5th homework set, Due !!!June 9!!!

(Of course you can submit your homework earlier, in this case I will correct it earlier)

1. (2p.) Find out whether there exists a binary prefix code with code lengths
(a) $2,3,3,3,4,4,4,5,5,5,5,5,6,7,7$
(b) $2,3,3,4,4,4,4,4,4,5,5,5,5,6$

If yes, then define such a coding!
2. (2p.+2p. +3 p.) (Hypothesis testing with both errors exponentially decreasing)
(a) We observe independent drawings from an unknown distribution \mathbb{Q} on the finite set A. Let γ be a positive number and let \mathbb{P}_{0} and \mathbb{P}_{0} be strictly positive distributions on A with $D\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right)>\gamma$. To test the (simple) null hypothesis $\mathbb{Q}=\mathbb{P}_{0}$ against the simple alternative hypothesis $\mathbb{Q}=\mathbb{P}_{1}$, let the acceptance region $A_{n} \subset \mathcal{X}^{n}$ be the union of all type classes $\left|\mathcal{T}_{\mathbb{P}}^{n}\right|$ with $D\left(\mathbb{P} \| \mathbb{P}_{0}\right) \leq \gamma$. Show that then the probability of type 1 error decreases with exponent γ, i.e.,

$$
\begin{equation*}
\mathbb{P}_{0}^{n}\left(\mathcal{X}^{n}-A_{n}\right)=2^{-n \gamma+o(n)} \quad\left(\text { or, i.e., } \lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{0}^{n}\left(\mathcal{X}^{n}-A_{n}\right)=-\gamma\right) \tag{1}
\end{equation*}
$$

whereas the type 2 error probability $\left(\mathbb{P}_{1}^{n}\left(A_{n}\right)\right)$ decreases with exponent $\delta=D\left(\mathbb{P}^{*} \| \mathbb{P}_{1}\right)$ where \mathbb{P}^{*} is the I-projection of P_{1} onto the "divergence ball"

$$
\begin{equation*}
B\left(\mathbb{P}_{0}, \gamma\right)=\left\{\mathbb{P}: D\left(\mathbb{P} \| \mathbb{P}_{0}\right) \leq \gamma\right\} \tag{2}
\end{equation*}
$$

Hint: Apply Sanov's theorem! Note that $B\left(\mathbb{P}_{0}, \gamma\right)$ is closed and its interior is $\left\{\mathbb{P}: D\left(\mathbb{P} \| \mathbb{P}_{0}\right)<\gamma\right\}$.
(b) Show that the above is the best possible, i.e., for any $\tilde{A}_{n} \subset \mathcal{X}^{n}$ satisfying (1), always

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{1}^{n}\left(\tilde{A}_{n}\right) \geq-\delta \tag{3}
\end{equation*}
$$

Hint: Fix an $\varepsilon>0$. (1) implies that $\exists N$ such that $\mathbb{P}_{0}^{n}\left(\mathcal{X}^{n}-\tilde{A}_{n}\right) \leq 2^{-n(\gamma-\varepsilon)}$ if $n>N$. Let Q be an arbitrary n-type in $B\left(\mathbb{P}_{0}, \gamma-2 \varepsilon\right)$. Show that \tilde{A}_{n} contains at least half of \mathcal{T}_{Q}^{n} if n is large enough!
(c) With the notation used above, show that the I-Projection \mathbb{P}^{*} of \mathbb{P}_{1} onto $B\left(\mathbb{P}_{0}, \gamma\right)$ equals the I-projection of both \mathbb{P}_{0} and \mathbb{P}_{1} onto the linear family

$$
\begin{equation*}
\mathcal{L}=\left\{\mathbb{P}: \sum_{a \in A} \mathbb{P}(a) \log \frac{\mathbb{P}_{0}(a)}{\mathbb{P}_{1}(a)}=\delta-\gamma\right\}=\left\{\mathbb{P}: D\left(\mathbb{P} \| \mathbb{P}_{1}\right)-D\left(\mathbb{P} \| \mathbb{P}_{0}\right)=\delta-\gamma\right\} \tag{4}
\end{equation*}
$$

and also equals the I-projection of \mathbb{P}_{0} onto $B\left(\mathbb{P}_{1}, \delta\right)$. Give a geometric interpretation. Finally conclude that \mathbb{P}^{*} is of the form $\mathbb{P}^{*}(a)=c \cdot \mathbb{P}_{0}^{\theta}(a) \cdot \mathbb{P}_{1}^{1-\theta}(a)$ for some $0<\theta<1$.
Hint: We learned that $D(\mathbb{Q}|\mid \mathbb{P})$ is strictly convex in \mathbb{Q} when \mathbb{P} is fixed and strictly positive. Using this fact first prove that \mathbb{P}^{*} is on the border of $B\left(\mathbb{P}_{0}, \gamma\right)$, i.e., $D\left(\mathbb{P}^{*} \| \mathbb{P}_{0}\right)=\gamma!$ After that, prove that $B\left(\mathbb{P}_{0}, \gamma\right) \cap \mathcal{L}=$ $\left\{\mathbb{P}^{*}\right\}$! Then prove that the I-projection of \mathbb{P}_{1} onto \mathcal{L} equals \mathbb{P}^{*}. Finally, prove the remaining statements!
3. (2p.) (A reversed Pinsker inequality)

Let \mathbb{P} and \mathbb{Q} be probability distributions on the finite set A. Let $A_{+}=\{a: \mathbb{Q}(a)>0\}$ and let

$$
\alpha_{\mathbb{Q}}=\min _{a \in A_{+}} \mathbb{Q}(a) .
$$

Prove that if $\mathrm{D}(\mathbb{P} \| \mathbb{Q})<\infty$ then

$$
\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \leq \frac{\mathrm{d}^{2}(\mathbb{P}, \mathbb{Q})}{\alpha_{\mathbb{Q}} \cdot \ln 2}
$$

Hint: First prove that

$$
\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \leq \sum_{a \in A_{+}} \frac{\mathbb{P}(a)}{\ln 2}\left(\frac{\mathbb{P}(a)}{\mathbb{Q}(a)}-1\right)=\frac{1}{\ln 2} \sum_{a \in A_{+}} \frac{|\mathbb{P}(a)-\mathbb{Q}(a)|^{2}}{\mathbb{Q}(a)}
$$

