5th homework set, Due !!!June 9!!!

(Of course you can submit your homework earlier, in this case I will correct it earlier)

- 1. (2p.) Find out whether there exists a binary prefix code with code lengths
 - (a) 2,3,3,3,4,4,4,5,5,5,5,5,5,6,7,7
 - (b) 2,3,3,4,4,4,4,4,5,5,5,5,6

If yes, then define such a coding!

- 2. (2p.+ 2p. + 3p.) (Hypothesis testing with both errors exponentially decreasing)
 - (a) We observe independent drawings from an unknown distribution $\mathbb Q$ on the finite set A. Let γ be a positive number and let $\mathbb P_0$ and $\mathbb P_0$ be strictly positive distributions on A with $D(\mathbb P_1||\mathbb P_0) > \gamma$. To test the (simple) null hypothesis $\mathbb Q = \mathbb P_0$ against the simple alternative hypothesis $\mathbb Q = \mathbb P_1$, let the acceptance region $A_n \subset \mathcal X^n$ be the union of all type classes $|\mathcal T_{\mathbb P}^n|$ with $D(\mathbb P||\mathbb P_0) \leq \gamma$. Show that then the probability of type 1 error decreases with exponent γ , i.e.,

$$\mathbb{P}_0^n(\mathcal{X}^n - A_n) = 2^{-n\gamma + o(n)} \quad \left(\text{or, i.e., } \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_0^n(\mathcal{X}^n - A_n) = -\gamma \right), \tag{1}$$

whereas the type 2 error probability $(\mathbb{P}_1^n(A_n))$ decreases with exponent $\delta = D(\mathbb{P}^*||\mathbb{P}_1)$ where \mathbb{P}^* is the I-projection of P_1 onto the "divergence ball"

$$B(\mathbb{P}_0, \gamma) = \{ \mathbb{P} : D(\mathbb{P}||\mathbb{P}_0) \le \gamma \}. \tag{2}$$

Hint: Apply Sanov's theorem! Note that $B(\mathbb{P}_0, \gamma)$ is closed and its interior is $\{\mathbb{P} : D(\mathbb{P}||\mathbb{P}_0) < \gamma\}$.

(b) Show that the above is the best possible, i.e., for any $\tilde{A}_n \subset \mathcal{X}^n$ satisfying (1), always

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1^n(\tilde{A}_n) \ge -\delta. \tag{3}$$

Hint: Fix an $\varepsilon > 0$. (1) implies that $\exists N$ such that $\mathbb{P}_0^n(\mathcal{X}^n - \tilde{A}_n) \leq 2^{-n(\gamma - \varepsilon)}$ if n > N. Let Q be an arbitrary n-type in $B(\mathbb{P}_0, \gamma - 2\varepsilon)$. Show that \tilde{A}_n contains at least half of \mathcal{T}_Q^n if n is large enough!

(c) With the notation used above, show that the I-Projection \mathbb{P}^* of \mathbb{P}_1 onto $B(\mathbb{P}_0, \gamma)$ equals the I-projection of both \mathbb{P}_0 and \mathbb{P}_1 onto the linear family

$$\mathcal{L} = \{ \mathbb{P} : \sum_{a \in A} \mathbb{P}(a) \log \frac{\mathbb{P}_0(a)}{\mathbb{P}_1(a)} = \delta - \gamma \} = \{ \mathbb{P} : D(\mathbb{P}||\mathbb{P}_1) - D(\mathbb{P}||\mathbb{P}_0) = \delta - \gamma \}, \tag{4}$$

and also equals the I-projection of \mathbb{P}_0 onto $B(\mathbb{P}_1,\delta)$. Give a geometric interpretation. Finally conclude that \mathbb{P}^* is of the form $\mathbb{P}^*(a) = c \cdot \mathbb{P}_0^{\theta}(a) \cdot \mathbb{P}_1^{1-\theta}(a)$ for some $0 < \theta < 1$.

Hint: We learned that $D(\mathbb{Q}||\mathbb{P})$ is strictly convex in \mathbb{Q} when \mathbb{P} is fixed and strictly positive. Using this fact first prove that \mathbb{P}^* is on the border of $B(\mathbb{P}_0, \gamma)$, i.e., $D(\mathbb{P}^*||\mathbb{P}_0) = \gamma!$ After that, prove that $B(\mathbb{P}_0, \gamma) \cap \mathcal{L} = \{\mathbb{P}^*\}!$ Then prove that the I-projection of \mathbb{P}_1 onto \mathcal{L} equals \mathbb{P}^* . Finally, prove the remaining statements!

3. (2p.) (A reversed Pinsker inequality)

Let \mathbb{P} and \mathbb{Q} be probability distributions on the finite set A. Let $A_+ = \{a : \mathbb{Q}(a) > 0\}$ and let

$$\alpha_{\mathbb{Q}} = \min_{a \in A_{+}} \mathbb{Q}(a).$$

Prove that if $D(\mathbb{P}||\mathbb{Q}) < \infty$ then

$$D(\mathbb{P}||\mathbb{Q}) \le \frac{d^2(\mathbb{P}, \mathbb{Q})}{\alpha_{\mathbb{Q}} \cdot \ln 2}.$$

Hint: First prove that

$$\mathrm{D}(\mathbb{P}||\mathbb{Q}) \leq \sum_{a \in A} \frac{\mathbb{P}(a)}{\ln 2} \left(\frac{\mathbb{P}(a)}{\mathbb{Q}(a)} - 1 \right) = \frac{1}{\ln 2} \sum_{a \in A} \frac{|\mathbb{P}(a) - \mathbb{Q}(a)|^2}{\mathbb{Q}(a)}.$$