3. Lecture X: Bonus

Ping

ping is a system utility, it provides a means to check if a data
package reaches its destination.
If the ping command is followed by something other than an
IP address it will find the IP address paired with that host
name using the DNS (Domain Name System)

PING means "Send a packet to a computer and wait for its
return (Packet INternet Groper)"

Kristóf Kovács Informatics 3. Lecture X: Bonus

Ping

ping is a system utility, it provides a means to check if a data
package reaches its destination.
If the ping command is followed by something other than an
IP address it will find the IP address paired with that host
name using the DNS (Domain Name System)
PING means "Send a packet to a computer and wait for its
return (Packet INternet Groper)"

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 =

6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625

Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,

for the fractional parts repeated multiplication by 2.
For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:

106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0

→ 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0

53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1

→ 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1

26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0

→ 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0

13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1

→ 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1

6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0

→ 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0

3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1

→ 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1

1 = 2 · 0 + 1 → 1
so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1

→ 1
so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0

26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1

13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0

6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1

3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0

1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1

0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Conversion from base 2 to base 10:

bnbn−1 . . . b1b0.b−1 . . . b−m =
n∑

i=−m
bi2i .

For example 110.1012 = 6.625
Conversion from base 10 to base 2

for integers repeated division by 2,
for the fractional parts repeated multiplication by 2.

For example 106 in base 2:
106 = 2 · 53 + 0 → 0
53 = 2 · 26 + 1 → 1
26 = 2 · 13 + 0 → 0
13 = 2 · 6 + 1 → 1
6 = 2 · 3 + 0 → 0
3 = 2 · 1 + 1 → 1
1 = 2 · 0 + 1 → 1

so the binary form is 1101010.

106 2
53 0
26 1
13 0
6 1
3 0
1 1
0 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary?

For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1.

Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6

→ 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0

0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2

→ 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1

0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4

→ 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0

0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8

→ 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0

0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6

→ 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1

0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2

→ 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1

So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0

1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1

0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0

0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0

1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1

1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Binary numbers

Example
How to convert a fractional number into binary? For example let us
write the first 6 digits of 0.3 in binary!

Solution: The meaning of digits after the decimal point, 1/2,
1/4,. . . , 1/2n,. . . . For example multiplying the binary number
0.1011001 by 2 the integer part of the result in order is 1, 0, 1, 1,
0, 0, 1. Using this method:
0.3 · 2 = 0.6 → 0
0.6 · 2 = 1.2 → 1
0.2 · 2 = 0.4 → 0
0.4 · 2 = 0.8 → 0
0.8 · 2 = 1.6 → 1
0.6 · 2 = 1.2 → 1
So the binary form of 0.3 is
0.010011, we can even see that its
infinite binary form is: 0.01̇001̇.

0.3 2
0.6 0
1.2 1
0.4 0
0.8 0
1.6 1
1.2 1

Kristóf Kovács Informatics 3. Lecture X: Bonus

Hexadecimal numbers

Hexadecimal (base 16) numbers:

bin hex bin hex

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

For example 0011 1100 1111 1010 = 0x3CFA.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Hexadecimal numbers

Hexadecimal (base 16) numbers:

bin hex bin hex

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

For example 0011 1100 1111 1010 = 0x3CFA.

Kristóf Kovács Informatics 3. Lecture X: Bonus

1’s complement representation

1’s complement on n-bits: the first bit is the sign.

The range of
representable numbers: −2n−1 + 1 to 2n−1 − 1.
For example on 4 bits: −7 to 7.
1001→ −1
1100→ −4
1111→ −7
1000→ −0
0000→ +0
Disadvantage: There’s +0 and −0.

Kristóf Kovács Informatics 3. Lecture X: Bonus

1’s complement representation

1’s complement on n-bits: the first bit is the sign. The range of
representable numbers: −2n−1 + 1 to 2n−1 − 1.

For example on 4 bits: −7 to 7.
1001→ −1
1100→ −4
1111→ −7
1000→ −0
0000→ +0
Disadvantage: There’s +0 and −0.

Kristóf Kovács Informatics 3. Lecture X: Bonus

1’s complement representation

1’s complement on n-bits: the first bit is the sign. The range of
representable numbers: −2n−1 + 1 to 2n−1 − 1.
For example on 4 bits: −7 to 7.
1001→ −1
1100→ −4
1111→ −7
1000→ −0
0000→ +0

Disadvantage: There’s +0 and −0.

Kristóf Kovács Informatics 3. Lecture X: Bonus

1’s complement representation

1’s complement on n-bits: the first bit is the sign. The range of
representable numbers: −2n−1 + 1 to 2n−1 − 1.
For example on 4 bits: −7 to 7.
1001→ −1
1100→ −4
1111→ −7
1000→ −0
0000→ +0
Disadvantage: There’s +0 and −0.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1.

Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.

the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is

11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112,

of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is

11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102,

of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is

11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→

x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5

= 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11

= 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112

with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5

→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012

→ x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112

the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112

→ x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

2’s complement representation

2’s complement representation on n-bits: we want a signed
representation of numbers where there aren’t +0 and −0.

x̄ =

{
x if x is non-negative,
2n − |x | if x is negative.

To calculate 2n − |x | you can take the complement of |x | and add
1: 2n − |x | = (2n − 1)− |x |+ 1 = 11 . . . 12 − |x |+ 1. Since
|x | = 2n − (2n − |x |), calculating x from x̄ can be done the same
way, so if the first bit is 1, then |x | = complement of x̄ + 1.
the form of −1 is 11 . . . 112, of −2 is 11 . . . 102, of −3 is 11 . . . 012.

Example
let n = 4, x = −5: −5→ x̄ = 16− 5 = 11 = 10112
with bit operations:
x = −5→ |x | = 5→ 01012 → x̄ = 10102 + 12 = 10112
the reverse: x̄ = 10112 → x = 01002 + 12 = 01012 = 5.

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented.

between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

IEEE 754-2008, ISO/IEC/IEEE 60559:2011

s=sign e=exponent fraction all bias

simple 1 8 23 32 127 (01111111)
double 1 11 52 64 1023 (01111111111)

simple: (−1)s(1.b22b21 . . . b0)2 · 2e−127 =

(
1 +

23∑
i=1

b23−i2−i

)
· 2e−127

double: (−1)s(1.b51b50 . . . b0)2 · 2e−1023 =

(
1 +

52∑
i=1

b52−i2−i

)
· 2e−1023

For example using double precision, between 252 = 4 503 599 627 370 496 and
253 = 9 007 199 254 740 992 only integers are represented. between 253 and 254

only even integers. . .

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

sign 1 → negative

exponent 100001012 − 011111112 = 000001102, so 6
fraction (1.significand) 1.1101101012,
the number −1110110.1012, which is −118.625

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

sign 1 → negative
exponent 100001012 − 011111112 = 000001102, so 6

fraction (1.significand) 1.1101101012,
the number −1110110.1012, which is −118.625

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

sign 1 → negative
exponent 100001012 − 011111112 = 000001102, so 6
fraction (1.significand) 1.1101101012,

the number −1110110.1012, which is −118.625

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

sign 1 → negative
exponent 100001012 − 011111112 = 000001102, so 6
fraction (1.significand) 1.1101101012,
the number −1110110.1012,

which is −118.625

Kristóf Kovács Informatics 3. Lecture X: Bonus

Sign, exponent, fraction

sign 1 → negative
exponent 100001012 − 011111112 = 000001102, so 6
fraction (1.significand) 1.1101101012,
the number −1110110.1012, which is −118.625

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)

2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)

3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)

4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)

5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic

6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic

7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek

8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew

9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)

10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

1 ISO-8859-1 Latin1 (West European)
2 ISO-8859-2 Latin2 (East European)
3 ISO-8859-3 Latin3 (South European)
4 ISO-8859-4 Latin4 (North European)
5 ISO-8859-5 Cyrillic
6 ISO-8859-6 Arabic
7 ISO-8859-7 Greek
8 ISO-8859-8 Hebrew
9 ISO-8859-9 Latin5 (Turkish)
10 ISO-8859-10 Latin6 (Nordic)

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852
(DOSLatin2)

ISO-8859-1 C1 Á U+00C1 LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1 E1 á U+00E1 LATIN SMALL LETTER A WITH ACUTE

ISO-8859-1 D5 Õ U+00D5 LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1 DB Û U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1 F5 õ U+00F5 LATIN SMALL LETTER O WITH TILDE
ISO-8859-1 FB û U+00FB LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2 D5 Ő U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 DB Ű U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
ISO-8859-2 F5 ő U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 FB ű U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE
CP1250 82 , U+201A SINGLE LOW-9 QUOTATION MARK
CP1250 84 „ U+201E DOUBLE LOW-9 QUOTATION MARK
CP1250 85 . . . U+2026 HORIZONTAL ELLIPSIS
CP1250 91 ‘ U+2018 LEFT SINGLE QUOTATION MARK
CP1250 92 ’ U+2019 RIGHT SINGLE QUOTATION MARK
CP1250 93 ‘‘ U+201C LEFT DOUBLE QUOTATION MARK
CP1250 94 ” U+201D RIGHT DOUBLE QUOTATION MARK
CP1250 96 – U+2013 EN DASH
CP1250 97 — U+2014 EM DASH

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852
(DOSLatin2)

ISO-8859-1 C1 Á U+00C1 LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1 E1 á U+00E1 LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1 D5 Õ U+00D5 LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1 DB Û U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1 F5 õ U+00F5 LATIN SMALL LETTER O WITH TILDE
ISO-8859-1 FB û U+00FB LATIN SMALL LETTER U WITH CIRCUMFLEX

ISO-8859-2 D5 Ő U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 DB Ű U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
ISO-8859-2 F5 ő U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 FB ű U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE
CP1250 82 , U+201A SINGLE LOW-9 QUOTATION MARK
CP1250 84 „ U+201E DOUBLE LOW-9 QUOTATION MARK
CP1250 85 . . . U+2026 HORIZONTAL ELLIPSIS
CP1250 91 ‘ U+2018 LEFT SINGLE QUOTATION MARK
CP1250 92 ’ U+2019 RIGHT SINGLE QUOTATION MARK
CP1250 93 ‘‘ U+201C LEFT DOUBLE QUOTATION MARK
CP1250 94 ” U+201D RIGHT DOUBLE QUOTATION MARK
CP1250 96 – U+2013 EN DASH
CP1250 97 — U+2014 EM DASH

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852
(DOSLatin2)

ISO-8859-1 C1 Á U+00C1 LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1 E1 á U+00E1 LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1 D5 Õ U+00D5 LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1 DB Û U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1 F5 õ U+00F5 LATIN SMALL LETTER O WITH TILDE
ISO-8859-1 FB û U+00FB LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2 D5 Ő U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 DB Ű U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
ISO-8859-2 F5 ő U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 FB ű U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE

CP1250 82 , U+201A SINGLE LOW-9 QUOTATION MARK
CP1250 84 „ U+201E DOUBLE LOW-9 QUOTATION MARK
CP1250 85 . . . U+2026 HORIZONTAL ELLIPSIS
CP1250 91 ‘ U+2018 LEFT SINGLE QUOTATION MARK
CP1250 92 ’ U+2019 RIGHT SINGLE QUOTATION MARK
CP1250 93 ‘‘ U+201C LEFT DOUBLE QUOTATION MARK
CP1250 94 ” U+201D RIGHT DOUBLE QUOTATION MARK
CP1250 96 – U+2013 EN DASH
CP1250 97 — U+2014 EM DASH

Kristóf Kovács Informatics 3. Lecture X: Bonus

These are nearly history

ISO-8859-2, Microsoft CP1250 (Windows Latin2), CP852
(DOSLatin2)

ISO-8859-1 C1 Á U+00C1 LATIN CAPITAL LETTER A WITH ACUTE
ISO-8859-1 E1 á U+00E1 LATIN SMALL LETTER A WITH ACUTE
ISO-8859-1 D5 Õ U+00D5 LATIN CAPITAL LETTER O WITH TILDE
ISO-8859-1 DB Û U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX
ISO-8859-1 F5 õ U+00F5 LATIN SMALL LETTER O WITH TILDE
ISO-8859-1 FB û U+00FB LATIN SMALL LETTER U WITH CIRCUMFLEX
ISO-8859-2 D5 Ő U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 DB Ű U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
ISO-8859-2 F5 ő U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE
ISO-8859-2 FB ű U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE
CP1250 82 , U+201A SINGLE LOW-9 QUOTATION MARK
CP1250 84 „ U+201E DOUBLE LOW-9 QUOTATION MARK
CP1250 85 . . . U+2026 HORIZONTAL ELLIPSIS
CP1250 91 ‘ U+2018 LEFT SINGLE QUOTATION MARK
CP1250 92 ’ U+2019 RIGHT SINGLE QUOTATION MARK
CP1250 93 ‘‘ U+201C LEFT DOUBLE QUOTATION MARK
CP1250 94 ” U+201D RIGHT DOUBLE QUOTATION MARK
CP1250 96 – U+2013 EN DASH
CP1250 97 — U+2014 EM DASH

Kristóf Kovács Informatics 3. Lecture X: Bonus

Latin encoding

U+0000 - U+007F ASCII

U+0080 - U+00FF Latin-1
U+0100 - U+017F Latin Extended-A (latin1, hungarian ő, ű)
U+0180 - U+024F Latin Extended-B
U+1E00 - U+1EFF Latin Extended Additional

Kristóf Kovács Informatics 3. Lecture X: Bonus

Latin encoding

U+0000 - U+007F ASCII
U+0080 - U+00FF Latin-1

U+0100 - U+017F Latin Extended-A (latin1, hungarian ő, ű)
U+0180 - U+024F Latin Extended-B
U+1E00 - U+1EFF Latin Extended Additional

Kristóf Kovács Informatics 3. Lecture X: Bonus

Latin encoding

U+0000 - U+007F ASCII
U+0080 - U+00FF Latin-1
U+0100 - U+017F Latin Extended-A (latin1, hungarian ő, ű)

U+0180 - U+024F Latin Extended-B
U+1E00 - U+1EFF Latin Extended Additional

Kristóf Kovács Informatics 3. Lecture X: Bonus

Latin encoding

U+0000 - U+007F ASCII
U+0080 - U+00FF Latin-1
U+0100 - U+017F Latin Extended-A (latin1, hungarian ő, ű)
U+0180 - U+024F Latin Extended-B

U+1E00 - U+1EFF Latin Extended Additional

Kristóf Kovács Informatics 3. Lecture X: Bonus

Latin encoding

U+0000 - U+007F ASCII
U+0080 - U+00FF Latin-1
U+0100 - U+017F Latin Extended-A (latin1, hungarian ő, ű)
U+0180 - U+024F Latin Extended-B
U+1E00 - U+1EFF Latin Extended Additional

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF – Unicode Transformation Format

UTF-8 every character is represented on 8, 16, 24 or 32-bits.

UTF-16 every character is represented on 16 or 32-bits.
UTF-32 every character is represented on 32-bits.

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF – Unicode Transformation Format

UTF-8 every character is represented on 8, 16, 24 or 32-bits.
UTF-16 every character is represented on 16 or 32-bits.

UTF-32 every character is represented on 32-bits.

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF – Unicode Transformation Format

UTF-8 every character is represented on 8, 16, 24 or 32-bits.
UTF-16 every character is represented on 16 or 32-bits.
UTF-32 every character is represented on 32-bits.

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Unicode UTF-8 a official name of the character
U+0020 20 SPACE
U+0030 0 30 DIGIT ZERO
U+0040 @ 40 COMMERCIAL AT
U+0041 A 41 LATIN CAPITAL LETTER A
U+0061 a 61 LATIN SMALL LETTER A

U+00C1 Á c3 81 LATIN CAPITAL LETTER A WITH ACUTE
U+00C9 É c3 89 LATIN CAPITAL LETTER E WITH ACUTE
U+00CD Í c3 8d LATIN CAPITAL LETTER I WITH ACUTE
U+00D3 Ó c3 93 LATIN CAPITAL LETTER O WITH ACUTE
U+00D6 Ö c3 96 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA Ú c3 9a LATIN CAPITAL LETTER U WITH ACUTE
U+00DC Ü c3 9c LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1 á c3 a1 LATIN SMALL LETTER A WITH ACUTE
U+00E9 é c3 a9 LATIN SMALL LETTER E WITH ACUTE
U+00ED í c3 ad LATIN SMALL LETTER I WITH ACUTE
U+00F3 ó c3 b3 LATIN SMALL LETTER O WITH ACUTE
U+00F6 ö c3 b6 LATIN SMALL LETTER O WITH DIAERESIS
U+00FA ú c3 ba LATIN SMALL LETTER U WITH ACUTE
U+00FC ü c3 bc LATIN SMALL LETTER U WITH DIAERESIS
U+0150 Ő c5 90 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151 ő c5 91 LATIN SMALL LETTER O WITH DOUBLE ACUTE
U+0170 Ű c5 b0 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171 ű c5 b1 LATIN SMALL LETTER U WITH DOUBLE ACUTE

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Unicode UTF-8 a official name of the character
U+0020 20 SPACE
U+0030 0 30 DIGIT ZERO
U+0040 @ 40 COMMERCIAL AT
U+0041 A 41 LATIN CAPITAL LETTER A
U+0061 a 61 LATIN SMALL LETTER A
U+00C1 Á c3 81 LATIN CAPITAL LETTER A WITH ACUTE
U+00C9 É c3 89 LATIN CAPITAL LETTER E WITH ACUTE
U+00CD Í c3 8d LATIN CAPITAL LETTER I WITH ACUTE
U+00D3 Ó c3 93 LATIN CAPITAL LETTER O WITH ACUTE
U+00D6 Ö c3 96 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA Ú c3 9a LATIN CAPITAL LETTER U WITH ACUTE
U+00DC Ü c3 9c LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1 á c3 a1 LATIN SMALL LETTER A WITH ACUTE
U+00E9 é c3 a9 LATIN SMALL LETTER E WITH ACUTE
U+00ED í c3 ad LATIN SMALL LETTER I WITH ACUTE
U+00F3 ó c3 b3 LATIN SMALL LETTER O WITH ACUTE
U+00F6 ö c3 b6 LATIN SMALL LETTER O WITH DIAERESIS
U+00FA ú c3 ba LATIN SMALL LETTER U WITH ACUTE
U+00FC ü c3 bc LATIN SMALL LETTER U WITH DIAERESIS

U+0150 Ő c5 90 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151 ő c5 91 LATIN SMALL LETTER O WITH DOUBLE ACUTE
U+0170 Ű c5 b0 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171 ű c5 b1 LATIN SMALL LETTER U WITH DOUBLE ACUTE

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Unicode UTF-8 a official name of the character
U+0020 20 SPACE
U+0030 0 30 DIGIT ZERO
U+0040 @ 40 COMMERCIAL AT
U+0041 A 41 LATIN CAPITAL LETTER A
U+0061 a 61 LATIN SMALL LETTER A
U+00C1 Á c3 81 LATIN CAPITAL LETTER A WITH ACUTE
U+00C9 É c3 89 LATIN CAPITAL LETTER E WITH ACUTE
U+00CD Í c3 8d LATIN CAPITAL LETTER I WITH ACUTE
U+00D3 Ó c3 93 LATIN CAPITAL LETTER O WITH ACUTE
U+00D6 Ö c3 96 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA Ú c3 9a LATIN CAPITAL LETTER U WITH ACUTE
U+00DC Ü c3 9c LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1 á c3 a1 LATIN SMALL LETTER A WITH ACUTE
U+00E9 é c3 a9 LATIN SMALL LETTER E WITH ACUTE
U+00ED í c3 ad LATIN SMALL LETTER I WITH ACUTE
U+00F3 ó c3 b3 LATIN SMALL LETTER O WITH ACUTE
U+00F6 ö c3 b6 LATIN SMALL LETTER O WITH DIAERESIS
U+00FA ú c3 ba LATIN SMALL LETTER U WITH ACUTE
U+00FC ü c3 bc LATIN SMALL LETTER U WITH DIAERESIS
U+0150 Ő c5 90 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151 ő c5 91 LATIN SMALL LETTER O WITH DOUBLE ACUTE

U+0170 Ű c5 b0 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171 ű c5 b1 LATIN SMALL LETTER U WITH DOUBLE ACUTE

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Unicode UTF-8 a official name of the character
U+0020 20 SPACE
U+0030 0 30 DIGIT ZERO
U+0040 @ 40 COMMERCIAL AT
U+0041 A 41 LATIN CAPITAL LETTER A
U+0061 a 61 LATIN SMALL LETTER A
U+00C1 Á c3 81 LATIN CAPITAL LETTER A WITH ACUTE
U+00C9 É c3 89 LATIN CAPITAL LETTER E WITH ACUTE
U+00CD Í c3 8d LATIN CAPITAL LETTER I WITH ACUTE
U+00D3 Ó c3 93 LATIN CAPITAL LETTER O WITH ACUTE
U+00D6 Ö c3 96 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DA Ú c3 9a LATIN CAPITAL LETTER U WITH ACUTE
U+00DC Ü c3 9c LATIN CAPITAL LETTER U WITH DIAERESIS
U+00E1 á c3 a1 LATIN SMALL LETTER A WITH ACUTE
U+00E9 é c3 a9 LATIN SMALL LETTER E WITH ACUTE
U+00ED í c3 ad LATIN SMALL LETTER I WITH ACUTE
U+00F3 ó c3 b3 LATIN SMALL LETTER O WITH ACUTE
U+00F6 ö c3 b6 LATIN SMALL LETTER O WITH DIAERESIS
U+00FA ú c3 ba LATIN SMALL LETTER U WITH ACUTE
U+00FC ü c3 bc LATIN SMALL LETTER U WITH DIAERESIS
U+0150 Ő c5 90 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
U+0151 ő c5 91 LATIN SMALL LETTER O WITH DOUBLE ACUTE
U+0170 Ű c5 b0 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
U+0171 ű c5 b1 LATIN SMALL LETTER U WITH DOUBLE ACUTE

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8

000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1

→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001

→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001

→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001

→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81

Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95

Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90

Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF

→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111

→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

UTF-8

Range (number) binary form UTF-8
000000-00007F (128) 0zzzzzzz 0zzzzzzz
000080-0007FF (1920) 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
000800-00FFFF (63488) xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz
010000-10FFFF (1048576) 000wwwxx xxxxyyyy yyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Á 00C1→1100 0001→00011 000001→11000011 10000001→C3 81
Õ 00D5→1101 0101→00011 010101→11000011 10010101→C3 95
Ő 0150→0001 0101 0000→00101 010000→11000101
10010000→C5 90
Byte Order Mark FEFF→11111110 11111111→
11101111 10111011 10111111→EF BB BF (ï»¿ When viewing files
written in UTF-8 formats on windows and reading with a latin-1
encoder)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.

The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.

The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.

These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:

ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),

ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),

pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,

if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,

if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

The RAM-machine consists of a p program register and an r
data register, both of them indexed by natural numbers, the
data register contains zeros initially.
The execution of the program starts with executing the
command in cell p0 and ends with an empty command.
The contents of the ith cell of the data register (i ∈ N0) is
denoted by r [i] or ri , these can only contain integers.
These are the possible commands, where z ∈ Z, i , n ∈ N0:
ri ← z

ri ← rn, ri ← rrn (same as ri ← r [r [n]]),
ri ← ri ± rn, (ri ← ri ∗ rn, ri ← ri/rn),
pn: jump to the nth program line,
if ri = 0 pn: jump to the nth program line if ri = 0,
if ri > 0 pn: jump to the nth program line if ri > 0,

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,

every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.

ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),

we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)

direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],

indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

For this lecture let us use this "computer like" RAM-machine:
The program register and memory is finite,
every memory cell is 1 byte long, every program line is 2 bytes
long, the first byte contains the command and the second byte
contains the operand, i.e.
ADD 12 means: r0 ← r0 + r12

every calculation is done with the 0th memory cell (and
sometimes another one),
we use mnemonics for the commands, there are three types:

explicit: the operand n is a number (denoted by an = at the
end of the expression)
direct: the operand n is a memory cell, the operation is done
with the contents of r [n],
indirect: the operand n is the index of a memory cell, the
operation is done with r [r [n]] (denoted by a * at the end of
the expression)

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

Controller commands
JUMP n jump to the nth command
JZERO n jump to the nth command if r0 = 0
JGTZ n jump to the nth command if r0 > 0
HALT stop

Arithmetic commands
direct indirect explicit op

ADD n r0 ← r0 + rn ADD* n r0 ← r0 + rrn ADD= n r0 ← r0 + n
SUB n r0 ← r0 − rn SUB* n r0 ← r0 − rrn SUB= n r0 ← r0 − n
MULT n r0 ← r0 ∗ rn MULT* n r0 ← r0 ∗ rrn MULT= n r0 ← r0 ∗ n
DIV n r0 ← r0/rn DIV* n r0 ← r0/rrn DIV= n r0 ← r0/n

Data manipulation, IO
direct indirect explicit op

LOAD n r0 ← rn LOAD* n r0 ← rrn LOAD= n r0 ← n
STORE n rn ← r0 STORE* n rrn ← r0
READ n reads n numbers from the input into r1, r2, . . . , rn
WRITE n writes n numbers to the output from r1, r2, . . . , rn

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

Write a program to calculate (a, b) (greatest common divisor),
where a, b ∈ N0!
p command operand notes
0 LOAD = 12
1 STORE 1 r[1] <- a
2 LOAD = 16
3 STORE 2 r[2] <- b
4 JZERO 17
5 LOAD 1 r[0] <- r[1]
6 DIV 2 r[0] <- ba/bc
7 STORE 3 r[3] <- ba/bc
8 MULT 2
9 STORE 4 r[4] <- b*ba/bc

10 LOAD 1
11 SUB 4 r[0] <- a - b*ba/bc = a mod b
12 STORE 5
13 LOAD 2
14 STORE 1 r[1] <- b
15 LOAD 5 b <- a mod b
16 JUMP 3
17 LOAD 1
18 STORE 6 this is (a,b)
19 HALT 0

Kristóf Kovács Informatics 3. Lecture X: Bonus

RAM-machine (random access machine)

A program for the Collatz-problem: let x ∈ N+, if x is even, then
x ← x/2, if x is odd, then x ← 3x + 1. Is it true that starting from
any number we eventually reach 1?

p Assembly op. Machine code 3x + 1 (COLLATZ PROBLEM)
0 LOAD = 33 10000011 00100001 load input value
1 STORE 2 10010000 00000010 store into cell 2
2 DIV = 2 01110011 00000010 divide by 2
3 STORE 1 10010000 00000001 store into cell 1
4 MULT = 2 01100011 00000010 multiply by 2
5 SUB 2 01010000 00000010
6 JZERO 11 11100000 00001100 if it is even, jump
7 LOAD 2 10000000 00000010
8 MULT = 3 01100011 00000011 multiply by 3
9 ADD = 1 01000011 00000001 plus 1

10 JUMP 1 11010000 00000010 jump to 1
11 LOAD 1 10000000 00000001 if it was even
12 STORE 2 10010000 00000010
13 SUB = 1 01010011 00000001 is it equal 1?
14 JZERO 17 11100000 00010010 if so, then stop
15 LOAD 1 10000000 00000001 if not, continue
16 JUMP 2 11010000 00000010 jump to 2
17 HALT 11000000 00000000

Kristóf Kovács Informatics 3. Lecture X: Bonus

